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P (1 + exp(aY ĉ(X)))−1 for varying values of a; a value of a =∞ cor-
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CHAPTER I

Introduction

Many quantities of interest in modern statistical analysis are non-smooth func-

tionals of the underlying generative distribution, the observed data, or both. Exam-

ples include the test error of a learned classifier, parameters indexing an estimated

optimal dynamic treatment regime, and the coefficients in a regression model after

model selection has been performed. This lack of smoothness can lead to non-regular

asymptotics under many ‘real-life’ scenarios and thus invalidate standard statistical

procedures like the bootstrap and series approximations. Statistical procedures that

either ignore or assume away this non-regularity can perform quite poorly, especially

in small samples.

The aim of this dissertation is (i) to illustrate the impact that non-regularity can

have on the performance of statistical inference procedures, especially in small sam-

ples, and (ii) to develop tools for conducting theoretically valid statistical inference

for non-smooth functionals. In particular, we aim to develop confidence intervals

that deliver asymptotically correct coverage under both fixed and local alternatives.

To construct confidence intervals we first derive smooth, data-dependent, upper and

lower bounds on the functional of interest and then approximate the distribution of

the bounds using standard techniques. We then use estimated distributional features,
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such as the quantiles, to make inference for the original non-smooth functional. We

leverage the smoothness of the bounds to obtain consistent inference under both fixed

and local alternatives. This consistency is instrumental in ensuring good performance

in both in both large and small samples. An important feature of these bounds is

that they are adaptive to the underlying non-smoothness of the functional. That is,

they are asymptotically tight in the case when the generative distribution happens

to induce sufficient smoothness.

1.1 Non-smoothness and non-regularity

Non-smoothness and non-regularity are intimately connected. In particular, non-

smooth functions of regular estimators become non-regular estimators. Non-regular

estimators arising in this way comprise a major proportion of this thesis. Another

way in which non-regular estimators arise are as the minimizer (maximizer) of either

a constrained or non-smooth objective function. The Lasso estimator (Tibshirani

1996) is perhaps the best known example of this type. We briefly discuss the problem

of inference for Lasso type estimators in the future work section of this thesis. In the

remainder of this section we define formally the concept of a non-regular estimator

and show how non-smoothness can induce non-regularity using a toy example.

Suppose we observe X1, X2, . . . , Xn drawn independently from some fixed but

unknown distribution P . Furthermore, suppose we are interested in estimating some

feature of P , say θ(P ) ∈ Θ ⊆ Rp, using X1, X2, . . . , Xn. Let θ̂ = θ̂(X1, X2, . . . , Xn)

denote our estimator of θ(P ). Assume
√
n(θ̂− θ(P )) L, where L is tight and non-

degenerate, and “ ” denotes weak convergence. For each n, consider the triangular

array Xn,1, Xn,2, . . . , Xn,n drawn iid from distribution Pn. It is assumed that Pn is a

sequence of contiguous alternatives to P in the sense of van der Vaart and Wellner
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(1996). That is, ∫ [√
n
(
dP 1/2

n − dP 1/2
)
− 1

2
hdP 1/2

]2

→ 0,

as n tends to ∞ for some measurable function h. Furthermore, assume that θ(Pn) =

θ(P ) +u/
√
n. If

√
n(θ̂(Xn,1, Xn,2, . . . , Xn,n)− θ(Pn)) Lu under Pn, and Lu is equal

in law to L for all u, then we say that θ̂ is regular. On the other hand, if Lu depends

on u, then the estimator θ̂ is said to be non-regular. Intuitively, non-regular esti-

mators can be highly sensitive to small perturbations in the generative distribution.

Consequently, standard asymptotic approximations based on such estimators can be

inaccurate and lead to poor small sample performance.

To make concrete the notion of a regular estimator we consider a toy example.

Suppose that X1, X2, . . . , Xn are iid univariate normal random variables with un-

known mean θ an unit variance. The sample mean θ̂ , X̄n = 1
n

∑n
i=1Xi is a regular

estimator of θ. To see this, for each n consider a triangular array Xn,1, Xn,2, . . . , Xn,n

drawn iid from a univariate normal distribution with mean θn = θ + u/
√
n and

unit variance. Here, u is called the local parameter. Then, it is easy to check that

√
n(θ̂(Xn,1, Xn,2, . . . , Xn,n)−θn) Z where Z is a standard normal random variable.

Since the limiting distribution does not depend on the local parameter u, we see that

θ̂ is regular. On the other hand, consider the task of estimating κ(θ) , |θ|. The

plug-in estimator κ(θ̂) = |X̄n| is non-regular since under the local normal model

√
n(κ(θ̂(Xn,1, Xn,2, . . . , Xn,n)− κ(θn)) 

 |Z + u| − |u| if θ = 0,

Z if θ 6= 0,

where Z denotes a standard normal random variable. Since the local parameter is

present in the above limiting distribution we see that κ(θ̂) is non-regular. More

specifically, since the local parameter only appears in the limit when θ = 0 we say
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that κ(θ̂) is non-regular at θ = 0.

The preceding example showed that κ(θ̂) is non-regular at θ = 0. This might

lead one to think that this non-regularity is merely the consequence of a poor choice

of estimator and that a more judicious choice will eliminate this non-regularity. On

the contrary, a regular estimator of κ(θ) does not exist. More precisely, suppose that

κ̂ = κ̂(X1, X2, . . . , Xn) is any estimator of κ(θ). Furthermore, for each θ, suppose

that if we consider data generated under the local process θn , θ + u/
√
n, then for

each value of the local parameter u, κ̂ satisfies

√
n(κ̂(Xn,1, Xn,2, . . . , Xn,n)− κ(θ + u/

√
n)) Lu(θ),

where Lu is a tight (possibly degenerate) distribution, then κ̂ must be non-regular at

θ = 0 (see van der Vaart 1991; Porter and Hirano and Porter 2009).

The preceding example shows a special case of a general phenomenon in which

non-smooth functionals of the generative distribution frequently do not admit regular

estimators (van der Vaart 1991; Hirano and Porter 2009). Regularity is critical for

the validity of standard asymptotic approaches to inference like the bootstrap or

series approximations (see Doss and Sethuraman; Shao 1994; Beran 1997). Thus,

valid inference often requires specialized methodology, tailor-made to the individual

problem at hand. This thesis attempts to take first steps toward a general framework

for the construction of confidence sets for a large class of non-regular problems.

While each chapter contains its own individual literature review, we briefly men-

tion an alternative approach to constructing confidence sets for non-regular problems

that has received a good deal of attention in the literature: the “m-out-of-n” boot-

strap (Bretagnolle 1983). The m-out-of-n bootstrap is a way of restoring large sample

consistency in many non-regular problems. Unfortunately, for reasons mentioned be-
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low, the small sample performance of the m-out-of-n bootstrap can be poor in some

settings.

Confidence intervals formed using the m-out-of-n bootstrap are formed in exactly

the same way as when using the multinomial bootstrap, except that the size of the

resampled data sets are taken to be m rather than the original data set size n. Viewing

the resample size m as a function of data set size n, say m = m(n), and choosing

m(n) to tend to ∞ as n → ∞ and also satisfy m(n) = o(n) leads to asymptoticaly

valid confidence intervals for many non-regular problems (see Bretagnolle 1983; Beran

and Srivastava 1985; Athreya 1987; Politis and Romano 1994; Shao 1994; Bickel et

al. 1997). Intuitively, the m-out-of-n bootstrap works by letting n tend to infinity

’before’ m(n) does. In this way, asymptotic theory can proceed as if one were simply

resampling from the true generative distribution rather than resampling the empirical

measure (see Shao 1994 for a formal discussion and additional details). While the m-

out-of-n bootstrap often provides valid asymptotics, its utility in small samples can be

limited (see Dumbgen 1993; Beran 1997; Andrews 2000; Andrews and Guggenberger

2005abcd; Samworth 2003; Andrews 2008). In particular, small sample performance

tends to be highly sensitive to the choice of m. Furthermore, the nature of the m-

out-of-n bootstrap is asymptotic in both m and n and thus requires not only that the

sample size n be relatively large, but also that m must be large as well.

1.2 Outline

Broadly speaking, this thesis offers a novel framework for constructing confidence in-

tervals for non-regular functionals. These confidence intervals are formed by bounding

the non-regular functional of interest between two smooth (and regular) functionals.

The smoothness of these bounds can be leveraged to obtain useful asymptotic results.
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In particular, confidence intervals based on these bounds are shown to be automati-

cally adaptive to the amount of non-smoothness in the generative model in the sense

that they provide asymptotically exact coverage under sufficiently smooth generative

models, and are otherwise conservative. Furthermore, we establish consistency results

under both fixed and local alternatives.

We term a confidence interval constructed using this bounding approach an Adap-

tive Confidence Interval (ACI) for the adaptivity properties mentioned above. This

thesis introduces the ACI and its properties for the test error in classification and

inference for parameters indexing an optimal dynamic treatment regime. An outline

of the remainder of this thesis is as follows. Chapter II introduces the ACI for the test

error in classification. In this chapter, we show that the test error is a non-smooth

functional of the data and the underlying generative distribution. We also show that

application of standard approaches like the bootstrap and normal approximations

provide extremely poor small sample performance. The ACI is introduced and shown

to be consistent under fixed and local alternatives. Furthermore, the ACI is shown

to be exact if either (i) the model space is chosen correctly, or (ii) the generative

model satisfies a margin condition. The ACI is also shown to compare favorably to

competitors in a suite of empirical experiments.

Chapter III introduces the ACI for parameters indexing an estimated optimal

dynamic treatment regime. The ACI is shown to be asymptotically correct coverage

under both fixed and local alternatives. In addition, the ACI is developed for both an

arbitrary number of treatments and an arbitrary number of stages of treatment. The

ACI is shown to perform well in a number of empirical experiments and is applied to

analyze data from the Adaptive Interventions for Children with ADHD study (Pelham

and Fabiano 2008).

Chapter IV discusses two extensions of the ACI methodology. The first is in-
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ference for the parameters estimated via the Lasso. This is an important extension

because the bounds used in the ACI must be defined implicitly through the penalized

least squares criterion defining the Lasso. Thus, developing the ACI for the Lasso,

makes significant strides toward a general framework for M -estimators. The second

extension is for the value function in dynamic treatment regimes. This quantity can

be seen as multistage analogue of the test error in classification. The value function

is highly non-smooth and is also of great interest to decision makers.
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CHAPTER II

Adaptive confidence intervals for the test error in

classification

The estimated test error of a learned classifier is the most commonly reported

measure of classifier performance. However, constructing a high quality point esti-

mator of the test error has proved to be very difficult. Furthermore, common interval

estimators (e.g. confidence intervals) are based on the point estimator of the test error

and thus inherit all the difficulties associated with the point estimation problem. As a

result, these confidence intervals do not reliably deliver nominal coverage. In contrast

we directly construct the confidence interval by use of smooth data-dependent upper

and lower bounds on the test error. We prove that for linear classifiers, the proposed

confidence interval automatically adapts to the non-smoothness of the test error, is

consistent under fixed and local alternatives, and does not require that the Bayes

classifier be linear. Moreover, the method provides nominal coverage on a suite of

test problems using a range of classification algorithms and sample sizes.
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2.1 Introduction

In classification problems, we observe a training set of (feature, label) pairs, T =

{(Xi, Yi)}ni=1. The goal is use this sample to construct a classifier, say ĉ, so that when

presented with a new feature, X, ĉ(X) will accurately predict the unobserved label, Y .

Accurate prediction corresponds to small test error; recall that the test error is given

by τ(ĉ) = P1ĉ(X)6=Y where P1ĉ(X)6=Y =
∫

1ĉ(x)6=ydP (x, y) denotes expectation over the

distribution P of (X, Y ) only, and not the distribution of the training set. The test

error τ(ĉ) is a functional of ĉ and thus is a random quantity. For this reason τ(ĉ) is

sometimes referred to as the conditional test error (Efron 1997; Hastie et al. 2009;

Chung and Han 2009). Estimation of the test error typically employs resampling.

Most commonly, the leave-one-out or k-fold cross-validated test error is reported in

practice. Bootstrap estimates of the test error were suggested by Efron (1983) and

later refinements were given by Efron and Tibshirani (1995, 1997). There have been

a number of simulation studies comparing these approaches; some references include

(Efron 1983; Chernick et al. 1985; Kohavi 1995; Krzanowksi and Hand 1996). A

nice survey of estimators is given by Schiavo and Hand (2000). However many have

documented that estimators of the test error are plagued by bias and high variance

across training sets (Zhang 1995; Isaakson 2008; Hastie et al. 2009) and consequently

the test error is accepted to be a difficult quantity to estimate accurately. Two reasons

for this problematic behavior are that some classification algorithms result in a ĉ that

is a non-smooth functional of the training set, and, even when ĉ is a smooth functional

of the training set, the test error is the expectation of a non-smooth function of ĉ.

An alternative to point estimation is interval estimation (e.g. a confidence inter-

val). However, this approach has also been problematic likely because researchers

have followed what we call the “point estimation paradigm”: as a first step a point
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estimator of the test error is constructed, and as a second step, the distribution of this

estimator is approximated. The problem with this approach is that a problematic

point estimator of the test error makes the second step very difficult. The point esti-

mation paradigm was employed by Efron and Tibshirani (1997) where the standard

error of their smoothed leave-one-out estimator was approximated using the nonpara-

metric delta method. Efron and Tibshirani noted that this approach would not work,

however, for their more refined .632 (or .632+) estimators because of non-smoothness.

Yang (2006) follows this paradigm as well, using a normal approximation to the re-

peated split cross-validation estimator. In practice, the point estimation paradigm

is often applied by simply bootstrapping the estimator of the test error (see Jiang

et al., 2008; Chung and Han 2009). These methods, while intuitive, lack theoretical

justification.

We consider interval estimators for linear classifiers constructed from training

sets in which the number of features is less than the training set size (p << n).

As will be seen, even in this simple setting, natural approaches to constructing in-

terval estimators for the test error can perform poorly. Instead of using the point

estimation paradigm, we directly construct the confidence interval by use of smooth

data-dependent upper and lower bounds on the test error. These bounds are suf-

ficiently smooth so that their bootstrap distribution can be used to construct valid

confidence intervals. Moreover, these bounds are adaptive in the sense that under

certain settings exact coverage is delivered.

The outline of this paper is as follows. In Section 2 we illustrate the small sam-

ple problems that motivate the use of approximations in a non-regular asymptotic

framework. Section 3 introduces the Adaptive Confidence Interval (ACI). The ACI

is shown to be consistent under fixed and local alternatives. Section 4 addresses the

computational issues involved in constructing the ACI. A computationally efficient

10



(polynomial time) convex relaxation of the ACI is developed and shown to provide

nearly identical results to exact computation. Section 5 provides a large experimental

study of the ACI and several competitors. A variety of classifiers and sample sizes

are considered on a suite of ten examples. The ACI is shown to provide correct cov-

erage while being shorter in length than competing methods. Section 6 discusses a

number of generalizations and directions for future research. Most proofs are left to

the appendix.

2.2 Motivation

Throughout we assume that the training set is an iid sample T = {(Xi, Yi)}ni=1

drawn from some unknown joint distribution P . The features X are assumed to take

values in Rp while the labels are coded Y ∈ {−1, 1}. To construct the linear classifier

we fit a linear model f̂T (x) = xᵀβ̂n by minimizing a convex criterion function. That

is, we construct β̂n , arg minβ∈Rp PnL(X, Y, β) where Pn is the empirical measure and

L(X, Y, β) is a convex function of β (e.g., hinge loss with an L2 penalty in the case

of linear support vector machines). The classifier is the sign of the linear fit; that is,

the predicted label y at input x is assigned according to ĉ(x) = sign(xᵀβ̂n) (define

sign(0) = 1). Recall that the test error of the learned classifier is defined as

τ(ĉ) , P1sign(Xᵀβ̂n)6=Y = P1Y Xᵀβ̂n<0,

where P denotes expectation with respect to X and Y .

As discussed in the introduction, the test error is a non-smooth functional of the
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training data. To see this and to gain a clearer understanding of the test error note

τ(ĉ) = const+

∫
Rp

[2q(x)− 1] 1xᵀβ̂n<0dPX(x), (2.1)

where q(x) , P (Y = 1|X = x). Recall that sign(2q(x) − 1) is the Bayes classifier.

Then

V ar (τ(ĉ)) = E

∫
Rp

[2q(x)− 1]
(

1xᵀβ̂n<0 − E1xᵀβ̂n<0

)
dPX(x)

2

, (2.2)

where E denotes the expectation over iid training sets of size n drawn from P . The

form of V ar (τ(ĉ)) reveals that there are two scenarios in which τ(ĉ) is highly variable.

The first occurs when xᵀβ̂n is likely to be small relative to V ar(xᵀβ̂n) over a large

range of x where q(x) 6= 1/2. Notice that this might occur when the classifier does

well but is subject to overfitting. The second scenario occurs when xᵀβ̂n is likely

to be small relative to V ar(xᵀβ̂n) over a small range of x where q(x) is far from

1/2. In this scenario there may be little overfitting but the classifier may be far from

the Bayes rule and hence of poor quality. Note that poor classifier performance and

overfitting are hallmarks of small samples. In either case, τ(ĉ) need not concentrate

around Eτ(ĉ).

In order to provide good intuition for the small sample case, we require an asymp-

totic framework wherein the test error τ(ĉ) does not concentrate about Eτ(ĉ), even

in large samples. One way of achieving this is to permit P (Xᵀβ∗ = 0) to be positive

where β∗ , arg minβ∈Rp PL(X, Y, β). This ensures that for all x ∈ Rp that satisfy

xᵀβ∗ = 0, the indicator function 1xᵀβ̂n<0 = 1xᵀ
√
n(β̂n−β∗)<0 never settles down to a

constant but rather converges to a non-degenerate distribution. Furthermore, if for

a non-null subset of these x’s we have q(x) 6= 1/2, then V ar (τ(ĉ)) does not converge

to zero. Hereafter we refer to this as the non-regular framework. This language is
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consistent with that of Bickel et al. (2001). However, unlike the usual notion of

non-regularity the limiting distribution of
√
n(τ̂(ĉ) − τ(ĉ)) depends not only on the

value of β∗ but also the marginal distribution of X.

To see why it is useful to consider approximations that are valid even in the non-

regular asymptotic framework we consider simulated data, which we call the quadratic

example. Here the generative model satisfies P (Xᵀβ∗ = 0) = 0. Data are generated

according to the following mechanism

X1, X2 ∼iid Unif [0, 5]

ε ∼ N(0, 1/4)

Y = sign(X2 − (4/25)X2
1 − 1 + ε).

The working classifier is given by ĉ(x) = sign(β̂n0 + β̂n1x1 + β̂n2x2) where β̂n is

constructed using squared error loss L(X, Y, β) , (1 − Y Xᵀβ)2. In this example

β∗ ≈ (−.225,−317, .439) so that the continuity of X1 and X2 ensures that the reg-

ularity condition P (Xᵀβ∗ = 0) = 0 is satisfied. Consider two seemingly reasonable,

and commonly employed methods for constructing a confidence set. The first is the

centered percentile bootstrap (CPB). The CPB confidence set is formed by boot-

strapping the centered and scaled in-sample error
√
n(Pn − P )1Y Xᵀβ̂n<0. Note that

√
n(Pn − P )1Y Xᵀβ̂n<0 =

√
n(τ̂(ĉ) − τ(ĉ)) where τ̂(ĉ) , Pn1Y Xᵀβ̂n<0 is the in-sample

error. More specifically, let û and l̂ be the 1− γ/2 and γ/2 percentiles of

√
n(P̂(b)

n − Pn)1
Y Xᵀβ̂

(b)
n <0

, (2.3)

where P̂(b)
n , n−1

∑n
i=1Mniδ(xi,yi) is the bootstrap empirical measure with weights

(Mn1,Mn2, . . . ,Mnn) ∼Multinomial(n, 1
n
, 1
n
, . . . , 1

n
) and β̂

(b)
n , arg minβ∈Rp P̂(b)

n L(X, Y, β).

13



Then the 1− γ CPB interval is given by [τ̂(ĉ)− û/
√
n, τ̂(ĉ)− l̂/

√
n]. The second ap-

proach is based on the asymptotic approximation

√
n(Pn − P )1Y Xᵀβ̂n<0 ≈ N (0, (1− P1Y Xᵀβ∗<0)P1Y Xβ∗<0) . (2.4)

Thus the normal approximation confidence set is given by τ̂(ĉ)±z1−γ

√
τ̂(ĉ)(1−τ̂(ĉ))

n
(see

the binomial approximation in Chung and Han 2009). If P (Xᵀβ∗ = 0) = 0 then both

methods can be shown to be consistent.

The left hand side of Figure 1 shows the estimated coverage using 1000 Monte

Carlo iterations of the CPB with 1000 bootstrap resamples, and the normal approx-

imation. Both methods severely undercover in small samples. This is especially

troubling since (i) the problem is low-dimensional, (ii) the linear classifier is of rela-

tively high quality, (for example if n = 30 the expected test error Eτ(ĉ) ≈ .11) and

(iii) the regularity condition P (Xᵀβ∗ = 0) = 0 is satisfied. Why do these methods

fail? Neither method correctly captures the additional variation in the test error

across training samples due to the non-smoothness of the test error. Since the gen-

erative model satisfies the condition P (Xᵀβ∗ = 0) = 0, the variation across training

sets eventually becomes negligible and the methods deliver the desired coverage for

n large.

To illustrate the effect of non-smoothness on the coverage consider the problem of

finding a confidence interval for the functional τsmoothed(ĉ) , P (1 + exp(aY ĉ(X)))−1,

where a is a positive free parameter. Notice that the size of a varies inversely with

the smoothness of τsmooth(ĉ). A value of a > 0 gives the expectation of a sigmoid

function and a value of a =∞ corresponds to τ(ĉ). Coverage for a = 0.1, 1.0, and 10

are given in the right hand side of Figure 1. Notice that coverage increases with the

smoothness of the target τsmoothed(ĉ). The dramatic difference in coverage between

14
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Figure 2.1: Left: Coverage of centered percentile bootstrap and normal approx-
imations for constructing confidence sets for τ(ĉ). Right: Coverage
of centered percentile bootstrap with smoothed target τsmoothed(ĉ) ,
P (1 + exp(aY ĉ(X)))−1 for varying values of a; a value of a = ∞ corre-
sponds to τ(ĉ). Results are based on 1000 Monte Carlo iterations, target
coverage is .950. The performance of the ACI on this example can found
in Section 5 under the example labeled “quad.”

a = .1 and a =∞ suggests that a large component of the anti-conservatism is indeed

attributable to non-smoothness.

Operating in the regular framework there is no indication that these methods

may not work well. In the non-regular framework, however, both of these methods

are inconsistent. To see this in the case of the CPB, write

√
n(P̂(b)

n − Pn)1
Y Xᵀβ̂

(b)
n <0

=
√
n(P̂(b)

n − Pn)1Xᵀβ∗=01
Y Xᵀ

h√
n(β̂

(b)
n −β̂n)+

√
n(β̂n−β∗)

i
<0

+
√
n(P̂(b)

n − Pn)1Xᵀβ∗ 6=01
Y Xᵀβ̂

(b)
n <0

. (2.5)

The first term on the right hand side of (2.5) appears because we allow P (Xᵀβ∗ =

15



0) > 0 in the non-regular framework; conditioned on the data the term
√
n(β̂n − β∗)

does not have a limit and consequently the CPB is inconsistent. A detailed proof is

omitted (see for example Shao 1994). The inconsistency of the normal approximation

can be seen by examining the limiting distribution of
√
n(Pn − P )1Y Xᵀβ̂n<0 in the

non-regular framework. This limit is given in Theorem 3.1.

2.3 Adaptive confidence interval

In this section we introduce our method for constructing a confidence interval for

the test error. This section is organized as follows. We begin by constructing adaptive

confidence interval. Next, we establish the theoretical underpinnings of the method

under fixed alternatives. Following this we provide a (heuristic) justification for our

method using local alternatives. Finally, we discuss the choice of a tuning parameter

required by the method.

2.3.1 Construction of the ACI

We propose an method of constructing a confidence interval that is consistent

in the non-regular framework. We refer to this method as the Adaptive Confidence

Interval (ACI) because, it is adaptive in two ways. First, unlike the CPB, the ACI

provides asymptotically valid confidence intervals regardless of the true parameter

values; intuitively the ACI achieves this by adapting to the amount of non-smoothness

in the test error. Second, in settings (see Corollary 3.4) in which the CPB is consistent,

the upper and lower limits of the ACI are adaptive in that these limits have the same

distribution as the upper and lower limits of the CPB.

The ACI is based on bootstrapping an upper bound of the functional
√
n(Pn −

P )1Y Xᵀβ̂n<0. This upper bound is constructed by first partitioning the training data
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T into two groups (i) points that are far from the boundary xᵀβ∗ = 0, and (ii) points

that are too close to delineate from being on the boundary. The upper bound is

constructed by taking the supremum over all possible classifications of the points

that we cannot distinguish from lying on the boundary. More precisely, under the

non-regular framework the scaled and centered test error can be decomposed as

Gn1Y Xᵀβ̂n<0 = Gn1Xᵀβ∗=01Y Xᵀβ̂n<0 + Gn1Xᵀβ∗ 6=01Y Xᵀβ̂n<0, (2.6)

where Gn =
√
n(Pn − P ). The first term on the right hand side of (2.6) corresponds

to points on the decision boundary xᵀβ∗ = 0, and the second term corresponds to

points that are not on this boundary. That is, the domain of X is partitioned into

two-sets. We operationalize this partitioning using a series of hypothesis tests. For

each X = x we test H0 : xᵀβ∗ = 0 against a two-sided alternative. Let Σ denote

the asymptotic covariance of β̂n (see below). Then the test rejects when the statistic

(xᵀβ̂n)2

xᵀΣx
is large. The bounds are obtained by computing the supremum (infemum)

over all classifications of points for which the test fails to reject. In particular, an

upper bound on Gn1Y Xᵀβ̂n<0 is given by

u(Gn, β̂n,Σ, an) = sup
b∈Rp

Gn1 (Xᵀβ̂n)2

XᵀΣX
≤ 1
an

1Y Xᵀb<0 + Gn1 (Xᵀβ̂n)2

XᵀΣX
> 1
an

1Y Xᵀβ̂n<0, (2.7)

and an lower bound is given by

`(Gn, β̂n,Σ, an) = inf
b∈Rp

Gn1 (Xᵀβ̂n)2

XᵀΣX
≤ 1
an

1Y Xᵀb<0 + Gn1 (Xᵀβ̂n)2

XᵀΣX
> 1
an

1Y Xᵀβ̂n<0. (2.8)

The choice of an, is discussed at the end of this Section. Put b = β̂n to see that (2.7)

and (2.8) are upper and lower bounds, respectively.

Suppose we want to construct a 1− δ% confidence interval for the test error. We

17



have that

Pn1Y Xᵀβ̂n<0−(1/
√
n)u(Gn, β̂n,Σ, an) ≤ P1Y Xᵀβ̂n<0 ≤ Pn1Y Xᵀβ̂n<0−(1/

√
n)`(Gn, β̂n,Σ, an).

We approximate the distribution of u(Gn, β̂n,Σ, an), `(Gn, β̂n,Σ, an) by bootstrap.

The bootstrap is shown to be consistent later in this section. Denote the 1 − δ/2

percentile of the bootstrap distribution of u(Gn, β̂n,Σ, an) by u1−δ/2 and the δ/2

percentile of the bootstrap distribution of `(Gn, β̂n,Σ, an) by `δ/2. The 1 − δ% ACI

is given by

Pn1Y Xᵀβ̂n<0 − (1/
√
n)u1−δ/2 ≤ P1Y Xᵀβ̂n<0 ≤ Pn1Y Xᵀβ̂n<0 − (1/

√
n)`δ/2. (2.9)

2.3.2 Properties of the ACI

In the remainder of the paper we verify that the ACI is asymptotically of the

correct size even if the problem is non-regular (e.g. P (Xᵀβ∗ = 0) > 0) and we evaluate

the performance of the ACI in small samples. A method for efficiently approximating

the ACI is given and shown to be almost identical to exact computation on a suite of

examples. Most proofs are deferred to the appendix.

First we provide the asymptotic distribution of u(Gn, β̂n,Σ, an) and `(Gn, β̂n,Σ, an).

Throughout we make the following assumptions.

(A1) L(X, Y, β) is convex with respect to β for each fixed (x, y) ∈ Rp × {−1, 1}.

(A2) Q(β) , PL(X, Y, β) exists and is finite for all β ∈ Rp.

(A3) β∗ , arg minβ∈Rp Q(β) exists and is unique.

(A4) Let g(X, Y, β) be a sub-gradient of L(X, Y, β). Then P ||g(X, Y, β)||2 < ∞ for

all β in a neighborhood of β∗.
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(A5) Q(β) is twice continuously differentiable at β∗ and H = ∇2Q(β∗) is positive

definite.

(A6) limn→∞ an =∞ but an = o(n).

These assumptions are quite mild and hold for most commonly used loss functions

(e.g., exponential loss, squared error loss, hinge loss–if P has a smooth density at 1,

logistic loss, etc.). Recall that a subgradient satisfies L(x, y, γ) + (β − γ)ᵀg(x, y, γ) ≤

L(x, y, β) for all (x, y) ∈ Rp × {−1, 1} and γ, β ∈ Rp. All convex functions have

a measurable subgradient. Let Ω be the covariance matrix of the sub-gradient of

L(x, y, β) at β∗. Under (A1)-(A5) Haberman (1989; see also Niemiro, 1992) proved

that β̂n converges with probability one to β∗ and
√
n(β̂n−β∗) converges in distribution

to z∞ =L N(0, H−1ΩH−1).

Let V be a Brownian-Bridge indexed by Rp with the variance-covariance function

Cov(V(φ),V(γ)) = P [1Xᵀβ∗=01Y Xᵀφ<0 − P1Xᵀβ∗=01Y Xᵀφ<0]

× [1Xᵀβ∗=01Y Xᵀγ<0 − P1Xᵀβ∗=01Y Xᵀγ<0] . (2.10)

Furthermore, let B(β∗) denote a mean zero normal random variable with variance

P (1Xᵀβ∗ 6=01Y Xᵀβ∗<0 − P1Xᵀβ∗ 6=01Y Xᵀβ∗<0)2.

Theorem 2.3.1. Let V, B(β∗) and z∞ be as above. Assume (A1)-(A6). Then

1. Gn1Y Xᵀβ̂n<0  V(z∞) + B(β∗),

2. u(Gn, β̂n,Σ, an) supu∈Rp V(u) + B(β∗) and `(Gn, β̂n,Σ, an) infu∈Rp V(u) +

B(β∗).

Note that the limiting distributions of u(Gn, β̂n,Σ, an), `(Gn, β̂n,Σ, an) and Gn1Y Xᵀβ̂n<0

have the same regular component B(β∗); the three limits differ only in the non-regular
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component. Note also that the form of the covariance function of V given in (2.10) and

the form of the limiting distribution of u(Gn, β̂n,Σ, an) (or `(Gn, β̂n,Σ, an)) shows that

if the margin condition P (Xᵀβ∗ = 0) = 0 holds, then u(Gn, β̂n,Σ, an)  B(β∗) =L

limn→∞Gn1Y Xᵀβ̂n<0 and similarly for `(Gn, β̂n,Σ, an). That is, if the margin condi-

tion holds, the limiting distribution of the functional used to construct the ACI is

the same as the limiting distribution of the functional Gn1Y Xᵀβ̂n<0. From a practical

point of view this means that for problems where the regular framework is applicable,

for example, if the sample size is large or points are well separated from the boundary,

the ACI is asymptotically exact.

Another scenario in which the limiting distribution of u(Gn, β̂n,Σ, an), `(Gn, β̂n,Σ, an)

and Gn1Y Xᵀβ̂n<0 are the same is when the Bayes decision boundary is linear. In this

case q(x) = 1/2 if xᵀβ∗ = 0 where q(x) = P (Y = 1|X = x). (Here, we assume

that the loss function is classification-calibrated (Bartlett 2005). All loss functions

mentioned in this paper are classification-calibrated.) Then for any fixed u ∈ Rp we

have

P1Xᵀβ∗=01Y Xᵀu<0 =

∫
{x :xᵀβ∗=0}

[q(x)1xᵀu<0 + (1− q(x))(1− 1xᵀu<0)] dPX(x)

=

∫
{x :xᵀβ∗=0}

[2q(x)− 1]1xᵀu<0] dPX(x) +
1

2
P (Xᵀβ∗ = 0)

=
1

2
P (Xᵀβ∗ = 0).

The form of the variance of V and the above series of equalities show that if the

Bayes decision boundary is linear then V(u) =L N(0, 1
2
(1− 1

2
P1Xᵀβ∗=0)P1Xᵀβ∗=0) for
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all u ∈ Rp. Therefore, if the Bayes decision is linear

limn→∞u(Gn, β̂n,Σ, an) =L sup
u∈Rp

V(u) + B(β∗)

=L N (0, (1− P1Xᵀβ∗<0)P1Xᵀβ∗<0) + B(β∗)

=L V(z∞) + B(β∗)

=L lim
n→∞

√
n(Pn − P )1Y Xᵀβ̂n<0,

where the first and last equalities follow from Theorem 3.1, and the second and third

equalities follow since V is constant across all indices. We have proved the following

result.

Corollary 2.3.2. Assuming (A1)-(A6) hold then if either (i) the Bayes decision

boundary is sign(Xᵀβ∗) or (ii) P (Xᵀβ∗ = 0) = 0 then u(Gn, β̂n,Σ, an), `(Gn, β̂n,Σ, an)

and Gn1Y Xᵀβ̂n<0 have the same limiting distribution.

The implication of the above theorem and corollary is that when either of the above

conditions hold the ACI should provide the nominal coverage. When neither event

holds then the ACI may be conservative. In simulations we shall see that the degree

of conservatism is small.

The ACI in (2.9) utilizes a bootstrap approximation to the distribution of u(Gn, β̂n,Σ, an),

`(Gn, β̂n,Σ, an). The next theorem concerns the consistency of the bootstrap distri-

butions. Let Σ̂n be a weakly consistent estimator of Σ (e.g. the plug-in estimator).

Define BL1(R2) to be the space of bounded Lipschitz-1 functions on R2 and let EM

denote the expectation with respect to the bootstrap weights.

Theorem 2.3.3. Assume (A1)-(A6). Then {u(Gn, β̂n,Σ, an), `(Gn, β̂n,Σ, an)} and

{u(G(b)
n , β̂

(b)
n , Σ̂n, an), `(G(b)

n , β̂
(b)
n , Σ̂n, an)} converge to the same limiting distribution
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in probability. That is,

sup
h∈BL1(R2)

∣∣∣∣Eh({u(Gn, β̂n,Σ, an), `(Gn, β̂n,Σ, an)}
)

−EMh
(
{u(G(b)

n , β̂
(b)
n , Σ̂n, an), `(G(b)

n , β̂
(b)
n , Σ̂n, an)}

) ∣∣∣∣
converges in probability to zero.

Thus the ACI provides asymptotically valid confidence intervals. Moreover we have

the following.

Corollary 2.3.4. Assuming (A1)-(A6) hold then if either (i) the Bayes decision

boundary is sign(Xᵀβ∗) or (ii) P (Xᵀβ∗ = 0) = 0 then u(G(b)
n , β̂

(b)
n , Σ̂n, an), `(G(b)

n , β̂
(b)
n , Σ̂n, an)

and Gn1Y Xᵀβ̂n<0 converge to the same limiting distribution, in probability.

Thus, the ACI is also adaptive in the sense that in settings where the centered

percentile bootstrap would be consistent, u(G(b)
n , β̂

(b)
n , Σ̂, an), `(G(b)

n , β̂
(b)
n , Σ̂, an) and

Gn1Y Xᵀβ̂n<0 have the same limiting distribution.

2.3.3 Local Alternatives

In Section 2 we motivated the use of a non-regular asymptotic framework in order

to gain intuition for small samples. An alternative strategy for developing intuition

for non-regular problems is to study the limiting behavior of
√
n(β̂n−β∗) under local

alternatives. This strategy has roots in Econometrics.

In econometrics, a common strategy to constructing procedures with good small

sample properties in non-regular settings is to utilize alternatives local to the param-

eter values that cause the non-regularity (Andrews 2000; Cheng 2008; Xie 2009). To

see this recall that in small samples a non-negligible proportion of the inputs x are

in a
√
n-neighborhood of the decision boundary xᵀβ∗ = 0 which causes the indicator
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function 1xᵀβ̂n<0 to become unstable. In the prior sections we assumed that there

was a non-null probability that an input lies exactly on the boundary in order to

retain the instability of the indicator function even in large samples. Another way to

maintain this instability is by considering local alternatives.

The ACI can be seen as arising as an asymptotic approximation under local al-

ternatives in the following way. In particular, suppose that a training set Tn =

{(Xni, Yni)}ni=1 is drawn iid from distribution Pn for which

β∗n , arg min
β∈Rp

PnL(X, Y, β) = β∗ + Γ/
√
n (2.11)

for some Γ ∈ Rp − {0}. In addition, we assume that P (Xᵀβ∗ = 0) > 0 (while

Pn(Xᵀβ∗n = 0) > 0 may or may not hold). A general tactic is to derive the limiting

distribution of an estimator which will depend on the local parameter Γ and then

take a supremum over this parameter to construct a confidence interval. As a first

step in following this approach we might expect that

Gn1Y Xᵀβ̂n<0 = Gn1Xᵀβ∗=01Y Xᵀ[
√
n(β̂n−β∗n)+Γ]<0 + Gn1Xᵀβ∗ 6=01Y Xᵀβ̂n<0

 V(z∞ + Γ) + B(β∗)

under Pn. Note that supΓ Gn1Xᵀβ∗=01Y Xᵀ[
√
n(β̂n−β∗n)+Γ]<0 is equal to the first term on

the right hand side of (2.7). Hence, u(Gn, β̂n,Σ, an) is the supremum over all local

alternatives of the form given in (2.11). Also taking the supremum over Γ ∈ Rp−{0}

we obtain

sup
Γ∈Rp−{0}

V(z∞ + Γ) + B(β∗) =L sup
u∈Rp

V(u) + B(β∗),

which is the limiting distribution of u(Gn, β̂n,Σ, an) (see Theorem 3.1). Thus, the
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ACI can be seen as arising as an asymptotic approximation under local alternatives.

This result is formalized below.

Theorem 2.3.5. Assume that Tn = {(Xni, Yni)}ni=1 is drawn iid from distribution Pn

for which:

(B1) β∗n , arg minβ∈Rp PnL(X, Y, β) = β∗ + Γ/
√
n for some Γ ∈ Rp − {0},

(B2) if F is any uniformly bounded Donsker class and Gn  L in l∞(F) under P ,

then Gn  L in l∞(F) under Pn,

(B3)
√
n(β̂n − β∗n) = −H−1Gng(X, Y, β∗) + oPn(1),

where Gn ,
√
n(Pn − Pn). Assume (A1)-(A6). Then:

1. Gn1Y Xᵀβ̂n<0  V(z∞ + Γ) + B(β∗)

2. limn→∞ u(Gn, β̂n,Σ, an) =L supη∈Rp V(z∞ + η) + B(β∗) = supu∈Rp V(u) + B(β∗)

under Pn.

Thus the limiting distribution of u(Gn, β̂n,Σ, an) is unchanged under local alternatives

and hence might be expected to perform well in small samples. A similar result can

be proved for `(G(b)
n , β̂

(b)
n , Σ̂, an). This result is underscored by the empirical results

in Section 5.

2.3.4 Choice of Tuning Parameter an

Use of the ACI requires the choice of the tuning parameter an. We use a simple

heuristic for choosing the value of this parameter. The method described here per-

formed well on all of the examples in Section 5. We begin with the presumption that

undercoverage is a greater sin than conservatism. Recall that we can view the ACI as

24



a two step procedure where at the first stage we test the null hypothesis H0 : xᵀβ∗ = 0

against a two-sided alternative. The test of H0 used in constructing the ACI rejects

when (Xᵀβ̂n)2

XᵀΣX
> 1

an
. The form of u(Gn, β̂n,Σ, an) in (2.7) shows that 1

an
too small (e.g.

large Type I error) results in too few points being deemed “near the boundary.” Con-

sequently the resulting interval may be too small since the supremum does not affect

enough of the training points. Conversely, 1
an

too large (e.g. large Type II error) puts

too many points in the region on non-regularity, resulting in an interval that may be

too wide because the supremum affects too many of the training points. Given our

presumption, controlling Type I error is of primary importance. Let γ ∈ (0, 1). Then

let 1
an

= 1√
n
∨ χ2

1−γ
n

and we have for any x ∈ Rp − {0} and xᵀβ∗ = 0

P

(
(xᵀβ̂n)2

xᵀΣx
>

1

an

∣∣∣∣H0

)
= P

(√n(β̂n − β∗)ᵀx√
xᵀΣx

)2

>
n

an

 <∼ γ.

Thus, the suggested an controls the Type I error to be no more than γ. Moreover,

it is clear from the above display that the Type I error decreases to zero as n tends

to infinity. In all of the experiments in this paper we choose, rather arbitrarily, to

use γ = .005. Simulations results, given in Table 5 of the appendix, show that the

performance (measured in terms of width and coverage) of the ACI appears to be

insensitive to choices of γ in the range .001 to .01 for a sample size of around 30.

For larger sample sizes, the choice of γ is unimportant since
√
n > χ2

1−γ except for

extremely small values of γ.

2.4 Computation

To implement the ACI we need to calculate, for each bootstrap sample, the supre-

mum and infimum in u(G(b)
n , β̂

(b)
n , Σ̂n, an), and l(G(b)

n , β̂
(b)
n , Σ̂n, an) respectively. The
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required optimization, as stated, is a Mixed Integer Program (MIP) because of the

discrete nature of the indicator function. In this section, we develop a convex relax-

ation that can be solved in polynomial time. The details for the infimum are provided

below; a similar approach is used to find the supremum by writing 1z<0 = 1−1z≥0 and

using the relationship: supz g(z) = −infz − g(z). Let (mn1,mn2, . . . ,mnn) be a real-

ization of the bootstrap weights (Mn1,Mn2, . . . ,Mnn) ∼Multinomial(n, 1
n
, 1
n
, . . . , 1

n
).

For each such realization, construction of the infemum in the ACI requires computing

inf
u∈Rp

∑
i∈N(b)

n

(mni − 1)1yixᵀ
i u<0, (2.12)

where N
(b)
n = {i :

(xᵀ
i β̂

(b)
n )2

xᵀ
i Σ̂nxi

≤ 1
an
}. In this form, the optimization is clearly seen to be an

MIP. Reliably solving an MIP requires the use specialized software (we use CPLEX)

and quickly becomes computationally burdensome as the size of the problem grows.

The following convex relaxation of (2.12) is (i) computationally efficient requiring

roughly the same amount of computation as fitting a linear SVM and (ii) can be

solved without specialized software (e.g. R or matlab).

As the initial step write

∑
i∈N(b)

n

(mni − 1)1yixᵀ
i u<0 =

∑
i∈N(b)

n

mni1yixᵀ
i u<0 +

∑
i∈N(b)

n

(−1yixᵀ
i u<0).

Then replace the indicator function 1yixᵀ
i u<0 with convex surrogate and upper bound

(1−yixᵀ
i u)+ where (z)+ denotes the positive part of z. Similarly, replace the function

−1yixᵀu<0 with convex surrogate and upper bound (1 + yix
ᵀ
i u)+ − 1. The indica-

tor functions and their respective surrogates are shown in Figure 2. The relaxed
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Figure 2.2: Relaxation of the indicator functions. Left panel: indicator function
1yxᵀu<0 replaced with convex surrogate (1− yxᵀu)+. Right panel: indica-
tor function −1yxᵀu<0 replaced with convex surrogate (1 + yxᵀu)+ − 1.

optimization problem is then

inf
u∈Rp

∑
i∈N(b)

n

[mni(1− yixᵀ
i u)+ + (1 + yix

ᵀ
i u)+] (2.13)

where the −1 in the relaxation of −1yixᵀ
i u<0 has been omitted since it does not depend

on u. The optimization problem in (2.13) can be cast as a linear program and hence

solved in polynomial time. See the next section for an empirical comparison of the

relaxed and MIP solutions to (2.12).

2.5 Empirical study

In this section we compare solution quality between the relaxed and MIP solutions

to (2.12); as will be seen the relaxed solution to (2.12) can be computed much more

quickly while little is lost in terms of solution quality. Next using the relaxed solution
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to (2.12) the empirical performance of the ACI is compared with two recent methods

proposed in the literature. Ten data sets are used in these comparisons; three are

simulated and the remaining seven data sets are taken from the UCI machine learning

repository (www.ics.uci.edu/∼mlearn/MLRepository.html) and thus the true gener-

ative model is unknown. In this case, the empirical distribution function of the data

set is treated as the generative model. A summary of the data sets are given in Table

2.2.

To assess the difference in solution quality between the relaxed and MIP solutions

to (2.12) we perform the following procedure for each of the 10 examples listed in

Table 2.2. We generate 1000 training sets of size n = 30, and for each training set

we compute 1000 bootstrap resamples. For each resample we compute (2.12) exactly

using the MIP and approximately using the convex relaxation described above. Here

we illustrate the results when the loss function used to construct β̂n and β̂
(b)
n is chosen

to be L(X, Y, β) = (1 − Y Xᵀβ)2. Let θ
(t)(b)
MIP and θ

(t)(b)
REL denote the MIP and relaxed

solution to (2.12) for the bth bootstrap resample of the tth training set. Table 2.1

reports the 50, 75, 95, and 99 percentiles of 1
n

(
θ

(t)(b)
MIP − θ

(t)(b)
REL

)
for each example.

