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Abstract 

 

Several new hybrid Monte Carlo-deterministic methods based on nonlinear 

functionals are developed in this dissertation.  The nonlinear functional approach consists 

of two fundamental steps: (1) the Monte Carlo estimation of nonlinear functionals, which 

are ratios of integrals of the particle flux, and (2) the deterministic solution of low-order 

algebraic equations that contain these functionals as parameters. 

The nonlinear functionals for each hybrid method are formulated by taking space-

angle-energy moments of the transport equation and performing algebraic manipulations 

to obtain a finite system of “low-order” equations.  The stochastic nonlinear functional 

estimates are used in the low-order equations to solve for the particle flux.  If the 

structure of the low-order equations is favorable, and the functionals are defined 

appropriately, the solution of the low-order equations will have less variance than the 

direct Monte Carlo estimate of the solution.  Theoretical justification is given that 

stochastic estimates of the nonlinear functionals should have less variance than direct 

estimates of standard linear quantities when the same Monte Carlo histories are used to 

evaluate the numerator and denominator of each functional. 

The new H-MC-S2 and H-MC-S2X methods incorporate functionals resembling 

flux-weighted cross sections and quadrature.  The low-order equations of these methods 

resemble the one-group S2 equations, but have no energy, angular, or spatial truncation 

errors.  Simulations show that the variance of the H-MC-S2X final solution is less than 

the variance of the standard Monte Carlo solution, leading to a reduction in 

computational cost for several test problems. 

The new HCMFD-II, HCMFD-III and HCMFD-IV methods improve the 

previously-published CMFD-Accelerated Monte Carlo method by utilizing angular 

moments of the transport equation to reduce statistical errors in the CMFD nonlinear 

functionals.  These new methods more efficiently converge the fission source in 
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criticality simulations.  Consequently, they require fewer inactive and active cycles, and 

fewer particles per cycle, leading to a large reduction in computational cost. 

The techniques in this dissertation are explored for a subset of neutron transport 

problems including continuous energy fixed source problems and monoenergetic 

criticality problems.  Our numerical results indicate that these nonlinear functional 

techniques are promising and should be extended to more realistic problems. 
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Chapter 1 

Introduction 

 

1.1 Overview 

This dissertation comprises the derivation and evaluation of several new “hybrid” 

stochastic – deterministic numerical methods for solving the Boltzmann equation for 

neutron transport.  The specific “hybrid” approach in this work is the use of 

stochastically-computed nonlinear functionals (ratios of integrals of the particle flux) in 

low-order deterministic equations to efficiently increase the accuracy of neutron transport 

simulations. 

The nonlinear functionals for a given hybrid method are defined by taking space-

angle-energy moments of the transport equation and performing algebraic manipulations 

to achieve low-order equations with a desired structure.  When this is done “correctly”, 

Monte Carlo estimates of the nonlinear functionals have much less variance than direct 

estimates of the flux integrals.  The nonlinear functional estimates are used in the low-

order equations to solve for the particle flux.  If the structure of the low-order equations is 

favorable, the solution of these low-order equations should have less variance than the 

direct Monte Carlo estimate of the solution.   

The nonlinear functional approach is more complicated than conventional Monte 

Carlo, but it can offer major computational advantages, particularly for systems with high 

dominance ratios.  In this work, we show that the errors in conventional deterministic and 

stochastic methods can be suppressed by using hybrid techniques with the nonlinear 

functional approach, leading to more accurate solutions at a lower computational cost.   

In this chapter, we review the Boltzmann neutron transport equation and the 

conventional deterministic and stochastic techniques used to numerically solve it.  We 

describe the strengths and weakness of the conventional methods, and we identify 



 

2 

specific problems for which hybrid numerical methods have been used to improve 

numerical results.  We review two previously-developed hybrid methods that use the 

nonlinear functional approach, and finally, we preview the new methods that are 

developed in the remainder of the dissertation. 

1.2 The Boltzmann Equation for Neutron Transport 

The steady-state Boltzmann neutron transport equation, 

 

0
4

ˆ ˆ ˆ( , , ) ( , ) ( , , )

ˆ ˆ ˆ ˆ ˆ( , , ) ( , , ) ( , , ),

t

s

r E r E r E

r E E r E dE d S r E


 




   

             
 (1.1) 

governs the neutron angular flux, ˆ( , , )r E  , a density-like quantity, in six-dimensional 

phase space: space ,r  angle ˆ , and energy E  [1].  Each term in the Boltzmann equation 

corresponds to a physical process that changes a neutron‟s phase space: birth, collisions, 

and leakage.  In this work, we use Cartesian coordinates for space, ˆˆ ˆr xi yj zk   , and 

spherical coordinates for angle, 

 2 2 ˆˆ ˆ ˆ ˆ( , ) 1 cos( ) 1 sin( ) ,i j k              (1.2) 

where cos( )  .  The polar angle is  0,  , and the azimuthal angle is  0,2 .   

Neutron transport problems are typically classified as fixed source or fission 

source (criticality) problems.  In fixed source problems, neutrons are released into the 

system with a known distribution: 
1ˆ( , , ) ( , )

4
S r E Q r E


  .  In fission source problems, 

fissile material releases neutrons during fission events with a distribution related to the 

unknown scalar flux: 

 
0

0

( )ˆ( , , ) ( , ) ( , ) ,
4

f

eff

E
S r E r E r E dE

k


 





    (1.3) 

where the scalar flux 0 ( , )r E  is defined as the zero
th

 angular moment of the angular flux: 
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 0

4

ˆ( , ) ( , , ) .r E r E d


     (1.4)  

Fission source problems are solved numerically by iterative techniques, and are also 

known as criticality or eigenvalue problems. 

Once neutrons are “born” in a system, they undergo a series of physical processes 

referred to collectively as “neutron transport”.  While inside the system, neutrons stream 

between collisions with the nuclei in the system materials; neutrons also “leak” into or 

out of the system when they physically cross any system boundary.  The probability per 

unit distance traveled of a collision, and the type of collision (i.e., scatter, absorption, 

fission), are driven by parameters called cross sections.  Each material has a set of 

interaction cross sections  ( ), ( ),s E E   that govern the different nuclei-neutron 

interaction probabilities.  The total interaction cross section is the sum of the individual 

interaction cross sections [1]: 

 ( ) ( ) ( ) ( )t s fE E E E       (1.5) 

Cross sections have a unique and complex dependence on neutron energy.  They 

can contain large peaks (resonances) over narrow energy ranges.  Cross section behavior 

is therefore difficult to model because simple discretization of the energy range would 

require tens of thousands of grid points.  Instead of a simple discretization, the 

multigroup approximation is conventionally used to discretize the energy variable.  This 

approximation is discussed later. 

Much attention has been devoted to developing algorithms for solving the transport 

equation, particularly in the application of nuclear fission reactors and radiation shielding 

problems.  The desired quantities in most radiation transport problems are: 

a) the scalar flux distribution or eigenfunction 0 ( , ),x E  

b) the eigenvalue 
effk , 

c) various response rates, i.e. 0
0

( ) ( , ) ( , ) .i iR x x E x E dE


   
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Numerous techniques have been developed to solve the Boltzmann equation for these 

quantities.  In the following section, we describe the characteristics of the conventional 

classes of numerical methods: deterministic and stochastic (Monte Carlo) techniques. 

1.3 Deterministic Methods 

Deterministic methods are characterized by the discretization of the neutron 

transport equation to obtain an algebraic system of equations for the scalar flux [1].  An 

excellent review of deterministic methods is given in [2].  The primary limitation in 

deterministic methods is the number of unknowns that can be stored in memory.  The 

errors in deterministic methods decrease as the various grids decrease in size (and the 

number of unknowns increases).  Therefore, the size of available computer memory and 

computational performance can limit the accuracy of deterministic calculations. 

1.3.1 Spatial Discretization 

The spatial discretization of the transport equation consists of dividing the system 

domain into a structured or unstructured grid.  “Homogenization” of materials within a 

cell is often performed in order to reduce the number of spatial unknowns, computational 

cost and memory requirements. 

1.3.2 Angular Discretization 

Discretization of the angular variable is generally performed in two different ways.  

For example, quantities in the transport equation can be expanded in spherical harmonic 

functions (the NP  method), or they may be evaluated at discrete angles (the NS  or 

discrete ordinates method).  The diffusion approximation can also be used by integrating 

the transport equation to yield the balance equation: 

 
1 0( , ) ( , ) ( , ) ( , ),ar E r E r E S r E     (1.6) 

and applying the approximation 
1 0( , ) ( ) ( , )r E D r r E    , where the neutron current 

has been defined: 1

4

ˆ ˆ( , ) ( , , ) .r E r E d


        Use of the diffusion approximation is 
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limited to problems in which leakage, absorption rates, and flux gradients are small.  

When these circumstances do not apply, diffusion theory is not accurate. 

1.3.3 Energy Discretization   

Energy discretization is the most complex and difficult step of a deterministic 

calculation.  As previously alluded, the multigroup (MG) approximation is typically 

required.  This approximation consists of partitioning the energy range into “groups” and 

condensing the continuous energy cross sections over each group with a weighting 

function.  The subscript g  is used to denote a quantity that has been condensed over the 

thg  energy group: 
1g gE E E   .  In order to rigorously preserve reaction rates, the exact 

angular flux must be applied as the weighting function.  This technique eliminates the 

energy dependence of the cross section but introduces angular dependence of the 

resulting multigroup cross section:  

 

1

1
,

ˆ( , ) ( , , )
ˆ( , )

ˆ( , , )
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g
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E

t
E

t g E

E

r E r E dE

r
r E dE









 

  





. (1.7) 

The true angular dependence of the rigorously-collapsed multigroup cross section 

cannot be incorporated into conventional deterministic code frameworks [2].  In addition, 

the exact angular flux is unknown; it is precisely the quantity we are trying to compute.  

In practice, the angular flux weighting function is replaced by an approximate “spectrum” 

function, ( )W E , determined from a simplified “spectrum calculation”. 

 

1

1
,
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( )
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i

t
Ei

t g E

E

E W E dE

W E dE







 



. (1.8) 

The rationale for using Eq. (1.8)  is that when the true flux is separable in angle and 

energy, the angular dependence cancels, leaving only energy dependence.  In addition, 

the spatial dependence is considered separable from energy or calculated with a simple  

1-D calculation.  While Eq. (1.8) has become the standard for energy discretization in 
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deterministic methods, it can incur unacceptable errors when the true flux is not separable 

in angle and energy, or when the spectrum is inadequately computed.  Refining the group 

structure mitigates these errors, but computational expense and memory limitations 

prevent the use of an arbitrarily fine group structure.  The consistent NP  and extended 

transport approximations [2] are alternatives to using an isotropic weighting function, but 

these techniques require angularly-dependent spectrum calculations.      

The major difficulty in deterministic methods therefore lies in the generation of the 

multigroup cross sections.  The determination of the appropriate weighting functions and 

optimum group structure is time-consuming, and significant errors may occur when these 

steps are not adequately performed.   

1.3.4 Challenges in Deterministic Methods 

In addition to the difficulties presented by the multigroup approximation, the 

spatial and angular discretization schemes introduce truncation errors.  These errors are 

reduced as the grids are refined, but the grid size is often limited by computational 

resources.  The number of unknowns for a typical fission reactor problem can quickly 

become intractable even on supercomputers.  In addition, it is difficult to optimize the 

grid parameters a priori. 

1.3.5 Advantages of Deterministic Methods 

Despite the difficulties in discretization and multigroup cross section generation, 

most commercial neutron transport codes are based on deterministic methodologies.  

After preparation of the multigroup cross sections, the transport equation can be 

discretized in angle and space, and the resulting algebraic system of equations can be 

solved on a computer.  For fixed source problems, the transport equation reduces to a 

matrix system,  q .  For fission source problems, the transport equation is 

formulated as an eigenvalue problem, kAf f , where f  is the fission source [2]. 

Deterministic methods have certain computational advantages.  For example, the 

discretized diffusion equations are elliptic and spread information throughout the system 

infinitely fast.  This feature is particularly helpful for analyzing large, loosely-coupled 

systems like thermal fission reactors.  Also, deterministic methods excel at calculating 

both global (i.e. eigenvalue) and local (i.e. eigenfunction) quantities. 
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1.4 Monte Carlo Methods  

Monte Carlo methods are a fundamentally different approach to simulating 

solutions of the Boltzmann transport equation.  In contrast with deterministic methods, 

Monte Carlo methods model the exact geometry and physics (i.e. continuous energy, 

angle, space) of a system by simulating neutron “histories”: the random sequence of 

physical processes a neutron undergoes from birth to death.  Monte Carlo solutions have 

no truncation errors, but they do have stochastic uncertainties. 

1.4.1 Random Sampling 

To begin a Monte Carlo simulation, the starting location, direction and energy of a 

neutron are randomly sampled from specified probability distributions.  The neutron 

travels in a straight path until it collides with an nucleus at a location randomly sampled 

from the interaction probability density function.  The type of collision and collision 

properties (e.g. emergent direction and energy from a scatter) are sampled in accordance 

with the cross sections.  The process of transporting the particle according to probability 

distributions repeats until the particle exits the system or is absorbed.  The next history 

then begins and is completely independent of the previous history. 

During each history, information is collected about the neutron‟s path and 

interactions throughout the system.  Suppose that x  is a random variable representing 

some property of a neutron history (for example, the flux within a particular spatial cell) 

with pdf mean  x E x  and pdf variance   
22 ( )x E x E x   

 
.  The “pdf” acronym 

describes inherent properties of the probability density function.  The pdf variance 

describes how far values of x  are expected to be “distributed” from the mean in the 

probability density function. 

The Monte Carlo simulation generates the samples 1( , , )Nx x  of x  over N  

neutron histories.  The sample mean 

 
1

1
ˆ ,

N

N n

n

x x
N 

   (1.9) 
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is an unbiased estimator of the pdf mean, i.e.    ˆ .NE x E x x    The variance of the 

sample mean [2] is  

 
2

2 ( )
ˆ( ) .N

x
x

N


   (1.10) 

We therefore have distinguished two types of variances.  To understand the variance of 

the sample mean, say we perform several independent simulations with N  histories each, 

and generate a sample mean from each simulation.  This “collection” of sample means 

has its own distribution, and Eq. (1.10) states that the variance of this distribution is the 

pdf variance divided by the number of samples used to estimate the sample mean.  This 

interpretation makes sense: as the number of samples N  becomes larger, each sample 

mean becomes more accurate, and the collection of sample means becomes more closely 

distributed to the pdf mean. 

In Monte Carlo simulations, a finite number of samples are generated, and the true 

mean is unknown.  To estimate the pdf variance, 2 ( )x , of a finite set of samples, an 

unbiased estimator called the sample pdf variance [2] is used: 

  2 2
2̂ ˆ( ) ,

1
N

N

N
S xx

N
  
  

 (1.11) 

where   2
2

1

1^
N

n
N

n

xx
N 

   and 2 2 ( ).E S x      To estimate the variance of the sample 

mean with a finite number of samples, the sample variance of the sample mean is used: 

  2 2
2

1 ^ ˆ( ) .
1

N N
N

S xx
N

  
  

 (1.12) 

Monte Carlo simulations are generally used to compute sample means [Eq. (1.9)] 

and sample variances of the sample mean [Eq. (1.12)].  In this work, when we refer to a 

“mean” and “variance”, we are referring to the sample mean and sample variance of the 

sample mean unless otherwise specified.  We now briefly describe how Monte Carlo 
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generates means and variances of random variables for fixed source and criticality 

problems.   

Fixed source calculations simulate a fixed number of neutron histories; each 

neutron is born with a specified distribution in energy, angle and space.  The desired 

quantities (i.e. flux, reaction rates) are averaged over these histories, and the variance of 

these estimates are estimated from Eq. (1.12).   

Criticality calculations consist of several sequential fixed source calculations, 

called cycles (or generations).  The first cycle utilizes an arbitrary fission source 

distribution.  The fission source distribution for subsequent cycles is defined from the 

previous cycle fission sites.  The initial “inactive” cycles are used solely to “converge” 

the fission source to the true distribution.  Subsequent “active” cycles are performed to 

tally information about the desired quantities.  Therefore, averaging is done twice:  the 

samples generated by each history are averaged with a cycle to produce a cycle mean, 

and then the cycle means are averaged over all cycles to produce the final reported mean.  

The final reported variance is the sample variance of the sample (cycle) means. 

1.4.2 Challenges in Monte Carlo 

Monte Carlo excels at computing global quantities such as the eigenvalue or 

system-integrated power, but the computation of detailed local quantities, such as the flux 

within a spatial cell, can be difficult to estimate accurately.  In Monte Carlo, data can 

only be collected in regions of phase space where random neutrons “travel”.  In areas of 

low neutron population (such as at the edge of a shielding material), variance may be 

unacceptably large due to undersampling.  Variance reduction (VR) techniques have been 

successfully developed to bias particle travel through undersampled regions.  However, 

VR techniques require user expertise to provide the optimum biasing parameters: this 

procedure can be time-consuming and difficult, although progress has been made in 

recent years to develop automatic variance reduction techniques.  Lastly, for large, 

loosely coupled problems such as fission reactors, Monte Carlo can be extremely slow to 

converge the fission source because different areas of the problem cannot “see” each 

other.  In other words, standard Monte Carlo information does not spread easily 

throughout the system.  While one area of the problem may be converging, another area 
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might not.  Acceleration of the convergence of the fission source in Monte Carlo is the 

subject of much research. 