Notice that for each example we considered, the relaxed and MIP solutions agree

exactly on more than half of the resampled pairs. Moreover, on more than 95 percent

of the resampled pairs, we observe that 1
n

(
θ

(t)(b)
MIP − θ

(t)(b)
REL

)
≤ 1

n
, implying that the

two solutions differed by at most the activation of a single indicator function. Table

2.1 also reports the estimated coverage of confidence sets constructed using the MIP

and relaxed formulations. For each of the 10 data sets, estimated coverage using the

two methods is not significantly different. The final bit of information in Table 2.1

regards computation time. The last two columns report the average time in seconds

that it takes to construct a single confidence interval using the MIP and relaxed

formulations. Computations were performed using a 3.06 GHz intel processor with 4
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GB 1067 MHz DDR3. It is clear that even in the n = 30 case significant computational

gain can be made by using the relaxed formulation. However, this gain becomes more

pronounced as sample size increases. Figure 3 compares the computation time for the

ThreePt data set (this data set is decribed in Laber and Murphy 2009) as a function

of sample size using squared error loss. As claimed, the computation time for the

relaxed construction scales much more efficiently than the MIP formulation. In the

examples presented in the next section we use the convex relaxation to compute the

confidence interval.
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Figure 2.3: Computation time for MIP and relaxed construction of ACI using the
ThreePt data set and squared error loss.

2.5.1 Competing methods

As competitors we consider a repeated-split normal approximation suggested by

(Yang 2006) and the recently proposed Bootstrap Case Cross-Validated Percentile

with Bias Reduction (BCCVP-BR) method of (Jiang 2008). These methods represent
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Coverage Difference in width Computation time
Data Set Relaxed MIP p.99 p.95 p.75 p.5 Relaxed MIP
ThreePt .948 .948 .0334 0.00 0.00 0.00 .734 3.11
Magic .944 .945 .0334 .0334 0.00 0.00 1.24 1.94
Mam. .957 .958 .0334 0.00 0.00 0.00 .904 1.88
Ion. .954 .954 .0334 0.00 0.00 0.00 1.33 3.06

Donut. .967 .968 .0667 .0334 .0334 0.00 .917 2.94
Bal. .969 .969 0.00 0.00 0.00 0.00 .977 1.69
Liver .956 .956 .0333 .0333 0.00 0.00 1.61 2.50
Spam .984 .987 .0333 .0333 0.00 0.00 1.54 3.01
Quad .959 .962 .0333 0.00 0.00 0.00 .983 1.37
Heart .960 .961 .0333 0.00 0.00 0.00 1.06 3.27

Table 2.1: Comparison of MIP and relaxed versions of the ACI. For each data set the
table was constructed using 1000 training sets each with 1000 bootstrap
iterations for a total of 1,000,000 computations of the optimization problem
given in (2.12).

the best we could find in terms of consistent coverage. Both methods substantially

outperform standard approaches like the bootstrap and normal approximation which

are discussed in Section 2. To provide a baseline for comparison, the performance of

the Centered Percentile Bootstrap (CPB) is included in the appendix.

Briefly, Yang’s method repeatedly partitions the training data T into two equal

halves T L and T V . A classifier is trained on T L and then evaluated on T V . The

mean and variance of the number of misclassified points in T V is recorded. This

mean and variance are then aggregated and used in a normal approximation. Jiang’s

method can be roughly described as leave one out cross validation with bootstrap

resamples. However, since a bootstrap resample can have multiple copies of a single

training example, leave one out cross-validation will no longer have disjoint training

and testing sets. Instead, for each unique training example (xi, yi) the bootstrap

resample is partitioned into two sets, one with all copies of (xi, yi) call this V , and the

second contains the remainder of the resample call this L. The classifier is trained
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on L and evaluated on V . The average error over all sets V is recorded within each

bootstrap resample and the percentiles form the endpoints of a confidence interval.

As a final step Jiang provides a bias correction. A full description of these methods

can be found in the referenced works. While these methods are intuitive, they lack

theoretical justification. Yang’s method was developed for use with a hold-out set;

when such a hold-out set does not exist, the method is inconsistent. Jiang offers no

justification other than intuition.

2.5.2 Results

We examine the performance of the ACI and competing methods using the fol-

lowing three metrics (i) coverage (ii) interval width and (iii) computational expense.

These metrics are recorded using ten data sets, three sample sizes, and three loss

functions. Three of the examples use simulated datasets and hence the test error can

be computed exactly. The remaining seven data sets are taken from the UCI machine

learning repository

(www.ics.uci.edu/∼mlearn/MLRepository.html) and thus the true generative model

is unknown. In this case, the empirical distribution function of the data set is treated

as the generative model. Results using squared error loss are listed here while the

results using binomial deviance and ridged hinge loss (support vector machines) are

given in the appendix. A summary of the data sets are given in Table 2.2.

Coverage results for squared error loss are given in Table 2.3. The adaptive con-

fidence interval is the only method to attain at least nominal coverage on all ten test

sets. Yang’s method is either extremely conservative or anti-conservative. Jiang’s

interval attains the nominal coverage on eight of ten data sets in the n = 30 case

and nine of ten data sets for larger sample sizes. Table 2.4 shows the width of the

constructed confidence intervals. When n = 30 the ACI is smallest in width for eight
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of the ten data sets. For larger sample sizes Jiang’s method and the ACI display

comparable widths; Yang’s method is always the widest. Another important factor is

computation time. Table 2.5 shows the average amount of time required in seconds

to construct a single confidence interval. All methods used 1000 resamples. That is,

1000 bootstrap resamples for the ACI and Jiang’s method, and 1000 repeated splits

for Yang’s method. Table 2.5 shows that Yang’s method is the most computationally

efficient. However, it is also clear that Jiang’s method is significantly slower than the

ACI for moderate sample sizes. For the Magic data set Jiang’s method takes more

than 30 times longer than the ACI. It is most important, however, to notice the trend

in computation time across sample sizes. Computation time for Yang’s method and

the ACI grow slowly with sample size while the computational cost of Jiang’s method

increases much more quickly. The reason for this is that Jiang’s method performs

leave-one-out cross validation for each bootstrap resample thus increasing the com-

putation time by a factor of n. Results for ridged hinge loss and binomial deviance

loss are similar and can be found in the technical report (Laber and Murphy, 2010).

Name Features Source Eτ(ĉ) (SE) Eτ(ĉ) (BD) Eτ(ĉ) (SVM)
ThreePt 2 Simulated .500 .500 .500

Quad 3 Simulated .0997 .109 .101
Donut 3 Simulated .235 .249 .232
Magic 11 UCI .264 .231 .252
Mam. 6 UCI .192 .190 .203
Ion. 9 UCI .151 .147 .149
Bal. 5 UCI .054 .050 .061
Liver 7 UCI .342 .342 .334
Spam 10 UCI .190 .183 .181
Heart 9 UCI .167 .173 .174

Table 2.2: Test data sets used to evaluate confidence interval performance. The last
three columns record the average test error for a linear classifier trained
using a training set of size n = 100 and loss function: squared error loss
(SE), binomial deviance (BD), and ridged hinge loss (SVM).
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Sample Size n = 30 n = 100 n = 250
Data Set / Method ACI Yang Jiang ACI Yang Jiang ACI Yang Jiang

ThreePt .948 .930* .863* .937 .537* .925* .935 .387* .930*
Magic .944 .996* .979* .973* .991* .969* .962 .996* .974*
Mam. .957 .989* .966 .937 .996* .964 .960 .995* .968
Ion. .941 .996* .972* .961 .992* .964 .952 .996* .949

Donut .965 .967 .908* .970* .866* .974* .974* .895* .988*
Bal. .976* .989* .966 .962 .995* .969* .946 .991* .963
Liver .956 .997* .970* .963 .992* .966 .971* .996* .984*
Spam .984* .998* .975* .967 .996* .967 .979* .996* .958
Quad .959 .983* .945 .957 .989* .938 .965 .999* .940
Heart .960 .995* .976* .949 .991* .979* .971* .989* .974*

Table 2.3: Coverage comparison between ACI, Yang’s CV and Jiang’s BCCV P −
BR for squared error loss, target coverage is .950. Coverage is starred if
observed coverage is significantly different from .950 at .01 level.

Sample Size n = 30 n = 100 n = 250
Data Set / Method ACI Yang Jiang ACI Yang Jiang ACI Yang Jiang

ThreePt .385* .198* .193*
Magic .498* .528 .501 .238 .257 .214* .125 .157 .122*
Mam. .374* .456 .383 .191 .226 .178* .112 .140 .105*
Ion. .313* .466 .388 .175 .213 .172* .103 .127 .100*

Donut .424* .483 .217* .258 .123* .201
Bal. .217* .350 .232 .101* .138 .103 .0623 .0772 .0620*
Liver .534 .527 .500* .262 .274 .241* .152 .172 .143*
Spam .428 .496 .418* .219 .229 .184* .125 .140 .108*
Quad .246* .360 .267 .142* .171 .144 .0811* .104 .0885
Heart .367* .476 .404 .184* .219 .184* .106* .132 .110

Table 2.4: Comparison of interval width between ACI, Yang’s CV and Jiang’s
BCCV P −BR for squared error loss. Smallest observed width is starred.
Examples where at least the nominal coverage was not attained are omit-
ted.

2.6 Discussion

Many statistical procedures in use today are justified by a combination of asymp-

totic approximations and high quality simulation performance. As exemplified here,
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Sample Size n = 30 n = 100 n = 250
Data Set / Method ACI Yang Jiang ACI Yang Jiang ACI Yang Jiang

ThreePt .734 .762 1.37
Magic 1.24 .0392 1.59 1.40 .0834 11.1 1.90 0.178 60.66
Mam. 1.37 .0185 .697 6.03 .0383 5.52 12.8 .0800 26.3
Ion. 2.13 .0331 1.32 6.42 .0702 10.0 16.7 .147 52.62

Donut 2.00 .00930 4.33 2.16 11.6 10.84
Bal. .977 .0160 .575 1.05 .0315 3.50 1.23 .0660 20.9
Liver 1.16 .0222 .859 1.44 .0461 6.25 1.78 .0978 33.7
Spam 1.38 .0348 1.37 1.53 .0744 10.5 1.72 .159 57.9
Quad .983 .00918 .125 1.11 .0191 1.43 1.24 .0398 6.96
Heart 1.06 .0317 1.25 1.15 .0660 8.00 1.42 .139 23.6

Table 2.5: Comparison of computation time (in seconds) between ACI, Yang’s CV
and Jiang’s BCCV P−BR for squared error loss. Examples where at least
the nominal coverage was not attained are omitted.

the choice of asymptotic framework may be crucial in obtaining reliably good per-

formance in small samples. In this paper a non-regular asymptotic framework in

which the limiting distribution of the test error changes abruptly with changes in the

true, underlying data generating distribution is used to develop a confidence inter-

val. In particular, asymptotic non-regularity occurs due to the non-smooth test error

in connection with particular combinations of β∗ values and the X distribution. It

is common practice to “eliminate” this asymptotic non-regularity by assuming that

these problematic combinations of β∗ values and the X distribution cannot occur.

However, small samples are unable to precisely discriminate between settings that

are close to the problematic β∗ values/X distribution from settings in which the β∗

values/X distribution are exactly problematic. As a result, asymptotic approxima-

tions that depend on assuming away these problematic settings can be of poor quality;

this is the case here.

The validity of proposed adaptive confidence interval presented here does not de-

pend on assuming away problematic scenarios; instead the ACI detects and then
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accommodates settings that are sufficiently close to the problematic β∗ values/X

distribution. In this sense the ACI adapts to the non-smoothness in the test error.

Specifically, in settings in which standard asymptotic procedures fail, the ACI pro-

vides asymptotically valid, albeit conservative, confidence intervals. Moreover, the

ACI delivers exact coverage if either (i) the model space is correct or (ii) a margin

condition holds. Practically, this means that in a setting where standard asymptotic

procedures (e.g. the bootstrap) are applicable, the ACI is asymptotically equivalent

to these methods. Experimental performance of the ACI is also quite promising. On a

suite of 10 examples, three loss functions and three classification algorithms, the ACI

delivered nominal coverage. In addition, the ACI generally had a smaller length than

competing methods. The ACI can be computed efficiently with algorithms scaling

polynomially in dimension and sample size.

Two important extensions of the ACI are: first, to extend the ACI to construct

valid confidence intervals for the difference in test error between two linear classifiers

and, second, to extend these ideas to the setting in which the number of features is

comparable or larger than the sample size. The former extension is straightforward

and can be achieved by enlarging the set over which the supremum is taken in (2.7)

to include the points on the classification boundaries of both classifiers. The latter is

more difficult. In the estimation of classifiers in the p >> n setting, it is important

to avoid overfitting. A typical approach to reduce the amount of overfitting is reg-

ularization which effectively reduces the space of available classifiers to choose from.

Similarly, the supremum in (2.7) must be taken over a restricted set of classifiers to

avoid being unnecessarily wide. Extending the theory and computation to this setting

is left to another paper.
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2.7 Appendix I: Additional experimental results

Sample Size n = 30 n = 100 n = 250
Data Set / Method ACI Yang Jiang ACI Yang Jiang ACI Yang Jiang

ThreePt .976 .893* .914* .961 .552* .945 .961 .387* .930*
Magic .955 .999* .983* .977* .991* .969* .972* .997* .974*
Mam. .957 .989* .966 .962 .996* .964 .960 .995* .968
Ion. .947 .995* .985* .948 .996* .970* .970 .990* .970*

Donut .968 .966 .908* .969 .851* .971* .973* .898* .966
Bal. .979* .996* .972* .988* .999* .982* .976* .996* .976*
Liver .946 .995* .972* .973* .995* .974* .977* .993* .984*
Spam .985* .999* .981* .983* .996* .967 .983* .990* .973*
Quad .978* .997* .945 .957 .989* .938 .965 .999* .940
Heart .960 .995* .976* .949 .991* .979* .971* .989* .974*

Table 2.6: Coverage comparison between ACI, Yang’s CV and Jiang’s BCCV P−BR
for binomial deviance loss, target coverage is .950.

Sample Size n = 30 n = 100 n = 250
Data Set / Method ACI Yang Jiang ACI Yang Jiang ACI Yang Jiang

ThreePt .374* .191* .119*
Magic .466* .526 .504 .240* .257 .241 .125 .158 .122*
Mam. .374* .456 .383 .191 .226 .178* .112 .140 .105*
Ion. .305* .459 .402 .184 .212 .176* .0998* .127 .104

Donut .434* .485 .222* .311 .124* .205
Bal. .263 .351 .257* .125* .148 .133 .0723* .0820 .0784
Liver .530 .526 .520* .259 .274 .246* .151 .171 .143*
Spam .454 .494 .423* .222 .234 .185* .125 .141 .110*
Quad .310 .373 .267* .142* .171 .144 .0811* .104 .0885
Heart .367* .476 .404 .184* .219 .184* .102* .132 .105

Table 2.7: Comparison of interval width between ACI, Yang’s CV and Jiang’s
BCCV P − BR for binomial deviance loss. Entries with the smallest
width are starred. Examples where at least the nominal coverage was
not attained are omitted.
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Sample Size n = 30 n = 100 n = 250
Data Set / Method ACI Yang Jiang ACI Yang Jiang ACI Yang Jiang

ThreePt .950 .916* .886* .951 .886* .893 .961 .492* .905*
Magic .952 .988* .955 .989* .996* .978* .976* .996* .938
Mam. .958 .980* .965 .962 .992* .971* .939 .990* .968*
Ion. .944 .990* .975* .968* .954 .960 .970* .964 .978*

Donut .945 .986* .912* .939 .990* .989* .971* .972* .959
Bal. .974* .956 .970* .998* .862* .973* .963 .768* .942
Liver .963 .998* .962 .985* .984* .953 .977* .976* .983*
Spam .985* .992* .962 .954 .992* .961 .973* .992* .985*
Quad .971* .997* .971* .960 .989* .987* .964 .999* .967*
Heart .958 .995* .986* .938 .991* .959 .962 .989* .934*

Table 2.8: Coverage comparison between ACI, Yang’s CV and Jiang’s BCCV P−BR
for ridged (L2 penalized) hinge loss, target coverage is .950.

Sample Size n = 30 n = 100 n = 250
Data Set / Method ACI Yang Jiang ACI Yang Jiang ACI Yang Jiang

ThreePt .246* .145* .129*
Magic .487* .514 .504 .228* .253 .254 .131 .154 .130*
Mam. .373* .468 .422 .191* .233 .199 .080* .141 .105
Ion. .313* .457 .345 .171* .221 .191 .102* .129 .117

Donut .335* .463 .203* .239 .399 .129* .148 .214
Bal. .239* .370 .271 .126 .121* .0841 .0723*
Liver .456* .520 .526 .252* .273 .302 .154* .170 .182
Spam .454 .471 .371* .206 .227 .196* .116 .131 .109*
Quad .283 .399 .291* .158 .189 .140* .0871 .111 .0857*
Heart .387* .498 .398 .191* .229 .218 .111* .135

Table 2.9: Comparison of interval width between ACI, Yang’s CV and Jiang’s
BCCV P − BR for ridged (L2 penalized) hinge loss. Entries with the
smallest width are starred. Examples where at least the nominal coverage
was not attained are omitted.
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Coverage Width
Data Set / γ .01 .0075 .005 .0025 .001 .01 .0075 .005 .0025 .001

ThreePt .958 .950 .948 .950 .946 .380 .381 .385 .385 .398
Magic .944 .952 .944 .971 .968 .484 .493 .498 .501 .519
Mam. .939 .944 .957 .952 .944 .360 .364 .374 .381 .384
Ion. .926 .936 .941 .956 .960 .319 .319 .313 .339 .347

Donut .944 .969 .965 .956 .956 .427 .427 .424 .437 .441
Bal. .958 .972 .976 .982 .974 .212 .210 .217 .221 .223
Liver .967 .953 .956 .946 .966 .527 .526 .534 .538 .548
Spam .986 .982 .984 .985 .991 .434 .433 .428 .449 .451
Quad .950 .942 .959 .942 .958 .244 .241 .246 .248 .252
Heart .943 .953 .960 .945 .963 .356 .366 .367 .371 .379

Table 2.10: Coverage and width of ACI using squared error loss and a training set
size of n = 30. Coverage and width appears to be stable across a range
of reasonable values for tuning parameter γ.

Sample Size n=30 n=100 n=250
Data Set / Loss Squared Log. Hinge Squared Log. Hinge Squared Log. Hinge

ThreePt .862* .781* .902* .910* .872* .918* .918* .936 .930*
Magic .736* .720* .716* .880* .888* .891* .915* .909* .928*
Mam. .795* .807* .790* .882* .881* .905* .912* .927* .942
Ion. .799* .775* .753* .876* .878* .881* .906* .975* .953

Donut .880* .903* .851* .929* .921* .870* .926* .926* .909*
Bal. .872* .925* .835* .889* .932* .878* .883* .931* .889*
Liver .758* .746* .727* .868* .851* .847* .910* .960 .917*
Spam .814* .809* .749* .883* .878* .882* .932* .938 .913*
Quad .849* .918* .849* .908* .926* .922* .928* .954 .932*
Heart .755* .782* .704* .873* .874* .846* .911* .937 .930*

Table 2.11: Coverage of Centered Percentile Bootstrap (CPB) using three loss func-
tions (squared loss, logistic loss, and hinge loss) and three sample sizes
(n = 30, n = 100, and n = 250). Target coverage is .950, coverage is
starred if significantly different from target.
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2.8 Appendix II: Proofs

In this section we provide sketches of the results in the main body of the paper.

Longer versions of these proofs are available in a technical report (see Laber and

Murphy 2009). Please see the original statements for a list of assumptions and the

notation. Before proceeding, some initial remarks are warranted. We assume that an

intercept term has been included in the model so that PX(X ≡ 0) = 0. In addition,

if T is Brownian Bridge indexed by a class of functions E , then we denote by ρT the

covariance semi-metric on E given by ρT(e, d) , P (T(e)− T(d))2.

Proof. [Corollary 3.2 part (1)] To begin write

√
n(Pn−P )1Y Xᵀβ̂n<0 =

√
n(Pn−P )1Xᵀβ∗=01Y Xᵀβ̂n<0 +

√
n(Pn−P )1Xᵀβ∗ 6=01Y Xᵀβ̂n<0.

We begin by establishing the limiting distribution of the first term on the right hand

side of the above display. The class of functions F , {1Xᵀβ∗=01Y Xᵀγ<0 : γ ∈ Rp} is a

P -measurable, uniformly bounded V C class (see Anthony and Bartlett 2002 Theorem

8.14) and hence Donsker. Thus, if we define V̂n(γ) ,
√
n(Pn−P )1Xᵀβ∗=01Y Xᵀγ<0 then

V̂n  V in l∞(Rp). Moreover, under assumptions (A1)-(A5)
√
n(β̂n−β∗) N(0,Σ).

Recall that Σ , H−1ΩH−1 where H , ∇2Q(β∗) and Ω , Pg(X, Y, β∗)g(X, Y, β∗)ᵀ.

Moreover, since
√
n(β̂n − β∗) = −H−1

√
n(Pn − P )g(X, Y, β∗) + oP (1) (see Niemiro

1992; Haberman 1989) and for any fixed α ∈ Rp the class F+αᵀg(X, Y, β∗) is Donsker,

finite dimensional convergence of (V̂n,
√
n(β̂n − β∗)) is established by means of the

Cramer-Wold device. Moreover, asymptotic tightness and measurability follow from

Theorem 7.14 in Kosorok (2008). Thus, joint convergence of (V̂n,
√
n(β̂n − β∗)) to

(V, z∞) in l∞(Rp)×Rp follows. The next step will be to use the extended continuous
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mapping theorem (Kosorok 2008). Define the sets

O , {γ ∈ Rp : P1Xᵀγ=0 = 0}

S , {ν ∈ l∞(Rp) : ν has ||.|| continuous sample paths on O} .

Then (V, z∞) ∈ (S,O) with probability one. To see this, let βn → β0 in O.

If ℵ , {x ∈ Rp : xᵀβ0 = 0} then Pℵ = 0. Let x ∈ ℵc and y ∈ {−1, 1}, then

1yxᵀβn<01xᵀβ∗=0 → 1yxᵀβ0<01xᵀβ∗=0 and by the dominated convergence theorem

P1Y Xᵀβn<01Xᵀβ∗=0 → P1Y Xᵀβ0<01Xᵀβ∗=0.

The form of the variance-covariance function of V shows that if βn → β0 in O then

ρV(βn, β0) → 0, where ρV is the covariance semimetric ρV(s, t) , P (V(s) − V(t))2.

Therefore, the composition map q : l∞(Rp) × Rp 7→ R given by q(u, v) , u(v) is

continuous on S ×O. The extended continuous mapping theorem gives

q(V̂n,
√
n(β̂n − β∗)) =

√
n(Pn − P )1Xᵀβ∗=01Y Xᵀβ̂n<0  q(V, z∞) = V(z∞).

We now consider the second term
√
n(Pn − P )1Xᵀβ∗ 6=01Y Xᵀβ̂n<0. The class of

functions G , {1Xᵀβ∗ 6=01Y Xᵀγ<0 : γ ∈ Rp} is a P -measurable, uniformly bounded,

VC class and is hence Donsker. Thus, if we define the process B̂n(γ) ,
√
n(Pn −

P )1Xᵀβ∗ 6=01Y Xᵀγ<0 then B̂n  B in l∞(Rp). Here, B is a Brownian-Bridge indexed

by G (or, equivalently Rp). From the form of the variance-covariance function of

B, it follows that if βn → β∗ then ρB(βn, β
∗) → 0. Utilizing this result and the

equicontinuity of B̂n we have B̂n(β̂n) = B̂n(β∗) + oP ∗(1). Furthermore, from Slutsky’s

lemma (see, for example, van der Vaart and Wellner 1996) we have B̂n(β̂n) B(β∗).

Finally, joint convergence of (V̂n,
√
n(β̂n−β∗), B̂n) is established using the Cramer-
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Wold device to obtain finite-dimensional convergence (and the fact that the for any

α ∈ Rp the class F + G + αᵀg(X, Y, β∗) is Donsker). The result follows from the

extended continuous mapping theorem applied twice.

Proof. [Corollary 3.2 part (2)] The class of functions

H ,
{

1Y Xᵀu<01 (Xᵀγ)2

XᵀΣX
≤α

: u, γ ∈ Rp, α ∈ R+

}

is a P -measurable, uniformly bounded V C class of functions and hence is Donsker.

Thus, if we define the process Ŵn(u, γ, α) ,
√
n(Pn − P )1Y Xᵀu<01 (Xᵀγ)2

XᵀΣX
≤α

then

Ŵn  W in l∞(Rp × Rp × R+). Where W is a Brownian-Bridge indexed by H

(or equivalently, Rp × Rp × R+). Notice that W(u, β∗, 0) =L V(u) as a process in-

dexed by u ∈ Rp. Let βn → β∗ in Rp, εn → 0 in R+ satisfy ε−1
n ||βn − β∗||2 → 0,

then examination of the form of the variance-covariance function of W shows that

supu∈Rp ρW ((u, βn, εn), (u, β∗, 0)) → 0. This smoothness of ρW combined with the

equicontinuity of Ŵn implies that Ŵn(u, β̂n, 1/an) = Ŵn(u, β∗, 0) + oP ∗(1) where the

remainder term goes to zero in outer probability uniformly over u. Thus by Slutsky’s

theorem Ŵn(u, β̂n, 1/an) W(u, β∗, 0) =L V(u). We have shown

√
n(Pn − P )1Y Xᵀu<01 (Xᵀβ̂n)2

XᵀΣX
≤ 1
an

 V(u)

in l∞(Rp).

We now turn attention to the limiting distribution of
√
n(Pn−P )1Y Xᵀβ̂n<01 (Xᵀβ̂n)2

XᵀΣX
> 1
an

.

The class of functions Q ,
{

1Y Xᵀγ<01 (Xᵀγ)2

XᵀΣX
>α

: γ ∈ Rp, α ∈ R+

}
is a P -measurable,

uniformly bounded, VC class of functions and hence is Donsker. Thus, if we define

D̂n(γ, α) ,
√
n(Pn − P )1Y Xᵀγ<01 (Xᵀγ)2

XᵀΣX
>α

then D̂n  D in l∞(Rp × R+). In paral-

lel with the first portion of this proof, suppose that βn → β∗ in Rp, and εn → 0
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in R+ so that ε−1
n ||βn − β∗||2 → 0. Then for any (x, y) ∈ Rp × {−1, 1} we have

1yxᵀβn<01 (xᵀβn)2

xᵀΣx
>εn
→ 1yxᵀβ∗<01xᵀβ∗ 6=0 so that from the dominated convergence theo-

rem we have P1Y Xᵀβn<01 (Xᵀβn)2

XᵀΣX
>εn
→ P1Y Xᵀβ∗<01Xᵀβ∗ 6=0. The form of the variance-

covariance function of D shows that ρD ((βn, εn), (β∗, 0))→ 0 when βn and εn satisfy

the conditions given above. Using an argument identical to that in the first portion

of this proof it follows that D̂n(β̂n, 1/an) = D̂n(β∗, 0) + oP ∗(1). Applying Slutsky’s

theorem shows D̂n(β̂n, 1/an) D(β∗, 0) =L B(β∗).

Finally, joint convergence of (Ŵn, D̂n) in l∞(Rp × Rp × R+) × l∞(Rp × R+) is

established using the Cramer-Wold device to obtain finite dimensional convergence

(utilizing the fact that H+Q is Donsker). Asymptotic tightness and measurabiity in

the product space follows from tightness and measurability of the marginals (Kosorok

2008). The continuous mapping theorem gives the result.

Proof. [Corollary 3.4] This proof parallels its population analogue given above. We

assume without loss of generality that Σ̂n is positive definite for all n with probability

one. As a first step we derive the limiting distribution of
√
n(P̂(b)

n −Pn)1Y Xᵀu<01
(Xᵀβ̂

(b)
n )2

XᵀΣ̂nX
≤ 1
an

.

The class of functions I ,
{

1Y Xᵀu<01 (Xᵀγ)2

XᵀΩX
≤α

: u, γ ∈ Rp,Ω ∈ PD(Rp×p), α ∈ R+

}
where PD(Rp×p) is the space of real-valued p × p positive definite matrices, is a

P -measurable, uniformly bounded, VC class of functions and hence Donsker. If we

define Ẑ(b)
n (u, γ,Ω, α) ,

√
n(P̂(b)

n − Pn)1Y Xᵀu<01 (Xᵀγ)2

XᵀΩX
≤α

then Ẑ(b)
n  Z almost surely

in l∞(Rp × Rp × PD(Rp×p) × R+) (van der Vaart and Wellner 1996). Where Z is a

Brownian Bridge. Let βn → β∗ in Rp, and εn → 0 in R+ satisfy ε−1
n ||βn − β∗||2 →

0, in addition, suppose that Σn → Σ in PD(Rp×p). Then, an argument similar

to the one given in the proof of Corollary 3.2 shows that Ẑ(b)
n (u, β̂

(b)
n , Σ̂n, 1/an) =

Ẑ(b)
n (u, β∗,Σ, 0) + oPM (1) in probability, note that the error term does not depend on

u. Thus by Slutsky’s theorem Ẑ(b)
n (u, β̂

(b)
n , Σ̂n, 1/an) converges weakly in probability
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to Z(u, β∗,Σ, 0) =L V(u).

We now establish the limiting distribution of the second term

√
n(P̂(b)

n − Pn)1
Y Xᵀβ̂

(b)
n <0

1
(Xᵀβ̂

(b)
n )2

XᵀΣ̂nX
> 1
an

.

The class of functions E ,
{

1Y Xᵀγ<01 (Xᵀγ)2

XᵀΩX
>α

: γ ∈ Rp,Ω ∈ PD(Rp×p), α ∈ R+

}
is a

P -measurable, uniformly bounded, VC class of functions and hence Donsker. Thus,

if we define, Ĵ(b)
n ,

√
n(P̂(b)

n − Pn)1Y Xᵀγ<01 (Xᵀγ)2

XᵀΩX
>α

then Ĵ(b)
n  J almost surely in

l∞(Rp×PD(Rp×p)×R+). Where J is a Brownian-Bridge. Again, let βn → β∗ in Rp,

and εn → 0 in R+ so that ε−1
n ||βn−β∗||2 → 0, further let Σn → Σ in PD(Rp×p) then for

any (x, y) ∈ Rp×{−1, 1} we have 1yxᵀβn1 (xᵀβn)2

XᵀΣX
>εn
→ 1yxᵀβ∗<01xᵀβ∗ 6=0. The dominated

convergence theorem gives P1yxᵀβn1 (xᵀβn)2

XᵀΣX
>εn
→ P1yxᵀβ∗<01xᵀβ∗ 6=0. The form of the

variance-covariance function of J we have that ρJ((βn,Σn, εn), (β∗,Σ, 0)) → 0 for

βn, εn, and Σn satisfying the above assumptions. This smoothness in ρJ and the

equicontinuity of B̂(b)
n shows that B̂(b)

n (β̂
(b)
n , Σ̂n, 1/an) = B̂(b)

n (β∗,Σ, 0) + oPM (1). Thus,

Ĵ(b)
n (β̂

(b)
n , Σ̂n, 1/an) converges weakly to J(β∗,Σ, 0) =L B(β∗) in probability.

Finally, joint convergence of the finite dimensional distributions of (Ẑ(b)
n , Ĵ(b)

n ) is

established by means of the Cramer-Wold device. Asymptotic tightness and mea-

surability follow from tightness and measurability of the marginals (Kosorok 2008).

The continuous mapping theorem gives the result noting that d∗BL1(R) metrizes con-

vergence.

Proof. [Theorem 3.5] The proof of part (1) follows from the same steps as the proof

of Corollary 3.2. The only difference is to notice that
√
n(β̂n− β∗n) = −H−1

√
n(Pn−

Pn)g(X, Y, β∗) + oP (1) so that
√
n(β̂n − β∗n)  z∞ =L N(0, H−1ΩH−1) and in turn

we have
√
n(β̂n − β∗) =

√
n(β̂n − β∗n) + γ  z∞ + γ =L N(γ,H−1ΩH−1). The proof
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of part (2) follows exactly the same steps as in the proof of Theorem 3.1 and is so

omitted.
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CHAPTER III

Statistical inference for dynamic treatment

regimes

Dynamic treatment regimes, also known as treatment policies, are increasingly

being used to operationalize sequential clinical decision making associated with pa-

tient care. Common approaches to constructing a dynamic treatment regime from

data, such as Q-learning, employ non-smooth functionals of the data. Therefore, sim-

ple inferential tasks such as constructing a confidence interval for the parameters in

the Q-function are complicated by non-regular asymptotics under certain commonly-

encountered generative models. Methods that ignore this non-regularity can suffer

from poor performance in small samples. We construct confidence intervals for the pa-

rameters in the Q-function by constructing smooth, data-dependent, upper and lower

bounds on these parameters and then applying the bootstrap. The confidence inter-

val is adaptive in that although it is conservative for non-regular generative models,

it achieves asymptotically exact coverage elsewhere. The small sample performance

of the method is evaluated on a series of examples and compares favorably to previ-

ously published competitors. Finally, we illustrate the method using data from the

Adaptive Interventions for Children with ADHD study (Pelham and Fabiano 2008).
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This work is motivated by our involvement in the Adaptive Interventions for

Children with Attention Deficit Hyperactivity Disorder (ADHD) study (Pelham and

Fabiano 2008). ADHD affects an estimated 5%-10% of school aged children, and is

characterized by inattention, hyperactivity, and impulsivity (Pliszka 2007). In the

years preceding the study, clinicians debated the comparative effectiveness of behav-

ioral modification therapy versus medication as treatment options for ADHD (Pliszka

2007; Pelham and Fabiano 2008). As a consequence, a SMART trial was conducted

with the general aim of estimating the treatment policy that achieves the great-

est reduction of ADHD symptoms among school age children. This SMART study is

composed of two stages. In the first stage, children were randomized with equal prob-

ability into one of two treatment groups (low-dose behavioral modification therapy,

low-dose medication). After a burn-in period of eight weeks, children were evalu-

ated monthly and at each evaluation deemed either a responder or non-responder.

(The operationalized definition of nonresponse is given in the trial protocol which

can be found in (Pelham and Fabiano 2008).) Non-responders were immediately re-

randomized to either (i) augmentation of treatment, so that the child received both

low-dose medication and low-dose behavioral modification therapy, or (ii) intensifi-

cation of treatment, so that the child received an increased dosage of their current

(stage one) treatment. Responders were not re-randomized and continued to receive

their current treatment at the current dosage level.

Data collected in a SMART trial, like the ADHD study, can be used to estimate

an optimal treatment policy. This estimation typically uses an extension of regression

to multistage decision making problems. The extension we consider in this paper is

the Q-learning algorithm (Watkins 1989, Murphy 2005). A variety of other extensions

exist in the statistical literature (Murphy 2003, Robins 2004, Blatt et al. 2004, Moodie

et al. 2007, Henderson et al. 2009, Zhao et al. 2009). However all of these extensions
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suffer from the same problem of non-regularity that we focus on in this paper (Robins

2004; Moodie and Richardson 2007; Henderson et al. 2009; Chakraborty et al. 2009;

Moodie et al. 2010).

In this paper we provide a method for constructing confidence intervals for param-

eters arising in the Q-Learning algorithm. The primary challenge to this task is that

the estimators are non-smooth functionals of the data—in particular, the formula

for the estimators involves the use of the max operator, which is non-differentiable.

Robins (2004) notes two problems resulting from the non-differentiability of the max

operator. First while the estimators of the regression coefficients are consistent, their

limiting distributions can have nonzero mean; that is, there is estimation bias on the

order of 1/
√
n for some generative models. Second the regression coefficient estima-

tors are non-regular (Bickel 2001; Tsiatis 2006). That is, the limiting distribution

changes abruptly as one smoothly varies the underlying generative model and as

a practical consequence, implies that common approaches based on the bootstrap

and Taylor series arguments provide inconsistent interval estimators and can behave

poorly in small samples (Andrews and Ploberger 1994; Andrews 2001, 2002; Leeb and

Poetscher 2005) To deal with the non-regularity, Robins (2004) proposes conducting

inference via the use of projection confidence intervals. This method, while yield-

ing consistent confidence sets, is computationally difficult due to the need to solve

a very difficult non-convex optimization problem and may result in a confidence set

that is the union of intervals. More importantly, the resultant set, when estimated

numerically, tends to be much too large to be useful in small samples.

The adaptive confidence interval proposed here is based on smooth, data-dependent,

upper and lower bounds on the estimators involved in the regression models used by

Q-learning. Confidence intervals are formed by bootstrapping these bounds. The

proposed confidence interval is adaptive in that although it is conservative for non-
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regular generative models, it achieves asymptotically exact coverage elsewhere. The

method requires

Other authors have focused on reducing the bias of order 1/
√
n discussed above

(recall the estimators of the regression coefficients can have limiting distributions

with nonzero means, thus bias). The methods of Moodie and Richardson (2007),

Chakraborty et al. (2009) and Song et al. (2010) reduce the estimation bias via the

use of thresholding. As is well-known, the use of thresholding (or penalization that

induces induce variable selection) leads to non-regular estimation (see Lee 2003; Leeb

and Potscher 2005 and references therein; Chatterjee and Lahiri 2009, 2010). The

soft-thresholding method proposed by Chakraborty et al. applies to problems with

two stages and binary treatments, and effectively reduces the bias as demonstrated

by good simulation performance. Unfortunately, the method is provably inconsistent.

Song et al. use a lasso-like penalization; here appropriate choice of the tuning param-

eter leads to consistent estimation. Neither method has been generalized to handle

more than two treatments. The method proposed by Moodie and Richardson is quite

similar to that proposed by Chakraborty et al.; the primary difference being the use

of a hard-threshold. In Chakraborty et al. confidence intervals are constructed by

use of the bootstrap whereas in Song et al., confidence intervals are produced via

Taylor series arguments. Both methods work well in the simulations provided. How-

ever, the standard bootstrap is inconsistent in non-regular settings (Shao 1994; Beran

1997) and confidence intervals based on Taylor series arguments do not capture the

variation due to variable selection/thresholding (cite Leeb).

We do not alter the Q-Learning algorithm and thus do not attempt to reduce

the bias of order 1/
√
n in the estimators of the regression coefficients. We do this

for several reasons: first it is known that in settings in which there is no unbiased

estimator, attempts to eliminate the bias for some parameter values must lead to large
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mean square error for other parameter values (Doss and Sethuraman, 1989; Brown

and Liu 1993; Chen 2004; Hirano and Portor 2009) and second, toy simulations

provided in the supplementary material support this finding. See the discussion for

further comments.

An overview of the remainder of this paper is as follows: Section 2 introduces the

problem of constructing confidence intervals under the simplest possible setting, in

which there are two stages of treatment and two treatments available at each stage.

The adaptive confidence interval (ACI) is introduced and asymptotic properties are

provided. Section 3 generalizes the problem, our approach, and the theoretical results

to the class of problems with two stages of treatment and an arbitrary number of

treatments at each stage. In Section 4, we provide an empirical comparison of the

ACI with the bootstrap and the use of thresholding as represented in Chakraborty

et al. (2009) on a number of test cases. The ACI compares favorably with these

competitors. Section 5 contains an application of the ACI to the analysis of the

ADHD study and a discussion of future work. An extension of the ACI to an arbitrary

number of stages of treatment, and an arbitrary number of treatments at each stage,

is given in the supplementary material.

3.1 Two stages of binary treatment

In this section, we introduce the problem of constructing a confidence interval

for the parameters in the Q-function when there are two stages of treatment and

two treatments are available at each stage. First, we provide the requisite notation

and review the Q-learning algorithm. Second, we introduce the adaptive confidence

interval (ACI) for the parameters defining the regression models used in Q-learning.

We prove that the ACI provides asymptotically valid confidence intervals under both
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fixed and local alternatives. Since the ACI involves the use of a tuning parameter, we

empirically examine the robustness of the ACI to the choice of this tuning parameter.

We use uppercase letters such as X and A to denote random variables, and lower-

case letters such as x and a to denote instances of these random variables. The data

consist of n trajectories drawn i.i.d. from some fixed and unknown distribution P .

Each trajectory (X1, A1, Y1, X2, A2, Y2) is a sequence of random variables collected at

two stages t = 1, 2; Xt ∈ Rpt denotes patient measurements collected prior to the

tth assignment of treatment, At ∈ {−1, 1}, denotes the binary treatment (also called

an action) assigned at stage t and Yt ∈ R is a measure of patient response following

the assignment of treatment at stage t. We assume that Yt has been coded so that a

higher value corresponds to a better clinical outcome. Let Ht = {X1, A1, . . . , Xt} be

the patient history, e.g., the information available to the decision maker before the

assignment of the tth treatment At. Furthermore, we assume that the treatments, At,

are randomly assigned to patients at each stage with probabilities possibly depending

on patient history.

We wish to use data like the above to inform the construction of a Dynamic

Treatment Regime (DTR). A DTR is sequence of decision rules, one for each stage of

treatment, that takes as input the patient history and gives as output a recommended

treatment. More formally, a DTR π = (π1, π2) is an ordered pair of functions πt so

that πt : Ht 7→ {−1, 1} where Ht ⊆ Rdt is the domain of Ht. Let Eπ denote the joint

expectation over Ht, At, Yt for t = 1, 2 under the restriction that At = π(Ht). The

objective is to learn a DTR π which comes close to maximizing the expected clinical

outcome Eπ(Y1 + Y2). One way to estimate an optimal DTR is using the Q-learning

algorithm (Watkins 1989), which can be conceptualized as an extension of regression

to multistage decision making. More precisely, Q-learning is a form of approximate

dynamic programming, where the conditional mean responses are estimated from
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the data since they cannot be computed explicitly. We now describe the Q-learning

algorithm with function approximation as in (Murphy 2005). To start, define

Q2(h2, a2) , E
(
Y2

∣∣H2 = h2, A2 = a2

)
(3.1)

Q1(h1, a1) , E
(
Y1 + max

a2∈{−1,1}
Q2(H2, a2)

∣∣H1 = h1, A1 = a1

)
; (3.2)

the functions Qt(ht, at) t = 1, 2 are known as Q-functions. At each stage of treatment

t the Q-function reflects the quality (hence the letter “Q”) of the treatment at given

the patient history ht. If the conditional expectations in the preceding display were

known, then dynamic programming provides an optimal DTR given by πdp(ht) ,

arg maxat∈{−1,1}Qt(ht, at). In most practical settings this mean function must be

approximated from data. In this paper we consider linear approximations to the

conditional mean function. Specifically, we employ a model of the form

Qt(ht, at; βt) = βᵀ
t,0ht,0 + βᵀ

t,1ht,11at=1, (3.3)

where ht,0 and ht,1 are vectors of features comprising the patient history. Note that

according to the model, if hᵀ
t,1βt,1 ≈ 0 then both treatments at = 1 and at = −1 yield

the approximately same response for a patient with history Ht,1 = ht,1. That is, that

there is not a unique best treatment for a patient with history Ht,1 = ht,1. Conversely,

if |hᵀ
2,1βt,1

∣∣ � 0 then exactly one treatment yields the best expected outcome for a

patient with history Ht,1 = ht,1. We use βt to denote (βᵀ
t,0, β

ᵀ
t,1)ᵀ. Let Pn denote the

empirical measure. The Q-learning algorithm proceeds as follows:

1. Regress Y2 on H2 and A2 using (3.3) to obtain

β̂2 , arg min
β2

Pn (Y2 −Q2(H2, A2; β2))2 ,
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and subsequently the approximation Q2(h2, a2; β̂2) to the conditional mean

Q2(h2, a2).

2. (a) Define the predicted future reward following the optimal policy as:

Ỹ1 , Y1 + max
a2∈{−1,1}

Q2(H2, A2; β̂2) (3.4)

= Y1 +Hᵀ
2,0β̂2,0 +

[
Hᵀ

2,1β̂2,1

]
+
, (3.5)

where [z]+ denotes the positive part of z.

(b) Regress Ỹt on H1 and A1 using (3.3) to obtain β̂1 , arg minβ1 Pn(Ỹ1 −

Q1(H1, A1; β1))2.

3. Define the estimated optimal DTR as π̂ = (π̂1, π̂2) so that

π̂t(ht) , arg max
at∈{−1,1}

Qt(ht, at; β̂t).

Examination of the above procedure make apparent the close connection between

Q-learning and dynamic programming. For further elaboration see (Watkins 1989;

Murphy 2005).

The second stage population coefficients, β∗2 satisfy β∗2 , arg minβ2 P (Y2 −Q2(H2, A2; β2)).

Define Ỹ ∗1 , Y1 + Hᵀ
2,0β

∗
2,0 +

[
Hᵀ

2,1β
∗
2,1

]
+

, then the first stage population coefficients

β∗1 are given by

β∗1 , arg min
β1

P
(
Ỹ ∗1 −Q1(H1, A1; β1)

)2

.

The goal of this paper is the development of asymptotically valid confidence intervals

for first stage coefficients, β∗1 . Note the construction of confidence intervals for the

second stage coefficients is standard.

The ACI is formed by constructing smooth data-dependent bounds on cᵀ
√
n(β̂1−
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β∗1). As a first step toward developing the bounds used in the ACI, we provide a useful

decomposition of cᵀ
√
n(β̂1−β∗1). Define B1 , (Hᵀ

1,0, H
ᵀ
1,11A1=1) so that instances of B1

form the rows of the design matrix in the first stage regression. Let Σ1,n , PnBᵀ
1B1,

then examination of the normal equations shows that β̂1 = Σ−1
1,nPnB

ᵀ
1 Ỹ1. Hence, for

any c ∈ Rdim(β∗1 ) it follows that cᵀ
√
n(β̂1− β∗1) = cᵀΣ−1

1,n

√
nPnBᵀ

1

(
Ỹ1 −B1β

∗
1

)
, which,

using the definition of Ỹ1, can be further decomposed as

cᵀWn + cᵀΣ−1
1,nPnB

ᵀ
1 Un, (3.6)

where

Wn = Σ−1
1,n

√
nPnBᵀ

1

[(
Y1 +Hᵀ

2,0β
∗
2,0 +

[
Hᵀ

2,1β
∗
2,1

]
+
−B1β

∗
1

)
+Hᵀ

2,0

(
β̂2,0 − β∗2,0

)]
,

Un =
√
n
([
Hᵀ

2,1β̂2,1

]
+
−
[
Hᵀ

2,1β
∗
2,1

]
+

)
.

The second term in (3.6) is non-smooth which can be seen from the definition of

Un. To illustrate the effect of this non-smoothness, fix H2,1 = h2,1. If hᵀ
2,1β

∗
2,1 > 0,

then Un

∣∣
H2,1=h2,1

is easily seen to be asymptotically normal with mean zero. On the

other hand, if hᵀ
2,1β

∗
2,1 = 0, then Un

∣∣
H2,1=h2,1

=
[
hᵀ

2,1

√
n(β̂2,1 − β2,1)

]
+

which converges

weakly to positive part of a mean zero normal random variable. Thus, the limiting

distribution cᵀ
√
n(β̂1 − β∗1) depends abruptly on both the true parameter β∗2,1 and

the distribution of patient features H2,1. In particular, the limiting distribution of

cᵀ
√
n(β̂1 − β∗1) depends on the frequency of patient features H2,1 = h2,1 for which

there is no treatment effect (e.g. hᵀ
2,1β

∗
2,1 = 0). We construct upper and lower bound

on cᵀ
√
n(β̂1 − β∗1) by first partitioning the data into two sets (i) patients for which

there appears to be a treatment effect, and (ii) patients where it appears there is

no treatment effect. The bounds are formed by bounding the error of the overall
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approximation due to misclassification of patients during the partitioning.

The idea of conducting a preliminary hypothesis test prior to forming estima-

tors or confidence intervals is known as preliminary testing or pretesting (see Olshen

1973); indeed estimators formed by thresholding implicitly use a pretest. Pretesting

has been used in Econometrics to provide hypothesis tests and confidence intervals

in nonregular settings (Andrews 2001, Andrews & Soares 2007; Andrews & Guggen-

berger 2009, Cheng 2008). In these settings one can identify a small (usually one)

number of parameters values at which non-regularity occurs. If the pretest rejects, a

standard critical value is used to form confidence interval; if the pretest accepts, the

maximal critical value over all possible local alternatives is used to form the confidence

interval. In this paper the situation is somewhat different as non-regularity occurs for

any combination of the distribution of the H2,1 and β2,1 for which P [HT
2,1β2,1 = 0] > 0.

Thus we take a different tactic from that employed in the Econometrics literature.

Instead, we conduct a pretest for each individual in the data set as follows. Define

Vn ,
√
n(β̂2,1− β∗2,1), and Σ

(2,2)
2,n to be the plug-in estimator of the asymptotic covari-

ance matrix of Vn. In addition, let Ξ2,n denote the inverse of the matrix square-root of

Σ
(2,2)
2,n . The pretest is based on Tn(h2,1) ,

n(hᵀ
2,1β̂2,1)2

hᵀ
2,1Σ

(2,2)
2,n h2,1

; note that Tn(h2,1) corresponds

to the usual test statistic when testing the null hypothesis, hᵀ
2,1β

∗
2,1 = 0.

The upper bound on cᵀ
√
n(β̂1 − β∗1) is given by

U(c) , cᵀWn + cᵀΣ−1
1,nPnB

ᵀ
1 Un1Tn(H2,1)>λn + cᵀΣ−1

1,nPnB
ᵀ
1

[
Hᵀ

2,1Vn

]
+

1Tn(H2,1)≤λn

+ sup
γ∈Sn

cᵀΣ−1
1,nPnB

ᵀ
1

([
Hᵀ

2,1(Vn + γ)
]

+
−
[
Hᵀ

2,1γ
]

+
−
[
Hᵀ

2,1Vn

]
+

)
1Tn(H2,1)≤λn , (3.7)

where Sn ,
{
γ ∈ Rdim(β∗2,1) : ||Ξ2,n(γ −

√
nβ∗2,1)||2∞ ≤ λn

}
, and λn is a tuning param-

eter that we discuss in detail below. A lower bound L(c) can be defined by replacing

the sup with an inf. The intuition behind this upper bound is as follows. Notice that
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the second term, cᵀΣ−1
1,nPnB

ᵀ
1 Un, in (3.6) is equal to

cᵀΣ−1
1,nPnB

ᵀ
1 Un1Tn(H2,1)>λn + cᵀΣ−1

1,nPnB
ᵀ
1

[
Hᵀ

2,1Vn

]
+

1Tn(H2,1)≤λn

+ cᵀΣ−1
1,nPnB

ᵀ
1

(
Un −

[
Hᵀ

2,1Vn

]
+

)
1Tn(H2,1)≤λn . (3.8)

The first and second terms in (3.8) correspond to differing approximations according

to the partitioning of the data. The first term in (3.8) involving Un is left unchanged

on the partition where Tn(h2,1) is large and thus there appears to be a large treatment

effect. Since Un

∣∣
H2,1=h2,1

=
[
hᵀ

2,1Vn

]
+

when hᵀ
2,1β

∗
2,1 = 0, we replace the term Un by

[hᵀ
2,1Vn]+ when Tn(h2,1) is small to obtain the second term in (3.8). The third term

above corresponds to the error in the partition (i.e., this term would have been absent

had we been able to partition the data according to the unknown 1Hᵀ
2,1β

∗
2,1=0 instead

of 1Tn(H2,1)≤λn). Using the definition of Un and Vn, it can be shown that the third

term in (3.8) is equal to

cᵀΣ−1
1,nPnB

ᵀ
1

([
Hᵀ

2,1(Vn +
√
nβ∗2,1)

]
+
−
[
Hᵀ

2,1

√
nβ∗2,1

]
+
−
[
Hᵀ

2,1Vn

]
+

)
1Tn(H2,1)≤λn .

(3.9)

Replacing
√
nβ∗2,1 with γ and taking the supremum over any subset of Rdim(β∗2,1) which

contains
√
nβ∗2,1 yields an upper bound on the last term in (3.8). Justififcation of our

particular choice Sn is given below. Combining this result with (3.6) and (3.8) yields

(3.7). Theorem 2.1 below provides the asymptotic distribution of (3.7).

The quantity U(c) forms an upper bound of cᵀ
√
n(β̂1 − β∗1) whenever

√
nβ∗2,1 be-

longs to the set Sn. A potentially important concern is the choice of Sn. Let H denote

the hyperplane in Rdim(β∗2,1) defined by the normal vector β∗2,1. Let PH denote the or-

thogonal projection ontoH. It is proved in the supplement that suph2,1∈H Tn(h2,1)/λn =
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oP (1). Using the form of Tn(h2,1) we see that this result is equivalent to

sup
h2,1∈H

(hᵀ
2,1(Vn +

√
nβ∗2,1))2

λn||h2,1||2
= oP (1).

It is natural then to require that any sequence of vectors γn in Rp satisfying

sup
h2,1∈H

(hᵀ
2,1(Vn + γn))2

λn||h2,1||2
= oP (1), (3.10)

eventually satisfy PHγn ∈ PHSn. The condition stated in (3.10) is equivalent to the

condition that ||PHγn||2∞/λn → 0 as n tends to ∞. Let the term Condition I refer

to the requirement that
√
nβ∗2,1 belong to Sn for all n. In addition, let Condition II

refer to the requirement that for any sequence γn in Rp for which ||PHγn||2∞/λn → 0,

it follows that PHγn ∈ PHSn for all sufficiently large n. For any subset A of Rp, let

diam(A) denote supa,b∈A ||a− b||, the diameter of A. We have the following result.

Remark 3.1.1. Assume dim(H) ≥ 1. Let Sn ,
{
γ ∈ Rp : ||Ξ2,n(γ −

√
nβ∗2,1)||2∞ ≤ λn

}
.

1. Sn satisfies Conditions I and II.

2. If S ′n is any other sequence of subsets of Rp satisfying Conditions I and II, then

diam(PHSn)/diam(PHS ′n) = O(1).

A proof of the preceding remark can be found in the supplement. The remark shows

that the choice of Sn can only be tightened up to a constant factor without violating

either Condition I or Condition II.

Suppose we want to construct a 1−α confidence interval for cᵀβ∗1 . By construction

of U(c) and L(c) it follows that

P
[
cᵀβ̂1 − U(c)/

√
n ≤ cᵀβ∗1 ≤ cᵀβ̂1 − L(c)/

√
n
]
≥ 1− α.
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We approximate the distribution of the U(c) and L(c) using the bootstrap. Namely,

let û denote the 1−α/2 quantile of the bootstrap distribution of U(c), and let l̂ denote

the α/2 quantile of the bootstrap distribution of L(c). Then [cᵀβ̂1 − û/
√
n, cᵀβ̂1 −

l̂/
√
n] is the ACI for cᵀβ∗1 .

Next we show that the ACI is asymptotically valid. First define

1. Σt,∞ , PBᵀ
t Bt for t = 1, 2;

2. g2(B2, Y2; β∗2) , Bᵀ
2 (Y2 −B2β

∗
2);

3. g1 (B1, Y1, H2; β∗1 , β
∗
2) , Bᵀ

1

(
Y1 +Hᵀ

2,0β
∗
2,0 +

[
Hᵀ

2,1β
∗
2,1

]
+
−B1β

∗
1

)
;

We use the following assumptions.

(A1) The histories H2, features B1, and outcomes Yt, satisfy the moment inequalities

P ||H2||2 ||B1||2 <∞ and PY 2
2 ||B2||2 <∞.

(A2) The matrices Σt,∞ and Cov (g1, g2) are strictly positive definite.

(A3) The sequence λn tends to infinity and satisfies λn = o(n).

(A4) For γ ∈ Rdim(β∗2,1), there exists Pn,γ a sequence of contiguous alternatives con-

verging to P in the sense that:

∫ [√
n
(
dP 1/2

n,γ − dP 1/2
)
− 1

2
gdP 1/2

]2

→ 0,

for some measurable function g for which if δ
(n)
2 , arg minδ Pn,γ(Y2−Q2(H2, A2; δ))2,

then δ
(n)
2,1 , β∗2,1 + γ/

√
n.

Assumptions (A1)-(A2) are quite mild, requiring only full rank design matrices and

some moment conditions. Requirement (A3) regards a user-chosen tuning parameter

and thus is always satisfied by appropriate choice of λn. Local alternatives provide
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a medium through which a glimpse of small sample behavior might be obtained,

while retaining the mathematical convenience of large samples. Assumption (A4)

facilitates a discussion of local alternatives without attempting to make the weakest

possible assumptions (see van der Vaart and Wellner 1996).

The first result regards the population upper bound U(c).

Theorem 3.1.2 (Validity of population bounds). Assume (A1)-(A3) and fix c ∈

Rdim(β∗1 ).

1. cᵀ
√
n(β̂1−β∗1) cᵀW∞+cᵀΣ−1

1,∞PB
ᵀ
1H

ᵀ
2,1V∞1Hᵀ

2,1β
∗
2,1>0+cᵀΣ−1

1,∞PB
ᵀ
1

[
Hᵀ

2,1V∞
]

+
1Hᵀ

2,1β
∗
2,1=0.

2. If for each n, the underlying generative distribution is Pn,γ, which satisfies (A4),

then the limiting distribution of cᵀ
√
n(β̂1 − β∗1) is given by:

cᵀW∞ + cᵀΣ−1
1,∞PB

ᵀ
1H

ᵀ
2,1V∞1Hᵀ

2,1β
∗
2,1>0

+ cᵀΣ−1
1,∞PB

ᵀ
1

([
Hᵀ

2,1(V∞ + γ)
]

+
−
[
Hᵀ

2,1γ
]

+

)
1Hᵀ

2,1β
∗
2,1=0. (3.11)

3. The limiting distribution of U(c) under both P and under Pn,γ is equal to

cᵀW∞ + cᵀΣ−1
1,∞PB

ᵀ
1H

ᵀ
2,1V∞1Hᵀ

2,1β
∗
2,1>0

+ sup
γ′∈Rdim(β∗2,1)

cᵀΣ−1
1,∞PB

ᵀ
1

([
Hᵀ

2,1(V∞ + γ′)
]

+
−
[
Hᵀ

2,1γ′
]

+

)
1Hᵀ

2,1β
∗
2,1=0, (3.12)

where W∞ and V∞ are jointly asymptotically normal with mean zero.

See the supplementary material for the proof. Notice that limiting distributions of

cᵀ
√
n(β̂1−β∗1) and U(c) (or equivalently L(c)) are equal in the case Hᵀ

2,1β
∗
2,1 6= 0 with

probability one. That is, when there is a large treatment effect for almost all patients

then the upper (or lower) bound is tight. However, when there is a non-null subset of
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patients for which there is no treatment effect, then the limiting distribution of the

upper bound is stochastically larger then the limiting distribution of cᵀ
√
n(β̂1 − β∗1).

Thus, the ACI adapts to the setting in which all patients experience a treatment

effect.

Because the distribution of (3.11) depends on the local alternative, γ, β̂1 is a

nonregular estimator (van der Vaart and Wellner, 1996). One might hope to construct

an estimator of the distribution of (3.11) and use this estimator to approximate the

distribution of cᵀ
√
n(β̂1 − β∗1). However a consistent estimator of the distribution

of (3.11) does not exist because Pn,γ is contiguous with respect to P (assumption

A4). To see this, let Fγ(u) be the distribution of (3.11) evaluated at a point, u. If

a consistent estimator, say F̂n(u), existed, that is F̂n(u) converges in probability to

Fγ(u) under Pn,γ then the contiguity implies that F̂n(u) converges in probability to

Fγ(u) under P . This is a contradiction (at best F̂n(u) converges in probability to

F0(u) under P ). Because we can not consistently estimate γ and we don’t know the

value of γ, the tightest, estimable upper bound on (3.11) is given by (3.12). As we

shall next see, we are able to consistently estimate the distribution of (3.12).

In order to form confidence sets the bootstrap distributions of U(c) and L(c) are

used. The next result regards the consistency of these bootstrap distributions. Let

P̂(b)
n denote the bootstrap empirical measure, that is, P̂(b)

n , n−1
∑n

i=1 Mn,iδTi for

Mn,1,Mn,2, . . . ,Mn,n ∼ Multinomial(n, (1/n, 1/n, . . . , 1/n)). We use the superscript

(b) to denote that a functional has been replaced by its bootstrap analogue, so that

if ω , f(Pn) then w(b) , f(P̂(b)
n ). Denote the space of bounded Lipschitz-1 functions

on R2 by BL1(R2). Furthermore, let EM and PM denote the expectation and proba-

bility with respect to the bootstrap weights. The following results are proved in the

supplemental material.
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Theorem 3.1.3. Assume (A1)-(A3) and fix c ∈ Rdim(β∗1 ). Then (U(c),L(c)) and

(U (b)(c),L(b)(c)) converge to the same limiting distribution in probability. That is,

sup
v∈BL1(R2)

∣∣∣∣Ev ((U(c),L(c)))− EMv
((
U (b)(c),L(b)(c)

)) ∣∣∣∣
converges in probability to zero.

Corollary 3.1.4. Assume (A1)-(A3) and fix c ∈ Rdim(β∗1 ). Let û denote the 1− α/2

quantile of U (b)(c) and l̂ denote the α/2 quantile of L(b)(c). Then

PM

(
cᵀβ̂1 − û/

√
n ≤ cᵀβ∗1 ≤ cᵀβ̂1 − l̂/

√
n
)
≥ 1− α + oP (1).

Furthermore, if P (Hᵀ
2,1β

∗
2,1 = 0) = 0, then the above inequality can be strengthened to

equality.

The preceding results show that the ACI can be use to construct valid confidence

intervals regardless of the underlying parameters or generative model. Moreover, in

settings where there is a treatment effect for almost every patient, the ACI delivers

asymptotically exact coverage. See Section 4 for discussion of the choice of the tuning

parameter λn.

3.2 Extending the ACI to many treatments

The two stage binary treatment setting which was addressed in the previous sec-

tion provides the tools necessary to analyze data from many SMART trials including

the ADHD study. Nonetheless, there is interest in analyzing data from multistage

randomized trials where more than two treatments are available at each stage (Rush

et al. 2003; Lieberman et al. 2005). In this section, we extend the ACI procedure
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for use with two stage trials with an arbitrary number of treatments available at

each stage. The organization of this section parallels that of the previous section,

however, the material is presented in a somewhat abbreviated fashion since much of

the intuition has already been provided in earlier sections. In order to develop the

results in this section, we require additional notation. Again, we observe trajecto-

ries (X1, A1, Y1, X2, A2, Y2) drawn i.i.d. from some fixed and unknown distribution P .

The treatment actions At take values in the set {1, . . . , Kt} for some fixed number

of treatments Kt. In typical studies, Kt is no greater than five. We assume that

the treatment action At is randomized with probabilities possibly depending on pa-

tient history, Ht (Ht = {X1, A1, . . . , Xt}). We use the following linear model for the

Q-function at time t:

Qt(ht, at; βt) , βᵀ
t,0ht,0 +

Kt∑
i=1

βᵀ
t,iht,11at=i (3.13)

where as before ht,0, ht,1 are vectors of patient features constructed from the pa-

tient history, ht and βt , (βᵀ
t,0, β

ᵀ
t,1, . . . , β

ᵀ
t,Kt

)ᵀ. For identifiability, we assume that

the vector of coefficients βt satisfies a zero-sum constraint. That is, for each j =

1, 2, . . . , dim(βt,1) the vector βt satisfies
∑Kt

i=1 βt,i,j = 0. The encoding of the treat-

ments in this model is different than was used in the two stage binary treatment

case. The reason for this difference is two-fold. The first reason is simply due to

notation. Using a baseline constraint leads to much more complex expressions in this

context. Second, setting K2 = 2 and applying the results of this section illustrates

how to deal with the two stage binary treatment setting when a contrast coding is

employed. Thus we will have covered the two most commonly employed treatment

codings. Note that according to this working model, if hᵀ
t,1βt,i − maxj 6=i h

ᵀ
t,1βt,j ≈ 0

for some 1 ≤ i ≤ Kt, then at least two treatments are approximately optimal for
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a patient with history Ht,1 = ht,1. That is, there is not unique best treatment for

a patient with history Ht,1 = ht,1. Conversely, if
∣∣hᵀ
t,1βt,i − maxj 6=i h

ᵀ
t,1βt,j

∣∣ � 0 for

all 1 ≤ i ≤ Kt, then exactly one treatment yields the best expected outcome for a

patient with history Ht,1 = ht,1. As before, estimation of the optimal DTR is done

using the Q-learning algorithm. The Q-learning algorithm proceeds as follows:

1. Regress Y2 on H2 and A2 using (3.13) to obtain:

β̂2 , arg min
β2

Pn(Y2 −Q2(H2, A2; β2))2,

and subsequently the approximation Q2(h2, a2; β̂2) to the conditional mean

Q2(h2, a2).

2. (a) Define the predicted future reward following the optimal policy as:

Ỹ1 , Y1 + max
a2∈{1,2,...,K2}

Q2(H2, a2; β̂2) (3.14)

= Y1 +Hᵀ
2,0β̂2,0 + max

1≤i≤K2

Hᵀ
2,1β̂2,i (3.15)

(b) Regress Ỹ1 on H1 and A1 using (3.13) to obtain β̂1 , arg minβ1 Pn(Ỹ1 −

Q1(H1, A1; β1))2.

3. Define the estimated optimal DTR π̂ = (π̂1, π̂2) so that

π̂t(ht) , arg max
at∈{1,2,...,Kt}

Qt(ht, at; β̂t).

As before, examination of the normal equations used to construct β̂1 combined with

the definition of Ỹ1 show that cᵀ
√
n(β̂1−β∗1) can be decomposed as cᵀWn+cᵀΣ−1

n,1PnB
ᵀ
1 Un,
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where the definitions of Wn and Un have been generalized to

Wn = Σ−1
1,n

√
nPnBᵀ

1

{(
Y1 +Hᵀ

2,0β
∗
2,0 +

[
max

1≤i≤K2

Hᵀ
2,1β

∗
2,i

]
−B1β

∗
1

)
+Hᵀ

2,0(β̂2,0 − β∗2,0)

}
,

Un =
√
n

([
max

1≤i≤K2

Hᵀ
2,1β̂2,i

]
−
[

max
1≤i≤K2

Hᵀ
2,1β

∗
2,i

])
.

The non-regularity of the limiting distribution of cᵀ
√
n(β̂1−β∗1) is apparent by noting

the non-differentiable max operator in the definition of Un. Define

A∗2(h2,1) ,

{
arg max

1≤i≤K2

hᵀ
2,1β

∗
2,i

}

to be the set of equally optimal treatments for a patient with history H2,1 = h2,1.

Thus, A∗2(h2,1) is a singleton when there is exactly one unique best treatment for a

patient with history h2,1. Define Vn,i ,
√
n(β̂2,i − β∗2,i) for i = 1, 2, . . . , K2. Let Ξ′2,n

denote the inverse of the matrix square-root of the plug-in estimator of the asymptotic

covariance of (Vᵀ
n,1, . . . ,V

ᵀ
n,K2

)ᵀ and let β∗2,: denote the vector (β∗ᵀ2,1, . . . , β
∗ᵀ
2,n)ᵀ. The

upper bound U(c) used to construct the ACI in the many treatment case is given by

cᵀWn + cᵀΣ−1
1,nPnB

ᵀ
1 Un1#Â2(H2,1)=1+

+ sup
γ∈Sn

cᵀΣ−1
1,nPnB

ᵀ
1

(
max

i∈Ã2(H2,1)
Hᵀ

2,1 (Vn,i + γi)− max
i∈Ã2(H2,1)

Hᵀ
2,1γi

)
1#Â2(H2,1)>1, (3.16)

where γ = (γᵀ
1 , γ

ᵀ
2 , . . . , γ

ᵀ
K2

)ᵀ, Sn ,
{
γ ∈ Rdim(β∗2,1) : ||Ξ2,n(γ −

√
nβ∗2,:)||2∞ ≤ λn

}
, and

Â2(h2,1) is an estimator of A∗2(h2,1) and Ã2(h2,1) , Â2(h2,1)∪A∗2(h2,1). The estimator

Â2(h2,1) of A∗2(h2,1) is based on a series of hypothesis tests using the test statistics:

Tn,i(h2,1) ,
n
(
hᵀ

2,1β̂2,i −maxj 6=i h
ᵀ
2,1β̂2,j

)2

hᵀ
2,1ζ̂ih2,1

,
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where ζ̂i is the usual plug-in estimator of nCov(β̂2,i− β̂2,j) for j = arg maxj 6=i h
ᵀ
2,1β̂2,j,

assuming the index j to be fixed a priori (see Hsu 1996). Notice that mini Tn,i(h2,1)

should be large if treatment i is the uniquely optimal treatment for a patient with

history H2,1 = h2,1. On the other hand, Tn,i(h2,1) should be small if treatment i is

the optimal treatment for a patient with history h2,1 and there is more than one best

treatment. A natural estimator of A∗2(h2,1) is

Â2(h2,1) =

 {i : Tn,i(h2,1) ≤ λn} if mini Tn,i(h2,1) ≤ λn

arg max1≤i≤K2 h
ᵀ
2,1β̂2,i if mini Tn,i(h2,1) > λn.

The test statistic, Tn,i(h2,1), is taken from the “multiple comparisons with the best”

literature (see Hsu 1996 and references therein). Let ∆ denote the symmetric set dif-

ference. It can be shown that when λn diverges to infinity and satisfies λn = o(n), then

Â2(h2,1) is a consistent estimator of A∗2(h2,1) in the sense that #
[
A∗2(h2,1) ∆ Â2(h2,1)

]
converges to zero in probability.

The intuition behind the upper bound U(c) is the same as in the binary treatment

case. Namely, we partition the data based into two sets (i) patients for which there

is exactly one best treatment, and (ii) patients for which there is more than one best

treatment. Different approximations are used on each partition to ensure asymptotic

consistency and a bound that controls the influence of errors in the partitioning is

added to ensure good small sample performance. The bootstrap distributions of the

upper bound U(c) and lower bound L(c) (which is formed by replacing the sup with

an inf in the definition of U(c)) are used to construct a confidence set.

The theoretical results presented for the binary treatment ACI, including those

regarding the bootstrap, hold in the many treatment case as well. While there is

no qualitative change in the required assumptions, they must however be generalized
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to accommodate an arbitrary number of treatments. The generalized assumptions

along with statements of the theorems in the many treatment case can be found in

the supplementary material.

3.3 Empirical Study

In this section we contrast different choices of the potentially important tuning

parameter λn and we provide an empirical evaluation of the ACI. Fourteen generative

models are used in these evaluations; the first seven of these come from (Chakraborty

et al. 2009). Each of these seven generative models has two stages of treatment and

two treatments at each stage. The second seven generative models are similar but

have three treatments at stage two; a complete description of these models can be

found in the supplemental material. Generically, each of the first seven models can

be described as follows:

• Xi ∈ {−1, 1}, Ai ∈ {−1, 1} for i ∈ {1, 2}

• P (A1 = 1) = P (A1 = −1) = 0.5, P (A2 = 1) = P (A2 = −1) = 0.5

• X1 ∼ Bernoulli(0.5), X2|X1, A1 ∼ Bernoulli(expit(δ1X1 + δ2A1))

• Y1 , 0,

Y2 = γ1 + γ2X1 + γ3A1 + γ4X1A1 + γ5A2 + γ6X2A2 + γ7A1A2 + ε, ε ∼ N(0, 1)

where expit(x) = ex/(1+ex). This class is parameterized by nine values γ1, γ2, ..., γ7, δ1, δ2.

The analysis model uses patient feature vectors defined by:

H2,0 = (1, X1, A1, X1A1, X2)ᵀ

H2,1 = (1, X2, A1)ᵀ
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H1,0 = (1, X1)ᵀ

H1,1 = (1, X1)ᵀ.

Our working models are given byQ2(H2, A2; β2) , Hᵀ
2,0β2,0+Hᵀ

2,1β2,1A2 andQ1(H1, A1; β1) ,

Hᵀ
1,0β1,0 +Hᵀ

1,1β1,1A1. We use contrast encoding for A1 and A2 to allow for a compar-

ison with Chakraborty et al. (2009).

The form of this class of generative models is useful as it allows us to influence

the degree of non-regularity present in our example problems through the choice of

the γi and δi, and in turn evaluate performance in these different scenarios. Re-

call that in Q-learning, non-regularity occurs when more than one stage-two treat-

ment produces nearly the same optimal expected reward for a set of patient histories

that occur with positive probability. In the model class above, this occurs if the

model generates histories for which γ5A2 + γ6X2A2 + γ7A1A2 ≈ 0, i.e., if it gener-

ates histories for which Q2 depends weakly or not at all on A2. By manipulating

the values of γi and δi, we can control i) the probability of generating a patient his-

tory such that γ5A2 + γ6X2A2 + γ7A1A2 = 0, and ii) the standardized effect size

E[(γ5 + γ6X2 + γ7A1)/
√

Var(γ5 + γ6X2 + γ7A1)]. Each of these quantities, denoted

by p and φ, respectively, can be thought of as measures of problem non-regularity.

Six different generative models are provided by Chakraborty et al. (2009), and are

described by them as “non-regular”, “near-non-regular”, and “regular”. We have

added one additional model to include the case of a strongly regular setting.

3.3.1 The choice of λn

We measure and compare the performance of four choices of the tuning parameter

λn in terms of estimated coverage and average interval diameter. The intervals are

constructed for intercept and the coefficient of the treatment indicator in the first
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Example γ δ Type
1 (0, 0, 0, 0, 0, 0, 0)ᵀ (0.5, 0.5)ᵀ non-regular p = 1 φ = 0/0
2 (0, 0, 0, 0, 0.01, 0, 0)ᵀ (0.5, 0.5)ᵀ near-non-regular p = 0 φ =∞
3 (0, 0,−0.5, 0, 0.5, 0, 0.5)ᵀ (0.5, 0.5)ᵀ non-regular p = 1/2 φ = 1.0
4 (0, 0,−0.5, 0, 0.5, 0, 0.49)ᵀ (0.5, 0.5)ᵀ near-non-regular p = 0 φ = 1.0204
5 (0, 0,−0.5, 0, 1.0, 0.5, 0.5)ᵀ (1.0, 0.0)ᵀ non-regular p = 1/4 φ = 1.4142
6 (0, 0,−0.5, 0, 0.25, 0.5, 0.5)ᵀ (0.1, 0.1)ᵀ regular p = 0 φ = 0.3451
7 (0, 0,−0.25, 0, 0.75, 0.5, 0.5) (0.1, 0.1) regular p = 0 φ = 1.035

Table 3.1: Parameters indexing the example models.

stage Q-function in the fourteen generative models. We use a training set size of

n = 150 in order to mimic the sample size of the ADHD study (n = 138). The

online supplement contains a number of additional examples and sample sizes all

displaying similar trends as presented here. For the sequence λn we consider the

following settings: λn =
√

log log n, log log n, log n, n.

The intuition behind these settings is as follows. The supremum (infimum) used

in the ACI can be thought of controlling the influence of committing a Type II error

in the test of N0(h2,1) : hᵀ
2,1β

∗
2,1 = 0. On the other hand, the Type I error is controlled

by the choice of λn. Recall that we reject the hypothesis N0(h2,1) when Tn(h2,1) > λn.

Thus, it is of interest to examine the (uniform) behaviour of Tn(h2,1)/λn across the set

of h2,1 for which N0(h2,1) is true. Since the test statistic Tn is scale invariant (e.g. for

any α > 0 we have Tn(αh2,1) = Tn(h2,1)) is suffices to restrict our attention to unit vec-

tors h2,1 satisfying N0(h2,1). We letW ,
{
h2,1 ∈ Rdim(β∗2,1) : hᵀ

2,1β
∗
2,1 = 0, ||h2,1|| = 1

}
denote these vectors of interest. Provided that λn tends to ∞ it follows that

sup
h∈W

Tn(h)/λn → 0

in probability. Furthermore, if λn grows faster than log log n then the above con-

vergence can be strengthened from in probability to almost surely using the law of
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the iterated logarithm (see Csorgo and Rosalsky 2003). However, consistency of the

ACI also requires that λn = o(n). Thus, λn = n represents rate that is too fast for

consistency to hold; λn = log n is fast enough for strong (almost sure) control of the

Type I error; λn = log log n represents a rate that is at the boundary between almost

sure and in convergence in probability; λn =
√

log log n represents a rate that only

ensures convergence in probability.

Tables (3.4) and (3.5) show the estimated coverage and interval diameter of the

ACI across the four parameter settings for the first seven generative models. The

results appear stable across all choices of λn. However, the ACI seems excessively

conservative when λn is allowed to grow faster than log log n. Both in the simulation

studies below as well as in the data analysis, we use λn = log log n.

3.3.2 An Evaluation of the ACI

We compare the empirical performance of the ACI with the centered percentile

bootstrap (CPB), the soft-thresholding (ST) method of Chakraborty et al. (2009),

and simple plug-in pretesting estimator (PPE). The hard-thresholding of Moodie

and Richardson (2007) is similar in theory and performance to the soft-thresholding

approach; furthermore in orthogonal settings the lasso type penalization of Song et

al. (2010) is equivalent to soft-thresholding, and so, Chakraborty’s method is used to

represent these alternate approaches. The performance of each method is measured

in terms of estimated coverage and interval diameter. We shall see that the ACI is

conservative when there is no stage 2 treatment effect for all feature patterns; this is

not unexpected since the ACI is based on the use of the upper/lower bound. Despite

the use of the bounds, ACI routinely delivers close to the nominal coverage and

possesses competitive diameters. Competing methods fail to attain nominal coverage

on many of the examples.
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C.I.s for β1,1,1

λn =
Ex. 1
NR

Ex. 2
NNR

Ex. 3
NR

Ex. 4
NNR

Ex. 5
NR

Ex. 6
R

Ex. 7
R√

log(log(n)) 0.9871 0.9869 0.9628 0.9645 0.9545 0.9515 0.9533
log(log(n)) 0.9895 0.9891 0.9646 0.9662 0.9560 0.9544 0.9545

log(n) 0.9951 0.9953 0.9700 0.9728 0.9628 0.9663 0.9615
n 0.9967 0.9968 0.9714 0.9738 0.9652 0.9737 0.9684

C.I.s for β1,0,1

λn =
Ex. 1
NR

Ex. 2
NNR

Ex. 3
NR

Ex. 4
NNR

Ex. 5
NR

Ex. 6
R

Ex. 7
R√

log(log(n)) 0.9622 0.9692 0.9631 0.9657 0.9575 0.9608 0.9559
log(log(n)) 0.9652 0.9709 0.9651 0.9673 0.9592 0.9624 0.9566

log(n) 0.9726 0.9780 0.9706 0.9727 0.9631 0.9730 0.9648
n 0.9739 0.9787 0.9719 0.9743 0.9660 0.9799 0.9719

Table 3.2:
Monte Carlo estimates of coverage probabilities for the ACI methods at
the 95% nominal level. Here, β1,1,1 denotes the main effect of treatment
and β1,0,1 denotes the intercept. Estimates are constructed using 10000
datasets of size 150 drawn from each model, and 1000 bootstraps drawn
from each dataset. Examples are designated NR = non-regular, NNR =
near-non-regular, R = regular.

C.I.s for β1,1,1

λn =
Ex. 1
NR

Ex. 2
NNR

Ex. 3
NR

Ex. 4
NNR

Ex. 5
NR

Ex. 6
R

Ex. 7
R√

log(log(n)) 0.4890 0.4890 0.4795 0.4796 0.4816 0.4681 0.4711
log(log(n)) 0.5008 0.5007 0.4857 0.4857 0.4847 0.4717 0.4735

log(n) 0.5560 0.5560 0.5156 0.5155 0.5009 0.4914 0.4883
n 0.5809 0.5808 0.5311 0.5311 0.5113 0.5099 0.5081

C.I.s for β1,0,1

λn =
Ex. 1
NR

Ex. 2
NNR

Ex. 3
NR

Ex. 4
NNR

Ex. 5
NR

Ex. 6
R

Ex. 7
R√

log(log(n)) 0.5056 0.5057 0.4794 0.4795 0.4815 0.4867 0.4713
log(log(n)) 0.5177 0.5176 0.4856 0.4856 0.4846 0.4907 0.4739

log(n) 0.5732 0.5731 0.5159 0.5159 0.5011 0.5135 0.4909
n 0.5942 0.5942 0.5340 0.5343 0.5130 0.5393 0.5172

Table 3.3:
Monte Carlo estimates of mean width of the ACI method at the 95% nomi-
nal level. Here, β1,1,1 denotes the main effect of treatment and β1,0,1 denotes
the intercept. Estimates are constructed using 10000 datasets of size 150
drawn from each model, and 1000 bootstraps drawn from each dataset.
Models have two treatments at each of two stages. Examples are desig-
nated NR = non-regular, NNR = near-non-regular, R = regular.
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We now briefly describe the competing methods. A natural first method to try

is the bootstrap; thus it serves as a useful baseline for comparison. As discussed the

ST method works by shrinking the fitted regression β̂1 in the hopes of mitigating bias

induced by non-regularity. In particular, for the working models we consider in this

section; the ST estimators are:

β̂ST1 , arg min
β1

Pn(Ỹ ST
1 −B1β1)2 (3.17)

Ỹ ST
1 , Y1 +Hᵀ

2,0β̂2,0 + |Hᵀ
2,1β̂2,1|

(
1− 3

Hᵀ
2,1Σ

(2,2)
2,n H2,1

n|Hᵀ
2,1β̂2,1|

)
+

. (3.18)

In the above display, β̂2 and Σ
(2,2)
2,n are as described in previous sections. The constant

3 appearing in the ST method is motivated by an empirical Bayes interpretation

of the thresholding (see work by Chakraborty et al. (2009) for more details). The

form of the ST method shows that the modified predicted future reward following

the optimal policy is shrunk most heavily when hᵀ
2,1β̂2,1 is small. Which is to say,

shrinkage occurs when there is little evidence that one treatment differs significantly

from another for a patient with history H2,1 = h2,1. The ST method is only developed

for binary treatment.

The PPE confidence interval, in the two-stage binary treatment case, is formed

by bootstrapping

cᵀWn + cᵀΣ−1
1,nPnB

ᵀ
1 Un1Tn(H2,1)>λn + cᵀΣ−1

1,nPnB
ᵀ
1

[
Hᵀ

2,1Vn

]
+

1Tn(H2,1)≤λn . (3.19)

This approach is natural as it partitions the data using a pretest and then uses a

different estimator on each partition. A similar idea was employed by Chatterjee and

Lahiri (2009) in their treatment of the Lasso. However, this approach is consistent

under fixed but not local alternatives (see the supplemental material for additional
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details; see also Leeb and Potscher 2005). As we will see below, this leads to rather

poor small sample performance. The primary reason for including this method is

to motivate the importance of local alternatives and the utility of the supremum

(infimum) in the construction of the ACI.

We first provide confidence intervals for the coefficient of A1 (the treatment vari-

able), β∗1,1,1. Note that given the working models and generative models defined by

the parameter settings in Table 3.24, we can determine the exact value of any pa-

rameter cᵀβ∗1 of interest. The supplementary material contains confidence intervals

for the treatment effect when X1 = 1 (e.g. β∗1,1,1 + β∗1,1,2). In addition, it contains

estimated coverage probabilities and interval diameters for a range of sample sizes

and a number of additional generative models, including those with multiple stages

of treatment.

Table 3.4 shows the estimated coverage for the coefficient of A1, β∗1,1,1. This

simulation uses a sample size of 150, a total of 1000 Monte Carlo replications and

1000 bootstrap samples. Target coverage is .95. The CPB and PPE methods fare the

worst in terms of coverage, each falling significantly below nominal coverage on ten of

the fourteen examples respectively. The ST method fails to cover in the most regular,

the seventh, example. The reason for this under performance is that the ST method

tends to over-shrink when there are large treatment effects. Recall that the ST method

has not been developed for the setting in which there are more than two treatments

at the second stage. The ACI is the only method to deliver nominal coverage on all

fourteen examples. The ACI is conservative on examples one and two. The average

interval diameters are shown in Table 3.5. The ACI is the most conservative as is to

be expected given that it is based on upper and lower bounds. However, the width is

non-trivial and is actually the smallest in several of the examples if one only considers

methods that attain nominal coverage.
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The coefficient of A1 is perhaps most relevant from a clinical perspective. However,

from a methodological point of view, other contrasts can be illuminating. Table

3.6 shows the estimated coverage for intercept using the same generative models

described in the preceding paragraph. The coverage of competing methods is quite

poor collectively attaining nominal coverage on two examples. Particularly disturbing

is that the ST method falls more than 30% below nominal levels. In contrast, the

ACI delivers nominal coverage on every example. Table 3.7 shows the average interval

widths; the ACI is the widest but non-trivial.

3.4 Analysis of the ADHD study

In this section we illustrate the use of the ACI on data from the Adaptive Inter-

ventions for Children with ADHD study (Pehlam et al. 2008). The ADHD data we

use here consists of n = 138 trajectories. These n = 138 trajectories form a subset the

original N = 155 observations. This subset was formed by removing the N − n = 17

patients that were either never randomized to an initial (first stage) treatment (14

patients), or had massive item missingness (3 patients). A description of each of

the variables is described in Table (3.8). Notice that the outcomes Y1 and Y2 satisfy

Y1 + Y2 ≡ R, where R is the teacher reported TIRS5 score at the last week of the

study (week 32).

The Q-learning algorithm detailed in earlier sections of this paper describes how

to estimate an optimal DTR. However, an estimation procedure alone is insufficient

for model building. Tools for model assessment and criticism are also necessary. One

of the chief advantages of Q-learning is that it consists of a series of linear regression

models. Consequently, exploratory data analysis, model assessment and criticism

(e.g. residual analysis) can be performed for each of the intermediate linear models
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Two
Treatments
at Stage 2

Ex. 1
NR

Ex. 2
NNR

Ex. 3
NR

Ex. 4
NNR

Ex. 5
NR

Ex. 6
R

Ex. 7
R

CPB 0.934* 0.935* 0.930* 0.933* 0.938 0.928* 0.939
PPE 0.931* 0.940 0.938 0.940 0.946 0.912* 0.931*
ST 0.948 0.945 0.938 0.942 0.952 0.943 0.919*
ACI 0.992 0.992 0.968 0.972 0.957 0.955 0.950

Three
Treatments
at Stage 2

Ex. 1
NR

Ex. 2
NNR

Ex. 3
NR

Ex. 4
NNR

Ex. 5
NR

Ex. 6
R

Ex. 7
R

CPB 0.933* 0.937 0.915* 0.921* 0.931* 0.907* 0.940
PPE 0.931* 0.932* 0.927* 0.919* 0.932* 0.883* 0.919*
ACI 0.996 0.996 0.968 0.969 0.959 0.968 0.959

Table 3.4:
Monte Carlo estimates of coverage probabilities of confidence intervals for
the coefficient of the treatment variable, β∗1,1,1 at the 95% nominal level.
Estimates are constructed using 1000 datasets of size 150 drawn from each
model, and 1000 bootstraps drawn from each dataset. Estimates signif-
icantly below 0.95 at the 0.05 level are marked with ∗. There is no ST
method when there are three treatments at Stage 2. Examples are desig-
nated NR = non-regular, NNR = near-non-regular, R = regular.

Two
Treatments
at Stage 2

Ex. 1
NR

Ex. 2
NNR

Ex. 3
NR

Ex. 4
NNR

Ex. 5
NR

Ex. 6
R

Ex. 7
R

CPB 0.385* 0.385* 0.430* 0.430* 0.457 0.436* 0.451
PPE 0.365* 0.366 0.419 0.419 0.452 0.418* 0.452*
ST 0.339 0.339 0.426 0.427 0.469 0.436 0.480*
ACI 0.502 0.502 0.488 0.488 0.487 0.475 0.477

Three
Treatments
at Stage 2

Ex. 1
NR

Ex. 2
NNR

Ex. 3
NR

Ex. 4
NNR

Ex. 5
NR

Ex. 6
R

Ex. 7
R

CPB 0.446* 0.446 0.518* 0.518* 0.567* 0.518* 0.557
PPE 0.416* 0.416* 0.501* 0.501* 0.557* 0.487* 0.549*
ACI 0.655 0.655 0.625 0.625 0.621 0.630 0.616

Table 3.5:
Monte Carlo estimates of mean width of confidence intervals for the coeffi-
cient of the treatment variable, β∗1,1,1 at the 95% nominal level. Estimates
are constructed using 1000 datasets of size 150 drawn from each model, and
1000 bootstraps drawn from each dataset. Models have two treatments at
each of two stages. Widths with corresponding coverage significantly below
nominal are marked with ∗. There is no ST method when there are three
treatments at Stage 2. Examples are designated NR = non-regular, NNR
= near-non-regular, R = regular.
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Two
Treatments
at Stage 2

Ex. 1
NR

Ex. 2
NNR

Ex. 3
NR

Ex. 4
NNR

Ex. 5
NR

Ex. 6
R

Ex. 7
R

CPB 0.892* 0.908* 0.924* 0.925* 0.940 0.930* 0.936
PPE 0.926* 0.930* 0.933* 0.934* 0.934* 0.907* 0.928*
ST 0.935* 0.930* 0.889* 0.878* 0.891* 0.620* 0.687*
ACI 0.956 0.964 0.954 0.955 0.950 0.957 0.948

Table 3.6:
Monte Carlo estimates of coverage probabilities of confidence intervals for
the coefficient of the intercept, β∗1,0,1 at the 95% nominal level. Estimates
are constructed using 1000 datasets of size 150 drawn from each model, and
1000 bootstraps drawn from each dataset. Estimates significantly below
0.95 at the 0.05 level are marked with ∗. Examples are designated NR =
non-regular, NNR = near-non-regular, R = regular.

Two
Treatments
at Stage 2

Ex. 1
NR

Ex. 2
NNR

Ex. 3
NR

Ex. 4
NNR

Ex. 5
NR

Ex. 6
R

Ex. 7
R

CPB 0.404* 0.404* 0.430* 0.429* 0.457 0.449* 0.450
PPE 0.376* 0.376* 0.418* 0.418* 0.451* 0.448* 0.453*
ST 0.344* 0.344* 0.427* 0.427* 0.466* 0.469* 0.474*
ACI 0.518 0.518 0.487 0.487 0.486 0.494 0.476

Table 3.7:
Monte Carlo estimates of mean width of confidence intervals for the co-
efficient of the intercept, β∗1,0,1 at the 95% nominal level. Estimates are
constructed using 1000 datasets of size 150 drawn from each model, and
1000 bootstraps drawn from each dataset. Models have two treatments at
each of two stages. Widths with corresponding coverage significantly below
nominal are marked with ∗. Examples are designated NR = non-regular,
NNR = near-non-regular, R = regular.
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X1,1 ∈ [0, 3] : baseline teacher reported mean ADHD symptom score. Measured at
the end of the school year preceding the study.

X1,2 ∈ {0, 1} : indicator of a diagnosis of ODD (oppositional defiant disorder) at base-
line, coded so that X1,3 = 0 corresponds to no such diagnosis.

X1,3 ∈ {0, 1} : indicator of a patient’s prior exposure to ADHD medication, coded so
that X1,2 = 0 corresponds to no prior exposure.

A1 ∈ {−1, 1} : initial treatment, coded so that A1 = −1 corresponds to medication
while A1 = 1 corresponds to behavioral modification therapy.

T ∈ {6, 7, . . . 32} : right censored time in weeks until patient is re-randomized.

Y1 , R1T≥32 : first stage response (see definition of R below).
X2,1 ∈ {0, 1} : indicator of patient’s adherence to their initial treatment. Adherence

is coded so that a value of X2,1 = 0 corresponds to low adherence
(taking less than 100% of prescribed medication or attending less than
75% of therapy sessions) while a value of X2,1 = 1 corresponds to high
adherence.

X2,2 ∈ {1, 8} : month of non-response.
A2 ∈ {−1, 1} : second stage treatment, coded so that A2 = −1 corresponds to aug-

menting the initial treatment with the treatment not received initially,
and A2 = 1 corresponds to enhancing (increasing the dosage of) the
initial treatment.

R ∈ {1, 2, . . . , 5} : teacher reported Teacher Impairment Rating Scale (TIRS5) item score
32 weeks after initial randomization to treatment. The TIRS5 is coded
so that higher values correspond to better clinical outcomes.

Y2 , R1T<32 : second stage outcome.

Table 3.8: Components of a single trajectory in the ADHD study.

by application of standard methods. Of course this approach is imperfect in that

examining the individual linear models does not ensure that the combined model is

appropriate.