1.4.3 Advantages of Monte Carlo 

While Monte Carlo can be computationally expensive, it is favored for certain 

applications because of its ability to model the exact geometry and energy-dependent 

physics.  There are no concerns regarding homogenization, multigroup condensation, grid 

size, truncation errors, etc.  In addition, the statistical variance in a Monte Carlo 

calculation can be quantified by Eq. (1.10) where 2 ( )x  is estimated by the sample 

variance in Eq. (1.11).  Most importantly, the Central Limit Theorem (CLT) can be used 

to interpret the standard deviation of the sample mean, or simply, the “standard 

deviation”, 
( )

ˆ( )N

x
x

N


  , as a 68.3% confidence level, meaning that it is 68.3% likely 

that the estimated mean ˆ
Nx  lies within one standard deviation of the pdf mean x .  The 

CLT states [2] that as N  approaches infinity, then the independent estimates of ˆ
Nx  are 

normally distributed with the following probability density function: 

 

 
2

2

ˆ

2 ( )1
ˆ( ) .

2 ( )

NN x x

x

N N

N
f x e

x



 

 
 
 
   (1.13) 

It can be shown that the probability that ˆ
Nx  lies within M  standard deviations of the pdf 

mean is ,
2

M
erf

 
 
 

 where erf  is the error function.  Therefore, while a particular 

random variable may not be normally distributed, independent estimates of the mean are 

normally distributed when the number of histories is large.  In practical terms, increasing 

the number of histories in a Monte Carlo calculation makes it more likely that an 

individual estimate of the mean is closer to the true mean.  [Note: The Central Limit 

Theorem does not apply when the mean is obtained using dependent histories, as is the 

case in correlated cycle criticality calculations.] 
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1.5 The Need for Hybrid Methods 

We have discussed the main strengths and weaknesses of conventional 

deterministic and Monte Carlo methods.  Next, we identify some specific neutron 

transport problems that cause difficulty for conventional numerical techniques and 

discuss how hybrid methods have been implemented to mitigate these problems. 

1.5.1 Automated Variance Reduction in Monte Carlo 

To date, most “hybrid” techniques have been designed to automate the generation 

of variance reduction parameters (such as weight windows) in Monte Carlo.  These 

techniques begin with a deterministic calculation to generate biasing parameters, and then 

the Monte Carlo simulation is performed using the parameters.  For example, 

deterministic adjoint calculations have been used to automatically generate weight 

windows for Monte Carlo simulations [3][4][5].  These techniques are useful in Monte 

Carlo simulations for which the flux is desired in a local region, or at all physical 

locations in the system.  Classic weight window methods are applied to source-detector 

problems and used to steer particles toward a particular region of low particle density (in 

shielding models, for example).  We do not discuss these methods in further detail 

because they are fundamentally different from the “hybrid” approach used in this work, 

and because issues of low particle density are not frequent in reactor physics criticality 

calculations (the focus of this work).   However, these “hybrid” methods could be used 

with the new hybrid methods presented in this dissertation to analyze shielding 

applications. 

1.5.2 Transport Effects 

Deterministic methods utilize numerous approximations to discretize the exact 

transport equation into a set of linear equations solvable on a computer.  Sometimes the 

resulting numerical solution differs from the true solution because the true physics cannot 

be accurately modeled.  The physics that cannot be accurately modeled without an ultra-

fine space-angle-energy grid are referred to as transport effects.  For example, at some 

material interfaces, the angular flux exhibits a strong correlation between energy and 

angle.  These “transport effects” are difficult to capture using conventional deterministic 

methods due to the limitations of the multigroup approximation.  Transport effects are 
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only associated with deterministic methods, since Monte Carlo methods model the exact 

physics and geometry.  These effects can be described by refining the spatial, energy, and 

angular grids, but several calculations may be necessary to determine the required level 

of refinement.  

It is important to address the issue of transport effects in computational modeling 

because candidate future nuclear reactors, such as the Very High Temperature Reactor 

(VHTR) and the Advanced Burner Reactor (ABR), have new geometries and materials 

(i.e. voids, streaming regions, steel reflectors) that cause transport effects not well 

modeled by existing numerical techniques. 

The existence of transport effects is well-known.  For example, Aliberti, et al. [6] 

and Lebrat, et al. [7], considered the specific example of a model fast reactor consisting 

of a cylindrical core surrounded by a reflector.  Near the core-reflector interface, the 

direction of a neutron is strongly correlated to its energy, causing a significant spectral 

effect near the interface.  Aliberti and Lebrat attempted to calculate local reaction rates 

near the core-reflector interface and the global eigenvalue for this problem using a 

conventional 33-group discrete ordinates deterministic method, and they observed 

significant errors.  They achieved satisfactory results after refining the group structure to 

300 groups, but general use of such a fine grid was considered prohibitively expensive.  

They developed an improved 33-group methodology by using a spatially-dependent 

spectral weighting function (generated from a coupled core-reflector spectrum 

calculation). 

The generation of spatially-dependent spectra for multigroup cross section 

generation near interfaces has also been recommended by other authors [8][9].  This 

approach is a costly but effective workaround for the multigroup approximation.  

Alternatively, Hanshaw [10][11] developed an adjoint weighting function which 

improves results for problems with strong spatial and angular variation.  However, this 

method still approximates the rigorous multigroup cross section in Eq. (1.7). 

The inherent complexity of neutron transport problems makes it difficult to know 

where transport effects will occur, and how to alter deterministic methods to best treat 

them.  We suggest that it may be advantageous to avoid the multigroup approximation 
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altogether, and this idea is the driving force behind the first two hybrid methods 

developed in this work, H-MC-S2 and H-MC-S2X. 

1.5.3 Fission Source Convergence 

Convergence of the fission source is a significant computational burden in Monte 

Carlo criticality calculations.  For large systems, the dominance ratio 2

1

k

k
DR   (the ratio 

of the second to first eigenvalue) is close to unity.  In these cases, the higher-order 

eigenfunction modes decay slowly, and the true eigenfunction is poorly resolved for a 

long time.  The Monte Carlo estimate of the fission source is unstable, and in some cases 

never fully converges.  Slow fission source convergence is an inherent undesirable 

property of standard Monte Carlo calculations, and it can cause significant uncertainty in 

the true power distribution of a reactor. 

1.5.4 Functional Monte Carlo 

E. W. Larsen and J. Yang first proposed the use of nonlinear functionals to 

accelerate Monte Carlo convergence of the fission source in the “Functional Monte 

Carlo” (FMC) method [12][13][14].  In FMC, Monte Carlo is used to estimate nonlinear 

functionals, which are ratios of space-angle-energy moments of the angular flux, 

resembling Eddington factors.  The functionals are used in quasi-diffusion-like equations 

with no truncation errors to estimate the eigenvalue and eigenfunction.   

Larsen and Yang demonstrated that FMC estimates of the eigenvalue and 

eigenfunction are more accurate and stable than standard Monte Carlo estimates of these 

quantities.  To date, FMC has been developed and tested in planar geometry with 

continuous energy-dependence.   The caveat of the FMC method is the algebraic 

complexity of the low-order equations; algebraic manipulations are required to eliminate 

the particle current and keep only even-order angular moments of the flux in the 

functional definitions. 

1.5.5 Coarse Mesh Finite Difference-Accelerated Monte Carlo 

M.J. Lee, H.G. Joo, K. Smith, and D.J. Lee proposed “Coarse Mesh Finite 

Difference (CMFD)-Accelerated Monte Carlo” after Larsen and Yang introduced the 

FMC method.  CMFD-Accelerated Monte Carlo also uses stochastically-computed 
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nonlinear functionals to accelerate convergence of the fission source in Monte Carlo 

[15][16][17].  This method is based on the well-known deterministic CMFD method [18].  

In CMFD, transport-corrected diffusion theory is performed on a coarse grid to accelerate 

source convergence in fine-grid transport calculations.  The CMFD “diffusion” equations 

utilize nonlinear functionals that contain the ratio of the particle current to the scalar flux.  

In CMFD-Accelerated Monte Carlo, these nonlinear functionals are estimated during 

each Monte Carlo cycle, and then used in the CMFD equations to obtain a coarse grid 

estimate of the fission source.  The CMFD fission source is then optionally used to 

modify the Monte Carlo fission source for the next cycle (known as “feedback”). 

CMFD-Accelerated Monte Carlo has been developed and tested in planar and x-y 

geometry with multigroup energy dependence.  Lee, et al., showed that applying “CMFD 

feedback” accelerates convergence of the Monte Carlo fission source and makes the 

apparent variance of the resulting eigenfunction closer to the true variance.   

The performances of CMFD-Accelerated Monte Carlo and FMC have been directly 

compared for a limited number of test problems by Lee, et al. [15]  Preliminary results 

indicated that CMFD-Accelerated Monte Carlo is not efficient as Functional Monte Carlo 

for accelerating source convergence.  In Chapter 5, we explain that this loss of efficiency 

is likely due to the current terms appearing the CMFD functionals.  We then develop 

three improved hybrid Monte Carlo-CMFD techniques called HCMFD-II, HCMFD-III, 

and HCMFD-IV. 

1.6 Dissertation Outline 

In this work, we develop several hybrid methods using the nonlinear functional 

approach.  These hybrid methods consist of two steps: (1) the stochastic estimation of 

nonlinear functionals, and (2) the deterministic solution of algebraic low-order equations 

that contain these functionals as parameters.  Optionally, the solution of the low-order 

equations may be used to provide feedback to the Monte Carlo simulation in criticality 

problems.  We explore methods with different low-order equation structures:  the first 

two methods resemble discrete ordinates equations, and the last three methods resemble 

diffusion equations. 
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1.6.1 The H-MC-S2 Method 

In Chapter 2, we develop the first hybrid method, H-MC-S2, from the planar 

geometry, continuous-energy Boltzmann equation in steady state.  The transport equation 

is integrated over space (one spatial cell), energy (all energy), and angle (“negative” and 

“positive” directions) to obtain low-order equations resembling the one-group S2 (discrete 

ordinates) equations.  The nonlinear functionals are defined by performing algebraic 

manipulations to isolate ratios of space-angle-energy moments of the angular flux.  The 

functionals resemble flux-weighted cross sections and flux-weighted quadrature but do 

not use the multigroup approximation in energy.  A diamond-difference approximation is 

introduced in space to close the system of equations.  Therefore, the method has no 

approximations in angle or energy, but it has statistical and spatial truncation errors.   

We show by numerical simulations that the H-MC-S2 method is more accurate than 

conventional stochastic and deterministic methods for a continuous-energy fixed source 

“core-reflector” problem with significant “transport effects”.  We also show the H-MC-S2 

solution has lower variance than the direct Monte Carlo estimate of the solution for the 

same number of histories, which translates to a 50% computational savings.   

1.6.2 The H-MC-S2X Method 

The H-MC-S2X method developed in Chapter 3 is based on the H-MC-S2 method.  

A spatial tent function operator is applied to the transport equation before integration 

over space, energy, and angle.  The operator eliminates the introduction of spatial 

approximations and spatial truncation error; consequently, the H-MC-S2X method has 

only statistical errors.  Again, we show that the H-MC-S2X method is more accurate than 

standard Monte Carlo and discrete ordinates methods for a continuous-energy fixed 

source problem with “transport effects”.   

Chapter 4 presents theoretical justification and numerical results, showing that the 

nonlinear functionals in the H-MC-S2X method can be computed more accurately, and 

with less variance, than standard Monte Carlo estimates of linear quantities.  Both 

continuous-energy and mono-energetic problems fixed source are examined.  We show 

that the H-MC-S2X method performs well on mono-energetic problems, with a 

computational cost of about 20-25% that of standard Monte Carlo.  For energy-dependent 
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problems, some loss of efficiency is observed, and the computational cost rises to about 

50% that of standard Monte Carlo.  This degradation appears to be due to decreased 

statistical correlation in the functional numerators and denominators, and we suggest 

future work to improve the efficiency of the H-MC-S2X in energy-dependent problems.   

1.6.3 The HCMFD-II, HCMFD-III, and HCMFD-IV Methods   

In Chapter 5, we examine the previously-published CMFD-Accelerated Monte 

Carlo Method (referred to as “HCMFD-I” in this work to emphasize similarity to our 

proposed methods).  CMFD-Accelerated Monte Carlo utilizes diffusion-like low-order 

equations, but it is applicable to all transport problems.  A stochastically-computed 

nonlinear “correction factor” accounts for deviations from transport theory, and the 

CMFD low-order equations have no truncation errors.  

We provide theoretical justification that the particle current terms appearing in the 

CMFD functionals may cause the nonlinear functional to have large statistical errors.  We 

suggest that these statistical errors cause a loss of efficiency when compared to the 

Functional Monte Carlo method (which does not have current terms).  Using higher-order 

angular moments of the transport equation, we redefine the functional in three different 

ways without changing its expected value.  The redefined functionals have less statistical 

error than the original functional, and are used in the proposed generalized CMFD 

methods:  HCMFD-II, HCMFD -III, and HCMFD-IV.  These methods are developed for 

the planar geometry, monoenergetic, steady state Boltzmann transport equation and tested 

primarily on eigenvalue problems.  The low-order equations for the generalized methods 

are identical to CMFD-Accelerated Monte Carlo, and the redefined nonlinear functionals 

are slightly more complex than those in CMFD-Accelerated Monte Carlo, but not unduly 

so.  In addition, the generalized HCMFD methods are much simpler to implement than 

Functional Monte Carlo. 

For a monoenergetic fixed source problem, we show that the HCMFD-II, -III and –

IV methods computational costs (24%, 21%, 18%) are comparable to the H-MC-S2X 

method (18%), where the percentages are the fraction of standard Monte Carlo 

computing time required to achieve a given statistical error.  These numbers are 

advantageous, but much more significant gains in computational efficiency are seen for 

criticality problems.  Numerical results show that these new generalized HCMFD 
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methods are more effective at converging the fission source than CMFD-Accelerated 

Monte Carlo and standard Monte Carlo.  The computational savings over standard Monte 

Carlo is substantial: the new methods require less than 1-5% of the computing time to 

achieve equivalent real errors with standard Monte Carlo.  The HCMFD-I method, in 

comparison, requires approximately 10-20% of the standard Monte Carlo computing 

time.  This time savings refers only to the number of histories in active cycles; 

additionally, the number of inactive cycles in each hybrid method can be drastically 

reduced because of immediate source convergence. 

1.6.4 Summary 

Overall, the “functional” methods developed by Yang, et al., Lee, et al., and 

proposed by us in this work represent a new strategy for using Monte Carlo in particle 

transport simulations.  In this thesis, we demonstrate that there are numerous different 

approaches that can be advantageous.   We partially explore two classes of nonlinear 

functional methods (discrete ordinates-like and diffusion-like) by developing and testing 

these methods on subsets of neutron transport problems.  The nonlinear functional 

methods developed in this thesis are shown to effectively reduce the standard Monte 

Carlo computing time for a variety of problems, although the efficiency is problem-

dependent. 

Our analysis and results are limited to 1-D (planar geometry), but there is no 

obvious reason why the aforementioned nonlinear functional methods should not work 

efficiently in 2-D.  The H-MC-S2 and H-MC-S2X methods are developed for fixed source 

calculations but could certainly be extended to criticality calculations.  In addition, the 

HCMFD-II,  -III, and -IV methods are developed for monoenergetic problems, but 

extension to multigroup energy problems should be straightforward.  Therefore, the work 

in this dissertation should help to lay the foundation for future work on more realistic 

problems. 
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Chapter 2 

The Hybrid Monte Carlo – S2 Method 

 

2.1 Introduction 

In this chapter, we develop the first of several hybrid methods discussed in this 

dissertation.  The Hybrid Monte Carlo-S2 method (abbreviated as H-MC-S2) was 

motivated by the difficulty of using deterministic techniques to accurately solve problems 

with significant transport effects.  As described in the previous chapter, deterministic 

methods use the multigroup approximation to discretize the continuous energy variable.  

However, the multigroup approximation can incur unacceptable errors for problems with 

transport effects unless very fine energy groups are used.  Fine-group deterministic 

calculations are computationally expensive for realistic problems such as reactor physics 

calculations, so their usefulness is limited.  We were therefore motivated to develop an 

alternative method with the following properties: 

(1) The method should incorporate computationally inexpensive low-order 

equations similar to coarse-group deterministic methods. 

(2) The method should minimize or eliminate discretization errors in energy and 

angle. 

(3) When tested on problems with transport effects, the method should be more 

accurate and less expensive than conventional deterministic methods that use 

the multigroup approximation. 