The first step in estimating an optimal DTR from the ADHD study is to build a

regression model for the second stage. The second stage regression model is built

only using patients that were re-randomized during the 32 week study. Of the

n = 138 patients, 79 of them were re-randomized before the study conclusion. The

feature vectors at the second stage are H2,0 , (1, X1,1, X1,2, X2,2, X1,3, X2,1, A1)ᵀ and

H2,1 , (1, X2,1, A1)ᵀ. Thus, the Q-function Q2(H2, A2; β2) , Hᵀ
2,0β2,0 + Hᵀ

2,1β2,1A2

75



contains an interaction term between the second stage action A2 and a patient’s ini-

tial treatment A1, an interaction between A2 and adherence to their initial medication

X2,1, a main effect for A2, and main effects for all the other terms. A table of the

second stage least squares coefficients along with interval estimates are given in Table

(3.9). Examination of the residuals (not shown here) shows no obvious signs of model

misspecification. In short, the linear model described above seems to fit the data

reasonably well.

Term Coeff. Estimate Lower (5%) Upper (95%)
Intercept β2,0,1 1.36 0.48 2.26
Baseline symptoms β2,0,2 0.94 0.48 1.39
ODD diagnosis β2,0,3 0.92 0.46 1.41
Month of non-response β2,0,4 0.02 -0.20 0.20
Prior Medication β2,0,5 -0.27 -0.77 0.21
Adherence β2,0,6 0.17 -0.28 0.66
First stage txt β2,0,7 0.03 -0.18 0.23
Second stage txt β2,1,1 -0.72 -1.13 -0.35
Second stage txt : Adherence β2,1,2 0.97 0.48 1.52
Second stage txt : First stage txt β2,1,3 0.05 -0.17 0.27

Table 3.9: Least squares coefficients and 90% interval estimates for second stage re-
gression.

Recall that the response for this first stage regression model is the predicted future

outcome Ỹ1 , Y1 + maxa2∈{−1,1}Q2(H2, a2; β̂2). Since the predictors used in the first

stage must predate the assignment of first treatment, the available predictors in Table

(3.8) are baseline ADHD symptoms X1,1, diagnosis of ODD at baseline X1,2, indicator

of a patient’s prior exposure to ADHD medication X1,3, and first stage treatment A1.

The feature vectors for the second stage are H1,0 , (1, X1,1, X1,2, X1,3) and H1,1 ,

(1, X1,3), so that the first stage Q-function Q1(H1, A1; β1) , Hᵀ
1,0β1,0 + Hᵀ

1,1β1,1A1

contains an interaction term between the first stage action A1 and a patient’s prior

exposure to ADHD medication X1,3, a main effect for A1, and main effects for all other
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covariates. The first stage regression coefficients are estimated using least squares

β̂1 , arg minβ1 Pn(Ỹ1 − Q1(H1, A1; β1))2. A table of least squares coefficients along

with interval estimates formed using the ACI are given in Table (3.10). Plots of the

residuals for this model (not shown here) show no obvious signs of model misspecifica-

tion. This is to say that the linear model seems to provide a reasonable approximation

to the Q-function in the first stage.

Term Coeff. Estimate Lower (5%) Upper (95%)
Intercept β1,0,1 2.61 2.07 3.05
Baseline symptoms β1,0,2 0.73 0.46 1.02
ODD diagnosis β1,0,3 0.75 0.38 1.10
Prior med. exposure β1,0,4 -0.37 -0.79 0.01
Initial txt β1,1,1 0.17 -0.05 0.38
Initial txt : Prior med. exposure β1,1,2 -0.32 -0.61 -0.06

Table 3.10: Least squares coefficients and 90% ACI interval estimates for first stage
regression.

Having fit both the first and second stage regressions, we now construct an es-

timate of the optimal DTR. Recall that for any Ht = ht, t = 1, 2 the estimated

optimal DTR π̂ = (π̂1, π̂2) satisfies π̂t(ht) ∈ arg maxat Q(ht, at; β̂t). The coefficients in

Table (3.9) and the form of the second stage Q-function reveal that the second stage

decision rule π̂2 is quite simple. In particular, π̂2 prescribes treatment enhancement

to patients with high adherence to their initial medication and it prescribes treatment

augmentation to patients with low adherence to their initial medication. The first

stage decision rule π̂1 is equally simplistic. The coefficients in Table (3.10) show that

the first stage decision rule, π̂1 prescribes medication to patients that have had prior

exposure to medication, and behavioral modification to patients that have not had

any such prior exposure.

The prescriptions given by the estimated optimal DTR π̂ are excessively decisive.
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That is, they recommend one and only one treatment regardless of the amount of

evidence in the data to support that the recommended treatment is in fact optimal.

When there is insufficient evidence to recommend a single treatment as best for a given

patient history, it is preferred to leave the choice of treatment to the clinician. This

allows the clinician to recommend treatment based on cost, local availability, patient

individual preference, and clinical experience. One way to assess if there is sufficient

evidence to recommend a unique optimal treatment for a patient is to construct a

confidence interval for the predicted difference in mean response across treatments.

In the case of binary treatments, for a fixed patient history Ht = ht, one would

construct a confidence interval for the difference Qt(ht, 1; β∗t )−Qt(h1,−1; β∗t ) = cᵀβ∗t

where c = (0ᵀ, hᵀ
t,1)ᵀ. If this confidence interval contains zero then one would conclude

that there is insufficient evidence at the nominal level for a unique best treatment.

In this example, the patient features that interact with treatment are categorical.

Consequently, we can construct confidence intervals for the predicted difference in

mean response across treatments for every possible patient history. These confidence

intervals are given in table (3.4). The 90% confidence intervals suggest that there

is insufficient evidence at the first stage to recommend a unique best treatment for

each patient history. Rather, we would prefer not to make a strong recommendation

at stage one, and leave treatment choice solely at the discretion of the clinician.

Conversely, in the second stage, the 90% confidence intervals suggest that there is

substantial evidence to recommend a unique best treatment when a patient had low

adherence—knowledge that is important for evidence-based clinical decision making.
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Stage History Contrast
for βt,1

Lower (5%) Upper (95%) Conclusion

1 Had prior med. (1 1) -0.49 0.14 Insufficient evidence
1 No prior med. (1 0) -0.05 0.38 Insufficient evidence
2 High adherence

and BMOD
(1 1 1) -0.08 0.69 Insufficient evidence

2 Low adherence
and BMOD

(1 0 1) -1.10 -0.28 Sufficient evidence

2 High adherence
and MEDS

(1 1 -1) -0.18 0.62 Insufficient evidence

2 Low adherence
and MEDS

(1 0 -1) -1.25 -0.29 Sufficient evidence

Table 3.11: Confidence intervals for the predicted difference in mean response across
treatments across different patient histories at the 90% level. Confidence
intervals that do not contain zero are deemed as having insufficient evi-
dence for recommending a unique best treatment.

3.5 Discussion

The task of constructing valid confidence intervals for the parameters in the Q-

function is both scientifically important and statistically challenging. In this paper

we offer a first step toward conducting inference in DTRs that is theoretically sound,

computationally efficient, and easy to apply. The method presented here provides

asymptotically valid intervals regardless of the true configuration of underlying pa-

rameters β∗t or the joint distribution of patient histories Ht for t = 1, 2, . . . , T . The-

oretical guarantees were supported by a suite of test examples in which the ACI

performed favorably to competitors. The ACI is conservative when all of the coeffi-

cients of terms involving the second stage treatment are zero. It is our experience that

efforts to reduce this conservatism negatively impacts the performance of the resulting

confidence interval for other generative models; we conjecture that this conservatism

can not be ameliorated without negatively impacting the overall performance of the

confidence interval.
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There are a number of avenues for future work on this problem. We mention

three of the most interesting here. The first is extending to ACI to problems where

parameters are shared across stages. This setting occurs when a patients status

is modeled as series of renewals (as is often assumed in settings with a very large

number of stages) or when smoothness across stages is assumed. Another area of

interest is the so-called “large p small n” paradigm where the number of predictors

in the Q-function far exceeds the number of observations. This setting arises, for

example, when a patients genetic information might be used to tailor treatment. A

complication to question of inference in this setting is that it is preceded by the

more fundamental question how one should even build Q-functions in this setting.

Penalized estimation and Q-learning in one stage decision problems are discussed in

(Qian and Murphy 2009)and in multi-stage problems in (Song et al., 2010). A last

area of interest is that of reducing the bias in the estimation of the stage 1 treatment

effect (recall that if the stage 2 effect is zero for a some patient features then the

bias is of order 1/
√
n). The most promising work in this area seems to be that of

Song et al., (2010) although this work induces additional non-regularity; it would be

most interesting to develop confidence intervals that reflect the variability due to the

variable selection used in Song et al.

3.6 Appendix I: Proofs for the ACI for two stages and two

treatments per stage

The following results will be used repeatedly in the following proofs.

Lemma 3.6.1 (Trivial inequality). Let a, b be scalars and [.]+ denote the map z 7→

max(0, z) then

[a+ b]+ − [b]+ ≤ [a]+ ≤ |a|.
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Proof. The first inequality follows since [.]+ is monotone non-decreasing, and second

inequality follows since [.]+ is bounded above by |.|.

Corollary 3.6.2 (Lipschitz Continuity). The function [.]+ is Lipschitz continuous

with Lipschitz constant 1.

Proof. Notice that for any scalars a and b we have

[a]+ − [b]+ = [(a− b) + b]+ − [b]+ ≤ [a− b]+ ≤ |a− b|,

since we can interchange the role of a and b the result follows.

Proof of Remark 2.1. We begin by proving part 1 of the remark. By construction

√
nβ∗2,1 belongs to Sn for all n and hence Sn satisfies Condition I. To see that Sn

satisfies condition II, let γn be a sequence in Rdim(β∗2,1) satisfying ||PHγn||2∞/λn → 0

as n→∞. Recall that H is the hyperplane in Rdim(β∗2,1) with normal vector β∗2,1, and

PH denotes the orthogonal projection onto H. Then, let vn ,
√
nβ∗2,1 + PHγn and

notice that ||vn−
√
nβ∗2,1||2∞ = ||PHγn||2∞ which is less than λn for sufficiently large n.

Thus, vn belongs to Sn for sufficiently large n and since PHvn = PHγn it follows that

Sn satisfies Condition II.

To prove part 2 of the remark assume S ′n satisfies Conditions I and II. It is

easily seen that diam(PHSn) = O(
√
λn). Suppose towards a contradiction that

diam(PHS ′n) = O(
√
τnλn) for some sequence of positive scalars τn which satisfy τn → 0

as n tends to∞. Let un be a sequence of positive scalars converging to zero as n tends

to ∞ satisfying un = o(τn). Further, let B(
√
unλn, 0) be a ball of radius

√
unλn in

Rdim(β∗2,1). Then any sequence of vectors γn in B(
√
unλn, 0) satisfies ||PHγn||2∞/λn → 0.

Consequently, it must be the case diam(PnS ′n) = O(
√
unλn) which is a contradiction

since τn/un diverges to ∞.
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Lemma 3.6.3 (Consistent Treatment Assignment). Assume (A1)-(A3). Then

P ||B1|| ||H2,1||1(Hᵀ
2,1β̂2,1)(Hᵀ

2,1β
∗
2,1)<0 = oP (1).

Proof. We can decompose P ||B1|| ||H2,1||1(Hᵀ
2,1β̂2,1)(Hᵀ

2,1β
∗
2,1)<0 into

P ||B1|| ||H2,1||1Hᵀ
2,1β̂2,1<01Hᵀ

2,1β
∗
2,1>0 + P ||B1|| ||H2,1||1Hᵀ

2,1β̂2,1>01Hᵀ
2,1β

∗
2,1<0.

It is sufficient to show that the first term in the above decomposition is oP (1) since

the same argument will hold if we replace H2,1 with −H2,1. For any ε > 0 we can

write this term as

P ||B1|| ||H2,1||1Hᵀ
2,1β̂2,1<01H

ᵀ
2,1β
∗
2,1

||H2,1||
>ε

+ P ||B1|| ||H2,1||1Hᵀ
2,1β̂2,1<01

0<
H

ᵀ
2,1β
∗
2,1

||H2,1||
≤ε
. (3.20)

Note that we need not worry about the case that H2,1 = 0 since this is clearly not

included in the event (Hᵀ
2,1β̂2,1)(Hᵀ

2,1β
∗
2,1) < 0. The second term in (3.20) is bounded

above by

P ||B1|| ||H2,1||1
0<

H
ᵀ
2,1β
∗
2,1

||H2,1||
≤ε
, (3.21)

which, by (A1), can be made arbitrarily small for sufficiently small ε. Let η > 0 be

arbitrary and choose ε > 0 so that (3.21) is smaller than η/2. Hereafter, we regard ε

as fixed. Turning attention to the first term in (3.20) we note that the event

{
Hᵀ

2,1β̂2,1 < 0 ,
Hᵀ

2,1β
∗
2,1

||H2,1||
> ε

}

is equal to {
Hᵀ

2,1Vn

||H2,1||
< −

Hᵀ
2,1β

∗
2,1

√
n

||H2,1||
,
Hᵀ

2,1β
∗
2,1

||H2,1||
> ε

}
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which is contained in

{
Hᵀ

2,1Vn

||H2,1||
≤ −ε

√
n

}
⊆
{
−
|Hᵀ

2,1Vn|
||H2,1||

< −ε
√
n

}
⊆
{
||Vn|| > ε

√
n
}
.

where the last containment follows from the Cauchy-Schwartz inequality. The pre-

ceding series of containments show that

P ||B1|| ||H2,1||1Hᵀ
2,1β̂2,1<01H

ᵀ
2,1β
∗
2,1

||H2,1||
>ε
≤ 1||Vn||>ε

√
nP ||B1|| ||H2,1|| = op(1).

Let δ > 0 be arbitrary and keep ε > 0 fixed, from the above we can choose n

sufficiently large so that

P

(
P ||B1|| ||H2,1||1Hᵀ

2,1β̂2,1<01H
ᵀ
2,1β
∗
2,1

||H2,1||
>ε
> η/2

)
≤ δ,

where the outer probability statement is over training sets of size n (e.g. the proba-

bility statement applies to β̂2,1). Putting all of the above together, it follows that

P
(
P ||B1|| ||H2,1||1Hᵀ

2,1β̂2,1<01Hᵀ
2,1β

∗
2,1>0 > η

)
≤ 1P ||B1|| ||H2,1||1

0<
H

ᵀ
2,1β
∗
2,1

||H2,1||
≤ε
>η/2 + P

(
P ||B1|| ||H2,1||1Hᵀ

2,1β̂2,1<01H
ᵀ
2,1β
∗
2,1

||H2,1||
>ε
> η/2

)

= P

(
P ||B1|| ||H2,1||1Hᵀ

2,1β̂2,1<01H
ᵀ
2,1β
∗
2,1

||H2,1||
>ε
> η/2

)
≤ δ,

where the equality holds since the indicator is identically zero by our choice of ε.

Since δ and η were arbitrary the result is proved.

Proof of Theorem 2.1, Part 1. Here, we derive the limiting distribution of cᵀ
√
n(β̂1−
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β∗1) under fixed alternatives. Recall that the following decomposition holds

cᵀ
√
n(β̂1 − β∗1) = cᵀWn + cᵀΣ−1

1,nPnB
ᵀ
1 Un, (3.22)

where

Wn = Σ−1
1,n

√
nPnBᵀ

1

[(
Y1 +Hᵀ

2,0β
∗
2,0 +

[
Hᵀ

2,1β
∗
2,1

]
+
−B1β

∗
1

)
+Hᵀ

2,0

(
β̂2,0 − β∗2,0

)]
,

Un =
√
n
([
Hᵀ

2,1β̂2,1

]
+
−
[
Hᵀ

2,1β
∗
2,1

]
+

)
.

The term Wn is asymptotically Gaussian with mean zero since, using the definition

of β∗1 , we can express it as

Σ−1
1,n

√
n(Pn−P )Bᵀ

1

(
Y1 +Hᵀ

2,0β
∗
2,0 +

[
Hᵀ

2,1β
∗
2,1

]
+
−B1β

∗
1

)
+Σ−1

1,nPnH
ᵀ
2,0

√
n
(
β̂2,0 − β∗2,0

)
,

which is asymptotically normal by the multivariate central limit theorem and Slut-

sky’s Theorem (we have used (A1) and (A2) here). It follows that the second term

in the decomposition of cᵀ
√
n(β̂1− β∗1) is equal to cᵀΣ−1

1,nPB
ᵀ
1 Un + oP (1). To see this,

recall that in the main body of the paper we defined Vn ,
√
n(β̂2,1−β∗2,1). From stan-

dard results for least squares estimators, it is seen that Vn is asymptotically Gaussian

with mean zero. Notice that

Un =
[
Hᵀ

2,1

(
Vn +

√
nβ∗2,1

)]
+
−
[√
nHᵀ

2,1β
∗
2,1

]
+
. (3.23)

Thus, using the inequality (3.6.1) and the Cauchy-Schwartz inequality, we see that

∣∣∣∣PnBᵀ
1 Un

∣∣∣∣ ≤ Pn||B1||
[
Hᵀ

2,1Vn

]
+
≤ Pn||B1||

∣∣Hᵀ
2,1Vn

∣∣ ≤ Pn||B1|| ||H2,1|| ||Vn|| = OP (1),
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where the last equality follows from the asymptotic normality of Vn and the LLN.

Slutsky’s theorem and the convergence in probability of Σ1,n to the positive definite

matrix Σ1,∞ , PBᵀ
1B1, allows us to write

cᵀΣ−1
1,nPnUn = cᵀΣ−1

1,∞PnUn + oP (1).

Now, write the second term in (3.22) as

cᵀΣ−1
1,∞PB

ᵀ
1 Un + cᵀΣ1,∞(Pn − P )Bᵀ

1 Un + oP (1).

Let ε and η be arbitrary positive constants it suffices to show that

P
(∣∣cᵀΣ−1

1,∞(Pn − P )Bᵀ
1 Un

∣∣ > ε
)
≤ η (3.24)

for all n sufficiently large. For arbitrary M > 0 we have

cᵀΣ−1
1,∞(Pn−P )Bᵀ

1 Un = cᵀΣ−1
1,∞(Pn−P )Bᵀ

1

[
Hᵀ

2,1

(
Vn +

√
nβ∗2,1

)]
+
−
[√
nHᵀ

2,1β
∗
2,1

]
+

1||Vn||≤M

+ cᵀΣ−1
1,∞(Pn − P )Bᵀ

1

[
Hᵀ

2,1

(
Vn +

√
nβ∗2,1

)]
+
−
[√
nHᵀ

2,1β
∗
2,1

]
+

1||Vn||>M .

Thus, the requisite probability in (3.24) is bounded above by

P

(
sup

γ,δ∈Rdim(β∗2,1)

∣∣∣∣cᵀΣ−1
1,∞ (Pn − P )Bᵀ

1

([
Hᵀ

2,1(γ + δ)
]

+
−
[
Hᵀ

2,1δ
]

+

)
1||γ||≤M

∣∣∣∣ ≥ ε/2

)

+ P (||Vn|| > M) .

Since Vn converges in distribution, we can select M so that the second probability is

less than η/2 for all n. Let c be an arbitrary fixed vector in Rdim(B1). Notice that the
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class of functions

F ,
{
cᵀBᵀ

1

([
Hᵀ

2,1(γ + δ)
]

+
−
[
Hᵀ

2,1δ
]

+

)
: δ ∈ Rdim(β∗2,1), γ ∈ B(M, 0)

}

is a P -measurable, Bounded Uniform Entropy Integral (BUEI) class with square-

integrable envelope function and is therefore Glivenko-Cantelli (Kosorok 2008). Con-

sequently, the probability in (3.24) can be made sufficiently small.

That F is BUEI follows by noting first that the simpler class

F1 ,
{
Hᵀ

2,1η , η ∈ Rdim(β∗2,1)
}

is a VC class with dimension less than or equal to dim(β∗2,1) + 2 (see van der Vaart

and Wellner 1996, Lemma 2.6.15). The function [.]+ is monotone and hence [F1]+ ,

{[f ]+ : f ∈ F1} is also VC (see van der Vaart and Wellner 1996, Lemma 2.6.18).

For any two classes of functions, say G and H we write G − H to mean the new

class of functions {g − h : g ∈ G , h ∈ H}. Permanence properties of VC classes (see

for example, van der Vaart and Wellner 1996; Dudley 1999; Kosorok 2008) imply

that if we let F ′1 be an independent copy of F1, then cᵀBᵀ
1 (F1 − F ′1) is also a VC

class. Finally, since F is a subset of cᵀBᵀ
1 (F1 − F ′1), it must also be VC. Any VC

class automatically satisfies the conditions to be a Uniform Entropy Integral class

(see Kosorok 2008, Theorem 9.3). Lastly, using (3.6.1) we see that F is bounded

by envelope ||B1|| ||H2,1||M which is square-integrable by (A1). Thus, the class F

is BUEI. The class F can be seen to be P -measurable by noting that it satisfies

the stronger condition of being pointwise measurable since any function in F can be
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arbitrarily closely approximated by a function in

G ,
{
cᵀBᵀ

1

([
Hᵀ

2,1(γ + δ)
]

+
−
[
Hᵀ

2,1δ
]

+

)
: δ ∈ Qdim(β∗2,1), γ ∈ B(M, 0) ∩Qdim(β∗2,1)

}
,

where Q denotes the rational numbers (see Kosorok 2008 for a discussion of pointwise

measurability).

As our final step in dealing with the second term of (3.22), we will make use of

the following decomposition

cᵀΣ−1
1,∞PB

ᵀ
1 Un = cᵀΣ−1

1,∞PB
ᵀ
1 Un1Hᵀ

2,1β
∗
2,1 6=0 + cᵀΣ−1

1,∞PB
ᵀ
1

[
Hᵀ

2,1Vn

]
+

1Hᵀ
2,1β

∗
2,1=0. (3.25)

The first term in the above decomposition can be seen to equal

(
cᵀΣ−1

1,∞PB
ᵀ
1H

ᵀ
2,11Hᵀ

2,1β
∗
2,1>0

)
Vn + oP (1). (3.26)

To see this, first write

cᵀΣ−1
1,∞PB

ᵀ
1 Un1Hᵀ

2,1β
∗
2,1 6=0 = cᵀΣ−1

1,∞PB
ᵀ
1 Un1(Hᵀ

2,1β̂2,1)(Hᵀ
2,1β

∗
2,1)>0+cᵀΣ−1

1,∞PB
ᵀ
1 Un1(Hᵀ

2,1β̂2,1)(Hᵀ
2,1β

∗
2,1)<0,

and note that the second term is op(1) by appeal to Lemma’s (3.6.1) and (3.6.3).

Furthermore,

cᵀΣ−1
1,∞PB

ᵀ
1 Un1(Hᵀ

2,1β̂2,1)(Hᵀ
2,1β

∗
2,1)>0 = cᵀΣ−1

1,∞PB
ᵀ
1 Vn1Hᵀ

2,1β̂2,1>01Hᵀ
2,1β

∗
2,1>0.

Writing 1Hᵀ
2,1β̂2,1>0 = 1−1Hᵀ

2,1β̂2,1<0 and applying Lemma (3.6.3) again gives the result.

The final step of the proof is to use the joint asymptotic normality of Wn and Vn

(this follows from (A1) and (A2)) coupled with the continuous mapping theorem.
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Before providing the proof of the second part of Theorem 2.1, it will be convenient

to introduce the following lemma.

Lemma 3.6.4. Assume (A1), (A2), and (A4). It follows that

∣∣∣∣√n(Pn − Pn,γ)Bᵀ
1

([
Hᵀ

2,1(β∗2,1 + η)
]

+
−
[
Hᵀ

2,1β
∗
2,1

]
+

) ∣∣∣∣ = oPn,γ (1)

uniformly over η in compact sets.

Proof. Fix a vector c ∈ Rdim(B1) with ||c|| = 1, then it suffices to show that

√
n(Pn − Pn,γ)cᵀBᵀ

1

([
Hᵀ

2,1(β∗2,1 + η)
]

+
−
[
Hᵀ

2,1β
∗
2,1

]
+

)
= oPn,γ (1)

uniformly over η in compact sets. Notice that the class

F ,
{
f(H2,1; η) = cᵀBᵀ

1

([
Hᵀ

2,1(β∗2,1 + η
]

+
−
[
Hᵀ

2,1β
∗
2,1

]
+

)
η ∈ B(M, 0)

}

is a P -measurable BUEI class which has, by appeal to Lemma (3.6.1), square inte-

grable envelope ||B1|| ||H2,1||. That F is BUEI follows from the fact that Hᵀ
2,1(β∗2,1+η)

is BUEI over η ∈ B(M, 0) which implies the monotone transformation z 7→ [z]+ of

Hᵀ
2,1(β∗2,1 + η) is also BUEI (see Kosorok 2008). Finally, translating and scaling by

functions that do not depend on η is BUEI preserving. It follows from Theorem 11.12

of Kosorok (2008) that

√
n(Pn − Pn,γ) G ∈ l∞(F),

where G is a Brownian bridge with covariance function given by

Cov(G(δ),G(η)) =
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P
(
cᵀBᵀ

1

([
Hᵀ

2,1(β∗2,1 + δ)
]

+
−
[
Hᵀ

2,1β
∗
2,1

]
+

)
− PcᵀBᵀ

1

([
Hᵀ

2,1(β∗2,1 + δ)
]

+
−
[
Hᵀ

2,1β
∗
2,1

]
+

))
×
(
cᵀBᵀ

1

([
Hᵀ

2,1(β∗2,1 + η)
]

+
−
[
Hᵀ

2,1β
∗
2,1

]
+

)
− PcᵀBᵀ

1

([
Hᵀ

2,1(β∗2,1 + η)
]

+
−
[
Hᵀ

2,1β
∗
2,1

]
+

))
.

The limiting process G is stochastically equicontinuous with respect to the covariance

pseudo metric ρ(δ, η)2 , P (G(δ)−G(η))2 (see van der Vaart and Wellner 1996 or

Kosorok 2008). The result follows if we can show that ||δ||2 → 0 implies that ρ(δ, 0)→

0. But this comes out of the form of the covariance function of G and noting that

PcᵀBᵀ
1

([
Hᵀ

2,1(β∗2,1 − δ)
]

+
−
[
Hᵀ

2,1β
∗
2,1

]
+

)
→ 0

as δ tends to zero.

Proof of Theorem 2.1, Part 2. Assume (A1)-(A4). Our goal is to derive the limiting

distribution of cᵀ
√
n(β̂1 − δ(n)

1 ) under Pn,γ, where

δ
(n)
1 , arg min

δ
Pn,γ(Ỹ

∗
1,n −Q1(H1, A1; δ))2,

and

Ỹ ∗1,n , Y1 +Hᵀ
2,0δ

(n)
2,0 +

[
Hᵀ

2,1δ
(n)
2,1

]
+
.

From the normal equations and the definition of the predicted future reward following

the estimated optimal policy Ỹ ∗1,n, it follows that

√
n(β̂1 − δ(n)

1 ) = Σ−1
1,n

√
nPnBᵀ

1

(
Ỹ ∗1,n −B1δ

(n)
1

)
= Σ−1

1,n

√
nPnBᵀ

1

(
Y1 +Hᵀ

2,0β̂2,0 +
[
Hᵀ

2,1β̂2,1

]
+
−B1δ

(n)
1

)
.

Adding and subtracting terms to the right hand side of the above display, we can
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further decompose
√
n(β̂1 − δ(n)

1 ) as

Σ−1
1,n

√
n(Pn−Pn,γ)

(
Y1 +Hᵀ

2,0δ
(n)
2,0 +

[
Hᵀ

2,1δ
(n)
2,1

]
+
−B1δ

(n)
1

)
+Σ−1

1,nPnB
ᵀ
1H

ᵀ
2,0

√
n
(
β̂2,0 − δ(n)

2,0

)
+ Σ−1

1,n

√
nPnBᵀ

1

([
Hᵀ

2,1β̂2,1

]
+
−
[
Hᵀ

2,1δ
(n)
2,1

]
+

)
1Hᵀ

2,1β
∗
2,1 6=0

+ Σ−1
1,nPnB

ᵀ
1

([
Hᵀ

2,1(
√
n(β̂2,1 − δ(n)

2,1 ) + γ)
]

+
−
[
Hᵀ

2,1γ
]

+

)
1Hᵀ

2,1β
∗
2,1=0. (3.27)

We have assumed that δ
(n)
2,1 = β∗2,1 + γ/

√
n, owing to (A4) it must also be the case

that δ
(n)
1 = β∗1 + O(1/

√
n) and δ

(n)
2,0 = β∗2,0 + O(1/

√
n). To see this, note from the

definition of δ
(n)
1 it follows that δ

(n)
1 must satisfy

Pn,γB
ᵀ
1

(
Ỹ ∗1,n −B1δ

(n)
1

)
= 0

so that for sufficiently large n, δ
(n)
1 = (Pn,γB

ᵀ
1B1)−1 Pn,γB

ᵀ
1 Ỹ
∗

1,n. Furthermore, we have

(Pn,γB
ᵀ
1B1)−1 Pn,γB

ᵀ
1 Ỹ
∗

1,n = (PBᵀ
1B1 + (Pn,γ − P )Bᵀ

1B1)−1
(
PBᵀ

1 Ỹ
∗

1,n + (Pn,γ − P )Bᵀ
1 Ỹ
∗

1,n

)
=

(
PBᵀ

1B1 +O(1/
√
n)
)−1
(
PBᵀ

1 Ỹ
∗

1,n +O(1/
√
n)
)
, (3.28)

where the last equality follows from Theorem 11.12 in Kosorok (2008). Since the

eigenvalues of PBᵀ
1B1 are bounded away from zero, we can re-write the last term in

(3.28) as

(PBᵀ
1B1)−1

(
PBᵀ

1 Ỹ
∗

1,n

)
+O(1/

√
n).

This means that δ
(n)
1 = β∗1 + O(1/

√
n), since Ỹ ∗1,n = Y1 + Hᵀ

2,0β
∗
2,0 +

[
Hᵀ

2,1β
∗
2,1

]
+

+

O(1/
√
n), and β∗1 = (PBᵀ

1B1)−1PBᵀ
1

(
Y1 +Hᵀ

2,0β
∗
2,0 +

[
Hᵀ

2,1β
∗
2,1

]
+

)
. Similarly, we

have δ
(n)
2 = (Pn,γB

ᵀ
2B2)−1 (Pn,γB

ᵀ
2Y2) which, by an identical argument is equal to

(PBᵀ
2B2)−1 (PBᵀ

2Y2) +O(1/
√
n) = β∗2 +O(1/

√
n).
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The preceding discussion and Lemma (3.6.4) show that under (A1)-(A4) the first

term in (3.27) is equal to

Σ−1
1,n

√
n(Pn − Pn,γ)Bᵀ

1

(
Y1 +Hᵀ

2,0β
∗
2,0 +

[
Hᵀ

2,1β
∗
2,1

]
+
−B1β

∗
1

)
+ oPn,γ (1). (3.29)

Furthermore,

√
n(β̂2 − δ(n)

2 ) = Σ−1
2,n

√
nPn

(
Bᵀ

2Y2 − Σ2,n(Pn,γB
ᵀ
2B2)−1Pn,γB

ᵀ
2Y2

)
= Σ−1

2,n

√
nPn

(
Bᵀ

2Y2 − (I + oPn,γ (1))Pn,γB
ᵀ
2Y2

)
= Σ−1

2,n

√
n(Pn − Pn,γ)Bᵀ

2Y2 + oPn,γ (1).

The conclusion of the preceding set of equalities is that upon applying Theorem

11.12 of Kosorok (2008) it follows that
√
n(β̂2−δ(n)

2 ) has the same limiting distribution

under Pn,γ as
√
n(β̂2−β∗2) does under P . Combining this result with (3.29) it follows

that the first two terms in (3.27) converge jointly to W∞ under Pn,γ. Thus, the

local parameter does not appear in this component of the limiting distribution of

√
n(β̂1 − δ(n)

1 ) associated with the first two terms of (3.27). However, as seen in the

statement of Theorem 2.1., the local parameter will appear in the limiting distribution

of the last term of (3.27).

We now derive the limiting distribution of the last two terms of (3.27). The same

techniques employed in the proof of part 1 of Theorem 2.1. can be used to show that

the last two terms are equal to

Σ−1
1,∞PnBᵀ

1H
ᵀ
2,11Hᵀ

2,1β
∗
2,1>0

√
n(β̂2,1 − δ(n)

2,1 )

+ Σ−1
1,∞PnBᵀ

1

([
Hᵀ

2,1

(√
n(β̂2,1 − δ(n)

2,1 ) + γ
)]

+
−
[
Hᵀ

2,1γ
]

+

)
1Hᵀ

2,1β
∗
2,1=0 + oPn,γ (1).

(3.30)
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Lastly, making the substitution Pn = P + (Pn,γ − P ) + (Pn − Pn,γ) in (3.30), we see

that the last two terms of (3.27) are equal to

Σ−1
1,∞PB

ᵀ
1H

ᵀ
2,11Hᵀ

2,1β
∗
2,1>0

√
n(β̂2,1 − δ(n)

2,1 )

+ Σ−1
1,∞PB

ᵀ
1

([
Hᵀ

2,1

(√
n(β̂2,1 − δ(n)

2,1 ) + γ
)]

+
−
[
Hᵀ

2,1γ
]

+

)
1Hᵀ

2,1β
∗
2,1=0 + oPn,γ (1).

Application of the continuous mapping theorem and Slutsky’s theorem show that the

limiting distribution under Pn,γ of the above quantity is equal to

Σ−1
1,∞PB

ᵀ
1H

ᵀ
2,1V∞1Hᵀ

2,1β
∗
2,1>0 + Σ−1

1,∞PB
ᵀ
1

([
Hᵀ

2,1(V∞ + γ)
]

+
−
[
Hᵀ

2,1γ
]

+

)
1Hᵀ

2,1β
∗
2,1=0.

Note that this convergence is uniform over γ. The theorem is concluded by establish-

ing joint convergence via the Cramer-Wold device and then applying the continuous

mapping theorem.

To prove the third part of Theorem 2.1, the following results will be useful.

Lemma 3.6.5. Assume (A1)-(A4). For each fixed h2,1, it follows that 1Tn(h2,1)≤λn →

1hᵀ
2,1β

∗
2,1=0 in probability.

Proof. Recall that Tn(h2,1) ,
n(hᵀ

2,1β̂2,1)2

hᵀ
2,1Σ

(2,2)
2,n h2,1

so that we can write

Tn(h2,1)

λn
,

n(hᵀ
2,1β̂2,1)2

λnh
ᵀ
2,1Σ

(2,2)
2,n h2,1

=
(hᵀ

2,1(Vn/
√
λn +

√
n/λnβ

∗
2,1))2

hᵀ
2,1Σ

(2,2)
2,n h2,1

.

Noting that Vn/
√
λn = op(1), it follows that the last term on the right hand side of

the above display tends to +∞ in probality when hᵀ
2,1β

∗
2,1 6= 0 but tends to zero when

hᵀ
2,1β

∗
2,1 = 0. This proves the result.

Corollary 3.6.6. Assume (A1)-(A4). It follows that both
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1. P ||B1|| ||H2,1||1Tn(H2,1)≤λn1Hᵀ
2,1β

∗
2,1 6=0

2. P ||B1|| ||H2,1||1Tn(H2,1)>λn1Hᵀ
2,1β

∗
2,1=0

converge to zero in probability.

Proof. Let γn2,1 be a sequence of constants converging to zero in Rdim(β∗2,1) and bn any

positive sequence diverging to infinity. Then, for any fixed c > 0 the set

{
h2,1 : hᵀ

2,1β
∗
2,1 6= 0,

(
hᵀ

2,1γ
n
2,1 + bnh

ᵀ
2,1β

∗
2,1

||h2,1||

)2

≤ c

}

has P measure which is less than the P measure of the set

(
−
√
c− ||γn||∞
bn

, 0

)⋃(
0,

√
c+ ||γn||∞

bn

)
,

where ||.||∞ is the usual supremum norm. The P measure of the set in the above

display converges to zero as n tends to infinity. A similar argument shows that the

set {
h2,1 : hᵀ

2,1β
∗
2,1 = 0,

(
hᵀ

2,1γ
n
2,1 + bnh

ᵀ
2,1β

∗
2,1

||h2,1||

)2

> c

}
has P measure converging to zero as n tends to infinity.

Let an be an arbitrary monotone increasing sequence of integers, then, there exists

a subsequence of an, say ani so that Vani
/
√
λani converges almost surely to zero and

Σ
(2,2)
2,ani

converges almost surely to Σ
(2,2)
2,∞ . Consider Vani

/
√
λani as our γn2,1 and

√
n/λn

as our bn. The preceding discussion, the proof of Lemma (3.6.5), and the dominated

convergence theorem show that

P ||B1|| ||H2,1||1Tani (H2,1)≤λ1Hᵀ
2,1β

∗
2,1 6=0 → 0
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almost surely. If we define

An = P ||B1|| ||H2,1||1Tn(H2,1)≤λn1Hᵀ
2,1β

∗
2,1 6=0,

then we have shown that for any sequence an tending to ∞, there exists a further

subsequence, say ani , for which Aani converges almost surely to zero. Hence, An

converges in probability to zero. The first part of the corollary is proved. The second

part of the corollary follows from an identical argument and is thus omitted.

Define PD(ε) to be the space of Rdim(β∗2,1) × Rdim(β∗2,1) positive definite matrices

with eigenvalues bounded below by ε equipped with the spectral norm.

Lemma 3.6.7. Assume (A1). Then, the class of functions

F ,

||B1|| ||H2,1||1 (H
ᵀ
2,1γ)2

H
ᵀ
2,1ΩH2,1

≤σ
1Hᵀ

2,1β
∗
2,1=0 : Ω ∈ PD(ε) , σ ∈ R+ , γ ∈ Rdim(β∗2,1)


is a P -measurable BUEI class with square-integrable envelope ||B1|| ||H2,1||.

Proof. That F has envelope ||B1|| ||H2,1|| is obvious, the envelope is square-integrable

by (A1). That F is BUEI follows from Theorem 8.4 of Anthony and Bartlett (1999)

which can be used to show that F is a VC class and hence satisfies the Uniform

Entropy Integral condition. Finally, the measurability condition is met since any

element in F can be arbitrarily closely approximated by an element in an analogous

class whose parameters are restricted to be rational (seek Kosorok 2008).

Lemma 3.6.8. Assume (A1)-(A4). Then it follows that

PnBᵀ
1

([
Hᵀ

2,1Vn

]
+
− Un

)
1Tn(H2,1)≤λn = oP (1).
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Proof. As a first step, notice that using the definitions of Un and Vn we have

PnBᵀ
1

([
Hᵀ

2,1Vn

]
+
− Un

)
1Tn(H2,1)≤λn = PnBᵀ

1

([
Hᵀ

2,1Vn

]
+
− Un

)
1Tn(H2,1)≤λn1Hᵀ

2,1β
∗
2,1 6=0.

The norm of the right hand side of the above display is, by appeal to Lemma (3.6.1)

and the Cauchy-Schwartz inequality, bounded above by

2Pn||B1|| ||H2,1||1Tn(H2,1)≤λn1Hᵀ
2,1β

∗
2,1 6=0,

which we can subsequently write as

2P ||B1|| ||H2,1||1Tn(H2,1)≤λn1Hᵀ
2,1β

∗
2,1 6=0 + 2(Pn − P )||B1|| ||H2,1||1Tn(H2,1)≤λn1Hᵀ

2,1β
∗
2,1 6=0.

(3.31)

The first term in (3.31) is oP (1) by Corollary (3.6.6). The second term in (3.31) is

oP (1) by application of the uniform law of large numbers applied over the class of

functions F defined in Lemma (3.6.7).

Lemma 3.6.9. Assume (A1)-(A4). Define V(n)
n ,

√
n(β̂2,1−δ(n)

2,1 ). Then, under Pn,γ,

it follows that

PnBᵀ
1

([
Hᵀ

2,1V(n)
n

]
+
−
√
n

([
Hᵀ

2,1β̂2,1

]
+
−
[
Hᵀ

2,1δ
(n)
2,1

]
+

))
1Tn(H2,1)≤λn

= PBᵀ
1

([
Hᵀ

2,1V(n)
n

]
+
−
[
Hᵀ

2,1(V(n)
n + γ)

]
+

+
[
Hᵀ

2,1γ
]

+

)
1Hᵀ

2,1β
∗
2,1=0 + oPn,γ (1).

Proof. Decompose the left hand side of the display in the statement of the lemma as

PnBᵀ
1

([
Hᵀ

2,1V(n)
n

]
+
−
√
n

([
Hᵀ

2,1β̂2,1

]
+
−
[
Hᵀ

2,1δ
(n)
2,1

]
+

))
1Tn(H2,1)≤λn1Hᵀ

2,1β
∗
2,1=0

+ PnBᵀ
1

([
Hᵀ

2,1V(n)
n

]
+
−
√
n

([
Hᵀ

2,1β̂2,1

]
+
−
[
Hᵀ

2,1δ
(n)
2,1

]
+

))
1Tn(H2,1)≤λn1Hᵀ

2,1β
∗
2,1 6=0.
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The norm of the second term in the above display is bounded above by

2Pn||B1|| ||H2,1||1Tn(H2,1)≤λn1Hᵀ
2,1β

∗
2,1=0||V(n)

n ||

which we can subsequently decompose as

2Pn,γ||B1|| ||H2,1||1Tn(H2,1)≤λn1Hᵀ
2,1β

∗
2,1=0||V(n)

n ||

+ 2(Pn − Pn,γ)||B1|| ||H2,1||1Tn(H2,1)≤λn1Hᵀ
2,1β

∗
2,1=0||V(n)

n ||.

It will be shown below that V(n)
n = OPn,γ (1). Consequently, the contiguity of Pn,γ and

P paired with Corollary (3.6.6) and Slutskly’s theorem show that the first term in the

above display is oPn,γ (1). Similarly, Lemma (3.6.7) combined with Glivenko-Cantelli

results for contiguous alternatives (see Kosorok 2008) and Slutsky’s theorem, ensure

that the second term in the above display is also oPn,γ (1).

We have shown that

PnBᵀ
1

([
Hᵀ

2,1V(n)
n

]
+
−
√
n

([
Hᵀ

2,1β̂2,1

]
+
−
[
Hᵀ

2,1δ
(n)
2,1

]
+

))
1Tn(H2,1)≤λn

= PnBᵀ
1

([
Hᵀ

2,1V(n)
n

]
+
−
[
Hᵀ

2,1(V(n)
n + γ)

]
+

+
[
Hᵀ

2,1γ
]

+

)
1Tn(H2,1)≤λn1Hᵀ

2,1β
∗
2,1=0+oPn,γ (1).

Writing 1Tn(H2,1)≤λn = 1 − 1Tn(H2,1)>λn and repeating the preceding argument allows

us to remove omit the indicator 1Tn(H2,1)≤λn from the above expression. Lastly, we

need to argue that we can replace Pn with P in the above expression. Let c ∈ Rdim(B1)

be arbitrary. Arguments given in the course of Lemma (3.6.4) can be used to show

that the class of functions

F ,
{
cᵀBᵀ

1

([
Hᵀ

2,1δ
]

+
−
[
Hᵀ

2,1(δ + γ)
]

+
−
[
Hᵀ

2,1γ
]

+

)
1Hᵀ

2,1β
∗
2,1=0 : δ ∈ B(M, 0) , γ ∈ Rdim(β∗2,1)

}
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is a P -measurable BUEI class with square integrable envelope 2||B1|| ||H2,1||M and

is thus Glivenko-Cantelli. Consequently, the quantity

(Pn − P )Bᵀ
1

([
Hᵀ

2,1V(n)
n

]
+
−
[
Hᵀ

2,1(V(n)
n + γ)

]
+
−
[
Hᵀ

2,1γ
]

+

)
1Hᵀ

2,1β
∗
2,1=0

converges to zero in P probability in l∞(Rdim(β2,1)∗), by contiguity, the same result

follows in Pn,γ probability. This proves the result.

Lemma 3.6.10. Assume (A1), (A2), and (A4). Let ε > 0 and K > 0 be arbitrary.

Fix a vector c ∈ Rdim(B1) and define, for each δ ∈ B(K, 0) ⊂ Rdim(β∗2,1), a function in

l∞(Rdim(β∗2,1)) given by

gδ(γ) , PcᵀBᵀ
1

([
Hᵀ

2,1(δ + γ)
]

+
−
[
Hᵀ

2,1γ
]

+
−
[
Hᵀ

2,1δ
]

+

)
1Hᵀ

2,1β
∗
2,1=0.

Then, there exists M > 0 so that

sup
δ∈B(K,0)

∣∣∣∣ sup
γ∈B(M,0)

gδ(γ)− sup
γ∈Rdim(β∗2,1)

gδ(γ)

∣∣∣∣ < ε.

Proof. The map from B(K, 0) into l∞(Rdim(β∗2,1)) given by δ 7→ gδ is uniformly contin-

uous. To see this, note that for any δ1, δ2 ∈ B(K, 0) it follows that

||gδ1 − gδ2||Rdim(β∗2,1) ≤ 2P ||c|| ||B1|| ||H2,1|| ||δ1 − δ2||.

Thus, we can choose be an ε/6 net of points in the class {gδ}δ∈B(K,0), say gδ1 , gδ2 , . . . , gδR .

For a fixed value of δ, the function gδ(γ) is uniformly continuous. For each i =
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1, 2, . . . , R let Mi be such that

sup
γ∈Rdim(β∗2,1)

gδi(γ)− sup
γ∈B(Mi,0

gδi(γ) ≤ ε/6,

and define M∗ , maxiMi. Then, for any M ≥M∗ we have

∣∣ sup
γ∈B(M,0)

gδ(γ)− sup
γ∈Rdim(β∗2,1)

gδ(γ)
∣∣ ≤ inf

1≤i≤R
2
∣∣∣∣gδi − gδ∣∣∣∣Rdim(β∗2,1) + ε/6 ≤ ε/2.

Furthermore, the above inequalities continue to hold if we talk a supremum over

δ ∈ B(K, 0), which proves the result.

Lemma 3.6.11. Assume (A3). Let H denote the hyperplane in Rdim(β∗2,1) defined by

the normal vector β∗2,1/||β∗2,1||. Let PH denote the projection matrix onto this space.

Then, for any vector v ∈ Rdim(β∗2,1), there exists a vector γ ∈ Rdim(β∗2,1) such that

||γ −
√
nβ∗2,1||2∞ ≤ λn, and PH(v − γ) = 0.