In the H-MC-S2 method, the multigroup approximation and hence multigroup cross 

sections are not used.  Instead, physically meaningful quantities called “nonlinear 

functionals” are introduced [1].  Each nonlinear functional is simply the ratio of two 

correlated physical quantities, similar to multigroup cross sections.  The nonlinear 

functionals can be estimated with only small statistical error using Monte Carlo, and they 
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preserve the exact physics of the problem in the low-order equations.  We demonstrate in 

this chapter that the H-MC-S2 method produces solutions with no energy or angular 

truncation errors; only spatial truncation errors and statistical errors will occur.  These 

can be controlled by refining the grid size and increasing the number of neutron histories, 

respectively.  Also, we show that the H-MC-S2 method produces solutions with less 

statistical error than standard Monte Carlo solutions.   

We now develop the H-MC-S2 method and demonstrate its capabilities on 1-D, 

fixed source problems with isotropic scattering.  We begin the derivation with the neutron 

transport equation. 

2.2 Transport Equation 

To begin, we consider the planar geometry neutron transport equation and 

boundary conditions: 
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 (0, , ) (0, , ), 0 1, 0E E E           (2.2) 

 ( , , ) 0, 1 0, 0 .b E E         (2.3) 

The following assumptions have been made: (a) no fission, (b) no inelastic scattering, (c) 

no upscattering, and (d) P0 elastic scattering (isotropic).  These assumptions have been 

made only for simplicity.  Any changes in these assumptions can be incorporated with 

only slight modifications to the derivation of the method. 

For completeness, we define the probability density function used in the elastic 

scattering kernel, valid when the temperature of nuclei is zero: 
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Here, ( )A x  is the atomic mass of the material at location x .  It is useful to recognize that 

because ( , )p x E E  is a probability density function, its integral over outgoing energy 

is unity: 
0

( , ) 1p x E E dE


  .  

2.3 Derivation of the H-MC-S2 Method  

The goal of this method, as in most numerical transport, is to compute one or 

more response rates (i.e. reaction rates, scalar flux) at locations
 
throughout the system.  

These locations are determined by defining a mesh  1/2 , 0,jx j J   that covers the 

entire range of the geometry and includes mesh points at material interfaces.  The width 

of the thj  cell is 
1/2 1/2j j jh x x   .  The response rate averaged over cell j  is 
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where the response function ( , )r x E  is known and given.  For example, the response 

function ( , ) ( , )ar x E x E   yields the spatially-averaged absorption rate in cell j .  The 

response function ( , ) 1r x E   yields the energy-integrated, spatially-averaged scalar flux 

in cell j .  The response functions must be chosen a priori, but an arbitrary number of 

them may be chosen simultaneously.  In the following derivation, we have chosen a 

single response function ( , )r x E . 

2.3.1 Special Notation 

The H-MC-S2 method incorporates quantities that have been integrated over 

subsets of the full 4  ( 1 1  
 
in 1-D) angular range.  This contrasts with NS  
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methods that evaluate quantities at discrete angles n  ( n  in 1-D) and NP  methods that 

require the computation of angular moments over the full angular range.  Therefore, we 

introduce some new notation.  In 1-D, the superscript    denotes angular integration 

over the sub-range 0 1,   while the superscript    denotes angular integration over 

the sub-range 1 0   .  Therefore, 

 
1

0
( , ) ( , , )x E d x E  
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   . (2.6) 

Any quantity that is integrated over all angles  1 1    can thus be written as the sum 

of integrals over the two sub-ranges.  For example, the scalar flux can be written
 

( , ) ( , ) ( , )x E x E x E     .  Also, the response rate can be written 
j j jR R R   , 

where 
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2.3.2 Procedure 

Before proceeding, we first clarify that the unknown quantities in this method are 

different than those in conventional deterministic methods.  Conventional deterministic 

methods solve equations for the cell-averaged group-wise scalar fluxes, 
,g j .  The desired 

response rates are then calculated by post-processing the group fluxes with the 

multigroup cross sections: 

 , ,

1

.
G

j g j g j

g

R 


   (2.8) 

In the H-MC-S2 method, we formulate equations for 
jR  directly by performing 

straightforward manipulations of the transport equation.  In doing so, we introduce no 

approximations in energy or angle, and we avoid the generation of multigroup cross 

sections. 



 

24 

We begin the derivation of this method by applying the operators 

    
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and  

    
0

0 0 1
( )

X

j j x d dE dx 





       (2.10) 

to the transport equation, where ( )j x  is the histogram function  

 
1/2 1/2

1
,

( )

0,

j j

jj

x x x
hx

otherwise


 


 

 



 (2.11) 

These operators simply average each term in the transport equation over spatial cell j , 

and then integrate over all energy and over a specified angular sub-range.  Application of 

these operators to the transport equations yields two modified cell balance equations.  

Cell balance is now held over two angular sub-ranges rather than over all angles.  The 

result of applying 
jH   to the transport equation and using  

0
( , ) 1p x E E dE



    to 

simplify the scattering kernel is: 
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We now proceed to manipulate this balance equation in order to formulate 

equations for 
jR .  First, we simplify the leakage term without approximation.  The 

spatial partial derivative in the integrand allows the integrand to be evaluated at spatial 

integral endpoints only, yielding: 
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Next, we introduce the unknown response rates into Eq. (2.13) by multiplying and 

dividing each flux-containing term by an “appropriate” unknown.  The “appropriate” 

unknown for each term is the one whose integral over space, energy and angle match the 

limits of integration of the original term.  Performing this procedure on Eq. (2.13), we 

obtain: 
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Here, we have introduced the new unknowns 
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in order to keep the limits of integration consistent in the numerator and denominator of 

the leakage term.  This increases the number of unknowns but not the number of 

equations.  The eventual remedy for this will be the introduction of an approximation 

relating 
jR  and

1/2jR


.  However, for now, we return to Eq. (2.14). 

The procedure used to obtain Eq. (2.14) from Eq. (2.13) does not introduce any 

error: it simply multiplies each term by unity.  After some simple cancellation of cell 

widths, we obtain the following equation: 
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A similar procedure is carried out for the jH   operator, and the following equation 

is obtained: 



 

27 

 

1/2

1/2

0

1/2
0 1

1/2

1/2 1/2
0

0

1/2
0 1

1/2

1/2 1/2
0

0

0

( , , )1

( , ) ( , )

( , , )1

( , ) ( , )

( , ) ( , )

( , ) ( , )

j

j

j

j

j
j j

j

j

j
j j

x

t
x

x E d dE
R

h r x E x E dE

x E d dE
R

h r x E x E dE

x E x E dEdx

r x E x E dEdx

  



  













 




 



 




 






 
 
 
  

 
 
 
  





 



 



 
1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

0

0

0

0

( , ) ( , )
1

2 ( , ) ( , )

( , ) ( , )
1

2 ( , ) ( , )

j

j

j

j

j

j

j

j

j

j

jx

x

x

s
x

jx

x

x

s
x

jx

x

R

x E x E dE dx

R
r x E x E dEdx

x E x E dE dx

R
r x E x E dEdx

















































 
 
 
 
 

   
 

  
 
 

   
 

  
 
 

 

 

 

 

 

1/2

1/2 0

1
( , ) , 1 .

2

j

j

x

x
j

Q x E dE j J
h







   
 (2.17) 

Certain ratios in Eqs. (2.16) and (2.17) have been bracketed for clarity.  We now 

define these bracketed ratios as the special nonlinear functionals: 
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The nonlinear functionals in Eq. (2.19) are similar to multigroup cross sections.  

However, no approximation has been made in defining these functionals; they 

incorporate the true angular flux rather than an approximate energy spectrum.  Also, it is 
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easy to see an analogy between the functionals in Eq. (2.18) and the discrete angles n  

used in discrete ordinates methods. 

 Replacing the notation in Eqs. (2.16) and (2.17) by the shorthand functional 

notation and the source notation 

  
1/2

1/2 0

1
( , )

j

j

x

j
x

j

Q Q x E dEdx
h







   , (2.20) 

Eqs. (2.16) and (2.17) can be written: 
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We assume momentarily that the nonlinear functionals are known.  The method for 

determining the functionals will be discussed shortly.  Eqs. (2.21) and (2.22) are exact 

equations that relate the cell-boundary response rates,
1/2jR


, and the cell-averaged 

response rates, 
jR .    Due to the introduction of the 

1/2jR


 unknowns, we have 4 2J   

unknowns but only 2J  equations.  Additional equations are needed to close the system.  

The 
1/2jR

  
unknowns can naturally be related to the 

jR  unknowns using any spatial 

differencing approximation.  The diamond difference approximation is used here for 

simplicity: 

  1/2 1/2

1
, 1 .

2
j j jR R R j J  

      (2.23) 

This spatial differencing approximation introduces spatial truncation error because it is 

not an exact relationship.  However, this approximation becomes more accurate as the 

spatial grid is refined. 
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Finally, we derive two additional equations from the boundary conditions.  We 

apply  
1

0 0
(0, )r E d dE



   to the Eq. (2.2) and  
0

0 1
( , )r X E d dE




  to Eq. (2.3) to 

obtain 

 
1/2 1/2 ,R R   (2.24) 

 
1/2 0.JR

   (2.25) 

Eqs. (2.18)-(2.25) constitute a completely specified low-order system of equations 

for  
1/2jR

  
and 

jR , assuming that the nonlinear functionals
1/2j




, 

,t j

  and
,s j

  are known.  

This system of equations is exact in energy and angle; the only approximation made was 

the spatial diamond difference relation in (2.23).  We note that the low-order equations in 

Eqs. (2.21)-(2.22) bear resemblance to work by Roberts and Anistratov [2], but their 

work was fundamentally different from our approach.  Eqs. (2.21)-(2.23) also resemble 

the standard one-group S2 equations.  We note that if 1
1/2 1/2 3j j  

    , 

, , ,t j t j t j

      , and 
, , ,s j s j s j

      , Eqs. (2.21)-(2.23) become the one-group S2 

equations.   

Therefore, Eqs. (2.21)-(2.22) are easily solved using a discrete ordinates-like 

transport sweep and source iteration, where the right hand side of these equations 

contains the source to be iterated upon numerically: 

 
, ,

1 1 1
, 1 .

2 2 2
j s j j s j j jS R R Q j J            (2.26) 

While these equations have almost identical structure to the discrete ordinates 

equations, they differ in one important way: they have no approximation in energy or 

angle, due to the nature of the nonlinear functionals.  In the H-MC-S2 equations, the S2 

discrete ordinates and multigroup cross sections are replaced by nonlinear functionals in 

the form of flux-weighted angles and cross sections.  We have until now assumed that the 

nonlinear functionals are known.  However, they are dependent on the unknown angular 

flux and must be estimated before Eqs. (2.21)-(2.25) can be solved.  We choose to 
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estimate these functionals using Monte Carlo to avoid the introduction of any truncation 

errors in the estimation of the functionals. 

2.4 Monte Carlo Computation of the Functionals 

The integrals in the nonlinear functional definitions are standard physical quantities 

(current, scalar flux, reaction rates) that can be computed with a Monte Carlo simulation.  

Monte Carlo easily estimates such integral quantities with “tallies”, data structures that 

keep track of interesting quantities.  During a simulation, each neutron history makes a 

contribution to a tally when its phase space matches the tally phase space.  To estimate 

the nonlinear functionals in Eqs. (2.18) and (2.19), we simulate the exact physics and 

geometry of the problem in Monte Carlo and tally the appropriate integrals over many 

neutron histories.  Each nonlinear functional is estimated at the end of the simulation by 

taking ratios of the appropriate tallies. 

2.4.1 Cell-Averaged Functionals  

Estimation of the nonlinear functionals 
,s j

  and 
,t j

  [defined in Eq.(2.19)] is 

straightforward.  Modified path length estimator tallies are used to estimate the following 

integrals: 
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Path length estimators have bounded variance: as the number of histories increases, the 

variance decreases.  Therefore, simulating more histories lowers the variance of the 

quantity.   

Before discussing the estimation of the 
1/2j




 functionals, we note that the above 

integral labeled (3) is, in fact, the average desired response rate.  Therefore, the very 

quantity we are trying to calculate is intermediately estimated in the Monte Carlo 

calculation.  We will discuss this in more detail shortly. 
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2.4.2 Cell-Edge Functionals 

Estimation of the nonlinear functionals
1/2j




 [defined in Eq. (2.18)] require a 

surface crossing (current) estimator 

(1) 
1

1/2
0 0

( , , ) ,jx E d dE  
 

   

and a surface flux (secant) estimator: 

(2) 
1

1/2 1/2
0 0

( , ) ( , , ) .j jr x E x E d dE  
 

    

The current estimator has bounded variance.  However, the surface flux estimator 

tally is undesirable because it has unbounded variance [3].  The physical interpretation of 

flux is “path length swept out per unit volume per unit time” by a neutron.  We consider a 

particle passing through a thin foil detector of width x  and surface area A  at angle ̂  

as depicted in Figure 2.1.  The particle is assumed not to collide within the thin foil.  The 

path length within the foil is 
cos

x x
s

 

 
   , and the scalar flux (path length swept out 

per unit volume per unit time) is 
1s

A x A





 


.  For particles with angles ,

2


    

arbitrarily long track lengths can be tallied, causing the variance of this estimator to be 

unbounded although the mean is finite in general.  The variance of the secant estimator 

can be controlled by using a cutoff:  particles with    are not tallied as 
1


 but as 

2



(the approximate expected value for particles with angles in this range).  This method 

disallows arbitrarily long path lengths and therefore introduces a small bias in the result. 
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Figure 2.1 Particle passing through thin foil detector. 

 

The unbounded variance of the surface flux estimator makes it unfavorable.  When 

the H-MC-S2 method was tested using this estimator to estimate the denominator integral 

of
1/2j




, poor results were observed due to high variance propagating through the system 

via the 
1/2j



  
nonlinear functionals.  We did not test the method using a cutoff:  this 

method would lessen the variance of the result but would also introduce a small unknown   

bias in the functionals.  Instead, we redefined the 
1/2j




functionals by approximating the 

denominator integral with path length estimators, 
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 (2.28) 

The definitions for 
jR  in Eq. (2.7) hold.  The definitions for 

1/2G  and 
1/2JG


 attempt to 

preserve the reflecting and vacuum boundary conditions, respectively. 
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The approximation in Eq. (2.27) introduces spatial truncation error into the H-MC-

S2 method, but this error is negligible compared to the statistical noise which is 

introduced by the surface flux estimator, and is comparable to the truncation error already 

introduced by Eq. (2.23).  Therefore, this approximation does not degrade the method.   

2.4.3 Why Not Standard Monte Carlo? 

Standard Monte Carlo calculations compute scalar fluxes and response rates 

directly.  We are proposing the computation of nonlinear functionals, ratios of these 

types of quantities.  One may question the strategy of using Monte Carlo to estimate the 

functionals in Eqs. (2.19) and (2.27)  instead of estimating the desired response rates 

directly.  This strategy is based on the following fundamental hypothesis: 

 

Hypothesis:  Monte Carlo estimates of the nonlinear functionals in Eqs. (2.19)  

and (2.27) are more accurate and have less variance than direct Monte Carlo 

estimates of the desired response rates, provided the numerator and denominator 

in the functionals are evaluated using the same particle histories. 

 

This hypothesis is based on the observation that Monte Carlo estimates of the 

nonlinear functionals are weakly-dependent on the number of Monte Carlo particles in the 

simulation, while direct Monte Carlo estimates of the reaction rates depend strongly on 

these numbers.  Analyses in Chapter 4 confirm the basic truth of this hypothesis using the 

concept of correlated random variables and numerical comparisons. 

2.5 Computation of Multiple Reaction Rates 

We have described how to use the H-MC-S2 method to compute a single response 

rate.  To do this, a single Monte Carlo calculation is performed with four tallies to 

compute a set of nonlinear functionals, which is then input to a modified discrete 

ordinates calculation.  To compute n response rates, one Monte Carlo calculation is 

performed with 3 n  tallies to compute n sets of functionals (one for each response rate).  

Each set of functionals is sent to a separate modified discrete ordinates calculation, the 

output of each being the different response rates. 
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The cost of a Monte Carlo calculation is usually dominated by geometry tracking, 

so a few additional tallies do not increase the computational cost significantly.  These 

additional tallies would also be required if standard Monte Carlo were being used as sole 

computational method.  The additional computer time required for the additional 

deterministic calculations is negligible compared to the time required for the Monte Carlo 

calculation, due to the simplicity of the low-order equations.  Therefore, provided the 

response rates are decided a priori to the Monte Carlo simulation, computation of 

multiple response rates does not increase the computational expense significantly. 

2.6 Computation of Group-Wise Response Rates 

There are two methods to obtain group-wise response rates with the hybrid method.  

We use the term “group-wise” to mean “integrated over a particular energy group”.  The 

first and simpler method (used in this work) is to create an artificial response function 
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E E
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 (2.29) 

The use of this response function yields the response rate integrated only over the energy 

range of interest: 

 ( ) ( , ) ( , )

g

g

E

R x dE r x E x E


  . (2.30) 

An alternative (not explored in this work) is to integrate the transport equation over 

energy groups instead of the entire energy space.  This would result in low-order 

equations resembling multigroup equations but having no approximation in energy or 

angle. 