Proof. Set γ = v +
√
nβ∗2,1.

Corollary 3.6.12. Assume (A1)-(A4). Let M,K > 0 be arbitrary and c be a fixed

vector in Rdim(β∗2,1). Let gδ be defined as in Lemma (3.6.10). Define Sn to be the

set given by
{
γ ∈ Rdim(β∗2,1) : ||γ −

√
nβ∗2,1||∞ ≤ λn

}
. Then, for sufficiently large n it

follows that

inf
δ∈B(K,0)

(
sup
γ∈Sn

gδ(γ)− sup
γ∈B(M,0)

gδ(γ)

)
≥ 0.

Proof. Let H and PH be as defined in the preceding lemma. Recall that for any

pair of vectors h ∈ H and v ∈ Rdim(β∗2,1) it follows that vᵀh = (PHv)ᵀh. The form

of gδ shows that gδ(γ) = gδ(PHγ). Choosing n sufficiently large so that M < λn,

implies, by appeal to the preceding Lemma, that the projection of B(M, 0) onto H is

contained in the projection of Sn onto H. This proves the result.
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Corollary 3.6.13. Assume (A1)-(A4). Define Sn ,
{
δ ∈ Rdim(β∗2,1) : ||δ −

√
nβ∗2,1||2∞ ≤ λn

}
,

and let c ∈ Rdim(B1) be arbitrary. Let ε > 0 be arbitrary and let gδ be as defined in

Lemma (3.6.10). Then,

P

(
sup

γ∈Rdim(β∗2,1)

gVn(γ)− sup
γ∈Sn

gVn(γ) > ε

)
≤ η,

for sufficiently large n.

Proof. Choose K sufficiently large so that the probability that ||Vn|| > K is less than

η/2. Then, the probability in the statement of this Corollary is bounded above by

η/2 + 1
supδ∈B(K,0)

»
sup

γ∈R
dim(β∗2,1) gδ(γ)−supγ∈Sn gδ(γ)

–
>ε
.

As a next step, write

[
sup

γ∈Rdim(β∗2,1)

gδ(γ)− sup
γ∈Sn

gδ(γ)

]
=

[
sup

γ∈Rdim(β∗2,1)

gδ(γ)− sup
γ∈B(M,0)

gδ(γ)

]
+

[
sup

γ∈B(M,0)

gδ(γ)− sup
γ∈Sn

gδ(γ)

]
.

By appeal to Lemma (3.6.10) we can choose M sufficiently large so that

sup
δ∈B(K,0)

[
sup

γ∈Rdim(β∗2,1)

gδ(γ)− sup
γ∈B(M,0)

gδ(γ)

]
≤ ε/2.

Furthermore, by appeal to Corollary (3.6.13) and the proof of that result it follows

that for sufficiently large n

PHB(M, 0) , {PHv : v ∈ B(M, 0)} ⊆ PHSn , {PHγ : γ ∈ Sn} ,

where PH is as defined in Lemma (3.6.11). Recall gδ(γ) = gδ((PHγ), the result is
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proved by noting that as a consequence of the preceding discussion we have

[
sup

γ∈B(M,0)

gδ(γ)− sup
γ∈Sn

gδ(γ)

]
≤ 0.

The preceding series of results show that, without a loss of generality, the supre-

mum in the definition of U(c) can be viewed as being either unrestricted or as being

taken over a large ball centered at the origin. In addition, notice that the bootstrap

analogue of the set Sn, say, S(b)
n is given by

S(b)
n ,

∣∣∣∣γ −√nβ̂2,1

∣∣∣∣2
∞ ≤ λn

which is equivalent to ∣∣∣∣γ − Vn −
√
nβ∗2,1

∣∣∣∣ ≤ λn.

and thus, using the fact that Vn = OP (1), bootstrap analogues of the preceding series

of results hold with probability tending to one. That is, we can regard the supremum

in the definition of U (b)(c) as being unrestricted or having been taken over a suitably

large ball centered at the origin.

Proof. Theorem 2.1, part 3. Notice that U(c)− cᵀ
√
n(β̂1 − β∗1) is equal to

cᵀΣ−1
1,nPnB

ᵀ
1

([
Hᵀ

2,1Vn

]
+
− Un

)
1Tn(H2,1)≤λn

+ sup
γ∈Rdim(β∗2,1)

cᵀΣ−1
1,nPnB

ᵀ
1

([
Hᵀ

2,1(Vn + γ)
]

+
−
[
Hᵀ

2,1γ
]

+
−
[
Hᵀ

2,1Vn

]
+

)
1

(Hᵀ
2,1(Vn+γ))

2

H
ᵀ
2,1Σ

(2,2)
2,n H2,1

≤λn
1Tn(H2,1)≤λn ,

the first term of which is oP (1) by Lemma (3.6.8). An argument similar to the one

given in the proof of part 1 of the theorem shows that the preceding expression is
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equal to

sup
γ∈Rdim(β∗2,1)

cᵀΣ−1
1,∞PB

ᵀ
1

([
Hᵀ

2,1(Vn + γ)
]

+
−
[
Hᵀ

2,1γ
]

+
−
[
Hᵀ

2,1Vn

]
+

)
1Hᵀ

2,1β
∗
2,1=0 + oP (1).

The desired result follows from the continuous mapping theorem. To see this, it

suffices to show that the map from Rdim(β∗2,1) into l∞(Rdim(β∗2,1)) defined by δ 7→ fδ(γ)

where

fδ(γ) , cᵀΣ−1
1,∞PB

ᵀ
1

([
Hᵀ

2,1(δ + γ)
]

+
−
[
Hᵀ

2,1γ
]

+
−
[
Hᵀ

2,1δ
]

+

)
1Hᵀ

2,1β
∗
2,1=0

is continuous. That is, given arbitrary ε > 0 we must show there exists η > 0 so that

||δ − Λ|| < η implies sup
γ∈Rdim(β∗2,1)

∣∣fδ(γ)− fΛ(γ)
∣∣ ≤ ε. Notice that

∣∣fδ(γ)−fΛ(γ)
∣∣ ≤ sup

γ∈Rdim(β∗2,1)

2P
∣∣cᵀΣ−1

1,∞B
ᵀ
1

∣∣ ∣∣ [Hᵀ
2,1(δ + γ)

]
+
−
[
Hᵀ

2,1(Λ + γ)
]

+

∣∣1Hᵀ
2,1β

∗
2,1=0

which, by the Cauchy-Schwartz inequality, is further bounded above by

||δ − Λ||P
∣∣cᵀΣ−1

1,∞B
ᵀ
1

∣∣ ||H2,1|| 1Hᵀ
2,1β

∗
2,1=0.

The above term can be made arbitrarily small which proves the continuity.

We now derive the limiting distribution of U(c) under local alternatives of the form

described in (A4). Utilizing Lemma (3.6.9) it follows that U(c) − cᵀ
√
n(β̂1 − δ(n)

1 ) is

equal to

cᵀΣ−1
1,nPnB

ᵀ
1

([
Hᵀ

2,1V(n)
n

]
+
−
[
Hᵀ

2,1(V(n)
n + γ)

]
+

+
[
Hᵀ

2,1γ
]

+

)
1Hᵀ

2,1β
∗
2,1=0

+ sup
ρ∈Rdim(β∗2,1)

cᵀΣ−1
1,nPnB

ᵀ
1

([
Hᵀ

2,1

(
V(n)
n + ρ+ γ

)]
+
−
[
Hᵀ

2,1(ρ+ γ)
]

+
−
[
Hᵀ

2,1V(n)
n

]
+

)
1Tn(H2,1)≤λn
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+ oPn,γ (1).

where V(n)
n ,

√
n(β̂2,1 − δ(n)

2,1 ). Since the supremum is unrestricted, we can replace ρ

with ρ− γ to obtain

cᵀΣ−1
1,nPnB

ᵀ
1

([
Hᵀ

2,1V(n)
n

]
+
−
[
Hᵀ

2,1(V(n)
n + γ)

]
+

+
[
Hᵀ

2,1γ
]

+

)
1Hᵀ

2,1β
∗
2,1=0

sup
ρ∈Rdim(β∗2,1)

cᵀΣ−1
1,nPnB

ᵀ
1

([
Hᵀ

2,1

(
V(n)
n + ρ

)]
+
−
[
Hᵀ

2,1ρ
]

+
−
[
Hᵀ

2,1V(n)
n

]
+

)
1Tn(H2,1)≤λn .

It was established in the proof of part 2 of Theorem 2.1. that V(n)
n has the same

limiting distribution under Pn,γ as
√
n(β̂2,1 − β∗2,1) under P . Consequently, the proof

for the fixed alternatives case can be applied to finish the remainder of this proof.

The proof of Theorem 2.2. is made simpler by first introducing the following

lemmas.

Lemma 3.6.14. Let X
(b)
n be a bootstrap process in Rp which converges in distribution

to tight, continuous, random variable X in probability (as defined in the main body of

the paper). Then, for arbitrary δ > 0 there exists M sufficiently large so that

PM
(
||X(b)

n || > M
)
≤ δ + rn

where rn is oP (1) and rn does not depend on either M or δ.

Proof. The bootstrap continuous mapping theorem (see proposition 10.7 Kosorok

2008) implies that ||X(b)
n || converges in distribution to ||X|| in probability. Since X

is tight, we can choose M sufficiently large so that P (||X|| > M) ≤ δ. Define,

rn , sup
t∈R

∣∣∣∣PM(||X(b)
n || ≤ t)− P (||X|| ≤ t)

∣∣∣∣
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then by Lemma 10.10 in Kosorok (2008) rn is oP (1). Since rn does not depend on

either M or δ and

PM(||X(b)
n || > M) ≤ P (||X|| > M) + rn ≤ δ + rn,

the result is proved.

Lemma 3.6.15. Assume (A1)-(A3). Then for any ε > 0,

PM

(
P̂(b)
n ||B1|| ||H2,1||1(Hᵀ

2,1β̂
(b)
2,1)(Hᵀ

2,1β
∗
2,1)<0

> ε
)

converges to zero (outer) almost surely.

Proof. This proof proceeds much in the same way as Lemma (3.6.3). As a first step

we decompose P̂(b)
n ||B1|| ||H2,1||1(Hᵀ

2,1β̂
(b)
2,1)(Hᵀ

2,1β
∗
2,1)<0

into the following two parts

P̂(b)
n ||B1|| ||H2,1||1Hᵀ

2,1β̂
(b)
2,1<0

1Hᵀ
2,1β

∗
2,1>0 + P̂(b)

n ||B1|| ||H2,1||1Hᵀ
2,1β̂

(b)
2,1>0

1Hᵀ
2,1β

∗
2,1<0. (3.32)

From the form of preceding decomposition we see that it suffices to show that

PM

(
P̂(b)
n ||B1|| ||H2,1||1Hᵀ

2,1β̂
(b)
2,1<0

1Hᵀ
2,1β

∗
2,1>0 > ε/2

)

converges outer almost surely to zero since we can repeat the argument with −H2,1

in place of H2,1.

The argument and result of Lemma (3.6.7) show that the class

F ,
{
||B1|| ||H2,1||1Hᵀ

2,1δ<01Hᵀ
2,1β

∗
2,1>0 , δ ∈ Rdim(β∗2,1)

}

is a P -measurable V C class and hence strong Glivenko-Cantelli (Kosorok 2008; see
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also Corollary 3.12 of van der Geer 2000). Thus,

P̂(b)
n ||B1|| ||H2,1||1Hᵀ

2,1β̂
(b)
2,1<0

1Hᵀ
2,1β

∗
2,1>0 ≤ P ||B1|| ||H2,1||1Hᵀ

2,1β̂
(b)
2,1<0

1Hᵀ
2,1β

∗
2,1>0+||P̂(b)

n −P ||∗F

where ∗ denotes a measurable majorant with respect to both the bootstrap weights

and the observed data. Since F is measurable and strong Glivenko-Cantelli, it follows

that PM

(
||P̂(b)

n − P ||∗F > ε/6
)

converges to zero outer almost surely (Lemma 3.6.16

van der Vaart and Wellner 1996). Next, we consider the term P ||B1|| ||H2,1||1Hᵀ
2,1β̂

(b)
2,1<0

1Hᵀ
2,1β

∗
2,1>0

which we can bound above by

P ||B1|| ||H2,1||1Hᵀ
2,1β̂

(b)
2,1<0

1H
ᵀ
2,1β
∗
2,1

||H2,1||
>η

+ P ||B1|| ||H2,1||1H
ᵀ
2,1β
∗
2,1

||H2,1||
≤η
,

where η > 0 is arbitrary. The second term in the above decomposition can be made

less than ε/6 by sufficiently small choice of η. Let η be fixed at this value. Notice

that the event {
Hᵀ

2,1β̂
(b)
2,1 < 0,

Hᵀ
2,1β

∗
2,1

||H2,1||
> η

}
is contained in the event

{
Hᵀ

2,1(V(b)
n + Vn)

||H2,1||
< −
√
nHᵀ

2,1β
∗
2,1

||H2,1||
,

√
nHᵀ

2,1β
∗
2,1

||H2,1||
> η

}
,

where V(b)
n ,

√
n(β̂

(b)
2,1 − β̂2,1). We can further contain the event in the preceding

display in the event {
||V(b)

n + Vn|| >
√
nη
}
.
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Thus, we have shown that

P ||B1|| ||H2,1||1Hᵀ
2,1β̂

(b)
2,1<0

1H
ᵀ
2,1β
∗
2,1

||H2,1||
>η
≤ 1||V(b)

n +Vn||>
√
nη
P ||B1|| ||H2,1||.

So that,

PM

(
P ||B1|| ||H2,1||1Hᵀ

2,1β̂
(b)
2,1<0

1H
ᵀ
2,1β
∗
2,1

||H2,1||
>η
> ε/6

)
≤ PM

(
1||V(b)

n +Vn||>
√
nη
P ||B1|| ||H2,1|| > ε/6

)
,

the right hand side of which is less than PM

(
||V(b)

n + Vn|| >
√
nη
)

, which we can

write as

PM

(
||V(b)

n + Vn||√
log log n

>

√
n

log log n
η

)
≤ PM

(
||V(b)

n ||√
log log n

>

√
n

log log n
η − ||Vn||√

log log n

)
,

where the last inequality follows from the triangle inequality. The right hand side of

the above display converges to zero almost surely since ||Vn||/
√

log log n is bounded

almost surely by the LIL, and from Lemma (3.6.14) it follows that ||V(b)
n || is OPM(1).

The result follows.

Lemma 3.6.16 (Bootstrap Consistent Treatment Assignment). Assume (A1)-(A4).

Define Tn(h2,1)(b) ,
n(hᵀ

2,1β̂
(b)
2,1)2

hᵀ
2,1(Σ

(2,2)
2,n )(b)h2,1

to be the bootstrap analog of Tn(h2,1). Then, the

following results hold.

1. PM

(
suph2,1

1
T

(b)
n (h2,1)>λn

1hᵀ
2,1β

∗
2,1=0 = 1

)
converges to zero in probability.

2. For any ε > 0, there exists a set Bε so that P (H2,1 ∈ Bε) ≥ 1− ε and

PM

(
sup

h2,1∈Bε
1
T

(b)
n (h2,1)≤λn

1hᵀ
2,1β

∗
2,1 6=0 = 1

)

converges to zero in probability.
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Proof. We begin with the proof of part 1. Let h2,1 be fixed non-zero vector satisfying

hᵀ
2,1β

∗
2,1 = 0, then

T
(b)
n (h2,1)

λn
=

(
hᵀ

2,1

(
V(b)
n /
√
λn + Vn/

√
λn

))2

hᵀ
2,1Σ

(2,2)(b)
2,n h2,1

≤

(
||V(b)

n ||∞/
√
λn + ||Vn||∞/

√
λn

)2

σ
(2,2)(b)
2,n

,

where ||.||∞ denotes the usual sup norm z 7→ maxi |zi| and σ
(2,2)(b)
2,n denotes the smallest

eigenvalue of Σ
(2,2)(b)
2,n . For any ε > 0 we can bound the term on the right hand side

of the above display by

(
||V(b)

n ||∞/
√
λn + ε

)2

σ
(2,2)(b)
2,n

+

(
||V(b)

n ||∞/
√
λn + ||Vn||∞/

√
λn

)2

σ
(2,2)(b)
2,n

1 ||Vn||∞√
λn

>ε
.

Observe that the above bound does not depend on h2,1. Thus, we have

PM

(
sup

h2,1:hᵀ
2,1β

∗
2,1=0

T (b)
n (h2,1) > λn

)
≤ PM

(
||V(b)

n ||∞/
√
λn >

√
σ2,n − ε

)
+ 1 ||Vn||∞√

λn
>ε
.

(3.33)

Let σ
(2,2)
2,∞ denote the smallest eigenvalue of Σ

(2,2)
2,∞ . If we choose 0 < ε << σ

(2,2)
2,∞ then

the term on the right hand side of (3.33) is seen, by appeal to the bootstrap LLN (see

Athreya 1983; Csorgo and Rosalsky 2003), to be oP (1). If hᵀ
2,1β

∗
2,1 6= 0 then clearly

1Tn(h2,1)>λn1hᵀ
2,1β

∗
2,1=0 ≡ 0. We have shown that PM(suph2,1

1Tn(h2,1)>λn1hᵀ
2,1β

∗
2,1=0 = 1)

converges to zero in probability.

The proof of part 2 of the lemma follows a similar line of argument. For any ε > 0

we can choose δ > 0 so that

P

(
0 <
|Hᵀ

2,1β
∗
2,1|

||H2,1||
≤ δ

)
≤ ε.

Define Bε to be the event
{
Hᵀ

2,1β
∗
2,1 = 0

}⋃{ |Hᵀ
2,1β

∗
2,1|

||H2,1|| > δ
}

so that P (H2,1 ∈ Bε) ≥
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1− ε. Let h2,1 be any value in Bε satisfying hᵀ
2,1β

∗
2,1 6= 0, then

Tn(h2,1)

λn
=

(
hᵀ

2,1

(
V(b)
n /
√
λn + Vn/

√
λn +

√
n
λn
β∗2,1

))2

hᵀ
2,1Σ

(2,2)(b)
2,n h2,1

.

The right hand side of the above display is bounded below by

(
hᵀ

2,1

(
V(b)
n /
√
λn + Vn/

√
λn +

√
n
λn
β∗2,1

))2

||h2,1||2ν(2,2)(b)
2,n

where ν
(2,2)(b)
2,n denotes the largest eigenvalue of Σ

(2,2)(b)
2,n . Using the triangle inequality

and the fact that h2,1 is in Bε and hᵀ
2,1β

∗
2,1 6= 0, we can obtain an even smaller lower

bound of √ n
λn

√
δ − ||V(b)

n ||∞/
√
λn − ||Vn||∞/

√
λn√

ν
(2,2)(b)
2,n

2

+

.

The preceding sequence of bounds show that

PM

(
sup

h2,1∈Bε
1
T

(b)
n (h2,1)≤λn

1hᵀ
2,1β

∗
2,1 6=0 = 1

)
≤ PM


√ n

λn

√
δ − ||V(b)

n ||∞/
√
λn − ||Vn||∞/

√
λn√

ν
(2,2)(b)
2,n


+

≤ 1


the right hand side of which is further bounded above by

PM

(√
δ

√
n

λn
−M −

√
ν

(2,2)(b)
2,n ≤ ||V(b)

n ||∞/
√
λn

)
+ 1 ||Vn||∞√

λn
>M

for any M > 0. The preceding quantity is oP (1) by appeal to the bootstrap LLN

(Athreya 1983; Csorgo and Rosalsky 2003) applied to ν
(2,2)(b)
2,n and Lemma (3.6.14)

applied to V(b)
n .

Corollary 3.6.17. Assume (A1)-(A4). Let ε > 0 be arbitrary. Then, it follows that
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both of the quantities:

1. PM

(
P ||B1|| ||H2,1||1T (b)

n (H2,1)≤λn
1Hᵀ

2,1β
∗
2,1 6=0 > ε

)
,

2. PM

(
P ||B1|| ||H2,1||1T (b)

n (H2,1)>λn
1Hᵀ

2,1β
∗
2,1=0 > ε

)
,

converge to zero in probability.

Proof. To prove part 1 we first observe that

P ||B1|| ||H2,1||1T (b)
n (H2,1)≤λn

1Hᵀ
2,1β

∗
2,1 6=0 ≤ P ||B1|| ||H2,1||1H2,1∈Bη1T (b)

n (H2,1)≤λn
1Hᵀ

2,1β
∗
2,1 6=0

+ P ||B1|| ||H2,1||1H2,1 /∈Bη ,

where Bη was defined in (3.6.16). We can choose η sufficiently small so that the

second term on the right hand side of the above display is below ε/2. The first term

on the right hand side of the above display is bounded above by

sup
h2,1∈Bη

1
T

(b)
n (h2,1)≤λn

1hᵀ
2,1β

∗
2,1 6=0 (P ||B1|| ||H2,1||) .

Using Lemma (3.6.16) it follows that

PM

(
sup

h2,1∈Bη
1
T

(b)
n (h2,1)≤λn

1hᵀ
2,1β

∗
2,1 6=0 (P ||B1|| ||H2,1||) > ε

)

converges to zero in probability. The proof of the second part of the theorem follows

from an identical argument replacing Bη with all of Rdim(β∗2,1).

Lemma 3.6.18. Assume (A1)-(A4). Then, it follows that

√
nP̂(b)

n B
ᵀ
1

([
Hᵀ

2,1β̂
(b)
2,1

]
+
−
[
Hᵀ

2,1β̂2,1

]
+

)
1Hᵀ

2,1β
∗
2,1 6=0

converges in distribution to PBᵀ
1H

ᵀ
2,1V∞1Hᵀ

2,1β
∗
2,1>0 in probability.
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Proof.

Lemma 3.6.19 (Computational Equivalence Lemma). Let ω1, ω2, . . . , ωr be arbitrary

negative weights, and ωr+1, ωr+2, . . . , ωM be arbitrary positive weights. Let a1, a2, . . . , aM

and γ be a fixed vectors in Rdim(β∗2,1). Then,

arg sup
δ∈Rdim(β∗2,1)

M∑
i=1

ωi
(
[aᵀ
i (γ + δ)]+ − [aᵀ

i δ]+
)

is equal to

arg inf
δ∈Rdim(β∗2,1)

( r∑
i=1

|ωi| min (|aᵀ
i γ|, |a

ᵀ
i (γ + δ)|) 1(aᵀ

i γ)(aᵀ
i (γ+δ)>0

+
M∑

i=r+1

ωi min (|aᵀ
i γ|, |a

ᵀ
i δ|) 1(aᵀ

i γ)(aᵀ
i δ)<0

)
.

Proof. Note that supb∈R
(
[aᵀ
i γ + b]+ − [b]+

)
= [aᵀ

i γ]+ and that this supremum is at-

tained whenever (aᵀ
i γ)b ≥ 0. The regret incurred at a value b for which (aᵀ

i γ)b < 0 is

[aᵀ
i γ]+ −

(
[aᵀ
i γ + b]+ − [b]+

)
= min(|aᵀ

i γ|, |b|). Similarly, infb∈R
(
[aᵀ
i γ + b]+ − [b]+

)
=

[aᵀ
i γ]−, where [.]− is the map z 7→ min(z, 0). The preceding inf is attained whenever

(aᵀ
i γ + b)aᵀ

i γ ≤ 0. The regret incurred at a value b for which (aᵀ
i γ + b)aᵀ

i γ > 0 is(
[aᵀ
i γ + b]+ − [b]+

)
− [aᵀ

i γ]− = min(|aᵀ
i γ|, |a

ᵀ
i γ + b|). Since maximizing an objective is

equivalent to minimizing the regret the result is proved.

The preceding lemma shows that computing the ACI is computationally equivalent

to Ψ-learning. This is somewhat of a bittersweet result since on the one hand its is

known Ψ-learning is non-convex and cannot be solved using usual out-of-the-box

solvers, on the other hand, substantial efforts have been made to produce efficient

algorithms yielding (nearly) exact solutions (Lui 2004; Lui 2006).
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Proof of Theorem 2.2. The proof of this result requires a bit of bookkeeping. It will

be convenient to divide it into separate steps. Throughout, we will let G(b)
n denote

√
n(P̂(b)

n − Pn). Furthermore, we will make frequent use of the fact that under (A1)-

(A3)
√
n(β̂

(b)
2 −β∗2) converges weakly in probability to V∞. This result follows from the

bootstrap central limit theorem (see Bickel and Freedman 1981; Csorgo and Mason

1989 for bootstrap CLTs and Arcone and Gine 1990; Bose and Chatterjee 2003 for a

more general treatment of bootstrapping M -estimators).

Step 1. In this step we establish that W(b)
n  W∞ in probablity. Recall that

W(b)
n , (Σ

(b)
1,n)−1G(b)

n B
ᵀ
1

[
Y1 +Hᵀ

2,0β̂2,0 +
[
Hᵀ

2,1β̂2,1

]
+
−Bβ̂1

]
+ (Σ

(b)
1,n)−1P̂(b)

n B
ᵀ
1H

ᵀ
2,0

√
n(β̂

(b)
2,0 − β̂2,0). (3.34)

The second term in the above expression converges weakly to Σ−1
1,∞PB

ᵀ
1H

ᵀ
2,0V∞,0. To

see this notice P̂(b)
n B

ᵀ
1H

ᵀ
2,0 → PBᵀ

1H
ᵀ
2,1 almost surely by the bootstrap LLN (Athreya

1983; Csorgo and Rosalsky 2003). Then use the bootstrap continuous mapping theo-

rem (Kosorok 2008) and Slutsky’s lemma to obtain the result. Turning attention to

the first term on the right hand side of (3.34) we first note that the class of functions

F ,
{
Bᵀ

1

[
Y1 +Hᵀ

2,0β2,0 +
[
Hᵀ

2,1β2,1

]
+
−B1β1

]
: β2 ∈ B(M,β∗2), β1 ∈ B(M,β∗1)

}

is a P -measurable BUEI class with square integrable envelope. This fact follows from

the same arguments to the ones given above in the proof of Theorem 2.1, part 1. Also

from part 1 of Theorem 2.1, it follows that β̂1 → β∗1 in probability and using standard

results from least squares it follows that β̂2 → β∗2 in probability. Thus,

G(b)
n B

ᵀ
1

[
Y1 +Hᵀ

2,0β̂2,0 +
[
Hᵀ

2,1β̂2,1

]
+
−B1β̂1

]
= G(b)

n B
ᵀ
1

[
Y1 +Hᵀ

2,0β
∗
2,0 +

[
Hᵀ

2,1β
∗
2,1

]
−B1β

∗
1

]
+rn
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where

rn = GnB
ᵀ
1

[
Hᵀ

2,0(β̂2,0 − β∗2,0) +
[
Hᵀ

2,1β̂2,1

]
+
−
[
Hᵀ

2,1β
∗
2,1

]
+
−Bᵀ

1 (β̂1 − β∗1)

]

satisfies PM(||rn|| > ε) = oP (1) for any ε > 0 using the asymptotic equicontinuity of

G(b)
n in l∞(F) (Kosorok 2008). Finally, applying the bootstrap CLT and Slutskly’s

lemma we have shown that W(b)
n  W∞ in probability.

Step 2. In the second step we derive the limiting distribution of (Σ
(b)
1,n)−1P̂(b)

n B
ᵀ
1 U(b)

n 1
T

(b)
n (H2,1)>λn

.

Using the definition of U(b)
n , Corollary (3.6.17), and Lemma (3.6.1), it follows that we

can write the preceding quantity as

(Σ
(b)
1,n)−1P̂(b)

n B
ᵀ
1 U(b)

n 1Hᵀ
2,1β

∗
2,1>0 + oPM(1).

Furthermore, we can writhe the first term in the above display as

(Σ
(b)
1,n)−1P̂(b)

n B
ᵀ
1H

ᵀ
2,1

√
n(β̂

(b)
2,1 − β̂2,1)1

(Hᵀ
2,1β̂

(b)
2, )(Hᵀ

2,1β̂2,1)>0
1Hᵀ

2,1β
∗
2,1>0

+ (Σ
(b)
1,n)−1P̂(b)

n B
ᵀ
1 U(b)

n 1
(Hᵀ

2,1β̂
(b)
2, )(Hᵀ

2,1β̂2,1)<0
1Hᵀ

2,1β
∗
2,1>0. (3.35)

The event
{

(Hᵀ
2,1β̂

(b)
2, )(Hᵀ

2,1β̂2,1) < 0
}

is contained in the event

{
(Hᵀ

2,1β̂
(b)
2, )(Hᵀ

2,1β
∗
2,1) < 0

}⋃{
(Hᵀ

2,1β̂2,)(H
ᵀ
2,1β

∗
2,1) < 0

}
.

This containment, coupled with application of Corollary (3.6.17) show that the second

term of (3.35) is oPM(1), while the first term is equal to

(Σ
(b)
1,n)−1P̂(b)

n B
ᵀ
1H

ᵀ
2,1

√
n(β̂

(b)
2,1 − β̂2,1)1Hᵀ

2,1β
∗
2,1>0 + oPM(1).
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The bootstrap continuous mapping theorem coupled with Slutsky’s theorem shows

that

(Σ
(b)
1,n)−1P̂(b)

n B
ᵀ
1H

ᵀ
2,1

√
n(β̂

(b)
2,1 − β̂2,1)1Hᵀ

2,1β
∗
2,1>0

converges to in distribution to Σ−1
1,∞PB

ᵀ
1H

ᵀ
2,1V∞1Hᵀ

2,1β
∗
2,1>0 in probability.

Step 3. In this step we derive the limiting distribution of (Σ
(b)
1,n)−1P̂(b)

n B
ᵀ
1

[
Hᵀ

2,1

√
n(β̂

(b)
2,1 − β̂2,1)

]
+

.

Fix a vector c ∈ Rdim(B1), and let M > 0 be arbitrary, arguments used in the course

of proving Lemma (3.6.4) show that the class of functions

F ,
{
cᵀBᵀ

1

[
Hᵀ

2,1η
]

+
: B(M, 0)

}

is a P -measurable, VC class with square integrable envelope and hence is strong

Glivenko-Cantelli. Next write

P̂(b)
n B

ᵀ
1

[
Hᵀ

2,1

√
n(β̂

(b)
2,1 − β̂2,1)

]
+

= PBᵀ
1

[
Hᵀ

2,1

√
n(β̂

(b)
2,1 − β̂2,1)

]
+

+(P̂(b)
n −P )Bᵀ

1

[
Hᵀ

2,1

√
n(β̂

(b)
2,1 − β̂2,1)

]
+
.

The leading term converges weakly to PBᵀ
1

[
Hᵀ

2,1V∞
]

+
in probability. Furthermore,

for arbitrary ε > 0 the latter term in the above display satisfies

PM

(∣∣∣∣(P̂(b)
n − P )Bᵀ

1

[
Hᵀ

2,1

√
n(β̂

(b)
2,1 − β̂2,1)

]
+

∣∣∣∣ > ε

)
≤ PM

(
||P̂(b)

n − P ||∗F > ε
)

+ PM

(
||
√
n(β̂

(b)
2,1 − β̂2,1)|| > M

)

the right hand of which can be arbitrarily small in probability for sufficiently large n

andM . Thus, by Slutsky’s theorem, it follows that (Σ
(b)
1,n)−1P̂(b)

n B
ᵀ
1

[
Hᵀ

2,1

√
n(β̂

(b)
2,1 − β̂2,1)

]
+

converges weakly to Σ
(b)
1,∞PB

ᵀ
1

[
Hᵀ

2,1V∞
]

+
in probability.
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Step 4. In the step, we find the limiting distribution of the random process

(
Σ

(b)
1,n

)−1

P̂(b)
n B

ᵀ
1

([
Hᵀ

2,1(V(b)
n + γ)

]
+
−
[
Hᵀ

2,1γ
]

+
−
[
Hᵀ

2,1V(b)
n

]
+

)
1
T

(b)
n (H2,1)≤λn

. (3.36)

First, notice that using Lemma (3.6.1) and the triangle inequality it follows that

∣∣∣∣P̂(b)
n B

ᵀ
1

([
Hᵀ

2,1(V(b)
n + γ

)]
+
−
[
Hᵀ

2,1γ]+ −
[
Hᵀ

2,1V(b)
n

]
+

)
1
T

(b)
n (H2,1)≤λn

∣∣∣∣ ≤ 2P̂(b)
n ||B1|| ||H2,1|| ||V(b)

n ||

the right hand side of which is OPM (1). Thus, by the bootstrap LLN and Slutksy’s

theorem we can write (3.36) as

Σ−1
1,∞P̂(b)

n B
ᵀ
1

([
Hᵀ

2,1(V(b)
n + γ)

]
+
−
[
Hᵀ

2,1γ
]

+
−
[
Hᵀ

2,1V(b)
n

]
+

)
1
T

(b)
n (H2,1)≤λn

+ oPM(1).

(3.37)

Let ε > 0 be arbitrary and let Bε be as defined in Lemma (3.6.16). Observe that

∣∣∣∣P̂(b)
n B

ᵀ
1

([
Hᵀ

2,1(V(b)
n + γ)

]
+
−
[
Hᵀ

2,1γ
]

+
−
[
Hᵀ

2,1V(b)
n

]
+

)
1
T

(b)
n (H2,1)≤λn

1Hᵀ
2,1β

∗
2,1 6=0

∣∣∣∣
is bounded above by

2P̂(b)
n ||B1|| ||H2,1|| ||H2,1|| ||V(b)

n ||1H2,1 /∈Bε+2P̂(b)
n ||B1|| ||H2,1|| ||V(b)

n || sup
h2,1∈Bε

1Tn(h2,1)≤λn1Hᵀ
2,1β

∗
2,1 6=0

which is oPM(1) by Lemma (3.6.16). Thus, we can replace the indicator 1
T

(b)
n (H2,1)≤λn

in (3.36) with 1Hᵀ
2,1β

∗
2,1=0 up to a term of oPM(1). The class of functions given by

F ,
{
Bᵀ

1

([
Hᵀ

2,1(δ + γ)
]

+
−
[
Hᵀ

2,1γ
]

+
−
[
Hᵀ

2,1δ
]

+

)
1Hᵀ

2,1β
∗
2,1=0 : δ ∈ B(M, 0), γ ∈ Rdim(β∗2,1)

}

is P -measurable BUEI class with square integrable envelope 2||B1|| ||H2,1||M and

113



hence is strong Glivenko-Cantelli (see the arguments in the course of proving Lemma

(3.6.4)). Thus, using bootstrap Glivenko-Cantelli results (Kosorok 2008) we have

∣∣∣∣(P̂(b)
n − P )Bᵀ

1

([
Hᵀ

2,1(V(b)
n + γ)

]
+
−
[
Hᵀ

2,1γ
]

+
−
[
Hᵀ

2,1V(b)
n

]
+

) ∣∣∣∣
≤ ||(P̂(b)

n − P )||F + 2(P̂(b)
n + P )||B1|| ||H2,1|| ||V(b)

n ||1||V(b)
n ||>M

the right hand side of which can be made arbitrarily PM small with arbitrarily high

P probability for sufficiently large M and n. We have shown that (3.36) is equal to

Σ−1
1,∞PB

ᵀ
1

([
Hᵀ

2,1(V(b)
n + γ)

]
+
−
[
Hᵀ

2,1γ
]

+
−
[
Hᵀ

2,1V(b)
n

]
+

)
1Hᵀ

2,1β
∗
2,1=0 + oPM(1).

The map from Rdim(β∗2,1) into l∞(Rdim(β∗2,1)) given by

δ 7→ Σ−1
1,∞PB

ᵀ
1

([
Hᵀ

2,1(δ + γ)
]

+
−
[
Hᵀ

2,1γ
]

+
−
[
Hᵀ

2,1δ
]

+

)
1Hᵀ

2,1β
∗
2,1=0,

is uniformly continuous. Thus, by the preceding arguments and the bootstrap con-

tinuous mapping theorem (Kosorok 2008) it follows that (3.36) converges weakly to

Σ−1
1,∞PB

ᵀ
1

([
Hᵀ

2,1(V∞ + γ)
]

+
−
[
Hᵀ

2,1γ
]

+
−
[
Hᵀ

2,1V∞
]

+

)
1Hᵀ

2,1β
∗
2,1=0.

Step 5: The last step of the proof is to combine steps 1-4 to obtain the desired

result by appeal to the Cramer-Wold device and the bootstrap continuous mapping

theorem.

Remark 3.6.20 (Plug-in Pretesting Approach). A natural approach to constructing

a confidence interval in a non-regular problem is “a plug-in pretesting approach.”

This approach, is similar in spirit to the ACI in that it partitions the training data
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using a series of hypothesis tests and uses different approximations on each partition.

In particular, the plug-in pretesting estimator of cᵀ
√
n(β̂1 − β∗1) is given by

cᵀWn + cᵀΣ−1
1,nPnB

ᵀ
1 Un1Tn(H2,1)>λn + cᵀΣ−1

1,nPnB
ᵀ
1

[
Hᵀ

2,1Vn

]
+

1Tn(H2,1)≤λn . (3.38)

Confidence intervals are formed by bootstrapping this estimator. Under fixed alter-

natives, the plug-in pretesting estimator (PPE) is consistent. This consistency is

established by recalling that 1Tn(h2,1)≤λn → 1hᵀ
2,1β

∗
2,1=0 in probability and then compar-

ing the last two terms of the PPE with (3.25).

However intuitive, the PPE does not perform well in small samples under some

generative models (see the main body of the paper and the last section of this supple-

ment). One explanation for this underperformance is that the PPE is not consistent

under local alternatives. In particular, under a local generative model as described

in (A4), it can be shown that the difference between the PPE and cᵀ
√
n(β̂1 − δ(n)

1 ) is

equal to

cᵀΣ−1
1,nPnB

ᵀ
1

([
Hᵀ

2,1

(
V(n)
n + γ

)]
+
−
[
Hᵀ

2,1γ
]

+
−
[
Hᵀ

2,1V(n)
n

]
+

)
1Hᵀ

2,1β
∗
2,1=0 + oPn,γ (1),

(3.39)

which is does not vanish for any alternative γ for which Hᵀ
2,1γ is not identically zero

with probability one.

The expression in (3.39) offers yet another view of the ACI. In particular, one can

view the last term of U(c) as approximating the supremum over local alternatives of

the difference between the PPE and the target cᵀ
√
n(β̂1− δ(n)

1 ). In this way, the ACI

can be thought of as a corrected version of the PPE where the correction is intended

to safeguard against poor small sample performance.
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3.7 Appendix II: Extension of the ACI to many stages and

many treatments

In this appendix, we develop the ACI for the general case where there is an

arbitrary finite number of stages of treatment, and an arbitrary finite number of

treatment choices at each stage. We begin with a review of the Q-learning procedure

in this setting.

3.7.1 Q-Learning in the general case

We observe an i.i.d. sample of trajectories {Ti}ni=1 drawn from a fixed but unknown

distribution P . Each trajectory is of the form

T = (X1, A1, Y1, X2, A2, Y2, . . . , XT , AT , YT ), (3.40)

being comprised of patient measurement Xt, assigned treatment At, and observed

response Yt for t = 1, 2, . . . , T . For each decision point t the assigned treatment At

takes values in the set {1, 2, . . . , Kt}. As in the two-stage setting, we let Ht denote

a concise summary of patient history at time t. More precisely, H1 , Ψ1(X1) and

Ht , Ψt(X1, A1, Y1, . . . , Xt−1, At−1, Yt−1, Xt) for t = 2, 3, . . . , T for known functions,

Ψt. The form of the working model for the Q-function is of the same form as in

Section 3 of the main body of the paper. For each t we use the model

Qt(ht, at; βt) , βᵀ
t,0ht,0 +

Kt∑
i=1

βᵀ
t,iht,11at=i, (3.41)

where βt , (βᵀ
t,0, β

ᵀ
t,1, β

ᵀ
t,2, . . . , β

ᵀ
t,Kt

)ᵀ. For the purpose of identifiability, we assume

that the vector of coefficients βt satisfies a zero-sum constraint. That is, for each
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j = 1, 2, . . . , dim(βt,1) the vector βt satisfies
∑Kt

i=1 βt,i,j = 0. As in the two stage

setting, the form of the working model implies that when hᵀ
t,1βt,i−maxj 6=i h

ᵀ
t,1βt,j ≈ 0

for some 1 ≤ i ≤ Kt, then at least two treatments are approximately optimal for a

patient with history Ht,1 = ht,1. That is, there is not a unique best treatment for a

patient with history Ht,1 = ht,1. On the other hand, if
∣∣hᵀ
t,1βt,i −maxj 6=i h

ᵀ
t,1βt,j

∣∣� 0

for all 1 ≤ i ≤ Kt, then the working model implies that exactly one treatment is best

for a patient with history Ht,1 = ht,1. Once a working model has been specified, the

Q-learning algorithm can be applied to estimate the optimal DTR. The Q-learning

algorithm is a follows:

1. Regress YT on HT and AT using the working model (3.41) to obtain:

β̂T , arg min
βT

Pn (YT −QT (HT , AT ; βT ))2 (3.42)

and subsequently the approximation QT (hT , aT ; β̂T ) to the conditional mean

QT (hT , aT ).

2. (a) Recursively, define the predicted future reward following the optimal policy

as:

Ỹt , Yt + max
at+1∈{1,2,...,Kt+1}

Qt+1

(
Ht+1, at+1; β̂t+1

)
(3.43)

= Yt +Hᵀ
t+1,0β̂t+1,0 + max

1≤i≤Kt+1

Hᵀ
t+1,1β̂t+1,i (3.44)

for t = T − 1, T − 2, . . . , 1.

(b) Regress Ỹt on Ht and At using the working model (3.41) to obtain

β̂t , arg minβt Pn
(
Ỹt −Qt(Ht, At; βt)

)2

.
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3. Define the estimated optimal DTR π̂ = (π̂1, π̂2, . . . , π̂T ) so that

π̂t(ht) , arg max
at∈{1,2,...,Kt}

Qt(ht, at; β̂t). (3.45)

When T = 2 the above procedure is equivalent to the two stage Q-learning algorithm

given in Section 3 of the main body of the paper.

Our aim is to use the ACI to construct a confidence interval for cᵀβ∗1 where c is

an arbitrary vector of constants. The definition of β∗1 is given inductively. Define

β∗T , arg min
βT

P (YT −QT (HT , AT ; βT ))2 . (3.46)

For t = T − 1, T − 2, . . . , 1 define

Ỹ ∗t , Yt +Hᵀ
t+1,0β

∗
t+1,0 + max

1≤i≤Kt+1

Hᵀ
t+1,1β

∗
t+1,i, (3.47)

β∗t , arg min
βt

P
(
Ỹ ∗T −Qt(Ht, At; βt)

)2

. (3.48)

We focus on the problem of constructing a confidence interval for a linear combination

of the first stage coefficients β∗1 since building a confidence interval for, say cᵀβ∗t , is

equivalent to building a confidence interval for the first stage of a T − t+1 stage trial.

That is, one can always view the tth stage as the first stage of a shorter T − t + 1

stage trial. Information collected prior to the tth stage can be treated as baseline

(pre-randomization) information in this shorter trial.

3.7.2 ACI in the general case

The ACI in the general case is conceptually the same as the two stage case. Non-

regularity in
√
n(β̂t−β∗t ) arises whenever there are two or more equally best treatments
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at any future stage of treatment s > t for a non-null subset of patient histories. The

ACI works by constructing smooth upper and lower bounds on
√
n(β̂ − β∗t ) and then

bootstrapping these bounds to construct confidence intervals. As in the two stage

case, these bounds are asymptotically equivalent to taking the supremum (infimum)

over all local alternatives to the true generative distribution.

In order to develop the ACI in this general setting, we generalize the notation

given in the main body of the paper. Define Bt , (Hᵀ
t,0, H

ᵀ
t,11At=1, . . . , H

ᵀ
t,11At=Kt)

ᵀ

so that instances of Bt form the rows of the design matrix used in the tth stage

regression. Further, define Σt,n , PnBᵀ
t Bt. The limiting distribution of

√
n(β̂t − β∗t )

depends abruptly on the frequency of patients for which there are multiple equally

optimal best treatments at a future stage. Consequently, the set

A∗t (ht,1) ,

{
arg max

1≤i≤Kt
hTt,1β

∗
t,i

}
(3.49)

of equally optimal treatments at stage t for a patient with history Ht,1 = ht,1, is

relevant for the development of asymptotic theory. Notice that A∗t (ht,1) is a singleton

when there is exactly one best treatment for a patient with history ht,1. As in the

two stage case, we will need to estimate A∗t (ht,1). The estimator we use is based on

the following test statistics:

Tt,n,i(ht,1) ,
n
(
hᵀ
t,1β̂t,i −maxj 6=i h

ᵀ
t,1β̂t,j

)2

hᵀ
t,1ζ̂t,iht,1

where ζ̂i is the usual plug-in estimator of nCov(β̂t,i − β̂t,k) evaluated at k = k̂i where

k̂i = arg maxj 6=i h
ᵀ
t,1β̂j (we are acting as if the maximal index is fixed a priori).

**** the reader will not know how we define ζ̂i except when t = T . –how did we define

in simulation? We should use this definition. Did we use ζ̂t,i equal to a difference of
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submatrices from Σ−1
t,n or did we use ζ̂t,i equal to the submatrix corresponding to i?

****

The statistic, mini Tt,n,i(ht,1), should be large when there is exactly one best treatment

for a patient with history Ht,1 = ht,1. On the other hand, mini Tt,n,i(ht,1) should be

small if treatment i is an optimal treatment for a patient with history ht,1 and there

is more than one best treatment. Thus, a natural estimator of A∗t (ht,1) is

Ât(ht,1) =

 {i : Tt,n,i(ht,1) ≤ λn} if mini Tt,n,i(ht,1) ≤ λn

arg max1≤i≤Kt h
ᵀ
t,1β̂t,i if mini Tt,n,i(ht,1) > λn.

The merits and genesis of this statistic were discussed in the main body of the paper.

Under the regularity conditions given in the next section, it follows that Ât(ht,1) is a

consistent estimator of A∗t (ht,1).

It is also useful to define generalizations of the Vt,n’s. Let Nt be the dimension

of (β∗ᵀt,1, β
∗ᵀ
t,2, . . . , β

∗ᵀ
t,Kt

)ᵀ, that is Nt = Kt dim(β∗t,1) (note this does not include the

dimension of β∗t,0). Define VT,n ,
√
n(β̂T − β∗T ) and VT,n,i ,

√
n(β̂T,i − β∗T,i) and for

any γT ∈ RNT define

VT−1,n(γT ) ,W′
T−1,n + Σ−1

T−1,nPnB
ᵀ
T−1H

ᵀ
T,0VT,n,0 + Σ−1

T−1,nPnB
ᵀ
T−1UT,n1#ÂT (HT,1)=1

+ Σ−1
T−1,nPnB

ᵀ
T−1 max

i∈ÂT (HT,1)
Hᵀ
T,1VT,n,i1#ÂT (HT,1)>1

+ Σ−1
T−1,nPnB

ᵀ
T−1

[
max

1≤i≤KT
Hᵀ
T,1(VT,n,i − γT,i)− max

1≤i≤KT
Hᵀ
T,1γT,i − max

i∈ÂT (HT,1)
Hᵀ
T,1VT,n,i

]

× 1#ÂT (HT,1)>11γT∈CT,n(HT,1),
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where

W′
t,n = Σ−1

t,n

√
nPnBᵀ

t

{
Yt +Hᵀ

t+1,0β
∗
t+1,0 + max

1≤i≤Kt+1

Hᵀ
t+1,1β

∗
t+1,i −Btβ

∗
t

}
Ut,n =

√
n

(
max

1≤i≤Kt
Hᵀ
t,1β̂t,i − max

1≤i≤Kt
Hᵀ
t,1β

∗
t,i

)
Ct,n(ht,1) ,

{
γt ∈ RNt , i ∈ Ât(ht,1) :

(
hᵀ
t,1(Vt,n,i − γt,i)−maxj 6=i h

ᵀ
t,1(Vt,n,j − γt,j)

)2

hᵀ
t,1ζ̂t,iht,1

≤ λn

}
.

Notice that VT−1,n(
√
nβ∗T−1) = VT−1,n. If T = 2, then U1(c) = supγT c

ᵀVt,n(γT ).

More generally, for any t < T − 1 and Γt+1 = (γᵀ
t+1, γ

ᵀ
t+2, . . . , γ

ᵀ
T )ᵀ ∈ R

PT
k=t+1Nk define

Vt,n(Γt+1) ,W′
t,n + Σ−1

t,nPnBᵀ
tH

ᵀ
t+1,0Vt+1,n,0(Γt+2)

+ Σ−1
t,nPnBᵀ

t max
i∈Ât+1(Ht+1,1)

Hᵀ
t+1,1Vt+1,n,i(Γt+2)

+ Σ−1
t,nPnBᵀ

t

(
Ut+1,n − max

i∈Ât+1(Ht+1,1)
Hᵀ
t+1,1Vt+1,n,i

)
1#Ât+1(Ht+1,1)=1

Σ−1
t,nPnBᵀ

t

(
max

1≤i≤Kt+1

Hᵀ
t+1,1 (Vt+1,n,i(Γt+2) + γt+1)− max

1≤i≤Kt+1

Hᵀ
t+1,1γt+1,i

− max
i∈Ât+1(Ht+1,1)

Hᵀ
t+1,1Vt+1,n,i(Γt+2)

)
1#Ât+1(Ht+1,1)>11γt+1∈Ct+1(Ht+1,1).

The upper bound on cᵀ
√
n(β̂t − β∗t ) used to construct a confidence interval for cᵀβ∗t

is given by Ut(c) , sup
Γt+1∈R

PT
k=t+1

Nk
cᵀVt,n(Γt+1). Similarly, the lower bound is

obtained by replacing the sup with an inf.

3.7.2.1 Example: ACI for three stages

To illustrate the ACI for the general case and solidify the ideas presented in the

preceding section, we provide the bounds for the case where there are three stages of

treatment and an arbitrary number of treatments at each stage. Thus, T = 3 and

V3,n ,
√
n(β̂3 − β∗3). Since V3,n is the usual least squares estimator, it follows under
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(A1)-(A2) (see below) that V3,n is regular and its limiting distribution is normal. The

process V2,n(γ3) is indexed by γ3 ∈ RN3 and is defined as follows

V2,n(γ3) ,W′
2,n + Σ−1

2,nPnB
ᵀ
2H

ᵀ
3,0V3,n,0 + Σ−1

2,nPnB
ᵀ
2 U3,n1#Â3(H3,1)=1

+ Σ−1
2,nPnB

ᵀ
2 max
i∈Â3(H3,1)

Hᵀ
3,1V3,n,i1#Â3(H3,1)>1

+ Σ−1
2,nPnB

ᵀ
2

[
max

1≤i≤K3

Hᵀ
3,1 (V3,n,i + γ3,i)− max

1≤i≤K3

Hᵀ
3,1γ3,i − max

i∈Â3(H3,1)
Hᵀ

3,1V3,n,i

]

1#Â3(H3,1)>11γ3∈C3,n(H3,1).

A confidence bound for cᵀβ∗2 is formed using the boodstrap distribution of bounds

U2(c) , supγ3∈RN3 c
ᵀV2,n(γ3) and L2(c) , infγ3∈RN3 c

ᵀV2,n(γ3).

To form a confidence interval for the first stage coefficients, e.g. cᵀβ∗1 we use

the process V1,n((γ2, γ3)) which is indexed by γ2, γ3 ∈ RN2+N3 . The definition of

Vn,1((γ2, γ3)) is given by

V1,n((γ2, γ3)) ,W′
1,n + Σ−1

1,nPnB
ᵀ
1H

ᵀ
2,0V2,n,0(γ3) + Σ−1

1,nPnB
ᵀ
1 max
i∈Â2(H2,1)

Hᵀ
2,1V2,n,i(γ3)

+ Σ−1
1,nPnB

ᵀ
1

(
U2,n − max

i∈Â2(H2,1)
Hᵀ

2,1V2,n,i

)
1#Â2,1(H2,1)=1

+Σ−1
1,nPnB

ᵀ
1

(
max

1≤i≤K2

Hᵀ
2,1 (V2,n,i(γ3) + γ2,i)− max

1≤i≤K2

Hᵀ
2,1γ2,i − max

i∈Â2(H2,1)
Hᵀ

2,1V2,n,i(γ3)

)

1#Â2(H2,1)>11γ2∈C2,n(H2,1).

Thus, the upper and lower bounds used for constructing a confidence interval for cᵀβ∗1

are given by U1(c) , supγ2,γ3∈RN2+N2 c
ᵀV1,n((γ2, γ3)) and L1(c) , infγ2,γ3∈RN2+N3 c

ᵀV1,n((γ2, γ3)).

The form of V2,n(γ3) and V1,n((γ2, γ3)) show that computing the bounds U1(c) and

L1(c) require optimizing piecewise linear objective functions. Since these piecewise
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linear objectives are non-convex (non-concave) the resultant optimization problem is,

to the best of our knowledge, a mixed integer program. A simple stochastic approxi-

mation is given in Section 1.4 of this supplement.

3.7.3 Properties of the ACI in the general case

In this section, we state the general case analogs of the theorems given in the

main body of the paper. In particular, these results state that the ACI provides

asymptotically valid confidence intervals under mild regularity conditions. In addi-

tion, under further assumptions, it can be shown that the ACI delivers asymptotically

exact coverage.

We will make the following moment assumptions.

(A1) The histories Ht, features Bt, and outcomes Yt, satisfy the moment inequalities

P ||Ht||2 ||Bt−1||2 < ∞ for all t = 2, 3, . . . , T , and PY 2
t ||Bt||2 < ∞ for all

t = 1, 2, . . . , T .

(A2) Define:

1. Σt,∞ , PBᵀ
t Bt;

2. gT (BT , YT ; β∗T ) , Bᵀ
T (YT −BTβ

∗
T );

3. gt(Bt, Yt, Ht+1; β∗t ) , Bᵀ
t

(
YT +Hᵀ

t+1,0β
∗
t+1,0 + maxk∈A∗t+1

Hᵀ
t+1,1β

∗
t+1,k −Btβ

∗
t

)
;

then the matrices Σt,∞ for t = 1, . . . , T , and Ω , Cov(g1, g2, . . . , gT ) are strictly

positive definite.

(A3) The sequence λn tends to infinity and satisfies λn = o(n).

These assumptions are quite mild requiring the kind of moment and collinearity con-

straints which are often encountered in multiple regression. The last assumption (A3)
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concerns a user-controlled parameter and is thus readily satisfied. Let Vt,∞(Γt+1) de-

note the limiting process of Vt,n(Γt+1) which is indexed by Γt+1 ∈ R
QT
k=t+1 Nk . We

write Vt,∞ to denote the limiting distribution of Vn,t.

Theorem 3.7.1 (Validity of Population Bounds). Assume (A1)-(A3) and fix c ∈

Rdim(βt)∗.

1. The limiting distribution cᵀ
√
n(β̂t − β∗t ) is given by:

cᵀW′
t,∞ + cᵀΣ−1

t,∞PB
ᵀ
tH

ᵀ
t+1,0Vt+1,∞,0 + cᵀΣ−1

t,∞PB
ᵀ
t max
i∈A∗t+1(Ht+1,1)

Hᵀ
t+1Vt+1,∞,i.

2. The limiting distribution UT−1(c) is given by

cᵀW′
T−1,∞+cᵀΣ−1

T−1,∞PB
ᵀ
T−1H

ᵀ
T,0VT,∞,0+cᵀΣ−1

T−1,∞PB
ᵀ
T−1 max

i∈A∗T (HT,1)
Hᵀ
T,1VT,∞,i1#A∗T (HT,1)=1

+ sup
γT∈RNT

cᵀΣ−1
T−1,∞PB

ᵀ
T−1

(
max

i∈A∗T (HT,1)
Hᵀ
T,1(VT,∞,i+γT,i)− max

i∈A∗T (HT,1)
Hᵀ
T,1γT,i

)
1#A∗T (HT,1)>1.

3. For t < T − 1, the limiting distribution of Ut(c) is given (recursively) by:

cᵀW′
t,∞ + sup

Γt+1

{
cᵀΣ−1

t,∞PB
ᵀ
tH

ᵀ
T+1,0Vt+1,∞,0(Γt+2)

+ cᵀΣ−1
t,∞PB

ᵀ
t max
i∈A∗t+1(Ht,1)

Hᵀ
t+1,1Vt+1,∞,i(Γt+2)1#A∗t+1(Ht,1)=1

+cᵀΣ−1
t,∞PB

ᵀ
t

(
max

i∈A∗T (HT,1)
Hᵀ
t+1,1 (Vt+1,∞,i(Γt+2) + γt+1)− max

i∈A∗T (HT,1)
Hᵀ
t+1,1γt+1,i

)
1#A∗t+1(Ht,1)>1

}
.

When T = 2, these limiting distributions are equal in law to the limiting distributions

of U(c) and L(c) given in Section 2 of the main body of the paper. The preceding

theorem shows that the limiting distribution of Ut(c) is stochastically larger than that

of cᵀ
√
n(β̂t − β∗t ). A similar result can be stated in terms of Lt(c) by replacing the
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sup by an inf in the preceding theorem. The theorem is proved recursively using the

results proved for the two stage case and then repeatedly invoking the continuous

mapping theorem.

In order to form a confidence interval, the bootstrap distributions of Ut(c) and

Lt(c), which we denote by U (b)
t (c) and L(b)

t (c), are used. The next result states that

the bootstrap bounds are asymptotically consistent.

Theorem 3.7.2. Assume (A1)-(A3) and fix c ∈ Rdim(β∗t ). Then for (Ut(c),Lt(c)) and

(U (b)
t (c),L(b)

t (c)) converge to the same limiting distribution in probability. That is,

sup
ν∈BL1(R2)

∣∣∣∣Eν ((Ut(c),Lt(c)))− EMν
((
U (b)
t (c),L(b)

t (c)
)) ∣∣∣∣

converges to zero in probability.

Corollary 3.7.3. Assume (A1)-(A3) and fix c ∈ Rdim(β∗1 ). Let û denote the 1− α/2

quantile of U (b)
1 (c) and l̂ denote the α/2 quantile of L(b)(c). Then

PM

(
cᵀβ̂1 − û/

√
n ≤ cᵀβ∗1 ≤ cᵀβ̂1 − l̂/

√
n
)
≥ 1− α + oP (1).

Furthermore, if P
(
mini

∣∣Hᵀ
t,1β

∗
t,i −maxj 6=iH

ᵀ
t,1β

∗
t,j

∣∣ = 0
)

= 0 for all t = 2, 3, . . . , T ,

then the above inequality can be strengthened to equality.

The preceding result shows that the ACI can be used to construct valid confidence

intervals regardless of the underlying parameters or generative model. In addition,

when there is almost always a unique best treatment, then the ACI delivers asymp-

totically exact confidence intervals.
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3.8 Appendix III: Proofs for the ACI in more than two stages

and more than two treatments

Lemma 3.8.1 (Toy Inequality). Let a, b ∈ Rd be arbitrary. Then

max
1≤i≤d

(ai + bi)− max
1≤i≤d

bi ≤ max
1≤i≤d

ai ≤ ||a||∞.

Proof. Let i∗ ∈ arg maxi(ai + bi), then

max
1≤i≤d

(ai + bi)− max
1≤i≤d

bi ≤ ai∗ ≤ max
1≤i≤Kt

ai ≤ max
i
|ai| = ||a||∞.

Lemma 3.8.2. Consistency of β̂t. Assume (A1)-(A2), then for each t it follows that

√
n(β̂t−β∗t ) = OP (1), and PM

(∣∣∣∣√n(β̂
(b)
t − β̂t)

∣∣∣∣ > L
)

= oP (1) as L tends to infinity,

where PM denotes probability with respect to the bootstrap weights.

Proof. The proof proceeds by backwards induction. The base case follows immedi-

ately since
√
n(β̂T − β∗T ) is the usual least squares estimator and hence is asymptoti-

cally normal and thus OP (1). Suppose as the inductive step that
√
n(β̂t+1 − β∗t+1) =

OP (1), the result follows if we can establish that
√
n(β̂t − β∗t ) = OP (1). Note that

√
n(β̂t − β∗t ) can be decomposed as follows

√
n(β̂t − β∗t ) = W′

t,n + Σ−1
t,nPnBᵀ

tH
ᵀ
t+1,0

√
n(β̂t+1,0 − β∗t+1,0) + Σ−1

t,nPnBᵀ
t Ut+1,n. (3.50)

The proof that the sum of the first two terms is OP (1) is immediate and omitted.

Consider the third term.

∣∣∣∣PnBᵀ
t Ut+1,n

∣∣∣∣ =

∣∣∣∣∣∣∣∣√nPnBᵀ
t

(
max

1≤i≤Kt+1

Hᵀ
t+1,1β̂t+1,i − max

1≤i≤Kt+1

Hᵀ
t+1,1β

∗
t+1,i

) ∣∣∣∣∣∣∣∣
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≤ Pn||Bt||
√
n

∣∣∣∣ max
1≤i≤Kt+1

Hᵀ
t+1,1β̂t+1,i − max

1≤i≤Kt+1

Hᵀ
t+1,1β

∗
t+1,i

∣∣∣∣
≤ Pn||Bt|| max

1≤i≤Kt+1

∣∣Hᵀ
t+1,1

√
n(β̂t+1,i − β∗t+1,i)

∣∣
≤ Pn||Bt|| ||Ht+1,1|| max

1≤i≤Kt+1

∣∣∣∣√n(β̂t+1,i − β∗t+1,i)
∣∣∣∣

= OP (1),

where the last equality follows from the LLN and the induction hypothesis, the series

of inequalities follow from repeated use of the Cauchy-Schwartz inequality and the

fact that
∣∣maxz f(z) − maxz g(z)

∣∣ ≤ maxz
∣∣f(z) − g(z)

∣∣. This proves the first part

of the result. The second part of the result follows from an identical argument since

√
n(β̂

(b)
T −β̂T ) converges to the same limiting distribution as

√
n(β̂T−β∗T ) in probability

by the bootstrap central limit theorem (see for example Bickel and Freedman 1981)

and hence satisfies the condition stated in the theorem. The same induction argument

succeeds with only minor changes in notation.

Lemma 3.8.3. Assume (A1)-(A3). Define ∆t(ht,1) , #
{
Ât(ht,1)∆A∗t (ht,1)

}
. Let

ε > 0 be arbitrary. There exists subset Bt,ε of Rdim(β∗t,1) satisfying P (Ht,1 ∈ Bt,ε) ≥

1− ε, and supht,1∈Bt,ε ∆t(ht,1) = oP (1).

Proof. If ht,1 is any patient history for which #A∗t (ht,1) = 1 then ∆t(ht,1)1#A∗t (ht,1)>1 ≡

0. Let ht,1 be a patient history for which A∗t (ht,1) > 1 and let i denote an arbitrary

element in A∗t (ht,1). Then,

Tt,n,i(ht,1)/λn ,

(
hᵀ
t,1

(
Vt,n,i +

√
nβ∗t,i

)
−maxj 6=i h

ᵀ
t,1

(
Vt,n,j +

√
nβ∗t,j

))2

λnh
ᵀ
t,1ζ̂t,iht,1

≤
(
hᵀ
t,1Vt,n,i −maxj 6=i h

ᵀ
t,1

(
Vt,n,j +

√
n(β∗t,j − β∗t,i)

))2

λn||ht,1||2σt,n,i
, (3.51)

where σt,n,i is the smallest eigenvalue of ζ̂t,i. Using the triangle inequality, the last
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term on the right hand side (3.51) is further bounded above by

(∣∣hᵀ
t,1Vt,n,i

∣∣+
∣∣maxj 6=i h

ᵀ
t,1

(
Vt,n,j +

√
n(β∗t,j − β∗t,i)

∣∣))2

λn||ht,1||2σt,n,i
.

Next we note that

∣∣maxj 6=i h
ᵀ
t,1

(
Vt,n,j +

√
n(β∗t,j − β∗t,i)

) ∣∣
||ht,1||

≤ max
j 6=i
||Vt,n,j||∞.

To see this, let a(i) , arg maxj 6=i h
ᵀ
t,1

(
Vt,n,j +

√
n(β∗t,j − β∗t,i)

)
, and let i′ 6= i belong

to A∗t (ht,1) and notice that

hᵀ
t,1Vt,n,i′ ≤ hᵀ

t,1

(
Vt,n,a(i) +

√
n(β∗t,a(i) − β∗t,i)

)
≤ hᵀ

t,1Vt,n,a(i).

The above set of inequalities make use of the fact that hᵀ
t,1(β∗t,j−β∗t,i) ≤ 0 with equality

holding when j ∈ A∗t (ht,1). This result, the preceding discussion, and some algebra

show that Tt,n,i(ht,1)/λn is bounded above by

(||Vt,n,i||∞ + maxj 6=i ||Vt,n,j||∞)2

λn min1≤i≤Kt σt,n,i
≤ 4 max1≤j≤Kt ||Vt,n,j||2∞

λn min1≤i≤Kt σt,n,i
.

The right hand side of the above display is oP (1) and depends neither on ht,1 nor the

choice of i ∈ A∗t (ht,1). We have shown that

sup
ht,1∈Rdim(β∗t,1)

#(A∗t (ht,1) \ Ât(ht,1))1#A∗t (ht,1)>1 = oP (1).

Now let ε > 0 be arbitrary, then for each i = 1, 2, . . . , Kt we can choose ηi > 0
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sufficiently small so that

P

(
0 <

∣∣Hᵀ
t,1β

∗
t,i −maxj 6=iH

ᵀ
t,1β

∗
t,j

∣∣
||Ht,1||

< ηi

)
≤ ε/Kt,

where we have defined 0/0 = 0 for convenience. Let η , min1≤i≤Kt ηi and define

Bt,ε,i ,

{∣∣Hᵀ
t,1β

∗
t,i −maxj 6=iH

ᵀ
t,1β

∗
t,j

∣∣
||Ht,1||

= 0

}⋃{∣∣Hᵀ
t,1β

∗
t,i −maxj 6=iH

ᵀ
t,1β

∗
t,j

∣∣
||Ht,1||

> η

}
,

so that P (Ht,1 ∈ Bt,ε,i) ≥ 1 − ε/Kt. Define Bt,ε ,
⋂Kt
i=1 Bt,ε,i, the union bound

ensures that P (Ht,1 ∈ Bt,ε) ≥ 1 − ε. Let ht,1 be arbitrary element of Bt,ε. We

now consider the limiting behavior of Tt,n,i(ht,1)/λn. We consider the following three

cases: (i) i ∈ A∗t (ht,1) and #A∗t (ht,1) = 1, (ii) i ∈ A∗t (ht,1) and #A∗t (ht,1) > 1, and

(iii) i /∈ A∗t (ht,1). In the first case,
√
Tt,n,i(ht,1)/λn is bounded below by

∣∣∣∣hᵀ
t,1Vt,n,i −maxj 6=i h

ᵀ
t,1

(
Vt,n,j +

√
n(β∗t,j − β∗t,i)

) ∣∣∣∣√
λnνt,n,i||ht,1||

,

where νt,n,i denotes the largest eigenvalue of ζ̂i. We can further bound the above

quantity by

min
j 6=i

∣∣∣∣hᵀ
t,1Vt,n,i − hᵀ

t,1

(
Vt,n,j +

√
n(β∗t,j − β∗t,i)

) ∣∣∣∣√
λnνt,n,i||ht,1||

,

which, in turn, is further bounded below by

minj 6=i
∣∣hᵀ
t,1

√
n(β∗t,j − β∗t,i)

∣∣− 2 max1≤i≤Kt
∣∣hᵀ
t,1Vt,n,i

∣∣√
λnνt,n,i||ht,1||

.

A final lower bound is obtained by taking the infimum over all ht,1 in Bt,ε and the
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maximum over the eigenvalues νt,n,i. This bound is given by

√
nη − 2 max1≤i≤Kt ||Vt,n,i||∞√

λn max1≤i≤Kt νt,n,i
,

which does not depend on either ht,1 or i, and diverges to ∞ in probability as n

tends to ∞. Consider next case (ii). It was shown above that if ht,1 is such that

#A∗t (ht,1) > 1 and i ∈ A∗t (ht,1) then Tt,n,i(ht,1)/λn is bounded above by

(||Vt,n,i||∞ + maxj 6=i ||Vt,n,j||∞)2

λn min1≤i≤Kt σt,n,i
≤ 4 max1≤j≤Kt ||Vt,n,j||2∞

λn min1≤i≤Kt σt,n,i
,

which does not depend on either ht,1 or i and converges to zero in probability as n tends

to ∞. To address case (iii) suppose that ht,1 belongs to Bt,ε and that i /∈ A∗t (ht,1).

Following the arguments given above,
√
Tt,n,i(ht,1)/λn is bounded below by

∣∣∣∣hᵀ
t,1Vt,n,i −maxj 6=i h

ᵀ
t,1

(
Vt,n,j +

√
n(β∗t,j − β∗t,i)

) ∣∣∣∣√
λn min1≤i≤Kt νt,n,i||ht,1||

.

A further lower bound is given by

∣∣maxj 6=i h
ᵀ
t,1(Vt,n,j +

√
n(β∗t,j − β∗t,i)

∣∣− ∣∣hᵀ
t,1Vt,n,i

∣∣√
λn min1≤i≤Kt νt,n,i||ht,1||

≥
√
nη − 2 max1≤i≤Kt ||Vt,n,i||∞√

λn min1≤i≤Kt νt,n,i
.

The right hand side of the above display diverges to ∞ in probability as n tends to

∞. Furthermore, this lower bound does not depend on either ht,1 or i. The results

for cases (i) and (ii) show that supht,1∈Bt,ε #
(
A∗t (ht,1) \ Ât(ht,1)

)
= oP (1). The result

for case (ii) shows that supht,1∈Bt,ε #
(
Ât(ht,1) \ A∗t (ht,1)

)
= op(1).
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Corollary 3.8.4. Assume (A1)-(A3). Then for each t ≥ 2

Pn||Bt−1|| ||Ht,1||1∆t(Ht,1)>0 = OP (1).

Proof. Let η > 0 be arbitrary, we intend to show that

P
(
Pn||Bt−1|| ||Ht,1||1∆t(Ht,1)>0 > η

)
→ 0

as n tends to ∞. Choose ε sufficiently small so that P ||Bt−1|| ||Ht,1||1Ht,1 /∈Bt,ε ≤ η/2.

where Bt,ε is as defined in Lemma (3.8.3). Then notice that

Pn||Bt−1|| ||Ht,1||1∆t(Ht,1)>0 ≤ Pn||Bt−1|| ||Ht,1|| sup
ht,1∈Bt,ε

1∆t(ht,1)>0+Pn||Bt−1|| ||Ht,1||1ht,1 /∈Bt,ε .

The right hand side of the above display is smaller than η with probability tending

to one by appeal to Lemma (3.8.3), the LLN, and Slutsky’s theorem.

Proof of supplement Theorem 1.1 part 1. This proof proceeds by induction on t and

for convenience is broken into several intermediate steps.

Step 1. In this step we establish the limiting distribution of
√
n(β̂T−1 − β∗T−1).

Standard results for least squares show that
√
n(β̂T − β∗T ) is asymptotically normal

with mean zero. Recall that
√
n(β̂T−1 − β∗T−1) is equal to

W′
T−1,n + Σ−1

T−1,nPnB
ᵀ
T−1

√
n(β̂T−1,0 − β∗T−1,0) + Σ−1

T−1,nPnB
ᵀ
T−1UT,n, (3.52)

where

UT,n ,
√
n

(
max

1≤i≤KT
Hᵀ
T,1β̂T,i − max

1≤i≤KT
Hᵀ
T,1β

∗
T,i

)
.

Notice that ||PnBᵀ
1 UT,n|| is Op(1) by appeal to Lemma (3.8.1), the asymptotic nor-
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mality of
√
n(β̂T−β∗T ),and (A1). Thus, by Slutsky’s theorem we can replace Σ−1

T−1,n in

(3.52) with Σ−1
T−1,∞ whilst incurring an error of no more than oP (1). Let c ∈ Rdim(B1)

and M > 0 be arbitrary. The class of functions

F ,
{
f(βT ) = cᵀΣ−1

T−1,∞B
ᵀ
T−1

(
max

1≤i≤KT
Hᵀ
T,1βT,i

)
: βT ∈ B(M,β∗T )

}

is a P -measurable BUEI class with square integrable envelope ||Σ−1
T−1,∞B

ᵀ
T−1||||HT−1||

and hence Donsker. This fact is established using BUEI and measurability preserva-

tion properties (see Lemma 9.16 part (iii) in Kosorok 2008). Using the consistency of

β̂T and stochastic equicontinuity, it follows that

Σ−1
T−1,∞PnBᵀ

T−1UT,n = Σ−1
T−1,∞PB

ᵀ
T−1UT,n + Σ−1

T−1,∞(Pn − P )Bᵀ
T−1UT,n

= Σ−1
T−1,∞PB

ᵀ
T−1UT,n + oP (1).

In particular, let Gn ,
√
n(Pn−P ) then cᵀΣ−1

T−1,∞(Pn−P )Bᵀ
T−1UT,n = Gn

(
f(β̂T )− f(β∗T )

)
.

For δ, ε > 0 arbitrary we can chooseM sufficiently large so that P
(
||β̂T − β∗T || > M/

√
n
)
≤

δ/2. Thus,

P

(∣∣∣∣Gn

(
f(β̂T )− f(β∗T )

) ∣∣∣∣ > ε

)
≤ P

(
||β̂T − β∗T || > M/

√
n
)

+ P

(
sup

s∈B(M/
√
n,β∗T )

∣∣Gn (f(s)− f(β∗T ))
∣∣ > ε

)
.

The right hand side of the above display can be made to be less than δ for sufficiently

large n by appeal to the equicontinuity of Gn. Finally, since c was arbitrary we have

shown convergence in probability to zero of each component Σ−1
T−1,∞(Pn−P )Bᵀ

T−1UT,n

and thus convergence in Euclidean norm follows.
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Let ∆T (HT,1) is as defined in Lemma (3.8.3) As a next step write

Σ−1
T−1,∞PB

ᵀ
T−1UT,n = Σ−1

T−1,∞PB
ᵀ
T−1 max

i∈A∗T (HT,1)
Hᵀ
T,1VT,n,i1∆T (HT,1)=0 + Σ−1

T−1,∞PB
ᵀ
T−1UT,n1∆T (HT,1)≥1

= Σ−1
T−1,∞PB

ᵀ
T−1 max

i∈A∗T (HT,1)
Hᵀ
T,1VT,n,i + oP (1),

where the last equality follows from Lemma (3.8.3), Lemma (3.8.1), and (A1). The

map δ 7→ Σ−1
T−1,∞PB

ᵀ
T−1 maxi∈A∗T (HT,1) H

ᵀ
T,1δi is continuous with respect to the usual

metric on RNT . The remainder of the derivation of the limiting distribution of

VT−1,n =
√
n(β̂T−1 − β∗T−1) follows from the continuous mapping theorem and the

central limit theorem.

Step 2. In this step we derive the limiting distribution of
√
n(β̂T−2 − β∗T−2). Which

can be decomposed as

W′
T−2,n + Σ−1

T−2,nPnB
ᵀ
T−2H

ᵀ
T−1,0

√
n(β̂T−1,0 − β∗T−1,0) + Σ−1

T−2,nPnB
ᵀ
T−2UT−1,n,

where

UT−1,n ,
√
n

(
max

1≤i≤KT−1

Hᵀ
T−1,1β̂T−1,i − max

1≤i≤KT−1

Hᵀ
T,1β

∗
T−1,i

)
and

W′
T−2,n = Σ−1

T−2,n

√
nPnBᵀ

T−2

(
YT−2 +Hᵀ

T−1,0β
∗
T−1,0 + max

1≤i≤KT−1

Hᵀ
T−1,1β

∗
T−1,i −B

ᵀ
T−2β

∗
T−2

)
= Σ−1

T−2,n

√
n(Pn − P )Bᵀ

T−2

(
YT−2 +Hᵀ

T−1,0β
∗
T−1,0 + max

1≤i≤KT−1

Hᵀ
T−1,1β

∗
T−1,i −B

ᵀ
T−2β

∗
T−2

)
.

Thus, W′
T−2,n is seen to be asymptotically normal from the central limit theorem and

Slutsky’s theorem. Next, we note that the same arguments supplied in step 1 above
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can be used to show that

PnBᵀ
T−2UT−1,n = PBᵀ

T−2UT−1,n + (Pn − P )Bᵀ
T−2UT−1,n

= PBᵀ
T−2UT−1,n + oP (1).

Furthermore, it follows that

PBᵀ
T−2UT−1,n = PBᵀ

T−2

√
n

(
max

1≤i≤KT−1

Hᵀ
T−1β̂T−1,i − max

1≤i≤KT−1

Hᵀ
T−1,1β

∗
T−1,i

)
= PBᵀ

T−2

√
n

(
max

i∈ÂT−1(HT−1,1)
Hᵀ
T−1,1β̂T−1,i − max

i∈A∗T−1(HT−1,1)
Hᵀ
T−1,1β

∗
T−1,i

)

which can be decomposed as

PBᵀ
T−2 max

i∈A∗T−1(HT−1,1)
Hᵀ
T−1,1

√
n(β̂T−1,i − βT−1,i)1∆T−1(HT−1,1)=0

+PBᵀ
T−2

√
n

(
max

i∈ÂT−1(HT−1,1)
Hᵀ
T−1,1β̂T−1,i − max

i∈A∗T−1(HT−1,1)
Hᵀ
T−1,1β

∗
T−1,i

)
1∆T−1(HT−1,1)>0.

Using Lemma (3.8.3) and following the same argument as given in step 1, it can be

concluded that the quantity in the above display is equal to

PBᵀ
T−2 max

i∈A∗T−1(HT−1,1)
Hᵀ
T−1,1

√
n(β̂T−1,i − β∗T−1,i) + oP (1).

The map δ 7→ PBᵀ
T−2 maxi∈A∗T−1(HT−1,1) H

ᵀ
T−1,1δi is continuous on RNT−1 . Conse-

quently, the continuous mapping theorem shows that cᵀ
√
n(β̂T−1 − β∗T−1) is equal

to

cᵀW′
T−2,n + cᵀΣᵀ

T−2,nPB
ᵀ
T−2

√
n(β̂T−1,0 − β∗T−1,0)
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+ cᵀΣ−1
T−2,nPB

ᵀ
T−2 max

i∈A∗T−2(HT−1,1)
Hᵀ
T−1,1

√
n(β̂T−1,i − β∗T−1,i) + oP (1),

which converges to the desired limit by the central limit theorem and Slutsky’s the-

orem.

Step 3. The preceding argument used to establish the limiting distribution of

cᵀ
√
n(β̂T−2 − β∗T−2) depended on the preceding stage only through

√
n(β̂T−1 − β∗T−1)

and the sets ÂT−1(hT−1,1) and A∗T−1(hT−1,1). Thus, since the limiting behavior of

Ât(ht,1) has been described for all t in Lemma 3.8.3, the result for all t follows from

backwards induction on t.

Lemma 3.8.5. Assume (A1) and (A2). Let ε > 0 and K > 0 be arbitrary. Fix a

vector c ∈ Rdim(BT−1) and define, for each δ ∈ B(K, 0) ⊂ RNT , a function in l∞(RNT )

given by

gT,δ(γ) , PcᵀBᵀ
T−1

(
max

i∈A∗T (HT,1)
Hᵀ
T,1(δi + γi)− max

i∈A∗T (HT,1)
Hᵀ
T,1γi

)
1#A∗T (HT,1)>1.

Then, there exists M > 0 so that

sup
δ∈B(K,0)

∣∣∣∣ sup
δ∈B(M,0)

gT,δ(γ)− sup
γ∈RNT

gT,δ(γ)

∣∣∣∣ < ε.

Proof. See the proof of Lemma (3.6.10).

Lemma 3.8.6. Assume (A1) and (A2). Let M > 0 be arbitrary and let gT,δ be as

defined in Lemma (3.8.5). For an arbitrary subset V of Rdim(β∗T,1), and fixed value

δ ∈ Rdim(β∗T,1), let gT,δ(V ) denote the image of V under the map gT,δ. Then, for all

sufficiently large n gT,δ (B(M, 0)) ⊆ gT,δ (ST,n).

Proof. Let ν ∈ B(M, 0) be arbitrary and let ν ′ satisfy ν ′i = νi +
√
nβ∗T,i for all i =

1, 2, . . . , KT , then gT,δ(ν) = gT,δ(ν
′). Furthermore, ||ν ′−

√
nβ∗T,:||2∞ = ||ν||2∞ ≤

√
NTM
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which is smaller than λn for sufficiently large n. This proves the result.

Corollary 3.8.7. Assume (A1) and (A2). Let K > 0 and M > 0 be arbitrary ,and

fix a vector c ∈ Rdim(BT−1). For each δ ∈ B(K, 0) ⊂ RNT let gT,δ be as defined in the

Lemma (3.8.5). Then,

inf
δ∈B(K,0)

(
sup
γ∈ST,n

gT,δ(γ)− sup
γ∈B(M,0)

gT,δ(γ)

)
≥ 0.

Proof. Let n be sufficiently large so that λn >
√
NTM . Then, by appeal to the

preceding lemma, it follows that for arbitrary δ ∈ Rdim(β∗T,1), supγ∈ST,n gT,δ(γ) −

supγ∈B(M,0) gT,δ(γ) ≥ 0. Take the infimum over δ to obtain the result.

Proof of supplement Theorem 1.1 part 2. We will derive the limiting distribution of

VT−1(γT ) as a process in l∞(RNT ). Recall that VT−1,n(γT ) has the following decom-

position

VT−1,n(γT ) = W′
T−1,n + Σ−1

T−1,nPnB
ᵀ
T−1H

ᵀ
T,0VT,n,0 + Σ−1

T−1,nPnB
ᵀ
T−1UT,n1#ÂT (HT,1)=1

+ Σ−1
T−1,nPnB

ᵀ
T−1

[
max

i∈ÃT (HT,1)
Hᵀ
T,1(VT,n,i + γT,i)− max

i∈ÃT (HT,1)
Hᵀ
T,1VT,n,i

]
1#ÂT (HT,1)>1.

(3.53)

The limiting behavior of the first three terms in (3.53) was described in the proof of

Theorem 1.1 part 1. Thus, we only consider the behavior of the last term of (3.53).

Using Lemma (3.8.1) it is seen that

∣∣∣∣∣∣∣∣PnBT−1

[
max

i∈ÃT (HT,1)
Hᵀ
T,1(VT,n,i + γT,i)− max

i∈ÃT (HT,1)
Hᵀ
T,1VT,n,i

]
1#ÂT (HT,1)>1

∣∣∣∣∣∣∣∣
is bounded above by Pn||BT−1|| ||HT,1||max1≤i≤KT ||VT,n,i|| = Op(1). Thus, we can
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replace Σ−1
T−1,n with Σ−1

T−1,∞ by appeal to Slutsky’s theorem. Furthermore, use of

Lemma (3.8.1) and Corollary (3.8.4) shows that

Σ−1
T−1,∞PnBT−1

[
max

i∈ÃT (HT,1)
Hᵀ
T,1(VT,n,i + γT,i)− max

i∈ÃT (HT,1)
Hᵀ
T,1VT,n,i

]
1#ÂT (HT,1)>1

can be replaced with

Σ−1
T−1,∞PnBT−1

[
max

i∈A∗T (HT,1)
Hᵀ
T,1(VT,n,i + γT,i)− max

i∈A∗T (HT,1)
Hᵀ
T,1VT,n,i

]
1#A∗T (HT,1)>1,

(3.54)

up to a term of order oP (1). Next, notice that the class of functions given by

F ,
{

max
i∈A∗T (HT,1)

Hᵀ
T,1(δi + γT,i)− max

i∈A∗T (HT,1)
Hᵀ
T,1γT,i , δ ∈ B(K, 0) γ ∈ RNT

}

is a P -measurable BUEI class with square integrable envelope and hence is Donsker.

One way to see this is to reparametrize members of F as

max
1≤i≤KT

(
Hᵀ
T,1(δi + γT,i)1i∈A∗T (HT,1) −

KT∑
i=1

(
1 + |Hᵀ

T,1(δi + γT,i)|
)

1i/∈A∗T (HT,1)

)

− max
1≤i≤KT

(
Hᵀ
T,1γT,i1i∈A∗T (HT,1) −

[
KT∑
j=1

(
1 + |Hᵀ

T,1γT,j|
)]

1i/∈A∗T (HT,1)

)

and notice that this class can be constructed by applying pointwise maximizations and

additions of VC classes. Since these operations are VC preserving (see for example,

Lemma 9.9 Kosorok 2008) and F has envelope ||HT,1||K which is square integrable,

the class F is BUEI. Measurability is seen by arguing that the class can be arbitrarily

closely approximated by a class that restricts γ and δ be rational vectors. Finally,

it follows that for any unit vector c ∈ Rdim(B1) the class cᵀΣ−1
T−1,∞BT−1F is also P -

measurable BUEI with square integrable envelope proportional to ||BT−1|| ||HT,1||.
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Thus, we can replace Pn with P in (3.54) up to a term of order oP (1). The final

desired result follows from the continuous mapping theorem.

Proof of supplement Theorem 1.1 part 3. The proof proceeds by induction. The lim-

iting distribution of VT−1,n(γT ) was derived in the proof of Supplement Theorem 1.1

part 2. We now consider the limiting distribution of VT−2,n((γT−1, γT−2)). Recall that

VT−2,n((γT−1, γT−1)) = W′
T−2,n + Σ−1

T−2,nPnB
ᵀ
T−2H

ᵀ
T−1,1VT−1,n,0(γT )

+ Σ−1
T−2,nPnB

ᵀ
T−2

(
UT−2,n − max

i∈ÃT−1(HT−1,1)
Hᵀ
T−1,1VT−1,n,i

)
1#ÂT−1(HT−1,1)=1

+Σ−1
T−2,nPnB

ᵀ
T−2

(
max

i∈ÃT−1(HT−1,1)
Hᵀ
T−1,1 (VT−1,n,i(γT ) + γT−1,i)− max

i∈ÃT−1(HT−1,1)
Hᵀ
T,1γT−1,i

− max
i∈ÃT−1(HT−1,1)

Hᵀ
T,1VT−1,n,i(γT )

)
1#ÂT−1(HT−1,1)>1. (3.55)

The limiting distribution of W′
T−2 was derived in the proof of Supplement Theorem

1.1 part 1. The limiting distribution of the second term in (3.55) follows from the

continuous mapping theorem and the LLN. The third term in (3.55) is seen to be oP (1)

by first noting that this term is zero whenever ÂT−1(HT−1,1) = A∗T−1(HT−1,1) and

then applying Lemma (3.8.3) and arguments similar to those given in parts 1 and 2 of

Supplement Theorem 1.1. We will focus attention on the last term in (3.55). As a first

step, we note that this term is seen to be OP (1) by Lemma (3.8.1) and Supplement

Theorem 1.1 part 2. Thus, by appeal to Slutsky’s theorem, we can replace Σ−1
T−2,n with

Σ−1
T−2,∞. Arguments paralleling those given in the proof of Supplement Theorem 1.1

part 2 show that we can replace the indicator 1#ÂT−1(HT−1,1)>1 with 1#A∗T−1(HT−1,1)>1

and replace the sets ÃT−1(HT−1,1) with A∗T−1(HT−1,1) incurring a difference of the

order oP (1). Finally, the argument at the end of Supplement Theorem 1.1 shows that

we can replace Pn with P , again, up to a term of the order oP (1). Thus, the last term
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in (3.55) is equal to

Σ−1
T−2,∞PB

ᵀ
T−2

(
max

i∈A∗T−1(HT−1,1)
Hᵀ
T−1,1 (VT−1,n,i(γT ) + γT−1,i)− max

i∈A∗T−1(HT−1,1)
Hᵀ
T,1γT−1,i

− max
i∈A∗T−1(HT−1,1)

Hᵀ
T,1VT−1,n,i(γT )

)
1#A∗T−1(HT−1,1)>1 + oP (1).

The limiting distribution of VT−2,n((γT−1, γT )) is obtained by appeal to the contin-

uous mapping theorem and appeal to the Cramer-Wold device. Furthermore, the

limiting distribution of VT−2,n((γT−1, γT )) was obtained from that of VT−1,n(γT ) is a

way that did not depend on the stage t = T − 2. That is, exactly the same argu-

ments yield the desired limiting distribution of VT−3,n((γT−2, γT−1, γT )) from that of

VT−2,n((γT−1, γT )). Thus, the result follows from induction.

3.9 Appendix IV: Bias reduction for non-regular problems

In this section we briefly discuss the issue of bias reduction for non-regular prob-

lems. It is now well known that unbiased estimators do not exist for non-smooth

functionals (see Robins 2004, appendix I; and Porter and Hirano 2009). Further-

more, it has been shown that attempting to reduce the bias at a non-regular point in

the parameter space can dramatically inflate the variance and subsequently the MSE

elsewhere in the paramter space (Doss and Sethuraman 1989; Brown and Liu 1993;

Chen 2004). Here, we attempt to illustrate this phenomenon in a toy example that

is relevant for medical decision making.

Suppose that X1 and X2 are independent normal random variables with means

µ1 and µ2 respectively, both are assumed to have unit variance. We consider the task

of estimating θ , max(µ1, µ2) based on a single observation X1 = x1 and X2 = x2.

Notice that this problem corresponds to a toy decision making problem where µi
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denotes the mean response for patients following treatment i. The MLE is given by

θ̂mle , max(X1, X2). It is clear that the MLE suffers from upward bias since

θ , max(µ1, µ2) = max(EX1,EX2) ≤ E max(X1, X2).

It will be convenient to write the θ̂mle as

θ̂mle , (X1 +X2)/2 + |X1 −X2|/2.

The first term on the right hand side of the above display is the UMVU estimator

of θ when there is no treatment effect (e.g. µ1 = µ2). The second term can be seen

as an estimator of the advantage of recommending treatment via the decision rule

arg maxi=1,2Xi compared with randomly assigning treatment according to an even

odds coin flip. The thresholding estimators of Chakraborty et al. (2009) and Moodie

and Richardson (2007) shrink the term |X1 − X2|/2 towards zero in an attempt to

alleviate some of the bias inherent to θ̂mle. In particular, an analogue of the soft-

thresholding estimator of Chakraborty et al. (2009) for this problem is given by

θ̂soft , (X1 +X2)/2 +

[
1− λ

|X1 −X2|

]
+

|X1 −X2|/2

where λ denotes a tuning parameter. An analogue of the hard-thesholding estimator

of Moodie and Richardson (2007) is given by

θ̂hard , (X1 +X2)/2 + 1|X1−X2|≥λ|X1 −X2|/2,

again where λ is a tuning parameter. Notice that both estimators reduce to θ̂mle when

λ = 0. As we will see, the bias θ̂mle is largest when µ1 = µ2. Both θ̂soft and θ̂hard
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MSE of soft thresholding estimator
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Figure 3.1: Left: The bias of θ̂soft as a function of effect size µ1 − µ2 and tuning
parameter λ. Reducing the bias at µ1−µ2 = 0 requires increasing λ which
is seen to dramatically inflate bias elsewhere. Right: The MSE of θ̂soft as
a function of effect size µ1 − µ2 and tuning parameter λ. Attempting to
reduce the bias at µ1 − µ2 = 0 results in a modest reduction in MSE at
µ1 − µ2 = 0 but inflates the MSE significantly elsewhere.

seek to alleviate some of this bias by shrinking θ̂mle towards (X1 + X2)/2 whenever

|X1 −X2| is small.

Figure (3.9) shows the bias and MSE of the soft-threshold estimator θ̂soft as a

function of effect size µ1 − µ2 and tuning parameter λ. The figure shows that by

increasing λ the bias at µ1 − µ2 = 0 decreases, however, modest increases in λ lead

to dramatic increases in bias non-zero values of µ1 − µ2 and subsequently inflate

the MSE. Figure (3.9) shows results of a similar nature for the hard-thresholding

estimator θ̂hard. These figures show that the price of bias reduction at µ1 − µ2 = 0

can be quite severe unless one has very strong prior knowledge about the true value

of µ1 − µ2.
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Bias of hard thresholding estimator
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MSE of hard thresholding estimator
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Figure 3.2: Left: The bias of θ̂hard as a function of effect size µ1 − µ2 and tuning
parameter λ. Reducing the bias at µ1−µ2 = 0 requires increasing λ which
is seen to dramatically inflate bias elsewhere. Right: The MSE of θ̂hard as
a function of effect size µ1 − µ2 and tuning parameter λ. Attempting to
reduce the bias at µ1 − µ2 = 0 results in a modest reduction in MSE at
µ1 − µ2 = 0 but inflates the MSE significantly elsewhere.
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3.10 Appendix V: Additional empirical results

Here, we present additional empirical results for the ACI and competitors. We

give results for the generative models in the main body of the paper with varying

dataset sizes, for generative models with three treatments at the second stage, and

for generative models with three stages of binary treatments. All of the results in

this section are based on 1000 Monte Carlo repetitions, and for the ACI we use the

tuning parameter λn = log log n.