2.7 Numerical Results 

2.7.1 Core-Reflector Problem 

We consider the Core-Reflector Problem depicted in Figure 2.2.  This test problem 

is a simplified version of the fast reactor criticality test problem in [4] and [7].  The core 

region in this problem contains a uniformly distributed isotropic, monoenergetic (10 keV) 
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source rather than a fission source.  Despite simplifications in materials and sources, this 

problem exhibits severe transport effects at the core-reflector boundary, just as the 

original problem did.   

 

 

Figure 2.2 Geometry of Core-Reflector Problem. 

 

Location [cm] ,s el  [barn] 
  [barn] 

0 40x   11 
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 
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40 70x   
 131, 1900,3900

4,

E

otherwise


 

 
 

0.1022, 1900,39000.094868

0.1054, 7606,7626

E

EE

 
 



 

Table 2.1 Material specifications over the energy range [0, 10000] eV. 

 

The continuous energy cross sections in the core and reflector are artificial cross 

sections developed from ENDF/B-VII.0 data [6]  for Fe-56 and Na-23, respectively.  The 

core and reflector material have atomic masses of 56 and 23, and number densities of 

0.0848 and 0.0254 barn
-1

cm
-1

, respectively.  The resonances in the true data were 

replaced by histogram approximations that approximately preserve the area under each 

resonance.  (This made it easier to represent the cross sections in our research codes.)  

Figure 2.3 compares the ENDF-BVII.0 data with the artificial cross sections used here. 
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Figure 2.3 Core and reflector cross sections and ENDF/B-VII.0 data for Fe-56 and Na-23. 

 

2.7.1.1 Description of transport effects 

Before presenting numerical results, we describe the transport effects in the Core-

Reflector Problem.  All results here use the artificial cross sections.  Figure 2.4 shows the 

energy-dependent partial current and net current crossing through the core-reflector 

interface obtained from a benchmark Monte Carlo simulation.  This figure shows that the 

interface current is strongly dependent on energy.  At most energies, the net flow of 

neutrons is from the core to the reflector, as signified by the positive net current in Figure 

2.4(b).  However, for energies near 1 to 2 keV, the net current reverses, and many more 

neutrons flow back towards the core. 
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Figure 2.4 Spectra of the partial and net currents at the core-reflector interface. 

 

This behavior is due to the large resonance in the core material.  Neutrons in the 

core are likely to be absorbed between 1 and 2 keV due to the large resonance in that 

energy range.  Therefore, there is an absence of neutrons exiting the core at that energy.  

We can infer from these graphs that the flux is highly anisotropic at energies such as the 

core resonance energy.  This anisotropic character cannot be preserved when using the 

multigroup approximation, which assumes isotropic flux dependence within an energy 

group. 

Next, we examine the energy dependence (“spectrum”) of the core and reflector 

flux when averaged over all angle and space.  Spectra are typically used as the weighting 

function in multigroup calculations.  The angularly- and spatially-averaged core and 

reflector spectra for the test problem are plotted in Figure 2.5.  We note from this figure 

that the two spectra have different shapes, caused by the cross section resonances and the 

geometry.  However, these shapes are averaged over the entire spatial region and all 

angles, so they do not necessarily represent the true energy distribution of the flux at 
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is a combination of these two spectra and is strongly dependent on angle.  For example, 

the spectrum of neutrons located just inside the reflector and traveling with 0   is 

similar to the core spectrum.  At the same spatial location, the spectrum of neutrons 

traveling with 0   is similar to the reflector spectrum. 

 

 

Figure 2.5 Core and reflector spectra for the test problem. 

 

 

Again, these directional spectral differences are not captured with the multigroup 

approximation, which assumes the same spectrum for neutrons traveling in all directions.  

We show here that multigroup methods do not perform well near the interface unless 

many groups are used, as was observed by Aliberti and Lebrat [4][7].   

In the following sections, we use the Core-Reflector Problem to compare the 

statistical properties of the H-MC-S2 method to that of Monte Carlo, and the accuracy of 

H-MC-S2 with that of conventional deterministic methods, namely multigroup discrete 

ordinates.  We compute the energy-integrated scalar flux and the capture rate.  In this H-

MC-S2 method, these quantities can be obtained by choosing 1( , ) 1r x E   and
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2.7.2 Comparison with Standard Monte Carlo 

The variance (sample variance of the mean) of a standard Monte Carlo solution can 

be directly computed during a single simulation, but the variance of the H-MC-S2 

solution may only be estimated over many simulations, due to complexities in calculating 

the covariance of the functionals and then propagating the statistical error algebraically.  

To compare the statistical properties of standard Monte Carlo with that of H-MC-S2, 

twenty five independent estimates of the scalar flux were obtained with each method (a 

different random number seed was used for each estimate).  The numerical properties of 

the Monte Carlo simulations are presented in Table 2.2. 

 

# of Independent 

Simulations (K) 

Histories per 

Simulation (N) 

Grid Size 

[cm] 

25 50,000 0.5 

Table 2.2 Monte Carlo numerical properties for variance estimation of test problem. 

 

The pdf variances of the distributions of H-MC-S2 and MC solutions over the 25 

simulations were computed using: 
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where 2

jS  is the variance of the cell-averaged scalar flux 
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was calculated to give an approximation of the overall variance of the H-MC-S2 and 

standard Monte Carlo solutions over many simulations.  The figure of merit, 



 

40 

 
1

FOM ,
SRV T




 (2.33) 

where T is the computational cost of the method, is often used to characterize the 

performance of stochastic methods because it is independent of the number of histories 

(SRV  is inversely proportional to the number of histories, and T  is directly proportional 

to the number of histories).  We compare the performance of H-MC-S2 and standard 

Monte Carlo in the following table. 

 

Method SRV T FOM 

Monte Carlo 2.10e-02 262 0.182 

H-MC-S2 9.66e-03 305 0.339 

Table 2.3 Figure of merit comparison for calculation of test problem scalar flux. 

 

If a standard Monte Carlo simulation achieves a given error (standard deviation) in a 

given time, then the fractional computing time 

 
( )

( )

( )

MC
m

m

FOM
f

FOM
  (2.34) 

is the fraction of time required by method m  to achieve the same error.  For this problem, 

2(H-MC-S )
0.53,f   meaning that the H-MC-S2 method is more efficient than standard 

Monte Carlo because it only requires 53% of the standard Monte Carlo computing time to 

achieve a given error.  This numerical result is our first confirmation that these nonlinear 

functional methods more accurately compute solutions than standard Monte Carlo.    

We now make a note about the computational times required for each method.  The 

17% increase in computational time required for the H-MC-S2 method over conventional 

Monte Carlo is due primarily to the additional tallies required for the H-MC-S2 nonlinear 

functionals.  [The deterministic calculation is less than 0.5% of the cost of each H-MC-S2  

calculation.]  However, optimal implementation of these tallies could reduce this extra 

expense to a negligible amount, making the computational times almost equal.  In this 

case, the fractional computing time reduces to: 
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( )

SRV
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SRV

m
m

MC
f   (2.35) 

If this problem were to be performed with optimal implementation of tallies, the 

fractional computing time would be approximately 0.46.  The fractional computing times 

reported in later chapters assume optimal implementation of tallies and use Eq. (2.35). 

We also emphasize that the H-MC-S2 method introduces spatial truncation error 

[Eqs. (2.23) and (2.27)] that is not present in standard Monte Carlo.  In problems with a 

smoothly varying solution, these errors are insignificant compared to statistical errors.  

However, when the solution is discontinuous or varies rapidly, care must be taken to 

discretize the problem appropriately.  This concern is discussed in Section 2.7.6. 

2.7.3 Comparison with Standard Deterministic Methods 

We now compare the accuracies of H-MC-S2 and multigroup discrete ordinates 

(MGSN).  We calculate the energy-integrated scalar flux and capture rate for the test 

problem.  The numerical parameters of each method are summarized in Table 2.4. 

 

Method Grid Spacing [cm] # of Histories 

Energy Groups, 

Quadrature 

Order 

Benchmark 

Monte Carlo 

0.5 (scalar flux) 

0.1-0.5 cm (capture rate) 

2x10
6
 (scalar flux) 

4x10
6
 (capture rate) 

Continuous energy, 

Continuous angle 

H-MC-S2 
0.5 (scalar flux) 

0.1-0.5 cm (capture rate) 

5x10
5
 (scalar flux) 

1x10
6
 (capture rate) 

Continuous energy, 

Continuous angle 

(“Exact” collapse 

to G=1, S2) 

MGSN 
0.5 (scalar flux) 

0.1-0.5 cm (capture rate) 
- 

G=11, 21, 51, 101, 

251, S16 

Table 2.4 Numerical properties for Core-Reflector Problem. 

 

2.7.3.1 Multigroup cross section generation 

Before presenting the discrete ordinates results, we describe how the multigroup 

cross sections were obtained and illustrate the complexity of this process. 
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For a 1-D problem, an infinite medium (0-D) spectrum calculation is presumed to 

be sufficient to generate cross section weighting functions.  An infinite medium Monte 

Carlo calculation was performed for each material (core and reflector) to compute the 

fine group spectrum and fine group cross sections.  These spectra are shown in Figure 2.6 

and are similar to the spectra in Figure 2.5.   

 

 

Figure 2.6 Infinite medium spectrum results for Core-Reflector Problem. 

 

The fine-group cross sections and weighting functions for material i  were 

generated in Monte Carlo by the following formula (conventional multigroup definition): 
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with fine energy bins  , 0, 1hE h H  .  The fine group structure for this calculation 

utilized 500H  equal lethargy groups from 0 10E  keV to HE =1 eV and one additional 

group below 1 eV.  Additional procedures were used to generate the multigroup transfer 
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cross sections 
,s h h , which represents the probability of a material scattering a neutron 

from energy group h  to energy group h . 

The resulting 501-group cross sections were collapsed to G  11, 21, 51, 101, and 

251 groups: 

 

( ) ( )

( )

( )
.

i i

h h

h gi

g i

h

h g

W

W







 




 (2.38) 

The coarse group structures utilized G  11, 21, 51, 101, and 251 equal lethargy groups 

from 0 10E  keV to GE =1 eV and one additional group below 1 eV. 

Computing multigroup cross sections in this manner is consistent with conventional 

methods.  However, using the infinite medium spectrum to collapse cross sections rather 

than the true spectrum causes error in the multigroup approximation.  In practical reactor 

calculations, higher dimension spectrum calculations are performed, but for a 1-D slab 

problem, a 0-D spectrum calculation is appropriate.  The most important point is that the 

spectrum calculation is almost always performed in a dimension lower than that of the 

actual problem, therefore always incurring spatial and angular approximations that are 

likely to be largest near material interfaces. 

2.7.4 Computation of Scalar Flux 

The scalar flux for the test problem was computed on a uniform 0.5 cm grid using 

MGS16 (G  11, 21, 51, 101, 251) and H-MC-S2 (5x10
5
 particles).  The scalar flux results 

for both methods are compared to a benchmark Monte Carlo calculation (2x10
6
 particles) 

in Figure 2.7.   
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Figure 2.7 Scalar flux over (a) slab and (b) interface region. 

 

 Figure 2.7(a) depicts the solution over the full slab, and Figure 2.7(b) zooms in at 

the solution close to the interface ( 40 cmx  ).  Major differences are observed between 

the multigroup ordinates solutions and the benchmark Monte Carlo solution for the 

region just inside the reflector ( 40 cm 50 cmx  ).  In Figure 2.8, the magnitude of 

error in each calculations relative to the benchmark is plotted, along with the uncertainty 

in the benchmark calculation, „Benchmark 1  ‟.  Only errors greater than the benchmark 

uncertainty are considered significant. 
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Figure 2.8 Relative error in scalar flux compared to benchmark solution. 

 

Examining Figure 2.7 and Figure 2.8, we see that the H-MC-S2 calculation 

performed well in all parts of the problem.  The relative error for the H-MC-S2 method is 

within benchmark uncertainty for almost every data point.  This is remarkable, 

considering that H-MC-S2 used only 25% as many histories as the benchmark Monte 

Carlo solution.  Clearly, increasing the number of particles would further improve the 

hybrid result, but an excellent result is nonetheless obtained with less computational time 

than the benchmark solution.  One important point, however, is that the H-MC-S2 is not 

devoid of spatial error.  Unlike standard Monte Carlo, care must be taken to appropriately 

discretize the problem in transition regions.  We discuss an example of this in the 

calculation of the capture rate in the next section. 

In contrast to H-MC-S2, the MGS16 methods performed poorly near material 

interfaces.  While the MGS16 results approached the benchmark solution as the group 

structure was refined, a minimum of 251 groups was needed to achieve the same 

accuracy as the one-group S2–like hybrid method.  This result confirms our 

understanding that the multigroup approximation is the origin of most of the error.   

Since the spectral effects occur mostly in the resonance group (630.957 eV to 10 

keV), a calculation was performed to compute the resonance group flux.  As expected, 

the MGS16 errors were more severe for this calculation than for the total energy-

0 10 20 30 40 50 60 70
0

1

2

3

4

5

6

x (cm)

|R
el

. 
E

rr
o

r|
 i

n
 

 (
%

)

 

 

Benchmark 1 (2x106)

11g

21g

51g

101g

251g

H-MC-S
2
 (5x105)



 

46 

integrated scalar flux.  The error in the resonance component of the scalar flux is plotted 

in Figure 2.9. 

 

 

Figure 2.9 Error in resonance group scalar flux. 

 

Figure 2.8 and Figure 2.9 indicate that even for a simple scalar flux calculation, a 

251 group structure is required to reduce the MGS16 error near material interfaces to 

acceptable levels.  This is an important result: the one-group H-MC-S2 method performs 

at the same level as the 251 group structure by incorporating directional and spatial 

information.  It should be noted that both 51g and 101g calculations perform reasonably 

well but still exhibit systematic errors at the interface and vacuum boundary, with errors 

up to 2%. 

2.7.5 Computation of Resonance-Group Capture Rate 
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6
 particles).  A fine 

spatial grid (0.1 cm) was used in the vicinity of the interface, 39 42x  , and a coarse 

grid (0.5 cm) was used elsewhere.  The fine grid was necessary to suppress spatial 
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capture is more stochastically variable than computation of the scalar flux.  The ratio of 

H-MC-S2 particles to standard Monte Carlo particles was kept the same at 1:4. 

The capture rate results are compared to a benchmark Monte Carlo calculation 

(4x10
6
 particles) in Figure 2.10.  In Figure 2.11, the magnitude of relative error in these 

calculations to the benchmark is plotted, along with the uncertainty in the benchmark 

calculation, „Benchmark 1 ‟. 

 

Figure 2.10 Resonance group capture rates for (a) slab, and (b)-(c) interface region. 
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Figure 2.11 (a) Relative errors in resonance capture rate and (b) zoomed in for detail. 

 

The resonance capture rate results are similar to the scalar flux results.  The H-
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shortly.  For the rest of the range, the H-MC-S2 relative error is much less than the 

corresponding error in the discrete ordinates solutions, but is slightly increased compared 

to the scalar flux computation.  This is expected because the success of the H-MC-S2 
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nonlinear functional ratios are less correlated for the resonance capture rate problem than 

for the scalar flux problem, and this decrease in correlation causes increased variance. 

The MGS16 calculations again show significant errors in the region near the core-

reflector interface.  These errors are well above benchmark uncertainty, particularly in the 

reflector region and near the vacuum boundary.  The MGS16 method becomes more 

accurate as the number of groups G  increases, as expected.  However, significant 

transport effects are still apparent even in the 251G  solution.  In addition, the MGS16 

method has significant spatial truncation error at the interface (like H-MC-S2). 

Returning to the large error in the H-MC-S2 and MGS16 methods at the interface, 

we recall that both of these methods have spatial truncation error.  At the core-reflector 

interface, the capture cross section is spatially discontinuous, due to the material 

heterogeneity.  Therefore, the resonance capture rate is discontinuous at the interface and 

changes steeply near the interface.  We see from Figure 2.11 that even when a fine grid 

(0.1 cm) is used, significant spatial truncation errors appear near the interface in both the 

H-MC-S2 and MGSN solutions.  Further refining the grid would yield more accurate 

results for the H-MC-S2 method, but not necessarily for the MGS16 solution because the 

latter is dominated by transport effects, not spatial truncation error.  Refining the grid 

does not suppress transport effects unless more accurate multigroup cross sections are 

generated for each spatial cell. 

While refinement of the spatial grid is an obvious way to reduce spatial truncation 

error for H-MC-S2, we now discuss a more effective technique. 

2.7.6 Continuous Function Technique 

The continuous function, or CF, technique can be used to decrease the spatial 

truncation error in the H-MC-S2 method. The key idea is that during the deterministic 

sweep step, spatial truncation error propagates through the system.  This propagation can 

be avoided by constructing the solution from spatially continuous functions. 