3.10.1 Varying dataset size

First, we present a suite of experiments with the two-stage, two-action models

presented in the main body of the paper, with varying data set size N . Tables 3.12

through 3.23 show our results.
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N = 150
Ex. 1
NR

Ex. 2
NNR

Ex. 3
NR

Ex. 4
NNR

Ex. 5
NR

Ex. 6
R

Ex. 7
R

CPB 0.892* 0.908* 0.924* 0.925* 0.940 0.930* 0.936
PPE 0.926* 0.930* 0.933* 0.934* 0.934* 0.907* 0.928*
ST 0.935* 0.930* 0.889* 0.878* 0.891* 0.620* 0.687*
ACI 0.956 0.964 0.954 0.955 0.950 0.957 0.948

N = 300
Ex. 1
NR

Ex. 2
NNR

Ex. 3
NR

Ex. 4
NNR

Ex. 5
NR

Ex. 6
R

Ex. 7
R

CPB 0.899* 0.915* 0.947 0.949 0.939 0.967 0.961
PPE 0.949 0.946 0.952 0.948 0.941 0.948 0.958
ST 0.952 0.945 0.935* 0.929* 0.935* 0.644* 0.780*
ACI 0.970 0.976 0.969 0.970 0.956 0.973 0.965

N = 500
Ex. 1
NR

Ex. 2
NNR

Ex. 3
NR

Ex. 4
NNR

Ex. 5
NR

Ex. 6
R

Ex. 7
R

CPB 0.892* 0.906* 0.935* 0.933* 0.929* 0.942 0.943
PPE 0.936 0.938 0.941 0.937 0.929* 0.934* 0.938
ST 0.956 0.949 0.923* 0.917* 0.910* 0.664* 0.790*
ACI 0.965 0.976 0.964 0.968 0.952 0.950 0.944

N = 1000
Ex. 1
NR

Ex. 2
NNR

Ex. 3
NR

Ex. 4
NNR

Ex. 5
NR

Ex. 6
R

Ex. 7
R

CPB 0.907* 0.933* 0.933* 0.943 0.944 0.945 0.951
PPE 0.949 0.938 0.949 0.947 0.952 0.942 0.949
ST 0.953 0.933* 0.944 0.934* 0.934* 0.813* 0.880*
ACI 0.968 0.980 0.968 0.971 0.961 0.946 0.951

Table 3.12:
Monte Carlo estimates of coverage probabilities of confidence intervals for
β∗1,0,0 (intercept term) at the 95% nominal level. Generative models have
two stages and two actions per stage. Estimates are constructed using
1000 datasets of size 150, 300, 500, and 1000 are drawn from each model,
and 1000 bootstraps drawn from each dataset. Estimates significantly
below 0.95 at the 0.05 level are marked with ∗. Models are designated
NR = non-regular, NNR = near-non-regular, R = regular.
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N = 150
Ex. 1
NR

Ex. 2
NNR

Ex. 3
NR

Ex. 4
NNR

Ex. 5
NR

Ex. 6
R

Ex. 7
R

CPB 0.404* 0.404* 0.430* 0.429* 0.457 0.449* 0.450
PPE 0.376* 0.376* 0.418* 0.418* 0.451* 0.448* 0.453*
ST 0.344* 0.344* 0.427* 0.427* 0.466* 0.469* 0.474*
ACI 0.518 0.518 0.487 0.487 0.486 0.494 0.476

N = 300
Ex. 1
NR

Ex. 2
NNR

Ex. 3
NR

Ex. 4
NNR

Ex. 5
NR

Ex. 6
R

Ex. 7
R

CPB 0.284* 0.284* 0.300 0.300 0.320 0.314 0.314
PPE 0.264 0.264 0.292 0.292 0.316 0.316 0.317
ST 0.240 0.240 0.289* 0.289* 0.319* 0.326* 0.324*
ACI 0.367 0.367 0.343 0.343 0.341 0.338 0.328

N = 500
Ex. 1
NR

Ex. 2
NNR

Ex. 3
NR

Ex. 4
NNR

Ex. 5
NR

Ex. 6
R

Ex. 7
R

CPB 0.218* 0.218* 0.232* 0.232* 0.248* 0.243 0.243
PPE 0.203 0.203 0.226 0.226 0.245* 0.247* 0.245
ST 0.184 0.185 0.221* 0.222* 0.245* 0.253* 0.251*
ACI 0.284 0.284 0.265 0.265 0.265 0.255 0.249

N = 1000
Ex. 1
NR

Ex. 2
NNR

Ex. 3
NR

Ex. 4
NNR

Ex. 5
NR

Ex. 6
R

Ex. 7
R

CPB 0.155* 0.155* 0.164* 0.164 0.175 0.171 0.171
PPE 0.144 0.144 0.159 0.160 0.173 0.173 0.172
ST 0.131 0.131* 0.156 0.156* 0.172* 0.179* 0.176*
ACI 0.202 0.202 0.188 0.188 0.187 0.174 0.172

Table 3.13:
Monte Carlo estimates of coverage probabilities of confidence intervals for
β∗1,0,0 (intercept term) at the 95% nominal level. Generative models have
two stages and two actions per stage. Estimates are constructed using
1000 datasets of size 150, 300, 500, and 1000 are drawn from each model,
and 1000 bootstraps drawn from each dataset. Estimates significantly
below 0.95 at the 0.05 level are marked with ∗. Models are designated
NR = non-regular, NNR = near-non-regular, R = regular.
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N = 150
Ex. 1
NR

Ex. 2
NNR

Ex. 3
NR

Ex. 4
NNR

Ex. 5
NR

Ex. 6
R

Ex. 7
R

CPB 0.942 0.944 0.948 0.948 0.928* 0.942 0.939
PPE 0.946 0.946 0.945 0.945 0.931* 0.936 0.939
ST 0.946 0.946 0.950 0.950 0.941 0.941 0.941
ACI 0.964 0.966 0.958 0.957 0.941 0.947 0.940

N = 300
Ex. 1
NR

Ex. 2
NNR

Ex. 3
NR

Ex. 4
NNR

Ex. 5
NR

Ex. 6
R

Ex. 7
R

CPB 0.942 0.947 0.952 0.950 0.948 0.946 0.958
PPE 0.944 0.946 0.953 0.953 0.943 0.942 0.956
ST 0.945 0.945 0.948 0.949 0.951 0.940 0.955
ACI 0.960 0.959 0.957 0.957 0.955 0.946 0.958

N = 500
Ex. 1
NR

Ex. 2
NNR

Ex. 3
NR

Ex. 4
NNR

Ex. 5
NR

Ex. 6
R

Ex. 7
R

CPB 0.948 0.951 0.954 0.953 0.948 0.952 0.953
PPE 0.948 0.950 0.955 0.953 0.951 0.951 0.952
ST 0.948 0.948 0.954 0.953 0.951 0.952 0.949
ACI 0.967 0.966 0.964 0.964 0.961 0.952 0.953

N = 1000
Ex. 1
NR

Ex. 2
NNR

Ex. 3
NR

Ex. 4
NNR

Ex. 5
NR

Ex. 6
R

Ex. 7
R

CPB 0.941 0.945 0.938 0.944 0.937 0.941 0.941
PPE 0.942 0.944 0.939 0.942 0.936 0.940 0.941
ST 0.945 0.947 0.944 0.943 0.941 0.939 0.945
ACI 0.963 0.961 0.955 0.955 0.945 0.941 0.941

Table 3.14:
Monte Carlo estimates of coverage probabilities of confidence intervals
for β∗1,0,1 (main effect of history) at the 95% nominal level. Generative
models have two stages and two actions per stage. Estimates are con-
structed using 1000 datasets of size 150, 300, 500, and 1000 are drawn
from each model, and 1000 bootstraps drawn from each dataset. Esti-
mates significantly below 0.95 at the 0.05 level are marked with ∗. Models
are designated NR = non-regular, NNR = near-non-regular, R = regular.
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N = 150
Ex. 1
NR

Ex. 2
NNR

Ex. 3
NR

Ex. 4
NNR

Ex. 5
NR

Ex. 6
R

Ex. 7
R

CPB 0.331 0.331 0.333 0.333 0.379* 0.354 0.355
PPE 0.330 0.330 0.332 0.332 0.376* 0.350 0.353
ST 0.328 0.328 0.332 0.332 0.384 0.360 0.361
ACI 0.360 0.360 0.347 0.348 0.392 0.359 0.358

N = 300
Ex. 1
NR

Ex. 2
NNR

Ex. 3
NR

Ex. 4
NNR

Ex. 5
NR

Ex. 6
R

Ex. 7
R

CPB 0.231 0.231 0.232 0.232 0.265 0.246 0.246
PPE 0.230 0.230 0.231 0.231 0.263 0.245 0.246
ST 0.229 0.229 0.231 0.231 0.266 0.250 0.249
ACI 0.251 0.251 0.242 0.242 0.275 0.248 0.247

N = 500
Ex. 1
NR

Ex. 2
NNR

Ex. 3
NR

Ex. 4
NNR

Ex. 5
NR

Ex. 6
R

Ex. 7
R

CPB 0.178 0.178 0.179 0.179 0.205 0.190 0.190
PPE 0.178 0.178 0.178 0.178 0.204 0.190 0.190
ST 0.177 0.177 0.178 0.178 0.205 0.193 0.192
ACI 0.194 0.194 0.187 0.187 0.213 0.191 0.191

N = 1000
Ex. 1
NR

Ex. 2
NNR

Ex. 3
NR

Ex. 4
NNR

Ex. 5
NR

Ex. 6
R

Ex. 7
R

CPB 0.126 0.126 0.126 0.126 0.145 0.134 0.134
PPE 0.125 0.125 0.126 0.126 0.144 0.134 0.134
ST 0.124 0.124 0.125 0.125 0.144 0.135 0.135
ACI 0.137 0.137 0.132 0.132 0.150 0.134 0.134

Table 3.15:
Monte Carlo estimates of coverage probabilities of confidence intervals
for β∗1,0,1 (main effect of history) at the 95% nominal level. Generative
models have two stages and two actions per stage. Estimates are con-
structed using 1000 datasets of size 150, 300, 500, and 1000 are drawn
from each model, and 1000 bootstraps drawn from each dataset. Esti-
mates significantly below 0.95 at the 0.05 level are marked with ∗. Models
are designated NR = non-regular, NNR = near-non-regular, R = regular.
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N = 150
Ex. 1
NR

Ex. 2
NNR

Ex. 3
NR

Ex. 4
NNR

Ex. 5
NR

Ex. 6
R

Ex. 7
R

CPB 0.944 0.943 0.948 0.949 0.944 0.952 0.956
PPE 0.944 0.945 0.951 0.951 0.941 0.947 0.954
ST 0.946 0.946 0.950 0.949 0.955 0.950 0.952
ACI 0.963 0.963 0.959 0.959 0.955 0.953 0.957

N = 300
Ex. 1
NR

Ex. 2
NNR

Ex. 3
NR

Ex. 4
NNR

Ex. 5
NR

Ex. 6
R

Ex. 7
R

CPB 0.960 0.958 0.953 0.954 0.949 0.950 0.948
PPE 0.957 0.956 0.954 0.954 0.945 0.945 0.948
ST 0.954 0.954 0.952 0.951 0.943 0.946 0.949
ACI 0.975 0.975 0.964 0.963 0.955 0.951 0.949

N = 500
Ex. 1
NR

Ex. 2
NNR

Ex. 3
NR

Ex. 4
NNR

Ex. 5
NR

Ex. 6
R

Ex. 7
R

CPB 0.953 0.952 0.945 0.947 0.936 0.951 0.941
PPE 0.953 0.954 0.944 0.945 0.938 0.951 0.941
ST 0.947 0.947 0.945 0.945 0.938 0.945 0.938
ACI 0.966 0.966 0.956 0.956 0.948 0.952 0.941

N = 1000
Ex. 1
NR

Ex. 2
NNR

Ex. 3
NR

Ex. 4
NNR

Ex. 5
NR

Ex. 6
R

Ex. 7
R

CPB 0.954 0.955 0.951 0.955 0.956 0.957 0.953
PPE 0.954 0.955 0.952 0.954 0.959 0.957 0.953
ST 0.953 0.953 0.951 0.952 0.954 0.959 0.954
ACI 0.967 0.969 0.959 0.961 0.965 0.958 0.953

Table 3.16:
Monte Carlo estimates of coverage probabilities of confidence intervals
for β∗1,1,0 (interaction between history and treatment) at the 95% nominal
level. Generative models have two stages and two actions per stage.
Estimates are constructed using 1000 datasets of size 150, 300, 500, and
1000 are drawn from each model, and 1000 bootstraps drawn from each
dataset. Estimates significantly below 0.95 at the 0.05 level are marked
with ∗. Models are designated NR = non-regular, NNR = near-non-
regular, R = regular.
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N = 150
Ex. 1
NR

Ex. 2
NNR

Ex. 3
NR

Ex. 4
NNR

Ex. 5
NR

Ex. 6
R

Ex. 7
R

CPB 0.331 0.331 0.333 0.332 0.363 0.354 0.355
PPE 0.330 0.330 0.332 0.332 0.361 0.350 0.353
ST 0.328 0.328 0.332 0.332 0.366 0.359 0.360
ACI 0.360 0.360 0.347 0.347 0.378 0.359 0.358

N = 300
Ex. 1
NR

Ex. 2
NNR

Ex. 3
NR

Ex. 4
NNR

Ex. 5
NR

Ex. 6
R

Ex. 7
R

CPB 0.231 0.231 0.231 0.231 0.254 0.246 0.246
PPE 0.230 0.230 0.231 0.231 0.252 0.244 0.246
ST 0.228 0.228 0.230 0.230 0.254 0.250 0.249
ACI 0.251 0.250 0.241 0.241 0.264 0.248 0.247

N = 500
Ex. 1
NR

Ex. 2
NNR

Ex. 3
NR

Ex. 4
NNR

Ex. 5
NR

Ex. 6
R

Ex. 7
R

CPB 0.178 0.178 0.178 0.178 0.197 0.190 0.190
PPE 0.177 0.177 0.178 0.178 0.196 0.189 0.190
ST 0.176 0.176 0.178 0.178 0.196 0.193 0.191
ACI 0.194 0.194 0.186 0.186 0.205 0.191 0.191

N = 1000
Ex. 1
NR

Ex. 2
NNR

Ex. 3
NR

Ex. 4
NNR

Ex. 5
NR

Ex. 6
R

Ex. 7
R

CPB 0.126 0.126 0.126 0.126 0.139 0.134 0.134
PPE 0.125 0.125 0.126 0.126 0.138 0.134 0.134
ST 0.125 0.125 0.125 0.125 0.139 0.135 0.134
ACI 0.137 0.137 0.132 0.132 0.145 0.134 0.134

Table 3.17:
Monte Carlo estimates of coverage probabilities of confidence intervals
for β∗1,1,0 (interaction between history and treatment) at the 95% nominal
level. Generative models have two stages and two actions per stage.
Estimates are constructed using 1000 datasets of size 150, 300, 500, and
1000 are drawn from each model, and 1000 bootstraps drawn from each
dataset. Estimates significantly below 0.95 at the 0.05 level are marked
with ∗. Models are designated NR = non-regular, NNR = near-non-
regular, R = regular.
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N = 150
Ex. 1
NR

Ex. 2
NNR

Ex. 3
NR

Ex. 4
NNR

Ex. 5
NR

Ex. 6
R

Ex. 7
R

CPB 0.934* 0.935* 0.930* 0.933* 0.938 0.928* 0.939
PPE 0.931* 0.940 0.938 0.940 0.946 0.912* 0.931*
ST 0.948 0.945 0.938 0.942 0.952 0.943 0.919*
ACI 0.992 0.992 0.968 0.972 0.957 0.955 0.950

N = 300
Ex. 1
NR

Ex. 2
NNR

Ex. 3
NR

Ex. 4
NNR

Ex. 5
NR

Ex. 6
R

Ex. 7
R

CPB 0.952 0.952 0.948 0.952 0.943 0.936 0.941
PPE 0.951 0.952 0.960 0.959 0.956 0.907* 0.944
ST 0.951 0.949 0.938 0.941 0.949 0.951 0.920*
ACI 0.994 0.994 0.975 0.976 0.962 0.957 0.950

N = 500
Ex. 1
NR

Ex. 2
NNR

Ex. 3
NR

Ex. 4
NNR

Ex. 5
NR

Ex. 6
R

Ex. 7
R

CPB 0.947 0.944 0.947 0.947 0.943 0.946 0.944
PPE 0.952 0.945 0.950 0.951 0.940 0.919* 0.945
ST 0.965 0.965 0.953 0.959 0.951 0.927* 0.910*
ACI 0.992 0.992 0.976 0.980 0.956 0.958 0.947

N = 1000
Ex. 1
NR

Ex. 2
NNR

Ex. 3
NR

Ex. 4
NNR

Ex. 5
NR

Ex. 6
R

Ex. 7
R

CPB 0.948 0.949 0.934* 0.939 0.950 0.954 0.951
PPE 0.948 0.949 0.948 0.945 0.952 0.941 0.948
ST 0.956 0.955 0.959 0.955 0.954 0.935* 0.924*
ACI 0.998 0.995 0.972 0.973 0.963 0.954 0.951

Table 3.18:
Monte Carlo estimates of coverage probabilities of confidence intervals
for β∗1,1,1 (main effect of treatment) at the 95% nominal level. Generative
models have two stages and two actions per stage. Estimates are con-
structed using 1000 datasets of size 150, 300, 500, and 1000 are drawn
from each model, and 1000 bootstraps drawn from each dataset. Esti-
mates significantly below 0.95 at the 0.05 level are marked with ∗. Models
are designated NR = non-regular, NNR = near-non-regular, R = regular.
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N = 150
Ex. 1
NR

Ex. 2
NNR

Ex. 3
NR

Ex. 4
NNR

Ex. 5
NR

Ex. 6
R

Ex. 7
R

CPB 0.385* 0.385* 0.430* 0.430* 0.457 0.436* 0.451
PPE 0.365* 0.366 0.419 0.419 0.452 0.418* 0.452*
ST 0.339 0.339 0.426 0.427 0.469 0.436 0.480*
ACI 0.502 0.502 0.488 0.488 0.487 0.475 0.477

N = 300
Ex. 1
NR

Ex. 2
NNR

Ex. 3
NR

Ex. 4
NNR

Ex. 5
NR

Ex. 6
R

Ex. 7
R

CPB 0.269 0.269 0.300 0.300 0.320 0.309 0.313
PPE 0.256 0.256 0.292 0.292 0.316 0.297* 0.317
ST 0.237 0.237 0.289 0.289 0.320 0.313 0.327*
ACI 0.354 0.354 0.342 0.342 0.341 0.327 0.327

N = 500
Ex. 1
NR

Ex. 2
NNR

Ex. 3
NR

Ex. 4
NNR

Ex. 5
NR

Ex. 6
R

Ex. 7
R

CPB 0.208 0.208 0.232 0.232 0.248 0.242 0.244
PPE 0.197 0.197 0.226 0.226 0.245 0.234* 0.245
ST 0.182 0.183 0.222 0.222 0.246 0.252* 0.253*
ACI 0.275 0.275 0.265 0.265 0.265 0.250 0.250

N = 1000
Ex. 1
NR

Ex. 2
NNR

Ex. 3
NR

Ex. 4
NNR

Ex. 5
NR

Ex. 6
R

Ex. 7
R

CPB 0.147 0.147 0.164* 0.164 0.175 0.171 0.171
PPE 0.139 0.139 0.160 0.160 0.173 0.170 0.172
ST 0.129 0.129 0.156 0.156 0.172 0.184* 0.177*
ACI 0.195 0.195 0.188 0.188 0.187 0.173 0.173

Table 3.19:
Monte Carlo estimates of coverage probabilities of confidence intervals
for β∗1,1,1 (main effect of treatment) at the 95% nominal level. Generative
models have two stages and two actions per stage. Estimates are con-
structed using 1000 datasets of size 150, 300, 500, and 1000 are drawn
from each model, and 1000 bootstraps drawn from each dataset. Esti-
mates significantly below 0.95 at the 0.05 level are marked with ∗. Models
are designated NR = non-regular, NNR = near-non-regular, R = regular.
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N = 150
Ex. 1
NR

Ex. 2
NNR

Ex. 3
NR

Ex. 4
NNR

Ex. 5
NR

Ex. 6
R

Ex. 7
R

CPB 0.942 0.941 0.940 0.942 0.943 0.929* 0.941
PPE 0.941 0.938 0.945 0.943 0.937 0.917* 0.935*
ST 0.943 0.943 0.932* 0.934* 0.940 0.934* 0.928*
ACI 0.984 0.985 0.963 0.964 0.948 0.946 0.949

N = 300
Ex. 1
NR

Ex. 2
NNR

Ex. 3
NR

Ex. 4
NNR

Ex. 5
NR

Ex. 6
R

Ex. 7
R

CPB 0.953 0.953 0.954 0.959 0.955 0.953 0.961
PPE 0.958 0.955 0.965 0.966 0.956 0.937 0.959
ST 0.956 0.958 0.945 0.950 0.958 0.956 0.934*
ACI 0.988 0.989 0.977 0.979 0.961 0.966 0.966

N = 500
Ex. 1
NR

Ex. 2
NNR

Ex. 3
NR

Ex. 4
NNR

Ex. 5
NR

Ex. 6
R

Ex. 7
R

CPB 0.951 0.951 0.948 0.950 0.952 0.954 0.954
PPE 0.952 0.951 0.953 0.952 0.953 0.938 0.953
ST 0.950 0.950 0.956 0.957 0.950 0.938 0.931*
ACI 0.988 0.988 0.968 0.973 0.958 0.957 0.954

N = 1000
Ex. 1
NR

Ex. 2
NNR

Ex. 3
NR

Ex. 4
NNR

Ex. 5
NR

Ex. 6
R

Ex. 7
R

CPB 0.954 0.949 0.945 0.946 0.953 0.948 0.949
PPE 0.958 0.958 0.952 0.951 0.955 0.942 0.948
ST 0.966 0.965 0.955 0.960 0.956 0.938 0.934*
ACI 0.992 0.991 0.972 0.978 0.962 0.951 0.950

Table 3.20:
Monte Carlo estimates of coverage probabilities of confidence intervals for
β∗1,1,0 + β∗1,1,1 (effect of action for history = 1) at the 95% nominal level.
Generative models have two stages and two actions per stage. Estimates
are constructed using 1000 datasets of size 150, 300, 500, and 1000 are
drawn from each model, and 1000 bootstraps drawn from each dataset.
Estimates significantly below 0.95 at the 0.05 level are marked with ∗.
Models are designated NR = non-regular, NNR = near-non-regular, R =
regular.
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N = 150
Ex. 1
NR

Ex. 2
NNR

Ex. 3
NR

Ex. 4
NNR

Ex. 5
NR

Ex. 6
R

Ex. 7
R

CPB 0.506 0.506 0.542 0.542 0.580 0.559* 0.571
PPE 0.491 0.491 0.533 0.533 0.578 0.544* 0.571*
ST 0.471 0.471 0.539* 0.539* 0.600 0.563* 0.598*
ACI 0.622 0.622 0.600 0.600 0.596 0.598 0.595

N = 300
Ex. 1
NR

Ex. 2
NNR

Ex. 3
NR

Ex. 4
NNR

Ex. 5
NR

Ex. 6
R

Ex. 7
R

CPB 0.355 0.355 0.378 0.378 0.406 0.394 0.397
PPE 0.344 0.344 0.372 0.372 0.404 0.383 0.400
ST 0.329 0.329 0.369 0.369 0.412 0.399 0.410*
ACI 0.439 0.439 0.421 0.421 0.417 0.411 0.409

N = 500
Ex. 1
NR

Ex. 2
NNR

Ex. 3
NR

Ex. 4
NNR

Ex. 5
NR

Ex. 6
R

Ex. 7
R

CPB 0.273 0.274 0.293 0.293 0.315 0.307 0.308
PPE 0.265 0.265 0.288 0.288 0.314 0.301 0.310
ST 0.254 0.254 0.284 0.284 0.318 0.317 0.315*
ACI 0.340 0.340 0.327 0.327 0.324 0.315 0.314

N = 1000
Ex. 1
NR

Ex. 2
NNR

Ex. 3
NR

Ex. 4
NNR

Ex. 5
NR

Ex. 6
R

Ex. 7
R

CPB 0.193 0.194 0.207 0.207 0.222 0.217 0.217
PPE 0.187 0.187 0.203 0.203 0.222 0.216 0.217
ST 0.180 0.180 0.200 0.200 0.223 0.228 0.221*
ACI 0.241 0.242 0.231 0.231 0.229 0.218 0.218

Table 3.21:
Monte Carlo estimates of coverage probabilities of confidence intervals for
β∗1,1,0 + β∗1,1,1 (effect of action for history = 1) at the 95% nominal level.
Generative models have two stages and two actions per stage. Estimates
are constructed using 1000 datasets of size 150, 300, 500, and 1000 are
drawn from each model, and 1000 bootstraps drawn from each dataset.
Estimates significantly below 0.95 at the 0.05 level are marked with ∗.
Models are designated NR = non-regular, NNR = near-non-regular, R =
regular.

153



N = 150
Ex. 1
NR

Ex. 2
NNR

Ex. 3
NR

Ex. 4
NNR

Ex. 5
NR

Ex. 6
R

Ex. 7
R

CPB 0.958 0.954 0.944 0.945 0.935* 0.943 0.949
PPE 0.954 0.952 0.950 0.950 0.938 0.935* 0.941
ST 0.964 0.964 0.940 0.943 0.938 0.951 0.929*
ACI 0.985 0.985 0.970 0.972 0.960 0.960 0.953

N = 300
Ex. 1
NR

Ex. 2
NNR

Ex. 3
NR

Ex. 4
NNR

Ex. 5
NR

Ex. 6
R

Ex. 7
R

CPB 0.949 0.951 0.941 0.942 0.947 0.936 0.945
PPE 0.949 0.952 0.942 0.943 0.946 0.920* 0.945
ST 0.950 0.950 0.937 0.942 0.943 0.940 0.923*
ACI 0.984 0.985 0.964 0.966 0.965 0.951 0.949

N = 500
Ex. 1
NR

Ex. 2
NNR

Ex. 3
NR

Ex. 4
NNR

Ex. 5
NR

Ex. 6
R

Ex. 7
R

CPB 0.943 0.944 0.934* 0.942 0.933* 0.944 0.944
PPE 0.949 0.947 0.947 0.950 0.942 0.927* 0.946
ST 0.963 0.961 0.943 0.946 0.937 0.929* 0.920*
ACI 0.986 0.985 0.962 0.967 0.953 0.950 0.948

N = 1000
Ex. 1
NR

Ex. 2
NNR

Ex. 3
NR

Ex. 4
NNR

Ex. 5
NR

Ex. 6
R

Ex. 7
R

CPB 0.947 0.940 0.937 0.944 0.944 0.950 0.946
PPE 0.947 0.946 0.955 0.951 0.944 0.948 0.946
ST 0.948 0.946 0.961 0.961 0.953 0.936 0.929*
ACI 0.989 0.990 0.971 0.974 0.962 0.953 0.946

Table 3.22:
Monte Carlo estimates of coverage probabilities of confidence intervals for
−β∗1,1,0+β∗1,1,1 (effect of action for history = -1) at the 95% nominal level.
Generative models have two stages and two actions per stage. Estimates
are constructed using 1000 datasets of size 150, 300, 500, and 1000 are
drawn from each model, and 1000 bootstraps drawn from each dataset.
Estimates significantly below 0.95 at the 0.05 level are marked with ∗.
Models are designated NR = non-regular, NNR = near-non-regular, R =
regular.
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N = 150
Ex. 1
NR

Ex. 2
NNR

Ex. 3
NR

Ex. 4
NNR

Ex. 5
NR

Ex. 6
R

Ex. 7
R

CPB 0.508 0.508 0.544 0.544 0.587* 0.563 0.575
PPE 0.491 0.491 0.534 0.534 0.577 0.545* 0.573
ST 0.471 0.471 0.541 0.542 0.588 0.566 0.601*
ACI 0.624 0.624 0.601 0.601 0.630 0.600 0.600

N = 300
Ex. 1
NR

Ex. 2
NNR

Ex. 3
NR

Ex. 4
NNR

Ex. 5
NR

Ex. 6
R

Ex. 7
R

CPB 0.354 0.354 0.379 0.378 0.410 0.398 0.400
PPE 0.343 0.343 0.372 0.372 0.404 0.385* 0.402
ST 0.329 0.329 0.369 0.370 0.404 0.403 0.412*
ACI 0.439 0.439 0.420 0.420 0.442 0.415 0.413

N = 500
Ex. 1
NR

Ex. 2
NNR

Ex. 3
NR

Ex. 4
NNR

Ex. 5
NR

Ex. 6
R

Ex. 7
R

CPB 0.273 0.273 0.293* 0.293 0.318* 0.309 0.310
PPE 0.265 0.265 0.288 0.288 0.313 0.302* 0.311
ST 0.253 0.253 0.284 0.284 0.311 0.318* 0.318*
ACI 0.340 0.340 0.325 0.325 0.343 0.316 0.315

N = 1000
Ex. 1
NR

Ex. 2
NNR

Ex. 3
NR

Ex. 4
NNR

Ex. 5
NR

Ex. 6
R

Ex. 7
R

CPB 0.193 0.193 0.206 0.206 0.224 0.218 0.218
PPE 0.187 0.187 0.203 0.203 0.221 0.217 0.218
ST 0.179 0.179 0.200 0.200 0.219 0.229 0.223*
ACI 0.241 0.241 0.230 0.230 0.242 0.219 0.219

Table 3.23:
Monte Carlo estimates of coverage probabilities of confidence intervals for
−β∗1,1,0+β∗1,1,1 (effect of action for history = -1) at the 95% nominal level.
Generative models have two stages and two actions per stage. Estimates
are constructed using 1000 datasets of size 150, 300, 500, and 1000 are
drawn from each model, and 1000 bootstraps drawn from each dataset.
Estimates significantly below 0.95 at the 0.05 level are marked with ∗.
Models are designated NR = non-regular, NNR = near-non-regular, R =
regular.
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3.10.2 Models with ternary actions

Here, we present results using a suite of examples similar to those of Chakraborty

et al. (2009), but that have three possible treatments at the second stage. These

models are defined as follows:

• Xi ∈ {−1, 1} for i ∈ {1, 2}, A1 ∈ {−1, 1}, andA2 ∈ {(0,−0.5)ᵀ, (−1, 0.5)ᵀ, (1, 0.5)ᵀ}

• P (A1 = 1) = P (A1 = −1) = 1/2,

P (A2 = (0,−1)ᵀ) = P (A2 = (−1, 0.5)ᵀ) = P (A2 = (1, 0.5)ᵀ) = 1/3

• P (X1 = 1) = P (X1 = −1) = 1/2, P (X2 = 1|X1, A1) = expit(δ1X1 + δ2A1)

• Y1 , 0,

Y2 = γ1 +γ2X1 +γ3A1 +γ4X1A1 + (γ5, γ6)A2 +X2(γ7, γ8)A2 +A1(γ9, γ10)A2 + ε,

ε ∼ N(0, 1)

where expit(x) = ex/(1+ex). This class is parameterized by twelve values γ1, γ2, ..., γ10, δ1, δ2.

The analysis model uses histories defined by:

H2,0 = (1, X1, A1, X1A1, X2)ᵀ (3.56)

H2,1 = (1, X2, A1)ᵀ (3.57)

H1,0 = (1, X1)ᵀ (3.58)

H1,1 = (1, X1)ᵀ. (3.59)

Our working models are given byQ2(H2, A2; β2) , Hᵀ
2,0β2,0+Hᵀ

2,1β2,1,1A2,1+Hᵀ
2,1β2,1,2A2,2

and Q1(H1, A1; β1) , Hᵀ
1,0β1,0 +Hᵀ

1,1β1,1A1. In Table 3.10.2, for each of these models

we give the probability p of generating a history where each of the three possible

treatments at the second stage have exactly the same effect. This is analogous to
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Example γ δ Regularity
1 (0, 0, 0, 0, 0, 0, 0, 0, 0, 0)ᵀ (0.5, 0.5)ᵀ p = 1, φ = 0/0
2 (0, 0, 0, 0, 0.01, 0.01, 0, 0, 0, 0)ᵀ (0.5, 0.5)ᵀ p = 0, φ =∞
3 (0, 0,−0.5, 0, 0.5, 0.5, 0, 0, 0.5, 0.5)ᵀ (0.5, 0.5)ᵀ p = 1/2, φ = 1.0
4 (0, 0,−0.5, 0, 0.5, 0.5, 0, 0, 0.49, 0.49)ᵀ (0.5, 0.5)ᵀ p = 0, φ = 1.0204
5 (0, 0,−0.5, 0, 1.00, 1.00, 0.5, 0.5, 0.5, 0.5)ᵀ (1.0, 0.0)ᵀ p = 1/4, φ = 1.4142
6 (0, 0,−0.5, 0, 0.25, 0.25, 0.5, 0.5, 0.5, 0.5)ᵀ (0.1, 0.1)ᵀ p = 0, φ = 0.3451
7 (0, 0,−0.25, 0, 0.75, 0.75, 0.5, 0.5, 0.5, 0.5)ᵀ (0.1, 0.1)ᵀ p = 0, φ = 1.035

Table 3.24: Parameters indexing the example models.

having the second stage action show no effect in a binary model. Furthermore, be-

cause of the Helmert encoding we have used in our analysis models, and because of

the structure of γ, it happens that the standardized effect size of treatment 1 versus

treatment 2, treatment 1 versus treatment 3, and treatment 2 versus treatment 3 are

all exactly equal in our examples. We report this as φ in Table 3.10.2. Tables 3.25

through 3.36 detail our results.
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N = 150
Ex. 1
NR

Ex. 2
NNR

Ex. 3
NR

Ex. 4
NNR

Ex. 5
NR

Ex. 6
R

Ex. 7
R

CPB 0.836* 0.868* 0.929* 0.930* 0.928* 0.926* 0.930*
PPE 0.860* 0.881* 0.926* 0.926* 0.923* 0.919* 0.929*
ST 0.938 0.946 0.853* 0.854* 0.876* 0.591* 0.801*
ACI 0.909* 0.931* 0.949 0.949 0.953 0.950 0.951

N = 300
Ex. 1
NR

Ex. 2
NNR

Ex. 3
NR

Ex. 4
NNR

Ex. 5
NR

Ex. 6
R

Ex. 7
R

CPB 0.833* 0.879* 0.953 0.953 0.954 0.937 0.931*
PPE 0.848* 0.898* 0.948 0.949 0.947 0.937 0.926*
ST 0.930* 0.945 0.896* 0.896* 0.913* 0.654* 0.861*
ACI 0.898* 0.934* 0.960 0.961 0.961 0.948 0.944

Table 3.25:
Monte Carlo estimates of coverage probabilities of confidence intervals for
β∗1,0,0 (intercept term) at the 95% nominal level. Generative models two
stages and three actions at the second stage. Estimates are constructed
using 1000 datasets of size 150, 300 are drawn from each model, and
1000 bootstraps drawn from each dataset. Estimates significantly below
0.95 at the 0.05 level are marked with ∗. Models are designated NR =
non-regular, NNR = near-non-regular, R = regular.
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N = 150
Ex. 1
NR

Ex. 2
NNR

Ex. 3
NR

Ex. 4
NNR

Ex. 5
NR

Ex. 6
R

Ex. 7
R

CPB 0.503* 0.503* 0.655* 0.655* 0.719* 0.598* 0.685*
PPE 0.499* 0.499* 0.649* 0.650* 0.710* 0.598* 0.675*
ST 0.438 0.438 0.717* 0.719* 0.769* 0.608* 0.751*
ACI 0.579* 0.579* 0.720 0.720 0.782 0.671 0.752

N = 300
Ex. 1
NR

Ex. 2
NNR

Ex. 3
NR

Ex. 4
NNR

Ex. 5
NR

Ex. 6
R

Ex. 7
R

CPB 0.345* 0.346* 0.458 0.458 0.502 0.420 0.481*
PPE 0.343* 0.343* 0.457 0.458 0.500 0.419 0.473*
ST 0.298* 0.298 0.477* 0.478* 0.520* 0.432* 0.510*
ACI 0.383* 0.383* 0.490 0.490 0.531 0.450 0.515

Table 3.26:
Monte Carlo estimates of coverage probabilities of confidence intervals for
β∗1,0,0 (intercept term) at the 95% nominal level. Generative models two
stages and three actions at the second stage. Estimates are constructed
using 1000 datasets of size 150, 300 are drawn from each model, and
1000 bootstraps drawn from each dataset. Estimates significantly below
0.95 at the 0.05 level are marked with ∗. Models are designated NR =
non-regular, NNR = near-non-regular, R = regular.
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N = 150
Ex. 1
NR

Ex. 2
NNR

Ex. 3
NR

Ex. 4
NNR

Ex. 5
NR

Ex. 6
R

Ex. 7
R

CPB 0.952 0.952 0.955 0.956 0.941 0.963 0.969
PPE 0.953 0.952 0.954 0.955 0.944 0.961 0.966
ST 0.952 0.952 0.954 0.954 0.950 0.962 0.968
ACI 0.987 0.988 0.979 0.977 0.965 0.978 0.982

N = 300
Ex. 1
NR

Ex. 2
NNR

Ex. 3
NR

Ex. 4
NNR

Ex. 5
NR

Ex. 6
R

Ex. 7
R

CPB 0.963 0.964 0.961 0.961 0.957 0.954 0.951
PPE 0.963 0.964 0.961 0.961 0.958 0.954 0.951
ST 0.967 0.965 0.960 0.960 0.959 0.953 0.950
ACI 0.977 0.977 0.971 0.971 0.968 0.965 0.964

Table 3.27:
Monte Carlo estimates of coverage probabilities of confidence intervals
for β∗1,0,1 (main effect of history) at the 95% nominal level. Generative
models two stages and three actions at the second stage. Estimates are
constructed using 1000 datasets of size 150, 300 are drawn from each
model, and 1000 bootstraps drawn from each dataset. Estimates sig-
nificantly below 0.95 at the 0.05 level are marked with ∗. Models are
designated NR = non-regular, NNR = near-non-regular, R = regular.
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N = 150
Ex. 1
NR

Ex. 2
NNR

Ex. 3
NR

Ex. 4
NNR

Ex. 5
NR

Ex. 6
R

Ex. 7
R

CPB 0.339 0.340 0.346 0.346 0.454 0.384 0.398
PPE 0.339 0.339 0.346 0.346 0.452 0.382 0.397
ST 0.337 0.337 0.347 0.347 0.466 0.391 0.406
ACI 0.398 0.398 0.386 0.386 0.492 0.423 0.434

N = 300
Ex. 1
NR

Ex. 2
NNR

Ex. 3
NR

Ex. 4
NNR

Ex. 5
NR

Ex. 6
R

Ex. 7
R

CPB 0.234 0.234 0.238 0.238 0.317 0.264 0.275
PPE 0.234 0.234 0.238 0.238 0.317 0.264 0.274
ST 0.233 0.233 0.238 0.238 0.322 0.270 0.279
ACI 0.263 0.262 0.257 0.257 0.334 0.281 0.291

Table 3.28:
Monte Carlo estimates of coverage probabilities of confidence intervals
for β∗1,0,1 (main effect of history) at the 95% nominal level. Generative
models two stages and three actions at the second stage. Estimates are
constructed using 1000 datasets of size 150, 300 are drawn from each
model, and 1000 bootstraps drawn from each dataset. Estimates sig-
nificantly below 0.95 at the 0.05 level are marked with ∗. Models are
designated NR = non-regular, NNR = near-non-regular, R = regular.
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N = 150
Ex. 1
NR

Ex. 2
NNR

Ex. 3
NR

Ex. 4
NNR

Ex. 5
NR

Ex. 6
R

Ex. 7
R

CPB 0.942 0.941 0.950 0.950 0.947 0.941 0.952
PPE 0.944 0.945 0.950 0.950 0.949 0.938 0.950
ST 0.948 0.948 0.949 0.949 0.952 0.942 0.950
ACI 0.969 0.969 0.962 0.962 0.966 0.960 0.966

N = 300
Ex. 1
NR

Ex. 2
NNR

Ex. 3
NR

Ex. 4
NNR

Ex. 5
NR

Ex. 6
R

Ex. 7
R

CPB 0.948 0.949 0.953 0.953 0.962 0.946 0.961
PPE 0.949 0.949 0.953 0.953 0.961 0.946 0.959
ST 0.950 0.951 0.952 0.951 0.962 0.944 0.963
ACI 0.980 0.980 0.968 0.967 0.970 0.955 0.972

Table 3.29:
Monte Carlo estimates of coverage probabilities of confidence intervals
for β∗1,1,0 (interaction between history and treatment) at the 95% nominal
level. Generative models two stages and three actions at the second
stage. Estimates are constructed using 1000 datasets of size 150, 300 are
drawn from each model, and 1000 bootstraps drawn from each dataset.
Estimates significantly below 0.95 at the 0.05 level are marked with ∗.
Models are designated NR = non-regular, NNR = near-non-regular, R =
regular.
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N = 150
Ex. 1
NR

Ex. 2
NNR

Ex. 3
NR

Ex. 4
NNR

Ex. 5
NR

Ex. 6
R

Ex. 7
R

CPB 0.339 0.339 0.338 0.338 0.419 0.385 0.399
PPE 0.338 0.339 0.338 0.338 0.422 0.383 0.398
ST 0.338 0.338 0.338 0.338 0.426 0.392 0.406
ACI 0.397 0.397 0.377 0.377 0.456 0.424 0.434

N = 300
Ex. 1
NR

Ex. 2
NNR

Ex. 3
NR

Ex. 4
NNR

Ex. 5
NR

Ex. 6
R

Ex. 7
R

CPB 0.232 0.232 0.231 0.231 0.290 0.263 0.274
PPE 0.232 0.232 0.231 0.231 0.291 0.263 0.273
ST 0.232 0.232 0.230 0.230 0.293 0.269 0.278
ACI 0.261 0.261 0.249 0.249 0.306 0.280 0.290

Table 3.30:
Monte Carlo estimates of coverage probabilities of confidence intervals
for β∗1,1,0 (interaction between history and treatment) at the 95% nominal
level. Generative models two stages and three actions at the second
stage. Estimates are constructed using 1000 datasets of size 150, 300 are
drawn from each model, and 1000 bootstraps drawn from each dataset.
Estimates significantly below 0.95 at the 0.05 level are marked with ∗.
Models are designated NR = non-regular, NNR = near-non-regular, R =
regular.
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N = 150
Ex. 1
NR

Ex. 2
NNR

Ex. 3
NR

Ex. 4
NNR

Ex. 5
NR

Ex. 6
R

Ex. 7
R

CPB 0.949 0.952 0.937 0.938 0.942 0.930* 0.936
PPE 0.948 0.949 0.935* 0.936 0.938 0.915* 0.933*
ST 0.945 0.946 0.939 0.939 0.938 0.915* 0.933*
ACI 0.982 0.983 0.960 0.960 0.964 0.953 0.959

N = 300
Ex. 1
NR

Ex. 2
NNR

Ex. 3
NR

Ex. 4
NNR

Ex. 5
NR

Ex. 6
R

Ex. 7
R

CPB 0.957 0.953 0.950 0.950 0.954 0.938 0.946
PPE 0.957 0.955 0.950 0.950 0.954 0.920* 0.945
ST 0.953 0.951 0.950 0.950 0.954 0.932* 0.949
ACI 0.975 0.972 0.966 0.966 0.965 0.953 0.966

Table 3.31:
Monte Carlo estimates of coverage probabilities of confidence intervals
for β∗1,1,1 (main effect of treatment) at the 95% nominal level. Genera-
tive models two stages and three actions at the second stage. Estimates
are constructed using 1000 datasets of size 150, 300 are drawn from each
model, and 1000 bootstraps drawn from each dataset. Estimates sig-
nificantly below 0.95 at the 0.05 level are marked with ∗. Models are
designated NR = non-regular, NNR = near-non-regular, R = regular.
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N = 150
Ex. 1
NR

Ex. 2
NNR

Ex. 3
NR

Ex. 4
NNR

Ex. 5
NR

Ex. 6
R

Ex. 7
R

CPB 0.406 0.406 0.468 0.468 0.551 0.506* 0.532
PPE 0.402 0.402 0.469* 0.469 0.550 0.499* 0.528*
ST 0.400 0.400 0.473 0.473 0.566 0.530* 0.552*
ACI 0.475 0.475 0.521 0.521 0.602 0.569 0.589

N = 300
Ex. 1
NR

Ex. 2
NNR

Ex. 3
NR

Ex. 4
NNR

Ex. 5
NR

Ex. 6
R

Ex. 7
R

CPB 0.279 0.279 0.326 0.326 0.385 0.358 0.373
PPE 0.277 0.277 0.326 0.326 0.385 0.354* 0.369
ST 0.274 0.275 0.326 0.326 0.392 0.375* 0.383
ACI 0.314 0.314 0.350 0.350 0.408 0.384 0.402

Table 3.32:
Monte Carlo estimates of coverage probabilities of confidence intervals
for β∗1,1,1 (main effect of treatment) at the 95% nominal level. Genera-
tive models two stages and three actions at the second stage. Estimates
are constructed using 1000 datasets of size 150, 300 are drawn from each
model, and 1000 bootstraps drawn from each dataset. Estimates sig-
nificantly below 0.95 at the 0.05 level are marked with ∗. Models are
designated NR = non-regular, NNR = near-non-regular, R = regular.
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N = 150
Ex. 1
NR