We demonstrate this technique for the computation of the resonance capture 

response rate as in the previous section.  The response function for this computation is 

spatially discontinuous because of the material heterogeneity:  
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 (2.39) 

The use of this spatially discontinuous response function resulted in significant spatial 

truncation error near the core-reflector interface (x=40 cm).  Instead, we use the spatially 

continuous response functions 

 
1 ,( , ) ( ) 0 70core

resr x E E x     (2.40) 

 
2 ,( , ) ( ) 0 70refl

resr x E E x     (2.41) 

to obtain two solutions 1( )R x  and 2 ( )R x  over 0 70x  .  Discarding the parts of the 

solutions that are not physical, the final solution is the piecewise function 

 
1

2

( ) 0 40
( )

( ) 40 70
CF

R x x
R x

R x x

 
 

 
 (2.42) 

The CF technique requires the solution of multiple deterministic low-order 

problems with different sets of functionals, but the required functionals are all obtained 

from a single Monte Carlo run.  Since the low-order problems are inexpensive, solving 

several of them (rather than one) adds little overhead and significantly reduces the spatial 

truncation error.   

The CF technique proved to be much more efficient than simply refining the spatial 

grid.  Figure 2.12 and Figure 2.13 show that the H-MC-S2 solution improved significantly 

when the continuous function technique was used. 
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Figure 2.12 Resonance group capture rates for (a) slab, and (b)-(c) interface region using continuous 

function method to suppress spatial truncation error. 
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Figure 2.13 (a) Relative errors in resonance capture rate for H-MC-S2 with continuous function 

technique and (b) zoomed in for detail. 

 

The continuous function technique can be used with any grid size but is most 

effective when used in tandem with fine spatial grids.  The following figures compare the 
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Figure 2.14 Effect of CF near interface on coarse grid. 

 

 

Figure 2.15 Effect of CF near interface on fine grid. 

35 40 45
0

0.05

0.1

0.15

0.2

0.25

x (cm)

R
,

re
s

(a)

 

 

Benchmark (4x106)

H-MC-S
2
 (1x106)

H-MC-S
2
-CF (1x106)

35 40 45
0

5

10

15

20

25

30

35

40

45

50

x (cm)

|R
el

. 
E

rr
o
r|

 i
n
 R

,r

es
 (

%
)

(b)

35 40 45
0

0.05

0.1

0.15

0.2

0.25

x (cm)

R
,

re
s

(a)

 

 

Benchmark (4x106)

H-MC-S
2
 (1x106)

H-MC-S
2
-CF (1x106)

35 40 45
0

5

10

15

20

25

30

35

40

45

50

x (cm)

|R
el

. 
E

rr
o
r|

 i
n
 R

,r

es
 (

%
)

(b)



 

54 

 

Method (10
6 

particles) Grid Max. Rel. Error 

H-MC-S2 Coarse 293% 

H-MC-S2 Fine 233% 

H-MC-S2-CF Coarse 24% 

H-MC-S2-CF Fine 3% 

Table 2.5 Summary of spatial truncation error suppression techniques for resonance capture rate 

calculation. 

 

The use of the continuous function technique with a fine spatial grid suppressed the 

truncation error to within stochastic uncertainties.  Therefore, the H-MC-S2 method is 

capable of handling discontinuous and rapidly changing solutions when used with the 

continuous function technique and a sufficiently fine grid. 

2.8 Conclusions 

We have developed a hybrid method for accurately and efficiently solving difficult 

transport problems.  The method consists of collapsing the transport equation in angle, 

energy, and space with only a small spatial truncation error.  It should be noted that 

although the numerical results here were generated using the diamond difference spatial 

discretization scheme, the H-MC-S2 method does not require the use of this specific 

approximation.  The collapsing process produces nonlinear functionals that can be 

accurately computed by Monte Carlo.  These functionals are similar to one-group flux-

weighted cross sections and flux-weighted angular quadrature.  The H-MC-S2 low-order 

equations have a similar form to one-group S2 equations, but are more accurate because 

the nonlinear functionals account for the energy and angular dependence of the full 

transport solution. 

For a core-reflector test problem containing significant transport effects, the H-MC-

S2 results agreed with the benchmark Monte Carlo solution, and had less variance than 

computation time-equivalent Monte Carlo solutions.  The reduced variance translates into 

a 50% savings in computing time in the H-MC-S2 method.  In addition, the H-MC-S2 

method was more accurate than conventional multigroup discrete ordinates methods.   
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The hybrid method can handle problems with discontinuous and rapidly varying 

solutions by refining the spatial grid and using the continuous function technique 

described.  In addition, the H-MC-S2 method eliminates possible sources of error such as 

improper choice of energy group boundaries and insufficient number of discrete ordinates 

directions.  Finally, because the hybrid method has no approximation in angle, it may be 

advantageous for solving problems where discrete ordinates calculations exhibit 

undesirable ray effects.  This could be tested in the future by implementing the method in 

2-D geometry.  We have demonstrated the success of this method on a meaningful fixed 

source problem.  H-MC-S2  could easily be extended to eigenvalue problems as well. 

In the next chapter, we modify the H-MC-S2 method in order to eliminate the 

spatial truncation error. 
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Chapter 3 

The Hybrid Monte Carlo – S2X Method 

 

3.1 Introduction 

In this chapter, we develop the Hybrid Monte Carlo-S2 Method with No Spatial 

Truncation Error (H-MC-S2X).  This method is closely related to the H-MC-S2 method 

developed in Chapter 2.  That method effectively solved difficult neutron transport 

problems but had spatial truncation error.  The H-MC-S2X method was developed to 

satisfy the following properties: 

(1) The method should incorporate computationally inexpensive low-order 

equations similar to coarse-group deterministic methods. 

(2) The method should eliminate discretization errors in energy, angle, and space. 

(3) When tested on problems with transport effects, the method should be more 

accurate and less expensive than conventional deterministic methods that use 

the multigroup approximation. 

The H-MC-S2X method does not use the multigroup approximation or multigroup 

cross sections.  Instead, physically meaningful “nonlinear functionals” are introduced 

[1][2], which are simply the ratio of two correlated physical quantities, similar to a 

multigroup cross section.  The nonlinear functionals preserve the exact physics of the 

problem in the low-order equations and can be estimated with only small statistical error 

using Monte Carlo.  In this chapter, we demonstrate that the H-MC-S2X method produces 

solutions with no energy, angular or spatial truncation error; the statistical error in the 

solution can be controlled by increasing the number of simulated neutron histories.   

We now develop the H-MC-S2X method and demonstrate its capabilities on a 1-D, 

fixed source problem with isotropic scattering.  We begin the derivation with the neutron 

transport equation. 
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3.2 Transport Equation 

To begin, we consider the planar geometry neutron transport equation and 

boundary conditions: 

 
0

( , , ) ( , ) ( , , )

1 1
( , ) ( , ) ( , ) ( , )

2 2

0 , 1 1, 0

t

s

x E x E x E
x

x E p x E E x E dE Q x E

x X E

    












      

       

  (3.1) 

 (0, , ) (0, , ) 0 1, 0E E E           (3.2) 

 ( , , ) 0 1 0, 0b E E         (3.3) 

The following assumptions have been made: (a) no fission, (b) no inelastic scattering, (c) 

no upscattering, and (d) P0 elastic scattering (isotropic).  These assumptions have been 

made only for simplicity.  Any changes in these assumptions can be incorporated with 

only slight modifications to the derivation of the method.  The probability density 

function ( )p E E  is defined in Eq. (2.4). 

3.3 Derivation of the H-MC-S2X Method 

The goal of this method, as in the previously described H-MC-S2 method, is to 

compute one or more response rates throughout the system.  Defining an arbitrary spatial 

mesh where 1/2 1/2j j jh x x    is the width of the  thj  cell, the response rate averaged 

over cell j  is 

 
1/2

1/2

1

0 1

1
( , ) ( , , ) ,

j

j

x

j
x

j

R r x E x E d dEdx
h

  







     (3.4) 

where the response function ( , )r x E  is known and given.  Typical response functions 

include ( , ) ( , )ar x E x E   for the spatially-averaged absorption rate, and ( , ) 1r x E   for 

the energy-integrated, spatially-averaged scalar flux.  As in the H-MC-S2 method, the 

response functions must be chosen a priori, but an arbitrary number of them may be 
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chosen simultaneously.  In the following derivation, we have chosen a single response 

function ( , )r x E . 

3.3.1 Special Notation 

The H-MC-S2X method incorporates quantities that have been integrated over 

subsets of the 1 1    angular range.  The superscripts    and  
 
denote angular 

integration over the sub-ranges 0 1   and 1 0   , respectively.  Quantities 

integrated over 1 1    can be written as the sum of integrals over the two sub-ranges.  

For example, the scalar flux can be written
 

( , ) ( , ) ( , )x E x E x E     .  The response 

rate can be written j j jR R R   , where 

 
1/2

1/2

1

0 0

1
( , ) ( , , )

j

j

x

j
x

j

R r x E x E d dEdx
h

  




 
      . (3.5) 

3.3.2 Procedure 

In the H-MC-S2X method, we formulate equations for the response rates jR
 

directly by performing straightforward manipulations of the transport equation.  As in 

Chapter 2, we introduce no approximations in energy, angle, or space, and avoid the 

generation of multigroup cross sections. 

In the derivation of H-MC-S2 in Chapter 2, we applied the operators

 
1

0 0 0
( )

X

j jH x d dE dx 
 

      to the transport equation, where ( )j x  is a histogram 

function.  Spatial approximations were eventually required to close the resulting system 

of equations.  We now avoid spatial approximations by applying a different operator to 

the transport equation. 

First, we introduce an arbitrary spatial grid, 1/2 1/2 1/2J Jx x x    , and define the 

1J   tent functions, 1
2

( )
j

f x


, 0 ,j J   that live on the grid.  For interior cells

1 1,j J    the tent functions are defined: 
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



 (3.6) 

The tent functions living on the boundary cells ( 0j   and j J ) are truncated outside 

the system boundaries: 

 1
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,
( )

0, ,

x x
x x x

hf x

otherwise


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 (3.7) 
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J J
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hf x
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
 




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 



 (3.8) 

The thj  tent function is depicted with its neighboring tent functions in Figure 3.1. 

 

Figure 3.1 The j
th

 tent function and its neighbors. 
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Next, we apply the operators 

  1 1
2 2

1

0 0 0
( )

X

j j
T f x d dE dx




 
     (3.9) 

  1 1
2 2

0

0 0 1
( )

X

j j
T f x d dE dx




 
     (3.10) 

to the transport equation.  These operators perform a weighted spatial integral over spatial 

cells j  and 1j  , and integrate over all energy and over a specified angular sub-range.  

Application of 1
2

j
T 


 and 1

2
j

T 


 to the transport equation yields two modified cell balance 

equations.  Cell balance is held over two adjacent cells and over angular sub-ranges, 

rather than over all angles.  The result of applying 1
2

j
T 


 to the transport equation and 

using  
0

( , ) 1p x E E dE


    is: 
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 (3.11) 

3.3.3 Result of the Operator on the Leakage Term 

The leakage term can be evaluated without approximation.  First, we define the 

partial currents  

 
1

0 0
( ) ( , , )J x x E d dE  

 
     (3.12) 

[Note:  This definition is equivalent to the standard (strictly non-negative) partial current 

1

0 0
( ) ( , , )J x x E d dE  


     and 

0

0 1
( ) ( , , )J x x E d dE  





   .]  Using this 

notation, the leakage term in Eq. (3.11) can be written: 
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Before proceeding, we recall the special properties of the tent functions on cell 

boundaries: 
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In addition, the derivative of each tent function is constant in a cell and equal to: 
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These properties enable simplification of the leakage term without introduction of spatial 

approximations. 

3.3.3.1 Interior cells 1, 1j J   

The interior tent functions 1
2

( )
j

f x


 are non-zero in spatial cells j  and 1j  .  The 

spatial integral in Eq. (3.13) therefore reduces to integrals over cells j  and 1j  : 

 1 1 1
2 2 20

1
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      (3.16) 

Each spatial integral on the right hand side of Eq. (3.16) is integrated by parts using the 

properties of the tent functions: 
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The partial currents 1/2jJ 

 in Eqs. (3.17) and (3.18) cancel, and Eq. (3.16) becomes 

 1
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    
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    (3.19) 

The cancellation of the partial current term 1/2jJ 

  in this expression is physically 

consistent; cell balance is held over cells j  and 1j  , so the partial currents between 

these cells cancel each other. 

3.3.3.2 Boundary cells 0j   and j J  

The boundary tent functions 1/2 ( )f x  and 1/2 ( )Jf x  are defined over single cells 

only.  The spatial integral in Eq. (3.13) reduces to an integral over cell 1 and cell 1J  , 

respectively. 
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In summary, the result of the 1/2jT 

  operators on the leakage term is: 
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 (3.22) 

We note that Eq. (3.22) is exact.  The incoming partial currents at the system boundaries 

appearing in this expression are known from the boundary conditions.  The outgoing 

partial currents are considered to be additional unknowns. 
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3.3.4 Result of the Operator on the Transport Equation 

We now use Eq. (3.22) to write the transport equation after application of 

operators 1/2jT 

 .  Using Eq. (3.12) and introducing the notation 
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the transport equation after operating by 
1/2T   is: 
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The transport equation after operating by 1/2 , 1 1jT j J
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The transport equation after operating by 1/2JT 

  is: 
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Next, we manipulate Eqs. (3.24)-(3.26) to derive equations for the desired response rates 

in Eq. (2.7).  It is helpful to note that 
1

j j
j

R r
h


  . 
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3.3.5 H-MC-S2X Equations and Functional Definitions 

We introduce the unknown response rates into Eqs. (3.24)-(3.26) by multiplying 

and dividing each flux-containing term by an “appropriate” unknown.  The “appropriate” 

unknown for each term is the one whose integral over space, energy and angle match the 

limits of integration of the original term.  Performing this procedure on Eq. (3.25), we 

obtain: 
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The procedure used to obtain Eq. (3.27) from Eq. (3.25) introduces no error: it simply 

multiplies each term by unity.  We have shown Eq. (3.27) for clarity, but a more useful 

form of this equation is:  

 

1 1
2 2

1 1
2 2

1
2

1 1

1 1 1

1 1

1 1

1

1
2 2

2

t tj j
j j j j

j j j j j j

j j j j

s sj j
j j j j

j j

j j

sj
j j

j

f f

R R h R h R
r r r r

f fh h
R R

r r

fh

r

  

   

 

 





 
 

 
    

     

 

 

 
  

 







   
        

        
          

   

   
 

   
    

   
   




1
2

3/2

1
21/2

1 1

1

1

0

2

1
( ) ( , )

2

j

j

sj
j j

j j

j

x

jx

fh
R R

r

f x Q x E dEdx












  

 







   


   
   

   
   

  

 (3.28) 



 

66 

Performing this procedure on Eqs. (3.24) and (3.26), we also obtain Eqs. (3.29) and 

(3.30): 
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Again, the partial currents (0)J   and ( )J X  are known from the boundary conditions.  

The partial currents (0)J   and ( )J X  can be computed with the system of equations we 

are in the process of deriving. 

Certain ratios in Eqs. (3.28)-(3.30) have been bracketed for clarity.  We now define 

these bracketed ratios as the special nonlinear functionals, which (as in Chapter 2) will be 

estimated by Monte Carlo: 
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The nonlinear functionals in Eq. (3.32) are similar to multigroup cross sections; however, 

they incorporate the true angular flux rather than an approximate energy spectrum.  Like 

the 1/2j


  functionals in Chapter 2, we will see an analogy between the functionals in Eq. 

(3.31) and the discrete angles n  used in discrete ordinates methods. 

 Using Eqs. (3.31), (3.32) and 

  
1/2

1/2

1 1
, 2 20

( ) ( , ) , 1 , , ,
j

j

x

j k j k
x

Q f x Q x E dEdx j J k






       (3.33) 

Eqs. (3.28)-(3.30) can be written as the discrete ordinates-like equations: 

 
     1 1 1 1

2 2 2 2
1 1 1 1, , , 1, , 1,

1 1

j j j j j j j jt j t j j j
R R h R h R S S

j J

        

      
      

  

 (3.34) 

 1 1
2 2

1 1 1 1,1, 1,
(0)

t
R J h R S    

 
    (3.35) 

 1 1
2 2

, , ,
( ) J J J Jt J J

J X R h R S          (3.36) 

Like the H-MC-S2 equations in Chapter 2, these equations have a one-group discrete 

ordinates-like structure and are easily solved with a transport sweep and source iteration.  

The right hand side denotes the source to be iterated upon numerically: 
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Assuming that the functionals are known, Eqs. (3.34)-(3.36) are a system of 2 2J   

equations for 2 jJ R
 unknowns and 4 J   partial currents.  The additional two equations 

required are derived now from the boundary conditions. 

3.3.6 Boundary Conditions 

Here we demonstrate how to transform the transport boundary conditions into 

equations for the partial currents on the boundary.   

3.3.6.1 Left boundary 

We apply  
1

0 0
d dE 



   
to the reflecting boundary condition in Eq. (3.2) to 

obtain an expression for the partial currents at the left boundary: 
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or equivalently, 

    0 0J J  . (3.39) 

This is the extra equation needed for the left boundary. 