Ex. 2
NNR

Ex. 3
NR

Ex. 4
NNR

Ex. 5
NR

Ex. 6
R

Ex. 7
R

CPB 0.942 0.940 0.941 0.941 0.945 0.939 0.941
PPE 0.944 0.943 0.939 0.938 0.944 0.927* 0.940
ST 0.947 0.948 0.940 0.941 0.946 0.924* 0.939
ACI 0.976 0.977 0.961 0.962 0.964 0.957 0.963

N = 300
Ex. 1
NR

Ex. 2
NNR

Ex. 3
NR

Ex. 4
NNR

Ex. 5
NR

Ex. 6
R

Ex. 7
R

CPB 0.953 0.956 0.951 0.951 0.952 0.952 0.944
PPE 0.953 0.956 0.951 0.951 0.951 0.947 0.941
ST 0.954 0.957 0.954 0.954 0.950 0.943 0.941
ACI 0.976 0.974 0.965 0.965 0.960 0.965 0.954

Table 3.33:
Monte Carlo estimates of coverage probabilities of confidence intervals for
β∗1,1,0 + β∗1,1,1 (effect of action for history = 1) at the 95% nominal level.
Generative models two stages and three actions at the second stage. Es-
timates are constructed using 1000 datasets of size 150, 300 are drawn
from each model, and 1000 bootstraps drawn from each dataset. Esti-
mates significantly below 0.95 at the 0.05 level are marked with ∗. Models
are designated NR = non-regular, NNR = near-non-regular, R = regular.
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N = 150
Ex. 1
NR

Ex. 2
NNR

Ex. 3
NR

Ex. 4
NNR

Ex. 5
NR

Ex. 6
R

Ex. 7
R

CPB 0.529 0.529 0.577 0.577 0.693 0.631 0.664
PPE 0.525 0.526 0.578 0.578 0.689 0.626* 0.660
ST 0.522 0.523 0.582 0.582 0.709 0.655* 0.686
ACI 0.609 0.609 0.640 0.640 0.745 0.703 0.729

N = 300
Ex. 1
NR

Ex. 2
NNR

Ex. 3
NR

Ex. 4
NNR

Ex. 5
NR

Ex. 6
R

Ex. 7
R

CPB 0.363 0.363 0.398 0.398 0.483 0.441 0.462
PPE 0.361 0.362 0.398 0.398 0.482 0.438 0.459
ST 0.360 0.360 0.399 0.399 0.489 0.458 0.472
ACI 0.403 0.403 0.426 0.426 0.508 0.472 0.495

Table 3.34:
Monte Carlo estimates of coverage probabilities of confidence intervals for
β∗1,1,0 + β∗1,1,1 (effect of action for history = 1) at the 95% nominal level.
Generative models two stages and three actions at the second stage. Es-
timates are constructed using 1000 datasets of size 150, 300 are drawn
from each model, and 1000 bootstraps drawn from each dataset. Esti-
mates significantly below 0.95 at the 0.05 level are marked with ∗. Models
are designated NR = non-regular, NNR = near-non-regular, R = regular.
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N = 150
Ex. 1
NR

Ex. 2
NNR

Ex. 3
NR

Ex. 4
NNR

Ex. 5
NR

Ex. 6
R

Ex. 7
R

CPB 0.940 0.939 0.930* 0.931* 0.947 0.937 0.939
PPE 0.938 0.939 0.930* 0.929* 0.946 0.930* 0.934*
ST 0.934* 0.934* 0.933* 0.933* 0.947 0.930* 0.937
ACI 0.965 0.963 0.960 0.960 0.965 0.956 0.964

N = 300
Ex. 1
NR

Ex. 2
NNR

Ex. 3
NR

Ex. 4
NNR

Ex. 5
NR

Ex. 6
R

Ex. 7
R

CPB 0.943 0.945 0.948 0.948 0.958 0.938 0.957
PPE 0.941 0.943 0.948 0.948 0.960 0.927* 0.954
ST 0.945 0.947 0.951 0.951 0.960 0.933* 0.954
ACI 0.968 0.964 0.966 0.966 0.970 0.955 0.970

Table 3.35:
Monte Carlo estimates of coverage probabilities of confidence intervals
for −β∗1,1,0 + β∗1,1,1 (effect of action for history = -1) at the 95% nominal
level. Generative models two stages and three actions at the second
stage. Estimates are constructed using 1000 datasets of size 150, 300 are
drawn from each model, and 1000 bootstraps drawn from each dataset.
Estimates significantly below 0.95 at the 0.05 level are marked with ∗.
Models are designated NR = non-regular, NNR = near-non-regular, R =
regular.
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N = 150
Ex. 1
NR

Ex. 2
NNR

Ex. 3
NR

Ex. 4
NNR

Ex. 5
NR

Ex. 6
R

Ex. 7
R

CPB 0.530 0.530 0.575* 0.575* 0.690 0.639 0.664
PPE 0.526 0.526 0.577* 0.577* 0.695 0.632* 0.660*
ST 0.524* 0.524* 0.579* 0.580* 0.706 0.664* 0.684
ACI 0.610 0.609 0.638 0.638 0.758 0.710 0.730

N = 300
Ex. 1
NR

Ex. 2
NNR

Ex. 3
NR

Ex. 4
NNR

Ex. 5
NR

Ex. 6
R

Ex. 7
R

CPB 0.363 0.363 0.399 0.399 0.482 0.447 0.463
PPE 0.361 0.361 0.400 0.400 0.483 0.443* 0.460
ST 0.359 0.359 0.400 0.400 0.489 0.464* 0.473
ACI 0.402 0.403 0.428 0.428 0.511 0.477 0.497

Table 3.36:
Monte Carlo estimates of coverage probabilities of confidence intervals
for −β∗1,1,0 + β∗1,1,1 (effect of action for history = -1) at the 95% nominal
level. Generative models two stages and three actions at the second
stage. Estimates are constructed using 1000 datasets of size 150, 300 are
drawn from each model, and 1000 bootstraps drawn from each dataset.
Estimates significantly below 0.95 at the 0.05 level are marked with ∗.
Models are designated NR = non-regular, NNR = near-non-regular, R =
regular.
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3.10.3 Models with three stages

Here, we present results using another suite of examples, again similar to those

of Chakraborty et al. (2009), but that have three stages of treatment, with binary

treatments at each stage. These models are defined as follows:

• Xi ∈ {−1, 1}, Ai ∈ {−1, 1} for i ∈ {1, 2, 3}

• P (Ai = 1) = P (Ai = −1) = 0.5 for i ∈ {1, 2, 3}

• P (X1 = 1) = P (X1 = −1) = 1/2,

P (Xi+1 = 1|Xi, Ai) = expit(δ1Xi + δ2Ai) for i ∈ {1, 2}

• Y1 , Y2 , 0

Y3 = γ1 + γ2X1 + γ3A1 + γ4X1A1 +

γ5A2 + γ6X2A2 + γ7A1A2 +

γ5A3 + γ6X3A3 + γ7A2A3 + ε

ε ∼ N(0, 1)

where expit(x) = ex/(1+ex). This class is parameterized by nine values γ1, γ2, ..., γ7, δ1, δ2.

The analysis model uses histories defined by:

H3,0 = (1, X1, A1, X1A1, X2, A2, X2A2, A1A2, X3)ᵀ (3.60)

H3,1 = (1, X3, A2)ᵀ (3.61)

H2,0 = (1, X1, A1, X1A1, X2)ᵀ (3.62)

H2,1 = (1, X2, A1)ᵀ (3.63)

H1,0 = (1, X1)ᵀ (3.64)

H1,1 = (1, X1)ᵀ. (3.65)
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Example True Effect of A2 on Stage 2 Value Stage 2 Regularity Stage 3 Regularity
1 A2(0 + 0X2 + 0A1) p = 1, φ = 0/0 p = 1, φ = 0/0
2 A2(0.01 + 0X2 + 0A1) p = 0, φ =∞ p = 0, φ =∞
3 A2(1.0 + 0.5X2 + 0A1) p = 0, φ = 2.01 p = 1/2, φ = 1.003
4 A2(0.99 + 0.49X2 + 0A1) p = 0, φ = 2.03 p = 0, φ = 1.014
5 A2(1.5 + 0.5X2 + 0.5A1) p = 0, φ = 1.92 p = 1/4, φ = 1.40
6 A2(0.381 + 0.500X2 + 0.519A1) p = 0, φ = 0.48 p = 0, φ = 0.349
7 A2(1.144 + 0.500X2 + 0.506A1) p = 0, φ = 1.46 p = 0, φ = 1.05

The values of the constants γ1, ..., γ7 and δ1, δ2 in Examples 1 through 7 are the same

as those used in the corresponding two-stage binary action models. Since the third

stage of these models has the same structure as the second stage of the models in

Chakraborty et al. (2009), the non-regularity properties of the final stages in both

suites of examples share the same non-regularity properties.

At stage 2 in these models, the true effect of A2 on the stage 2 value—assuming we

choose the optimal treatment at Stage 3—is given by in Table 3.10.3, along with the

regularity information for the final stage. Note that in these models, the probability

p of having no effect of A2 is 1 for Example 1, and 0 for all the other examples.

Tables 3.37 through 3.48 detail our results for these models.

171



N = 150
Ex. 1
NR

Ex. 2
NNR

Ex. 3
NR

Ex. 4
NNR

Ex. 5
NR

Ex. 6
R

Ex. 7
R

CPB 0.836* 0.868* 0.929* 0.930* 0.928* 0.926* 0.930*
PPE 0.860* 0.881* 0.926* 0.926* 0.923* 0.919* 0.929*
ST 0.938 0.946 0.853* 0.854* 0.876* 0.591* 0.801*
ACI 0.909* 0.931* 0.949 0.949 0.953 0.950 0.951

N = 300
Ex. 1
NR

Ex. 2
NNR

Ex. 3
NR

Ex. 4
NNR

Ex. 5
NR

Ex. 6
R

Ex. 7
R

CPB 0.833* 0.879* 0.953 0.953 0.954 0.937 0.931*
PPE 0.848* 0.898* 0.948 0.949 0.947 0.937 0.926*
ST 0.930* 0.945 0.896* 0.896* 0.913* 0.654* 0.861*
ACI 0.898* 0.934* 0.960 0.961 0.961 0.948 0.944

Table 3.37:
Monte Carlo estimates of coverage probabilities of confidence intervals
for β∗1,0,0 (intercept term) at the 95% nominal level. Generative models
have three stages and two actions per stage. Estimates are constructed
using 1000 datasets of size 150, 300 are drawn from each model, and
1000 bootstraps drawn from each dataset. Estimates significantly below
0.95 at the 0.05 level are marked with ∗. Models are designated NR =
non-regular, NNR = near-non-regular, R = regular.
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N = 150
Ex. 1
NR

Ex. 2
NNR

Ex. 3
NR

Ex. 4
NNR

Ex. 5
NR

Ex. 6
R

Ex. 7
R

CPB 0.503* 0.503* 0.655* 0.655* 0.719* 0.598* 0.685*
PPE 0.499* 0.499* 0.649* 0.650* 0.710* 0.598* 0.675*
ST 0.438 0.438 0.717* 0.719* 0.769* 0.608* 0.751*
ACI 0.579* 0.579* 0.720 0.720 0.782 0.671 0.752

N = 300
Ex. 1
NR

Ex. 2
NNR

Ex. 3
NR

Ex. 4
NNR

Ex. 5
NR

Ex. 6
R

Ex. 7
R

CPB 0.345* 0.346* 0.458 0.458 0.502 0.420 0.481*
PPE 0.343* 0.343* 0.457 0.458 0.500 0.419 0.473*
ST 0.298* 0.298 0.477* 0.478* 0.520* 0.432* 0.510*
ACI 0.383* 0.383* 0.490 0.490 0.531 0.450 0.515

Table 3.38:
Monte Carlo estimates of coverage probabilities of confidence intervals
for β∗1,0,0 (intercept term) at the 95% nominal level. Generative models
have three stages and two actions per stage. Estimates are constructed
using 1000 datasets of size 150, 300 are drawn from each model, and
1000 bootstraps drawn from each dataset. Estimates significantly below
0.95 at the 0.05 level are marked with ∗. Models are designated NR =
non-regular, NNR = near-non-regular, R = regular.
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N = 150
Ex. 1
NR

Ex. 2
NNR

Ex. 3
NR

Ex. 4
NNR

Ex. 5
NR

Ex. 6
R

Ex. 7
R

CPB 0.952 0.952 0.955 0.956 0.941 0.963 0.969
PPE 0.953 0.952 0.954 0.955 0.944 0.961 0.966
ST 0.952 0.952 0.954 0.954 0.950 0.962 0.968
ACI 0.987 0.988 0.979 0.977 0.965 0.978 0.982

N = 300
Ex. 1
NR

Ex. 2
NNR

Ex. 3
NR

Ex. 4
NNR

Ex. 5
NR

Ex. 6
R

Ex. 7
R

CPB 0.963 0.964 0.961 0.961 0.957 0.954 0.951
PPE 0.963 0.964 0.961 0.961 0.958 0.954 0.951
ST 0.967 0.965 0.960 0.960 0.959 0.953 0.950
ACI 0.977 0.977 0.971 0.971 0.968 0.965 0.964

Table 3.39:
Monte Carlo estimates of coverage probabilities of confidence intervals
for β∗1,0,1 (main effect of history) at the 95% nominal level. Generative
models have three stages and two actions per stage. Estimates are con-
structed using 1000 datasets of size 150, 300 are drawn from each model,
and 1000 bootstraps drawn from each dataset. Estimates significantly
below 0.95 at the 0.05 level are marked with ∗. Models are designated
NR = non-regular, NNR = near-non-regular, R = regular.
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N = 150
Ex. 1
NR

Ex. 2
NNR

Ex. 3
NR

Ex. 4
NNR

Ex. 5
NR

Ex. 6
R

Ex. 7
R

CPB 0.339 0.340 0.346 0.346 0.454 0.384 0.398
PPE 0.339 0.339 0.346 0.346 0.452 0.382 0.397
ST 0.337 0.337 0.347 0.347 0.466 0.391 0.406
ACI 0.398 0.398 0.386 0.386 0.492 0.423 0.434

N = 300
Ex. 1
NR

Ex. 2
NNR

Ex. 3
NR

Ex. 4
NNR

Ex. 5
NR

Ex. 6
R

Ex. 7
R

CPB 0.234 0.234 0.238 0.238 0.317 0.264 0.275
PPE 0.234 0.234 0.238 0.238 0.317 0.264 0.274
ST 0.233 0.233 0.238 0.238 0.322 0.270 0.279
ACI 0.263 0.262 0.257 0.257 0.334 0.281 0.291

Table 3.40:
Monte Carlo estimates of coverage probabilities of confidence intervals
for β∗1,0,1 (main effect of history) at the 95% nominal level. Generative
models have three stages and two actions per stage. Estimates are con-
structed using 1000 datasets of size 150, 300 are drawn from each model,
and 1000 bootstraps drawn from each dataset. Estimates significantly
below 0.95 at the 0.05 level are marked with ∗. Models are designated
NR = non-regular, NNR = near-non-regular, R = regular.
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N = 150
Ex. 1
NR

Ex. 2
NNR

Ex. 3
NR

Ex. 4
NNR

Ex. 5
NR

Ex. 6
R

Ex. 7
R

CPB 0.942 0.941 0.950 0.950 0.947 0.941 0.952
PPE 0.944 0.945 0.950 0.950 0.949 0.938 0.950
ST 0.948 0.948 0.949 0.949 0.952 0.942 0.950
ACI 0.969 0.969 0.962 0.962 0.966 0.960 0.966

N = 300
Ex. 1
NR

Ex. 2
NNR

Ex. 3
NR

Ex. 4
NNR

Ex. 5
NR

Ex. 6
R

Ex. 7
R

CPB 0.948 0.949 0.953 0.953 0.962 0.946 0.961
PPE 0.949 0.949 0.953 0.953 0.961 0.946 0.959
ST 0.950 0.951 0.952 0.951 0.962 0.944 0.963
ACI 0.980 0.980 0.968 0.967 0.970 0.955 0.972

Table 3.41:
Monte Carlo estimates of coverage probabilities of confidence intervals
for β∗1,1,0 (interaction between history and treatment) at the 95% nomi-
nal level. Generative models have three stages and two actions per stage.
Estimates are constructed using 1000 datasets of size 150, 300 are drawn
from each model, and 1000 bootstraps drawn from each dataset. Esti-
mates significantly below 0.95 at the 0.05 level are marked with ∗. Models
are designated NR = non-regular, NNR = near-non-regular, R = regular.
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N = 150
Ex. 1
NR

Ex. 2
NNR

Ex. 3
NR

Ex. 4
NNR

Ex. 5
NR

Ex. 6
R

Ex. 7
R

CPB 0.339 0.339 0.338 0.338 0.419 0.385 0.399
PPE 0.338 0.339 0.338 0.338 0.422 0.383 0.398
ST 0.338 0.338 0.338 0.338 0.426 0.392 0.406
ACI 0.397 0.397 0.377 0.377 0.456 0.424 0.434

N = 300
Ex. 1
NR

Ex. 2
NNR

Ex. 3
NR

Ex. 4
NNR

Ex. 5
NR

Ex. 6
R

Ex. 7
R

CPB 0.232 0.232 0.231 0.231 0.290 0.263 0.274
PPE 0.232 0.232 0.231 0.231 0.291 0.263 0.273
ST 0.232 0.232 0.230 0.230 0.293 0.269 0.278
ACI 0.261 0.261 0.249 0.249 0.306 0.280 0.290

Table 3.42:
Monte Carlo estimates of coverage probabilities of confidence intervals
for β∗1,1,0 (interaction between history and treatment) at the 95% nomi-
nal level. Generative models have three stages and two actions per stage.
Estimates are constructed using 1000 datasets of size 150, 300 are drawn
from each model, and 1000 bootstraps drawn from each dataset. Esti-
mates significantly below 0.95 at the 0.05 level are marked with ∗. Models
are designated NR = non-regular, NNR = near-non-regular, R = regular.
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N = 150
Ex. 1
NR

Ex. 2
NNR

Ex. 3
NR

Ex. 4
NNR

Ex. 5
NR

Ex. 6
R

Ex. 7
R

CPB 0.949 0.952 0.937 0.938 0.942 0.930* 0.936
PPE 0.948 0.949 0.935* 0.936 0.938 0.915* 0.933*
ST 0.945 0.946 0.939 0.939 0.938 0.915* 0.933*
ACI 0.982 0.983 0.960 0.960 0.964 0.953 0.959

N = 300
Ex. 1
NR

Ex. 2
NNR

Ex. 3
NR

Ex. 4
NNR

Ex. 5
NR

Ex. 6
R

Ex. 7
R

CPB 0.957 0.953 0.950 0.950 0.954 0.938 0.946
PPE 0.957 0.955 0.950 0.950 0.954 0.920* 0.945
ST 0.953 0.951 0.950 0.950 0.954 0.932* 0.949
ACI 0.975 0.972 0.966 0.966 0.965 0.953 0.966

Table 3.43:
Monte Carlo estimates of coverage probabilities of confidence intervals
for β∗1,1,1 (main effect of treatment) at the 95% nominal level. Generative
models have three stages and two actions per stage. Estimates are con-
structed using 1000 datasets of size 150, 300 are drawn from each model,
and 1000 bootstraps drawn from each dataset. Estimates significantly
below 0.95 at the 0.05 level are marked with ∗. Models are designated
NR = non-regular, NNR = near-non-regular, R = regular.
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N = 150
Ex. 1
NR

Ex. 2
NNR

Ex. 3
NR

Ex. 4
NNR

Ex. 5
NR

Ex. 6
R

Ex. 7
R

CPB 0.406 0.406 0.468 0.468 0.551 0.506* 0.532
PPE 0.402 0.402 0.469* 0.469 0.550 0.499* 0.528*
ST 0.400 0.400 0.473 0.473 0.566 0.530* 0.552*
ACI 0.475 0.475 0.521 0.521 0.602 0.569 0.589

N = 300
Ex. 1
NR

Ex. 2
NNR

Ex. 3
NR

Ex. 4
NNR

Ex. 5
NR

Ex. 6
R

Ex. 7
R

CPB 0.279 0.279 0.326 0.326 0.385 0.358 0.373
PPE 0.277 0.277 0.326 0.326 0.385 0.354* 0.369
ST 0.274 0.275 0.326 0.326 0.392 0.375* 0.383
ACI 0.314 0.314 0.350 0.350 0.408 0.384 0.402

Table 3.44:
Monte Carlo estimates of coverage probabilities of confidence intervals
for β∗1,1,1 (main effect of treatment) at the 95% nominal level. Generative
models have three stages and two actions per stage. Estimates are con-
structed using 1000 datasets of size 150, 300 are drawn from each model,
and 1000 bootstraps drawn from each dataset. Estimates significantly
below 0.95 at the 0.05 level are marked with ∗. Models are designated
NR = non-regular, NNR = near-non-regular, R = regular.
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N = 150
Ex. 1
NR

Ex. 2
NNR

Ex. 3
NR

Ex. 4
NNR

Ex. 5
NR

Ex. 6
R

Ex. 7
R

CPB 0.942 0.940 0.941 0.941 0.945 0.939 0.941
PPE 0.944 0.943 0.939 0.938 0.944 0.927* 0.940
ST 0.947 0.948 0.940 0.941 0.946 0.924* 0.939
ACI 0.976 0.977 0.961 0.962 0.964 0.957 0.963

N = 300
Ex. 1
NR

Ex. 2
NNR

Ex. 3
NR

Ex. 4
NNR

Ex. 5
NR

Ex. 6
R

Ex. 7
R

CPB 0.953 0.956 0.951 0.951 0.952 0.952 0.944
PPE 0.953 0.956 0.951 0.951 0.951 0.947 0.941
ST 0.954 0.957 0.954 0.954 0.950 0.943 0.941
ACI 0.976 0.974 0.965 0.965 0.960 0.965 0.954

Table 3.45:
Monte Carlo estimates of coverage probabilities of confidence intervals for
β∗1,1,0 + β∗1,1,1 (effect of action for history = 1) at the 95% nominal level.
Generative models have three stages and two actions per stage. Estimates
are constructed using 1000 datasets of size 150, 300 are drawn from each
model, and 1000 bootstraps drawn from each dataset. Estimates sig-
nificantly below 0.95 at the 0.05 level are marked with ∗. Models are
designated NR = non-regular, NNR = near-non-regular, R = regular.
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N = 150
Ex. 1
NR

Ex. 2
NNR

Ex. 3
NR

Ex. 4
NNR

Ex. 5
NR

Ex. 6
R

Ex. 7
R

CPB 0.529 0.529 0.577 0.577 0.693 0.631 0.664
PPE 0.525 0.526 0.578 0.578 0.689 0.626* 0.660
ST 0.522 0.523 0.582 0.582 0.709 0.655* 0.686
ACI 0.609 0.609 0.640 0.640 0.745 0.703 0.729

N = 300
Ex. 1
NR

Ex. 2
NNR

Ex. 3
NR

Ex. 4
NNR

Ex. 5
NR

Ex. 6
R

Ex. 7
R

CPB 0.363 0.363 0.398 0.398 0.483 0.441 0.462
PPE 0.361 0.362 0.398 0.398 0.482 0.438 0.459
ST 0.360 0.360 0.399 0.399 0.489 0.458 0.472
ACI 0.403 0.403 0.426 0.426 0.508 0.472 0.495

Table 3.46:
Monte Carlo estimates of coverage probabilities of confidence intervals for
β∗1,1,0 + β∗1,1,1 (effect of action for history = 1) at the 95% nominal level.
Generative models have three stages and two actions per stage. Estimates
are constructed using 1000 datasets of size 150, 300 are drawn from each
model, and 1000 bootstraps drawn from each dataset. Estimates sig-
nificantly below 0.95 at the 0.05 level are marked with ∗. Models are
designated NR = non-regular, NNR = near-non-regular, R = regular.
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N = 150
Ex. 1
NR

Ex. 2
NNR

Ex. 3
NR

Ex. 4
NNR

Ex. 5
NR

Ex. 6
R

Ex. 7
R

CPB 0.940 0.939 0.930* 0.931* 0.947 0.937 0.939
PPE 0.938 0.939 0.930* 0.929* 0.946 0.930* 0.934*
ST 0.934* 0.934* 0.933* 0.933* 0.947 0.930* 0.937
ACI 0.965 0.963 0.960 0.960 0.965 0.956 0.964

N = 300
Ex. 1
NR

Ex. 2
NNR

Ex. 3
NR

Ex. 4
NNR

Ex. 5
NR

Ex. 6
R

Ex. 7
R

CPB 0.943 0.945 0.948 0.948 0.958 0.938 0.957
PPE 0.941 0.943 0.948 0.948 0.960 0.927* 0.954
ST 0.945 0.947 0.951 0.951 0.960 0.933* 0.954
ACI 0.968 0.964 0.966 0.966 0.970 0.955 0.970

Table 3.47:
Monte Carlo estimates of coverage probabilities of confidence intervals
for −β∗1,1,0 + β∗1,1,1 (effect of action for history = -1) at the 95% nominal
level. Generative models have three stages and two actions per stage.
Estimates are constructed using 1000 datasets of size 150, 300 are drawn
from each model, and 1000 bootstraps drawn from each dataset. Esti-
mates significantly below 0.95 at the 0.05 level are marked with ∗. Models
are designated NR = non-regular, NNR = near-non-regular, R = regular.
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N = 150
Ex. 1
NR

Ex. 2
NNR

Ex. 3
NR

Ex. 4
NNR

Ex. 5
NR

Ex. 6
R

Ex. 7
R

CPB 0.530 0.530 0.575* 0.575* 0.690 0.639 0.664
PPE 0.526 0.526 0.577* 0.577* 0.695 0.632* 0.660*
ST 0.524* 0.524* 0.579* 0.580* 0.706 0.664* 0.684
ACI 0.610 0.609 0.638 0.638 0.758 0.710 0.730

N = 300
Ex. 1
NR

Ex. 2
NNR

Ex. 3
NR

Ex. 4
NNR

Ex. 5
NR

Ex. 6
R

Ex. 7
R

CPB 0.363 0.363 0.399 0.399 0.482 0.447 0.463
PPE 0.361 0.361 0.400 0.400 0.483 0.443* 0.460
ST 0.359 0.359 0.400 0.400 0.489 0.464* 0.473
ACI 0.402 0.403 0.428 0.428 0.511 0.477 0.497

Table 3.48:
Monte Carlo estimates of coverage probabilities of confidence intervals
for −β∗1,1,0 + β∗1,1,1 (effect of action for history = -1) at the 95% nominal
level. Generative models have three stages and two actions per stage.
Estimates are constructed using 1000 datasets of size 150, 300 are drawn
from each model, and 1000 bootstraps drawn from each dataset. Esti-
mates significantly below 0.95 at the 0.05 level are marked with ∗. Models
are designated NR = non-regular, NNR = near-non-regular, R = regular.
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CHAPTER IV

Future work

This thesis proposed a framework for constructing adaptive confidence intervals

for non-regular functionals which arise in the context of machine learning problems.

In this chapter, we briefly discuss two extensions of this work.

4.1 Inference after model selection via the Lasso

Since the seminal paper of Tibshirani (1996) on the Lasso, there has been an explo-

sion of interest in regularization methods that lead to automatic variable selection.

The literature is so vast that any attempt to cover it here fully is hopeless.1 An

abbreviated list of such methods includes Bridge Estimation (Frank and Freedman

1993), Smoothly Clipped Absolute Deviation (Fan and Li 1996), False Discovery Rate

Penalization (Abramovich et al. 2000), the Elastic Net (Zou and Hastie 2005, and the

Dantzig Selector (Candes and Tao 2005). However, despite fervent interest in these

methods, the ability to perform valid statistical inference using these approaches re-

mains elusive. The problem of inference after model selection is a longstanding and

well known problem (Brown 1967; Olshen 1973; Freedman 1981, 1983; Breiman 2001).

1At the time of this writing, Google Scholar reports more than three-thousand citations of Tib-
shirani’s 1996 paper.

184



The serious pitfalls of performing unadjusted inference after model selection is elo-

quently and poignantly argued in a series of papers by Leeb and his coauthors (Leeb,

Benedikt, and Potscher 1999, 2000, 2003, 2005; Kabaila and Leeb 2006).

A direction for future application of the adaptive confidence interval framework

developed in this thesis is inference after model selection. To illustrate this idea, we

consider inference for predictions using a linear model fit via the Lasso. Consider the

following generative model

Yi = xᵀ
i β
∗ + εi,

where we assume that ε1, ε2, . . . , εn are iid with mean zero and variance σ2. We

assume that the covariates have been scaled and centered. Furthermore, without loss

of generality, we assume that Ȳ , 1
n

∑n
i=1 Yi = 0. Suppose unknown parameter β∗ is

estimated usingthe value β̂n which minimizes an L1 penalized least squares criterion,

that is

β̂n , arg min
β∈Rp

n∑
i=1

(Yi − xᵀ
i β)2 + αn

p∑
j=1

|βj|.

Let c be a fixed vector in Rp, we consider the problem of constructing an asymptoti-

cally valid confidence interval for cᵀβ∗. The vector c may represent some contrast of

scientific interest, the gradient of a smooth non-linear function, or a future unlabeled

input.

It is well known (see Knight and Fu 2000), that the usual starting point for

inference,
√
n(β̂n − β∗) is non-regular if β∗j = 0 for any j = 1, 2, . . . , p. Moreover,

the degree of non-regularity is proportional to number of zero components of β∗

(more on this below). Thus, standard statistical approaches to statistical inference

like the bootstrap or a Taylor series approximation may not perform well under

certain generative models. In this sub-chapter, we propose smooth, adaptive, and

data-dependent upper and lower bounds on cᵀ
√
n(β̂n − β∗) that can be consistently
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bootstrapped to form confidence intervals. This problem is qualitatively difference

from the classification and Q-learning examples presented in previous chapters of this

thesis because cᵀ
√
n(β̂n− β∗) is only defined implicitly as the minimizer of a random

process. Thus, the above bounds must be based upon this random process rather

than an explicit form for cᵀ
√
n(β̂n − β∗). It will be useful at this point to formalize

the problem and consider a simple example.

4.1.1 Non-regularity of the Lasso

Following Knight and Fu (2000) we will make use of the following assumptions.

(A1) Define Ωn , 1
n

∑n
i=1 xix

ᵀ
i , then Ωn → Ω, and Ω is positive definite.

(A2) 1
n

maxi≤n ||xi||2 → 0.

(A3) αn/
√
n→ α0 ≥ 0.

(B1) Yni = xᵀ
ni(β

∗+ t/
√
n) + εni, where t is fixed, and εni are iid with mean zero and

variance σ2.

(B2) Define Ψn , 1
n

∑n
i=1 xnix

ᵀ
ni, then Ψn → Ω, and Ω is positive definite.

(B3) 1
n

maxi≤n ||xni||2 → 0.

These conditions are standard in least squares problems. In the least squares context,

the first condition ensures uniqueness of β∗, and the second is a sufficient condition

for asymptotic normality (via the Hajek-Sidak CLT, see DasGupta 2008). Assump-

tion (A3) regards a user-chosen tuning parameter and thus can always be satisfied.

Assumptions (B1)-(B3) are to facilitate a discussion of regularity and local properties

of both the Lasso and the bounds developed below.

186



The quantity
√
n(β̂n − β∗) is defined implicitly as the minimizer of the random

process Vn(u) where

Vn(u) ,
n∑
i=1

((
Yi − xᵀ

i (β
∗ + u/

√
n)
)2 − ε2i

)
+ αn

p∑
j=1

(
|β∗j + uj/

√
n| − |β∗j |

)
.

To see this, notice that the above is the localized process where we have re-expressed β

as β∗+u/
√
n. Thus, the development of an upper bound, say U(c), on cᵀ

√
n(β̂n−β∗)

should depend on the process Vn(u). The non-smoothness of the L1 penalty induces

non-regularity in Vn(u) and hence in
√
n(β̂n − β∗). Some properties of Vn(u) are

summarized in the following pair of lemmas. Let Z be p-variate Gaussian distribution

with mean zero and covariance Ω.

Lemma 4.1.1 (Knight and Fu 2000). Assume (A1)-(A3). Then,

Vn(u) V∞(u) = −2uᵀZ + uᵀΩu+ α0

p∑
j=1

[
ujsign(β∗j )1β∗j 6=0 + |uj|1βj=0

]

uniformly for u in compact sets.

Lemma 4.1.2 (Knight and Fu 2000). Assume (A3), and (B1)-(B3). Then,

Vn(u) Vt,∞(u) , −2uᵀZ+uᵀΩu+α0

p∑
j=1

[
ujsign(β∗j )1β∗j 6=0 + (|uj + tj| − |tj|) 1βj=0

]

uniformly over u in compact sets.

The preceding lemma shows that the limiting distribution of Vn(u) is non-regular.

Furthermore, the amount of non-regularity, measured as the number of local param-

eters that appear in the limiting distribution of Vn(u), is proportional to the number

of zero components of β∗. We now illustrate the effect of this non-regularity on the

small sample coverage of a residual bootstrap confidence interval using a toy example.
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Consider the following generative family of generative models

εi ∼iid N(0, 1/4),

Xi ∼iid Np(0, Ip),

β∗j , 1j≤5, (4.1)

where p ≥ 5 denotes the dimension of the model. Notice that the amount of non-

regularity is given by p− 5 and is thus increasing in p. We will keep the training set

size fixed at n = 100 and vary p. For each of 1000 Monte Carlo iterations, and for

each p = 5, 10, . . . , 50, we perform the following procedure

1. Draw a value c from Np(0, Ip).

2. Draw a training set of size n = 100 using the generative model in (4.1).

3. Fit the Lasso model choosing αn as the minimizer of cross-validated prediction

error. Record the residuals of this fit.

4. Using 1000 bootstrap resamples of the residuals formed in the preceding step,

form a 95% two-sided residual bootstrap confidence interval for cᵀβ∗ (see Efron

and Tibshirani 2000).

5. Record whether or not the constructed confidence interval covered cᵀβ∗.

Averaging over all 1000 Monte Carlo iterations gives an estimate of the achieved

coverage probability for the residual bootstrap at each value of p. Figure (4.1.1)

shows the estimated coverage for the residual bootstrap. As might be expected from

the relationship between the degree of non-regularity and the dimension p of the

generative model, the performance of the residual bootstrap deteriorates severely

as p increases. When p = 50 the estimated coverage is nearly 15% below nominal
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coverage. The figure also shows the coverage of the adaptive confidence interval which

we discuss in the next section.
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Figure 4.1: Estimated coverage of the residual bootstrap (Residual BS) and the adap-
tive confidence interval (ACI). Target coverage is 95%. Estimates are
based on 1000 Monte Carlo iterations and 1000 bootstrap resamples.

4.1.2 Adaptive confidence intervals for the Lasso

In this section we propose a data-dependent upper bound for cᵀ
√
n(β̂n − β∗). Let σ2

j

denote the asymptotic variance of β̂j. Define the random process

Υt,n(u) ,
n∑
i=1

((
Yi − xᵀ

i

(
β∗ + u/

√
n
))2 − ε2i

)
+
αn√
n

p∑
j=1

((
|
√
nβ∗j + tj + uj| − |

√
nβ∗j + tj|

)
1n(β̂n,j)2

σ2
j

≤λn

+
(
|
√
nβ∗j + uj| − |

√
nβ∗j |

)
1n(β̂n,j)2

σ2
j

>λn

)
.
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Notice that Υ0,n(u) = Vn(u), and for any fixed t the Υt,n(u) is convex and has a

unique minimum (Osborne et al. 2000). Intuitively, Υt,n(u) is a generalized version

of Vn(u) where the term corresponding to the L1 penalty has been divided into two

pieces (i) one applying to indices j where a preliminary test has determined that β∗j

is non-zero, and (ii) one applying to indices j where a preliminary test as failed to

determine β∗j is non-zero. The penalty corresponding indices associated with a failure

to reject the hypothesis β∗j = 0, have an additional term, tj, this extra term can be

viewed as a local perturbation of
√
nβ∗j . The upper bound is constructed by taking a

supremum over all minimizers of the locally perturbed process. For any fixed vector

c ∈ Rp define the upper bound U(c) as

U(c) , sup
t∈Sn

cᵀ
(

arg min
u∈Rp

Υt,n(u)

)
, (4.2)

where Sn is some, possibly data-dependent, subset of Rp. If zero belongs to Rp, then

it follows that cᵀ
√
n(β̂n− β∗) ≤ U(c). A lower bound, say L(c), on cᵀ

√
n(β̂n− β) can

be constructed by replacing the sup in (4.2) with an inf. The following conjectures

constitute future work.

Conjecture 1. Assume (A1)-(A3) and that λn tends to ∞ and satisfies λn = o(n).

Assume Sn , {t ∈ Rp : ||t||2∞ ≤ λn}, and let c be a fixed vector in Rp. Let Vt,∞(u) be

as defined in Lemma (4.1.2). Then,

U(c) sup
t∈Rp

cᵀ arg min
u∈Rp

Vt,∞(u).

Conjecture 2. Assume (B1)-(B3) and that λn tends to ∞ and satisfies λn = o(n).

Assume Sn , {t ∈ Rp : ||t||2∞ ≤ λn}, and let c be a fixed vector in Rp. Let Vt,∞(u) be
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as defined in Lemma (4.1.2). Then,

U(c) sup
t∈Rp

cᵀ arg min
u∈Rp

Vt,∞(u).

Conjecture 3. Assume (A1)-(A3) and that λn tends to ∞ and satisfies λn = o(n).

Assume Sn , {t ∈ Rp : ||t||2∞ ≤ λn}, and let c be a fixed vector in Rp. Furthermore,

let U (b)(c) denote the bootstrap analog of U(c). Then, U(c) and U (b)(c) have the same

limiting distribution in probability. That is,

sup
ν∈BL1((R)

∣∣∣∣EMν (U (b)(c)
)
− Eν (U(c))

∣∣∣∣
converges to zero in probability.

The first conjecture above concerns the adaptivity of the ACI to the underlying non-

regularity. If β∗j 6= 0 for all j = 1, 2, . . . , p then Vt,∞(u) does not depend on t and

equals V∞(u). Thus, in this case, U(c) and cᵀ
√
n(β̂n − β∗) have the same limiting

distribution. The second conjecture states that the upper bound U(c) is regular. In

practice, the bootstrap distribution of the bounds U(c) and L(c) are used to form

confidence sets. The third conjecture states that the upper and lower bounds can be

consistently bootstrapped. Proofs of these results are ongoing work.

The performance of the ACI on the toy example is illustrated in figure (4.1.1).

The confidence interval was formed using Sn as described in the above conjectures

with λn = log log n. The ACI delivers nominal coverage for every dimension p but

appears to become more conservative as the degree of non-regularity increases. This is

somewhat of a concern given the strong desire to apply the Lasso in high dimensional

settings. In this same vein, note that the conjectures above are stated for the low

(fixed p) setting, future work will include an analysis of the ACI in an asymptotic
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framework that allows p to diverge with n.

4.1.3 Computation

One of the challenging aspects of the ACI for the Lasso is computation. In order to

compute a bootstrap confidence interval one must compute U (b)(c) for every bootstrap

sample. For every fixed value of t, computing the arg min of Υ
(b)
t,n(u) is a quadratic

programming problem (see, for example, Osborne, Presnell, and Turlach 2000) and

hence can be done efficiently and exactly. A natural first approach to computing

U (b)(c) is to use an iterative search over t. Properties of an iterative optimization ap-

proach may be difficult to characterize because properties of arg minu∈Rp Υ
(b)
t,n, viewed

as a function of t, are currently not well understood. However, we show below that

it is possible to reformulate the computation of U (b)(c) as a linear mixed integer pro-

gram which can be solved exactly (that is, to machine precision) using specialized

software (e.g. CPLEX). While solving an integer program can be quite computation-

ally burdensome, especially in high-dimensional problems, the integer formulation is

useful for a number of reasons. First, the integer program yields an essentially exact

solution and thus can be used to benchmark the quality of other, faster, numerical

procedures. Second, the form of the integer program can inform the development

of relaxed versions of the problem potentially leading to better and more specialized

optimization routines. Lastly, many numerical optimization procedures require the

choice of one or more tuning parameters which may govern, among other things,

the balance of exploration and exploitation and the stopping criteria. Solutions to

the integer program can be used to tune these parameters. For example, suppose

that an iterative optimization procedure requires the choice of tuning parameter M

which denotes the maximum number of steps. Let Û (b)
M (c) denote the approximation

of U (b)(c) for the bth bootstrap sample using M as the maximum number of steps.
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Let r denote a small number of ‘pilot’ iterations. Using the integer program, com-

pute U (1)(c),U (2)(c), . . . ,U (r)(c). Then, for each k = 1, 2, . . . , r let Mk denote the

smallest number of steps M for which Û (k)
M (c) ≥ U (k)(c) + ε, where ε denotes some

acceptable loss in solution quality. Then, one can choose M = max1≤k≤rMk as the

maximum number of iterations for the remaining B− r iterations needed to compute

the bootstrap confidence interval.

We have argued that having a computationally expensive but exact mixed integer

program formulation of U (b)(c) may be beneficial for a number of reasons. We now

give a very brief sketch as to how such a formulation is derived. For each fixed

t, Υ
(b)
t,n(u) is convex and in the absence of perfect collineararity, possesses a unique

solution (Osborne et al., 2000). Furthermore, since minimizing Υ
(b)
t,n(b) is equivalent

to the minimization problem required by the Lasso, one has strong duality (Osborn et

al., 2000) and arg minu∈RP Υt,n(u) is completely characterized by the Karush-Kuhn-

Tucker (KKT) conditions. Let KKT(t, u, θ) denote the KKT conditions for fixed

value t, where θ denotes additional slack and dual variables. Computing U (b)(c) can

be re-written as supt,u,θ c
Tu subject to the constraints given in KKT(t, u, θ) and the

requirement that t ∈ Sn. The KKT conditions are linear constraints with an integer

component (see Boyd and Vandenberghe 2004), and provided the set Sn imposes

linear constraints on t, the newly formulated problem is indeed a linear mixed integer

program.

4.1.4 Conclusions

The problem of constructing confidence intervals post-model selection is a longstand-

ing and important problem. Preliminary analysis suggests that an adaptive confidence

interval may have promise in the case where model selection has been done using the

Lasso. However, a number of theoretical and computational issues are directions for
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future work. This problem is also important in the broader context of developing a

unified framework for constructing adaptive confidence intervals in non-regular prob-

lems. In particular, the functional of interest in this problem is only defined implicitly

as the minimizer of a random processes, forcing the construction of bounds to occur

indirectly through the random process. In addition, the Lasso is often employed in

the so-called ‘large p small n’ paradigm, thus, it is imperative to develop theoreti-

cal properties of the adaptive confidence interval in a framework that allows for the

dimension p to diverge with sample size n.

4.2 Adaptive confidence intervals for the value of a learned

DTR

In the second part of this thesis we addressed the problem of constructing confidence

intervals for coefficients in a learned dynamic treatment regime (DTR). Another quan-

tity of interest is the expected return, averaged over future patients, of the learned

DTR. This quantity is known as the value of a learned DTR and is very closely related

to the test error in classification. In this subchapter we briefly discuss the problem

of constructing an adaptive confidence interval for the value of a learned DTR in

the simplest possible setting, where there is one-stage of treatment and two possible

treatments available at each stage.

The setup is as follows. We observe a training set D , {(Yi, Hi, Ai)}ni=1 drawn

iid from fixed but unknown distribution P . Each triple (Y,H,A) is composed of a

response Y which is coded so that higher values of Y correspond to better clinical

outcomes, a vector of covariates H which are assumed to belong to Rp, and a binary

treatment A which is coded to take values in {−1, 1}. Using the training data D, we

estimate the optimal DTR using the Q-learning algorithm, as described in Chapter
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3. When there is only one stage of treatment,Q-learning reduces to ordinary linear

regression. Let Q(h, a) denote the conditional mean of the response Y given treatment

history H = h and treatment A = a. That is, Q(h, a) = E(Y |H = h,A = a). We will

model Q(h, a) using the following working model

Q(h, a; β) , βᵀ
0 + aβᵀ

1h1,

where h0 = Ψ0(h) and h1 = Ψ1(h) are features constructed from H = h. Let Pn

denote the empirical measure and let β̂ denote the least squares estimator

β̂ , arg min
β∈Rp

Pn(Y −Q(H,A))2.

Let π̂ denote the estimated optimal DTR, that is, π̂ is the map from Rp into {−1, 1}

given by

π̂(h) = arg max
a∈{−1,1}

Q(h, a; β̂) = sign
(
β̂ᵀ

1h1

)
.

See Chapter 3 for additional details on Q-learning. The value V π̂ of the learned policy

π̂ is the expected response Y when treatment for a patient with history H = h is

(with probability one) assigned treatment π̂(h). That is,

V π̂ , P π̂Y = P

(
Y

p(A|H)
1A=π̂(H)

)
= P

(
Y

p(A|H)
1AHᵀ

1 β̂1<0

)
, (4.3)

where p(a|h) , P (A = a|H = h), and we have assumed that for each a, p(a|h) > 0

with (H) probability one. The form of the last term in (4.3) shows that the value

can be viewed as a weighted test error. The distribution of the weights influence the

degree of regularity. For example if Y/P (A|H) ≈ 0 with high probability whenever
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Hᵀβ∗ = 0 then

P

(
Y

p(A|H)
1AHᵀ

1 β̂1<0

)
≈ P

(
Y

p(A|H)
1AHᵀ

1 β̂1<01Hᵀβ∗ 6=0

)
,

where the right hand side of the above display is regular. On the other hand, if∣∣Y/P (A|H)
∣∣� 0 with non-trivial probability whenever Hᵀβ∗ = 0, the non-regularity

will be exacerbated.

Forming a confidence interval for the value function of a learned policy is concep-

tually and theoretically similar to the problem of constructing a confidence interval for

the test error in classification. However, the small sample performance may depend

heavily on properties of the weights Y/p(A|X). Furthermore, extending the adaptive

confidence interval framework to multistage case will be non-trivial since one must

account not only for the non-regularity introduced by the indicator function, but also

the non-regularity of the coefficients indexing the regression functions at later stages

(see Chapter 3).
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