3.3.6.2 Right boundary 

We apply  
0

0 1
d dE 
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
    

to the non-reflecting boundary condition in Eq. (3.3)

to obtain an expression for the partial current at the right boundary: 
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or equivalently, 
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This is the additional equation needed for the partial current at the right boundary. 
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Eqs. (3.34)-(3.36) along with (3.39) and (3.41) are the 2 4J   equations needed for 

the 2 4J   unknowns jR
,  0J 

 and  J X
.  These equations resemble the H-MC-S2 

equations (Chapter 2) but have no spatial, energy, or angular truncation errors.  In 

addition, these equations have almost identical structure to the one-group S2 discrete 

ordinates equations, where the multigroup cross sections and discrete angles have been 

replaced by nonlinear functionals.  The nonlinear functionals are exact in theory, but they 

are dependent on the unknown angular flux and must be estimated before Eqs. (3.34)-

(3.36) can be solved.  We choose to estimate these functionals using Monte Carlo to 

avoid the introduction of any truncation errors in the estimation of the functionals. 

3.4 Monte Carlo Computation of the Functionals 

To solve the H-MC-S2X equations, we must first estimate the functionals in Eqs. 

(3.31)-(3.32).  The nonlinear functionals contain integrals that are easily computed with a 

Monte Carlo simulation.  Monte Carlo estimates integrals using “tallies”; a neutron 

history contributes information to a tally when its phase space matches the tally phase 

space.  To estimate the nonlinear functionals in Eqs. (3.31)-(3.32), we simulate the exact 

physics and geometry of the problem in Monte Carlo and tally the appropriate integrals 

over many neutron histories.  Each nonlinear functional is estimated at the end of the 

simulation by taking ratios of the appropriate tallies.  Modified path length estimator 

tallies are used to estimate the following integrals: 
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Once these integrals are estimated in Monte Carlo, the nonlinear functionals are 

estimated by taking ratios of the integrals. 
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3.4.1 Why Not Standard Monte Carlo? 

As previously discussed in Chapter 2, standard Monte Carlo calculations compute 

scalar fluxes and response rates directly.  We are proposing the computation of ratios of 

these quantities called nonlinear functionals.  One may question the strategy of using 

Monte Carlo to estimate nonlinear functionals instead of estimating desired response 

rates directly.  We hypothesized in Chapter 2 that Monte Carlo estimates of nonlinear 

functionals are much accurate and have less variance than direct Monte Carlo estimates 

of the desired response rates.  This hypothesis is justified with the theory of correlated 

random variables and numerical results in Chapter 4. 

3.5 Global Particle Balance 

We show here that H-MC-S2X preserves global particle balance, a desirable 

property for transport methods.  To preserve global particle balance, the solution of the 

method must satisfy the neutron balance equation formulated over the entire system: 
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The absorption term in the neutron balance equation can be computed with H-MC-S2X 

by setting ( , ) ( , )ar x E x E  : 
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We now show that the H-MC-S2X solutions jR
 satisfy the balance equation 
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3.5.1 System of Equations and Definitions 

The nonlinear functionals were defined in Eqs. (3.31)-(3.32).  In addition, the 

source notation was defined in Eqs. (3.33)-(3.37).  Along with these definitions, the H-

MC-S2X equations are  
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3.5.2 Proof of Particle Balance 

We consider the thj  spatial cell in the system  1 1j J   , and add together the 

positive and negative equations for this cell, Eqs. (3.45) and (3.46).  Combining like 

terms and using , , , , , ,t j k s j k a j k

      , we obtain: 
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We now add Eqs. (3.45) and (3.46) for the thj  and  1
th

j   cells.  Cancellation of 

the 1j


  leakage terms occurs: 
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The expression 1 1
2 2

, 1, , 1,a j a j
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  
   can be simplified: 
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because    , , .ar x E x E 
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The sum of Eqs. (3.45) and (3.46) over 1 1j J    is: 
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The sum of Eqs. (3.47)-(3.50) is: 
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Finally, the sum of Eq. (3.55) and (3.56) is: 
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where we have used the conventional definition of net current: ( ) ( ) ( )J x J x J x   .  

This is the global balance equation, and therefore, H-MC-S2X satisfies global particle 

balance. 

3.6 Numerical Results 

3.6.1 Core-Reflector Problem 

We consider the Core-Reflector Problem depicted in Figure 3.2.  This problem 

exhibits severe transport effects at the core-reflector boundary.  An in-depth description 

of this test problem and a discussion on transport effects are given in Chapter 2. 

 

 

Figure 3.2 Geometry of Core-Reflector Problem. 

 

In the following sections, we use the Core-Reflector Problem to compare the 

statistical properties of the H-MC-S2X method to that of Monte Carlo, and the accuracy 
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of H-MC-S2X with that of conventional deterministic methods, namely multigroup 

discrete ordinates.  We compute the energy-integrated scalar flux, the resonance-group 

scalar flux, and the resonance-group capture rate using Monte Carlo, H-MC-S2X, and  

MGS16 with varied  energy group structure (G=11, 21, 51, 101, and 251). 

3.6.2 Comparison with Standard Monte Carlo 

The variance of a standard Monte Carlo solution can be directly computed during a 

single simulation; the variance of the H-MC-S2X solution may only be estimated over 

many simulations due to complexities in calculating the covariance of the functionals and 

propagating the error algebraically.  To compare the statistical properties of standard 

Monte Carlo with that of H-MC-S2X, twenty five independent estimates of the scalar flux 

were obtained with each method (a different random number seed was used for each 

estimate).  The numerical properties of the Monte Carlo simulations are presented in 

Table 2.2. 

 

# of Independent 

Simulations (K) 

Histories per 

Simulation (N) 

Grid Size 

[cm] 

25 50,000 0.5 

Table 3.1 Monte Carlo numerical properties for variance estimation of test problem. 

 

The sample pdf variance [see Chapter 2] was computed for each cell-averaged 

scalar flux value j  for each method.  The sum of relative sample pdf variances and the 

average computational time (sec) were used to compute the figure of merit, FOM 

(defined in Chapter 2). 

 

Method SRV T FOM 

Monte Carlo 2.10e-02 262 0.182 

H-MC-S2X 1.10e-02 312 0.291 

Table 3.2 Figure of merit comparison for calculation of test problem scalar flux. 
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The fractional computing time, 
( )

( )

( )

MC
m

m

FOM
f

FOM
  (introduced in Chapter 2) is the fraction 

of time required by method m  to achieve a given error obtained by standard Monte 

Carlo.  For this problem, 2(H-MC-S X) 0.63,f   meaning that the H-MC-S2X method requires 

63% of the standard Monte Carlo computing time to achieve a given error.   

However, as discussed in Chapter 2, optimal implementation of tallies (not 

performed in our research codes) could reduce this fraction to 0.52.  In this case, the H-

MC-S2X method would require 52% of the Monte Carlo computing time to achieve a 

given error.  These results also imply that the H-MC-S2X solution is 52% of the variance 

of the standard Monte Carlo solution for fixed computational cost.  As in Chapter 2, this 

numerical result is consistent with the hypothesis that the estimation of nonlinear 

functionals in Monte Carlo is more efficient than the estimation of traditional linear 

quantities. 

3.6.3 Comparison with Standard Deterministic Methods 

We now compare the accuracies of H-MC-S2X and multigroup discrete ordinates 

(MGSN).  We calculate the scalar flux and capture rate for the test problem.  The 

numerical parameters of each method are summarized in Table 2.4.  (The number of 

histories differs for the scalar flux and capture rate because the capture rate required more 

particles for an accurate result.) 

 

Method 

Grid 

Spacing 

[cm] 

# of Histories 
Energy Groups, 

Quadrature Order 

Benchmark 

Monte Carlo 
0.5 

2x10
6
 (scalar flux) 

4x10
6
 (capture rate) 

Continuous energy, 

Continuous angle 

H-MC-S2X 0.5 
5x10

5
 (scalar flux) 

1x10
6
 (capture rate) 

Continuous energy, 

Continuous angle 

(“Exact” collapse to G=1, S2) 

MGSN 0.5 - G=11, 21, 51, 101, 251, S16 

Table 3.3 Numerical properties for Core-Reflector Problem. 
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Details on the generation of multigroup cross section for this problem are given in 

Chapter 2. 

3.6.4 Computation of Scalar Flux 

The scalar flux for the test problem was computed on a uniform 0.5 cm grid using 

MGS16 (G  11, 21, 51, 101, 251) and H-MC-S2X (5x10
5
 particles).  The scalar flux 

results for both methods are compared to a benchmark Monte Carlo calculation (2x10
6
 

particles) in Figure 3.3. 

 

 

Figure 3.3 Scalar flux for (a) slab and (b) interface region. 

 

Figure 3.3(a) shows the solution over the whole slab, and Figure 3.3(b) is a blowup 

of the solution close to the interface ( 40 cmx  ).  Major differences are observed 

between the multigroup discrete ordinates solution and the benchmark Monte Carlo 

solution for the region just inside the reflector ( 40 cm 50 cmx  ).  In Figure 3.4, the 

magnitude of error in each calculation relative to the benchmark is plotted, along with the 
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uncertainty in the benchmark calculation, „Benchmark 1  ‟.  Only errors greater than the 

benchmark uncertainty are considered significant. 

 

Figure 3.4 Relative errors in scalar flux. 

 

Examining Figure 3.3 and Figure 3.4, we see that the H-MC-S2X method 

performed well in all parts of the problem. The relative error for the H-MC-S2X method 

is within benchmark uncertainty for almost every data point.  This is remarkable, 

considering that H-MC-S2X used only 25% as many histories as the benchmark Monte 

Carlo solution.  Clearly, increasing the number of particles would further improve the 

hybrid result, but an excellent result is obtained nonetheless with less computational time 

than the benchmark solution.  

In contrast to H-MC-S2X, the MGS16 methods performed poorly near material 

interfaces for this test problem.  While the MGS16 results approached the benchmark 

solution as the group structure was refined, a minimum of 251 groups was needed to 

achieve the same accuracy as the one-group S2–like hybrid method.  This result confirms 

our belief that the multigroup approximation is the origin of most of the error. 

Since the spectral effects occur mostly in the resonance group (630.957 eV to 10 

keV), a calculation was performed to compute the resonance-group scalar flux.  The 

resonance-group scalar flux is compared with the benchmark Monte Carlo solution in 

Figure 3.5 and Figure 3.6.  The MGS16 errors were more severe for the resonance-group 
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flux than for the total-energy integrated flux, but the H-MC-S2X errors were not 

significantly increased. 

 

 

Figure 3.5 Resonance group flux for (a) slab, and (b) interface region. 

 

Figure 3.6 Relative errors in resonance group flux. 
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Figure 3.5 and Figure 3.6 indicate that even for a simple scalar flux calculation, a 

251 group structure is required to reduce the MGS16 error near material interfaces to 

acceptable levels.  This is an important result: the one-group H-MC-S2X method 

performs at the same level as the 251 group structure by incorporating directional, 

angular, and spatial information.  It should be noted that both 51g and 101g calculations 

perform reasonably well but still exhibit systematic errors at the interface and vacuum 

boundary, with errors up to 2%. 

3.6.5 Computation of Resonance Group Capture Rate 

The H-MC-S2X resonance group capture rate is compared with the benchmark 

Monte Carlo solution and deterministic MGS16 calculations in Figure 3.7 and Figure 3.8. 
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Figure 3.7 Resonance group capture rate for (a) slab, and (b)-(c) interface region. 
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Figure 3.8 Errors in resonance group capture rate. 

 

The MGS16 calculations had significant errors in the region near the core-reflector 

interface and vacuum boundary.  The MGS16 method clearly becomes more accurate as 

the number of groups increases.  However, significant transport effects are still apparent 

in the finest group ( 251G  ) solution.  The H-MC-S2X method exhibited no transport 

effect errors and had uniform statistical error throughout the problem. 

The large spatial gradient in the resonance capture rate near the core-reflector 

interface is problematic for MGSN due to spatial truncation error.  While the MGSN 

results could be improved by refining the spatial grid, the optimum refinement is not 

known a priori.  In contrast, H-MC-S2X has no spatial truncation error and handles this 

gradient easily.  Therefore, H-MC-S2X offers a significant advantage over conventional 

deterministic methods because it works on coarse spatial grids. 

3.7 Conclusions 

We have developed a hybrid method called H-MC-S2X for accurately and 

efficiently solving difficult transport problems.  The method consists of collapsing the 

transport equation in angle, energy, and space with no truncation errors.  The collapsing 

process produces nonlinear functionals that can be accurately computed by Monte Carlo.  

These functionals are similar to one-group flux-weighted cross sections and quadrature 

angles, and the low-order equations are similar to the one-group S2 equations. 
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For a test problem containing significant transport effects, the H-MC-S2X results 

agreed with the benchmark Monte Carlo solution.  The H-MC-S2X solution had one half 

the variance of a history-equivalent Monte Carlo solution.  This translates into a time 

savings of approximately 50% when the extra H-MC-S2X tallies are optimally 

implemented.  In addition, the H-MC-S2X method was more accurate than conventional 

multigroup discrete ordinates methods. 

In contrast to the H-MC-S2 method developed in Chapter 2, the H-MC-S2X method 

has no spatial truncation error, and the method can handle problems with discontinuous 

and rapidly varying solutions on any spatial grid.  For many practical problems, material 

interfaces are surrounded by boundary layers where the transport solution has strong 

spatial gradients.  A method with spatial truncation error (e.g., H-MC-S2) requires 

refinement of the spatial grid in the boundary layers to obtain an accurate solution.  

However, a method with no spatial truncation error (e.g., H-MC-S2X) eliminates the need 

to refine the spatial grid within boundary layers.  Therefore, H-MC-S2X has an important 

advantage over H-MC-S2 because it has no spatial truncation error.  In Chapter 2,  the 

continuous function technique was required with a 0.1 cm spatial grid to reduce the H-

MC-S2 spatial truncation error (in the resonance capture rate) to acceptable levels.  In 

contrast, the H-MC-S2X used a spatial grid of 0.5 cm and had comparable errors.  The 

size of the H-MC-S2X grid is dictated by the desired spatial detail, not by consideration 

of spatial truncation errors. 

Other than spatial grid considerations, the H-MC-S2X method also eliminates 

sources of error due to improper choice of energy group boundaries or insufficient 

number of discrete ordinates directions.  Finally, because the method has no 

approximation in angle, it may be advantageous for solving problems where discrete 

ordinates calculations exhibit undesirable ray effects.  This could be tested in the future 

by implementing the method in 2-D geometry.  We have demonstrated the success of this 

method on a meaningful fixed source problem.  H-MC-S2X could easily be extended to 

eigenvalue problems as well. 

In the next chapter, we discuss the statistical properties of H-MC-S2X and how this 

method fares against standard Monte Carlo for more problems.  We seek to demonstrate 
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why methods utilizing nonlinear functionals (such as H-MC-S2 and H-MC-S2X) have less 

variance than standard Monte Carlo calculations. 
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Chapter 4 

Statistical Properties of the H-MC-S2X Method 

 

4.1 Introduction 

The H-MC-S2 and H-MC-S2X methods developed in Chapters 2 and 3 utilize 

special nonlinear functionals rather than multigroup cross sections and discrete ordinates. 

We hypothesized that stochastic estimates of these nonlinear functionals, defined as ratios 

of linear functionals, are more accurate, and have less variance, than stochastic estimates 

of the numerator and denominator, provided the same neutron histories are used to 

evaluate the functionals in the numerator and denominator.  In this chapter, we present 

theory and numerical results to support this hypothesis.  In addition, we show that the 

accuracy and variance of the H-MC-S2X method depends on the following: 

(1) Number of simulated particle histories, 

(2) Correlation of the random variables in the functional definitions, 

(3) Sensitivity of the low-order deterministic equations to statistical fluctuations 

in the functionals.   

Item (1) can be controlled by running more histories.  Item (2) is problem-dependent 

because the functionals depend on the angular flux and material cross sections.  Item (3) 

is difficult to analyze theoretically.  However, we present numerical results indicating 

that the H-MC-S2X solutions typically have less variance than the corresponding history-

equivalent standard Monte Carlo solution. 

We begin by using the theory of random variables to discuss the advantages of 

using Monte Carlo to compute nonlinear functionals rather than standard linear 

quantities.  We then present numerical results confirming that the stochastically-

computed nonlinear functionals have less variance than standard linear quantities.  Last, 
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we test the sensitivity of the H-MC-S2X low-order equations to statistical variations in 

the nonlinear functionals. 

4.2 Stochastic Computation of Random Variables 

The Boltzmann equation describes the mean behavior of a large number of 

stochastically moving neutrons.  Standard Monte Carlo methods solve the transport 

equation by simulating individual neutrons and tallying information, i.e., the scalar flux 

and response rates, over many neutron histories.  The scalar flux and response rates are 

random variables whose mean and variance are computed during the simulation.  The 

mean can be computed exactly only in the limit of an infinite number of neutron histories.  

In practice, a finite number of histories are used, and the uncertainty in the mean 

(standard deviation) is reported to reflect the confidence in this solution.  The variance 

(standard deviation squared) is governed by both the probability density function of the 

quantity and the number of histories simulated. 

4.2.1 Theory 

Let us consider the H-MC-S2X method formulated for the response rate
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(In all functional definitions, the denominator Y  is the standard Monte Carlo estimate of 

the desired response rate.)  We now derive (approximately) the pdf mean and pdf 

variance of F .  We use the notation    to express the expected value (mean) of the 

quantity inside the brackets.  A random variable can be expressed as the sum of its mean 

and some statistical error: 

    ,  where 0,X XX X      (4.2) 

    ,  where 0.Y YY Y      (4.3) 

The variance of X and Y  are:  
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 (4.4) 
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 (4.5) 

The mean of F  is estimated by neglecting terms order 3  and higher: 
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  

  
        

  
      

    

    

 (4.6) 

Following a similar procedure to obtain the mean of 2F  and using 

  
2

Var( ) ,F F F  
 

 the variance of F  can be approximated to second order by: 
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  

 
 

 
 

 

2

2 2

2 2

2

1
Var( ) 2

.

X X Y Y

F

X X
F

YY Y
   



 
          
 

   

 (4.7) 

We now wish to compare the relative variance in the functional to the relative 

variance in the denominator of the functional.  (The denominator of the functional is the 

quantity we are trying to compute.  We hypothesized that the relative variance in the 

functional should be less than the relative variance in the denominator because of 

correlation between the numerator and denominator.) 

 

 

 

 
    

2

2

2 2

2 2

Relvar( )

2

Relvar( ) 2Relcovar( , ) Relvar( ).

F

X YX Y

F
F

X YX Y

X X Y Y



  

  

        

  

 (4.8) 

Here we have introduced the notation for the relative covariance of two random 

variables:  

 
 
  

Relcovar( , ) .
X Y

X Y
X Y

 
  (4.9) 

The covariance of two variables is a measure of how much they covary, or vary together.  

If X  and Y are independent,   Cov( , ) 0.X Y X Y      Also, Cov( , ) Var( ).X X X   

The covariance is bounded by 0 Cov( , ) Var( )Var( )X Y X Y  .  We write 

 
Relvar( )

,
Relvar( )

F

Y
   (4.10) 

where 0   because relative variances are non-negative.  From Eq. (4.8),   can be 

written: 
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 

 

 
 

 
2

2

22

1
1 2 .X X Y

Y

Y X

YX
  



 
           

 (4.11) 

The condition 1   implies that the relative variance of the functional is less than the 

relative variance of the denominator.  This condition holds when:  

 
 
 

  22 .X Y X

X

Y
       (4.12) 

If Eq. (4.12) is satisfied, the relative variance of the nonlinear functional 
X

Y
  is less than 

the relative variance of .Y   The term  X Y   is the covariance of X  and .Y   Since the 

covariance  X Y   increases as the amount of correlation increases, this condition is 

more likely to be satisfied for choices of X  and Y  that are highly correlated. 

We emphasize that the only source of statistical error in X  and Y  is the statistical 

estimation of the function ( , , )x E   in the integrals of these random variables.  The 

random variables can be written as a deterministic operator on  : 

 .XX   (4.13) 

For example,  
1/2

1/2

1

0 0

1 j

j

x

X
x

j

d dEdx
h

 






      for the choice of

 
1/2

1/2

1

0 0

1
, , .

j

j

x

x
j

X x E d dEdx
h

  






      Also,       , so the statistical error in X  

can be related to the statistical error in  : 

 
    

.

X X

X

X X



  



   


 (4.14) 

Likewise, Y Y   .   
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Since the operators X  and Y  are deterministic, X  and Y  are correlated only 

if the same estimate of    (with error  ) are used to evaluate both random variables.  If 

the function ( , , )x E   is estimated using identical histories for X  and Y , then the 

statistical errors 
X X    and 

Y Y   are correlated.  In this case, the covariance 

 X Y   is non-zero, allowing for the possibility of 1.    The covariance  X Y   is 

maximized when X Y  :  in this case, X Y   and   2 2

X Y X Y     , (the 

maximum value of the covariance).  We thus make the case for trying to choose operators 

X  and Y  that are as similar as possible, and for using identical particle histories to 

evaluate ( , , )x E   in X  and Y . 

If independent estimates of ( , , )x E   are used to evaluate X  and Y , then the 

statistical errors 
(1)

X X    and 
(2)

Y Y   are independent, and the covariance 

 X Y   is zero.  In this case, Eq. (4.12) is not satisfied. 

4.2.2 Intuition 

We have provided a theoretical justification for computing nonlinear functionals 

rather than standard linear quantities.  We have also demonstrated that identical particle 

histories must be used to evaluate the numerator and denominator of the functional, and 

that the numerator and denominator operators on the angular flux should be chosen to be 

as similar as possible. 

It is difficult to theoretically predict whether Eq. (4.12) will be satisfied.  However, 

the degree of correlation in the numerator and denominator can be qualitatively predicted 

by examining the operators appearing in the numerator and denominator.  We emphasize 

that the correlation between the numerator and denominator is maximized when the 

numerator and denominator functions are identical.  The correlation is reduced as the 

similarity between the operators decreases.  For example, if the numerator operator 

utilizes a resonance cross section, and the denominator operator produces the scalar flux, 

the correlation is reduced between numerator and denominator due to the fine energy 

detail in the numerator operator.  Consequently, Eq. (4.12) is less likely to be satisfied for 
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this example than if the numerator operator were to utilize a cross section without 

resonances. 

In the remainder of this chapter, we numerically estimate the pdf variance of the H-

MC-S2X functionals and compare these variances with the pdf variances in the numerator 

and denominator.  We also compare the pdf variances of the H-MC-S2X and Monte Carlo 

solutions.  For the remainder of this chapter, we use the term “variance” to imply “pdf 

variance”. 

4.3 Estimation of Variance 

The variance of a random variable x  can be estimated over K  simulations using 

 2 2 2ˆ
1

j j j

K
S x x

K

 
  

  
, (4.15) 

where ( )

1

1
ˆ

K
k

j j

k

x x
K 

   is the average value of x  in the 
thj cell over K  simulations, and 

2 ( ) 2

1

1
( )

K
k

j j

k

x x
K





   is the average value of 2x  in the 
thj cell over K  simulations. 

In this chapter, we compute the variance in Eq. (4.15) for the following random 

variables: the H-MC-S2X functional numerators (“Num”), the H-MC-S2X functional 

denominators (“Denom” ), the H-MC-S2X functionals ( “Fcnl”), and the H-MC-S2X 

solution.  We emphasize that the functional numerators and denominators are standard 

Monte Carlo tallies.  

We show that the variance in the nonlinear functionals is less than the variances of 

the functional numerators and denominators.  Also, the variance in the H-MC-S2X 

solution is less than the variance in the standard Monte Carlo estimate of the solution.  In 

other words, the distributions of H-MC-S2X functional and solution estimates (over 

multiple simulations) are more tightly clustered around the true mean than standard 

Monte Carlo estimates of the solution. 

The standard Monte Carlo and H-MC-S2X calculations in this chapter use identical 

particle histories, i.e., they are history-equivalent.  (Consequently, the numerator and 

denominator of each functional are estimated using identical histories.)  We emphasize 
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again that the denominator of any H-MC-S2X nonlinear functional in cell j  is the 

standard Monte Carlo estimate of the solution.   

4.4 Variance of the Nonlinear Functionals 

4.4.1 Core-Reflector Test Problem #1 

Twenty-five statistically independent Monte Carlo simulations with 50,000 

histories were performed to compute the scalar flux in the core-reflector problem 

described in Chapter 2.  In this chapter, we call this “Core-Reflector Problem #1”.  

(Later, a second Core-Reflector problem will be discussed.) 

 

Number of 

Independent 

Simulations (K) 

Number of Histories 

per Simulation (N) 

Spatial Grid 

[cm] 

25 50,000 0.5 

Table 4.1 Monte Carlo numerical properties for Core-Reflector Problem variance studies. 

 

Since the H-MC-S2X method was formulated to solve for the scalar flux, we use the 

notation   instead of R  to refer to the H-MC-S2X solution and standard Monte Carlo 

tally for this quantity. 

Before examining the variance of the H-MC-S2X nonlinear functionals, we 

consider their average values, plotted in Figure 4.1.  The j

 functionals have no 

discontinuities  and approach the value 0.5  in the limit of an isotropic angular flux.  

Deviations from this value arise when the flux is anisotropic.  In contrast, the 1
2

, ,t j




 and 

1
2

, ,s j




 functionals are discontinuous at the material boundary ( 40)x  .  They are sensitive 

to the energy-dependence of the flux, as is indicated by the gradual change in value just 

inside the reflector and near the vacuum boundary.  Differences can also be observed 

between the left- and right-angularly integrated functionals near the material interfaces.  

These differences show the importance of including the energy and angle dependence of 

the flux when weighting cross sections in multigroup calculations. 
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Figure 4.1 Average values of functionals over 25 independent simulations for Core-Reflector 

Problem #1. 

 

We now examine the variance of the j

 functionals.  These functional are defined: 
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 (4.16) 
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Figure 4.2 plots the relative variance in this functional, labeled “Fcnl”, and the 

relative variance of the numerator and denominator, labeled “Num” and “Denom”, 

respectively.  Again, the denominator of each functional is the Monte Carlo estimate of 

the solution.  We plot the ratio of the relative variance in the denominator to the relative 

variance in the functional (referred to as the “D/F Relative Variance Ratio”) to 

demonstrate that the standard Monte Carlo solution has greater relative variance than the 

functional. 

 

 

Figure 4.2. Relative variance of 

 functionals and associated MC tallies. 
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In Figure 4.2(a) and (c), the relative variance of the functional is smaller than the 

relative variance of the standard Monte Carlo estimate of the solution for all spatial 

locations.  The variance of the j

 functional increases towards the vacuum boundary 

where the problem may not be sufficiently sampled, particularly in the incoming 

direction.  This behavior could be mitigated by running more particles, or by utilizing 

variance reduction techniques.  The D/F ratios for the j

 and j


functionals indicate that 

the relative variance of the Monte Carlo solution is typically 10 times the relative 

variance of the functional in the core, but significantly less in the reflector.  While the 

average functional value does not exhibit strong spatial dependence for this problem, the 

variance does, due to differences in correlation of the current and scalar flux in the core 

and the reflector. 

The variances of the cross section functionals, 1
2

, ,t j




 and 1

2
, ,s j




 , are plotted in 

Figure 4.3 through 4.6.  These functionals are defined: 
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 
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 

    

  

  
 (4.17) 

The subscript 1
2

k    refers to the spatial tent function 1
2

( )
j

f x


 in the numerator.  Since 

the spatial cells are small, the tent function subscript does not significantly affect the 

functional values or variances. 
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Figure 4.3 Relative variance of t
-
  functionals and associated MC tallies. 
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Figure 4.4 Relative variance of t
+
  functionals and associated MC tallies. 
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Figure 4.5 Relative variance of s
-
  functionals and associated MC tallies. 
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Figure 4.6 Relative variance of s
+
  functionals and associated MC tallies. 
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functionals in the core.  A modified test problem in the next section supports this 

explanation. 

The D/F ratios of each functional are plotted on the same scale in Figure 4.7 for 

Core-Reflector Problem #1. 

 

 

Figure 4.7 Summary of functional variances for Core-Reflector Problem #1. 
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Figure 4.7 shows that the variance of the standard Monte Carlo solution is generally 

larger than the variance of the nonlinear functionals.  However, the factor of 

improvement is spatially-dependent and different for each functional.  In particular, the 

existence of strong energy resonances introduces significant variance into the functionals. 

4.4.2 Core-Reflector Problem #2 

To confirm that the increased functional variances in the reflector are due to 

resonances in the reflector cross sections, the variance tests were repeated on a modified 

test problem, Core-Reflector Problem #2.  The geometry and material parameters are 

identical to that of Problem #1, except the reflector scattering and absorption resonances 

have been removed to suppress the cross sections to standard linear or 1
v  behavior, 

respectively.  The scattering cross sections for Problems #1 and #2 are plotted in Figure 

4.8.  (In the reflector, scattering dominates, and the absorption cross sections are small in 

magnitude.  We consider only the scattering cross section here.) 

 

 

Figure 4.8 Scattering cross sections for Problems #1 and #2.  
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highly peaked in Problem #1 and constant in Problem #2.  The denominator is 

 
1/2

1/2

1

0 0

1
( , ) , , ,

j

j

x

x
j

r x E x E d dEdx
h

  




 

     where the constant function ( , ) 1r x E   was 

chosen to obtain the scalar flux.  Since the numerator function ( , )s x E  and denominator 

function ( , )r x E for Problem #2 both behave like a constant, the numerator and 

denominator for Problem #2 are well-correlated.  In contrast, the resonance in ( )s E  for 

Problem #1 creates detail in energy that is not similar to the denominator function (a 

constant).  We therefore predict that the numerator and denominator integrals for 

Problem #2 will be better correlated than the numerator and denominator integrals for 

Problem #1.  Consequently, the Problem #2 reflector functionals should have lower 

variance than the Problem #1 reflector functionals.  Figure 4.9 confirms that the reflector 

functional variances are much lower for Problem #2 than for Problem #1.  Therefore, the 

reflector resonances in Problem #1 caused the high variance behavior observed in Figures 

4.3 through 4.6. 
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Figure 4.9 Summary of functional variance for Core-Reflector Problem #2. 

 

4.4.3 Conclusions Regarding Functional Variance 

We have shown that the H-MC-S2X nonlinear functionals can be estimated with 

less variance than direct Monte Carlo estimate of the scalar flux (for equivalent 

computational time).  However, the observed variance “reduction” is depends on several 

0 10 20 30 40 50 60 70
10

-1

10
0

10
1

10
2

x (cm)

D
/F

 R
el

. 
V

ar
. 

R
at

io

(a)

 

 

-

+

0 10 20 30 40 50 60 70
10

-1

10
0

10
1

10
2

x (cm)

D
/F

 R
el

. 
V

ar
. 

R
at

io

(b)

 

 


t ,-1/2
-


t ,+1/2
-


t ,-1/2
+


t ,+1/2
+

0 10 20 30 40 50 60 70
10

-1

10
0

10
1

10
2

x (cm)

D
/F

 R
el

. 
V

ar
. 

R
at

io

(c)

 

 


s,-1/2
-


s,+1/2
-


s,-1/2
+


s,+1/2
+



 

103 

factors.  The j

 functionals appear inherently more “noisy” than the cross section 

functionals – they have between 10% to 50% as much variance as the Monte Carlo 

solution for both Core-Reflector Problems.  The cross section functionals are estimated 

with 1% of the Monte Carlo variance when resonances are not present, but up to 100% 

(or more) of the Monte Carlo variance when resonances are present.  Overall, the 

variance of the  nonlinear functionals in almost always less than or equal to the variance 

of the standard Monte Carlo solution, and the variances are smaller when there are no 

resonance cross sections.  These numerical results support our hypothesis that nonlinear 

functionals can be estimated more accurately, and with less variance, than direct Monte 

Carlo estimates of the solution.   

The variances of the functionals are problem-dependent (and space-dependent, 

within a problem), and it is unclear how the low-order equations will propagate the 

observed statistical errors into the final solution.  The next section, we discuss the 

sensitivity of the low-order equations to statistical errors in the functionals by comparing 

the variance of the final H-MC-S2X solution to standard Monte Carlo.  

4.5 Sensitivity of the H-MC-S2X Equations to Functional Statistical Errors 

4.5.1 Core-Reflector Problem #1 

The relative variances of the H-MC-S2X and standard Monte Carlo estimates of the 

scalar flux for Core-Reflector Problem #1 are plotted in the following figures.  
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Figure 4.10 Relative variance of the left and right angularly-integrated the scalar flux for Core-

Reflector Problem #1. 
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Figure 4.11 Relative variance of the solution scalar flux for Core Reflector Problem #1. 
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Figure 4.12  Relative variance of the solution scalar flux for Core Reflector Problem #2. 
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These “sum of relative variance” quantities are not very meaningful by themselves, 

but we can use them to compare two quantities.  The fractional computing time of 

method m, 

 
( )

( )

( )

SRV
,

SRV

m
m

MC
f   (4.18) 

measures the fraction of computing time required to obtain a certain error compared to 

standard Monte Carlo.   

 

Quantity 

2(H-MC-S X)f      

Problem #1 

2(H-MC-S X)f  

Problem #2 

j

  (MU-) 0.49 0.54 

j

  (MU+) 0.25 0.21 

1
2

, ,t j




  (SIGT--) 1.02 0.05 

1
2

, ,t j




  (SIGT-+) 1.06 0.10 

1
2

, ,t j




  (SIGT+-) 0.61 0.03 

1
2

, ,t j




  (SIGT++) 0.61 0.03 

1
2

, ,s j




  (SIGS--) 1.02 0.05 

1
2

, ,s j




  (SIGS-+) 1.06 0.10 

1
2

, ,s j




  (SIGS+-) 0.61 0.03 

1
2

, ,s j




  (SIGS++) 0.61 0.03 

Table 4.2 Functional fractional computing times for Core Reflector Problems #1 and #2. 

 

Quantity 

2(H-MC-S X)f  

Problem #1 

2(H-MC-S X)f

Problem #2 

j


 (PHI-) 0.58 0.65 

j


 (PHI+) 0.57 0.59 

j  (PHI) 0.52 0.54 

Table 4.3 Solution fractional computing times for Core Reflector Problems #1 and #2. 
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We make several conclusions from the fractional computing times in the previous 

two tables.  First, the , ,s j k

  and , ,t j k

  fractional computing times were significantly lower 

in Problem #2 due to the removed reflector cross section resonances (previously 

discussed).  Second, functionals averaged over negative directions have consistently 

higher variance than functionals averaged over positive directions.  This is due to poor 

sampling of negative directions in the reflector.  In Problem #1, the overall fractional 

computing time for the cross section functionals in negative directions was equal or 

greater than standard Monte Carlo.  We conclude that the correlation in the numerator 

and denominator of these functionals is small, and that poor sampling in the numerator 

magnified statistical errors.   

Finally, the j

 functionals appear inherently noisier than the cross section 

functionals:  they have nearly 10 times as much variance as the cross section functionals 

in Problem #2.  It is likely that the stronger angular dependence of the flux in the reflector 

and poor sampling of neutrons travelling in negative directions lowered the fractional 

computing time for this quantity.  

It is not surprising that the fractional computing time for the scalar flux solution is 

only 0.52 for Problem #1.  [All the functional fractional computing times are close to, or 

higher than, this value.]  However, for Problem #2, the fractional computing time is 0.54 

despite the much lower fractional computing times for the cross section functionals.  The 

high variance of the j

 functionals appears to dominate the solution variance in these 

core-reflector problems. 

4.6 Application of the Central Limit Theorem 

We have shown that the relative variance of the H-MC-S2X solution is comparable 

to the relative variance of the “highest variance” nonlinear functionals.  In this section, 

we examine how the variance of the H-MC-S2X method behaves as the number of 

histories changes.  The H-MC-S2X method is nonlinear, so it is may not necessarily 

behave according to the Central Limit Theorem (CLT).  Given a distribution with mean 

  and variance 
2 ,  the CLT states that the sampling distribution of the mean 
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approaches a normal distribution with mean   and variance 
2

N


, as N  (the number 

histories) increases.  Sets of 25 independent simulations were generated for Core-

Reflector Problem #1, with different ,N  to see whether the variance of the H-MC-S2X 

solution obeys the CLT (like standard Monte Carlo). 

 

N ( )MCSRV  2(H-MC-S X)SRV  2(H-MC-S X)f  

10,000 1.15e-01 4.70e-02 0.41 

50,000 2.10e-02 1.10e-02 0.52 

100,000 9.70e-03 5.22e-03 0.54 

200,000 5.92e-03 2.90e-03 0.49 

400,000 2.96e-03 1.44e-03 0.49 

Table 4.4 Sum of relative variance and fractional computing ratio as a function of number of 

histories. 

 

 

Figure 4.13 Linearity of variance with number of histories for MC and H-MC-S2X. 

 

Although H-MC-S2X is a nonlinear method, its variance decreases linearly on the 

log-log plot in Figure 4.13.  Therefore, like standard Monte Carlo, the H-MC-S2X 

solution variance is inversely proportional to the number of histories and obeys the CLT. 
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The fractional computing time was approximately constant (0.50) for all histories, 

meaning that the H-MC-S2X method requires 50% of the time used by standard Monte 

Carlo to achieve the same error.   

4.7 Bias in the H-MC-S2X Solution 

We showed in Chapter 3 that the H-MC-S2X solution is accurate when the number 

of histories is large.  We now examine the accuracy of the method when the number of 

particles is small: the nonlinear character of the method makes it unclear whether errors 

in individual simulations cancel out as the number of simulations becomes large.  We 

averaged 100 independent simulations of Core-Reflector Problem #1 for N=100 and 

N=1,000 histories.   

When the number of histories was extremely low (N=100), there were no particle 

tracks in several tallies, and the nonlinear functionals could not be estimated at all.  The 

H-MC-S2X method could not be performed in this case.  For N=1000, there were 

sufficient particle tracks to estimate the nonlinear functionals, and the H-MC-S2X scalar 

flux was averaged over the 100 simulations and plotted in Figure 4.14. 

  

 

Figure 4.14 Average scalar flux over 100 H-MC-S2X simulations with small number of histories. 
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histories is used.  However, sufficiently many histories must be simulated so that the 

tallies in each nonlinear functional can be estimated. 

4.8 Sensitivity of the H-MC-S2X Equations to the Scattering Ratio 

We now consider several monoenergetic fixed source problems.  These problems 

are homogenous 20 cm slabs with a reflecting boundary on the left and a vacuum 

boundary on the right (for a total width of 40 mean free paths).  The cross sections are 

constant in energy, and the scattering ratio, ,s

t

c





 varies.  A monoenergetic, isotropic 

source is uniformly distributed throughout the system. 

 

Location [cm] 
t  [cm

-1
] s  [cm

-1
] 

0 20x   1.0 c  

Table 4.5 Scattering ratio problem properties. 

 

Number of Independent 

Simulations (K) 

Number of Histories 

per Simulation (N) 

Spatial Grid 

[cm] 

25 N  0.5 

Table 4.6 Monte Carlo numerical properties for scattering ratio problem. 

 

The parameters c  and N  were varied to generate several sets of twenty-five 

independent simulations for the scalar flux.  The sample variance of each set was 

computed in each spatial cell and summed over the system.  The purpose of these 

calculations was to estimate the sensitivity of the H-MC-S2X equations to the scattering 

ratio. 
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Figure 4.15. Linear relationship of variance with histories for various scattering ratios. 

 

Scattering Ratio 2(H-MC-S X)f  

c = 0.000 0.22 

c = 0.001 0.23 

c = 0.500 0.22 

c = 0.999 0.23 

c = 1.000 0.25 

Table 4.7 Fractional computing times for various scattering ratios (data taken from N=100,000). 
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Figure 4.15 confirms that the variance of the H-MC-S2X solution is inversely 

proportional to the number of histories, like standard Monte Carlo.  For all scattering 

ratios tested, the H-MC-S2X solution had less variance than the standard MC solution.  

The fractional computing time for H-MC-S2X compared to standard Monte Carlo was 

approximately 0.23 for each scattering ratio.  This is a significant improvement over the 

~0.50 fractional computing time for the core-reflector problems.   

Before discussing this in more detail, we make a note regarding the low-order 

equations in the H-MC-S2X method.  These equations are solved using transport 

“sweeps” and source iterations as in conventional SN.  We observed that the number of 

source iterations required in the low-order H-MC-S2X equations is strongly dependent on 

the scattering ratio.  The average number of iterations required for high scattering ratios 

was approximately 9000  1c   and 6050  0.999c  .  For 0.5c  , the average number 

of iterations was 34 or less.  These results are entirely consistent with the behavior 

conventional SN methods for high scattering ratios. 

We now return to our discussion of the monoenergetic fixed source problem.  We 

examine the specific monoenergetic problem with 0.999c   from above, and we call this 

“Problem #3”.  The solutions of this problem are compared with the Core-Reflector 

Problems in Table 4.8. 

 

Quantity 

2(H-MC-S X)f      

Core-Reflector 

Problem #1 

2(H-MC-S X)f  

Core-Reflector 

Problem #2 

2(H-MC-S X)f  

Problem #3 

c=0.999 

j


 (PHI-) 0.58 0.65 0.22 

j


 (PHI+) 0.57 0.59 0.26 

j  (PHI) 0.52 0.54 0.23 

Table 4.8 Solution fractional computing times for a variety of problems. 

 

We see a significant improvement in the fractional computing time required for 

Problem #3:  the core-reflector problems requires approximately 53% of Monte Carlo 

computing time, but Problem #3 requires only 23% of Monte Carlo computing time.  
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This increase in efficiency over the core-reflector problems could be due to (a) the 

absence of energy-dependence, (b) diffusive nature of the flux, or (c) better sampling in 

all phase space due to the uniform fixed source.  We compare the fractional computing 

times for the functionals in Table 4.9. 

 

Quantity 

2(H-MC-S X)f      

Core-Reflector 

Problem #1 

2(H-MC-S X)f  

Core-Reflector 

Problem #2 

2(H-MC-S X)f  

Problem #3 

c=0.999 

j

  (MU-) 0.49 0.54 0.07 

j

  (MU+) 0.25 0.21 0.06 

1
2

, ,t j




  (SIGT--) 1.02 0.05 0.02 

1
2

, ,t j




  (SIGT-+) 1.06 0.10 0.03 

1
2

, ,t j




  (SIGT+-) 0.61 0.03 0.01 

1
2

, ,t j




  (SIGT++) 0.61 0.03 0.01 

1
2

, ,s j




  (SIGS--) 1.02 0.05 0.02 

1
2

, ,s j




  (SIGS-+) 1.06 0.10 0.03 

1
2

, ,s j




  (SIGS+-) 0.61 0.03 0.01 

1
2

, ,s j




  (SIGS++) 0.61 0.03 0.02 

Table 4.9 Functional fractional computing times for a variety of problems. 

 

These results suggest the following effects of energy and angular dependence on 

the performance of the H-MC-S2X method.  Going from “continuous energy with 

resonances” to “continuous energy without resonances” improves the cross section 

functionals by an order of magnitude.  Going from “continuous energy without 

resonances” to “monoenergetic” problems does not improve the cross sections 

functionals significantly.  The cross section functionals are estimated with a given error 

using only 1-10% of Monte Carlo computing time when no resonances are present, but 

the presence of resonances increases this fraction to 100%.  

The angular dependence of the flux is also simpler in Problem #3.  In Core-

Reflector Problems #1 and #2, the flux is strongly anisotropic and not well-sampled in 
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negative directions in the reflectors.  In Problem #3, the flux is nearly isotropic and well-

sampled in all directions.  In Problem #3, the simpler angular dependence of the flux and 

better sampling improves the estimation of the j

 functionals by an order of magnitude 

from the core-reflector problems (7% vs 54%).  This improvement in efficiency occurs 

because the numerator and denominator of the j

 functionals are more highly correlated 

when the flux is not strongly peaked in a particular direction, as in Problem #3.  

Additionally, particles are sampled sufficiently in negative directions for Problem #3 

because source particles are isotropically, uniformly distributed throughout the system.  

In Problems #1 and #2, very few source particles are sampled travelling in negative 

direction at the outer reflector edge. 

On a final note, the H-MC-S2X functionals in Problem #3 were estimated with 

1%-7% of the variance in the standard Monte Carlo solution.  The H-MC-S2X solution 

has 23% of the variance of the standard Monte Carlo solution.  This is evidence that even 

small statistical errors in the functionals become magnified during solution of the low-

order equations.  The order of magnification appears to be problem-dependent. 

4.9 Conclusions 

In this chapter, we provided a theoretical justification for using Monte Carlo to 

estimate nonlinear functionals rather than standard linear functionals.  In order for this 

technique to be advantageous, the nonlinear functionals should be defined so that the 

numerator and denominator operators are as similar as possible.  Also, identical particle 

histories must be used to evaluate the numerator and denominator of each functional.  

When the numerators and denominators are defined and estimated in this way, the 

variance of the resulting nonlinear functional is less than the variance of the individual 

numerator and denominator.  This theory applies to the functionals defined in the H-MC-

S2 and H-MC-S2X method developed in Chapters 2 and 3.  

The accuracy and variance of the H-MC-S2X method depends on the number of 

neutron histories, correlation of random variables in the nonlinear functional definitions, 

and sensitivity of the low-order equations to statistical errors in the functionals. 

Numerical results for a variety of test problems confirmed our hypothesis that Monte 

Carlo estimates of nonlinear functionals are more accurate and have less variance than 



 

116 

history-equivalent estimates of the linear quantities in the numerator and denominator of 

these functionals.  The variance of the H-MC-S2X solution follows the Central Limit 

Theorem, i.e.,  is inversely proportional to the number of histories.  No significant 

dependence on the scattering ratio was observed besides the number of deterministic 

iterations required.  Overall, the findings in this chapter can be summarized as follows: 

1) The H-MC-S2X nonlinear functionals have less variance than their corresponding 

numerator and denominator (standard Monte Carlo tallies). 

2) The H-MC-S2X final solution has less variance and is more accurate than the 

corresponding standard Monte Carlo solution, but the efficiency of the H-MC- 

S2X method is problem dependent.  

Our results show that the H-MC- S2X method is always more efficient than 

standard Monte Carlo, but the performance is problem-dependent.  The H-MC-S2X  

method fractional computing time compared to standard Monte Carlo ranged from 0.20 

to 0.54 for our test problems.  The performance is optimum when particles are well-

sampled in all areas of phase space, conditions are diffusive, and cross section energy 

dependence is simple.  As these conditions are relaxed, the efficiency of the method 

decreases.  We make the following suggestions on how the efficiency might be improved 

“harder” problems. 

To address the issues of complex energy dependence, the H-MC-S2X method 

could be modified so that the low-order equations resemble multigroup equations.  

Strategically partitioning energy groups over resonances would greatly increase the 

correlation of the functional numerator and denominators in the cross section functionals.  

However, this procedure would incur more computational expense: more tallies would be 

required in Monte Carlo, and solution of the algebraic system of multigroup-like 

equations would be more expensive.   

A similar modification would address the issues of more complex angular 

dependence:  the number of direction “groups” could be increased so that the low-order 

equations resemble higher-order SN equations.  Doing this should decrease the variance in 

the j

 functionals, but would again increase the expense of solving the algebraic system 

of equations.   
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Finally, weight windows or other biasing techniques could be used to encourage 

particles to “travel” in regions of low particle density.   These techniques are traditionally 

used to reduce the variance in regions of phase space that are not well-sampled in analog 

Monte Carlo. 

Therefore, the H-MC-S2X method could be modified in several ways to improve 

its performance in “difficult” fixed source problems.  Additionally, its performance on 

criticality problems should be tested.  However, in this thesis, we have shown that the 

performance of the H-MC-S2X method is promising on a subset of test problems.   

We now turn our attention towards a fundamentally different nonlinear functional 

method recently proposed by M.J. Lee, K. Smith, H.G. Joo and D.J. Lee: CMFD-

Accelerated Monte Carlo [2].  This method has been used for the acceleration of Monte 

Carlo source convergence in high dominance ratio criticality problems.  In subsequent 

chapters, we develop generalized hybrid Monte Carlo-CMFD methods using nonlinear 

functionals and demonstrate the efficiency of these methods on “difficult” criticality 

problems. 
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Chapter 5 

Generalized Hybrid Monte Carlo – CMFD Methods 

 

5.1 Introduction 

In the previous three chapters, we derived hybrid methods whose low-order 

equations resemble the discrete ordinates equations, and we showed that the nonlinear 

functionals in these low-order equations can be computed with Monte Carlo more 

accurately, and with less variance, than standard linear quantities.  In this chapter, we 

present several techniques that utilize stochastically-computed nonlinear functionals to 

couple the Coarse Mesh Finite Difference (CMFD) method to Monte Carlo.  These 

hybrid techniques use diffusion-like rather than discrete ordinates-like equations to 

improve the Monte Carlo solution.  We begin by reviewing the conventional CMFD 

method and the CMFD-Accelerated Monte Carlo method.  We then demonstrate that this 

latter method can be improved by utilizing higher order space-angle moments of the 

neutron transport equation.  Three new techniques are presented in this chapter; 

numerical results comparing these techniques with standard Monte Carlo and CMFD-

Accelerated Monte Carlo are presented in subsequent chapters. 

5.2 The Coarse Mesh Finite Difference Method 

The Coarse Mesh Finite Difference Method is a well-known iterative method 

proposed by K. Smith [18] for deterministically solving the Boltzmann transport 

equation.  Here we review the use of conventional CMFD to solve a one-group, planar 

geometry eigenvalue problem.  Scattering is assumed to be isotropic.  The one-group 

transport equation and boundary conditions are: 
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 (0, ) ( ), 0 1,L        (5.2) 

 ( , ) ( ), 1 0.RX         (5.3)    

5.2.1 The Neutron Balance Equation 

To derive the CMFD equations, we define the angular flux moments  

 
1

1
( ) ( ) ( , ) , 0,n nx P x d n    


   (5.4) 

where ( )nP   is the thn  Legendre polynomial.  We operate on Eq. (5.1) by  
1

1
d


   to 

obtain the following identity: 

 1 0 0

( )
( ) ( ) ( ) ( ),

f

a

eff

xd
x x x x

dx k


  


   (5.5) 

where ( ) ( ) ( )a t sx x x    .  Next, we introduce a “coarse” spatial grid 

1/2 3/2 1/2 1/20 k Kx x x x X         on the system.  The thk  spatial cell is defined 

on the interval 1/2 1/2 ,k kx x x    with width 1/2 1/2k k kh x x   .  Cross sections are 

permitted to vary within each coarse spatial cell.  We integrate Eq. (5.5) over 

1/2 1/2.k kx x x     If we define the cell-averaged scalar fluxes, flux-weighted cross 

sections, and cell-edge currents by 

 
1/2

1/2
0, 0

1
( ) ,

k

k

x

k
x

k

x dx
h

 




   (5.6) 
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1, 1/2 1 1/2( ),k kx    (5.10) 

then we obtain, for 1 ,k K  the following neutron balance equations: 

 
,

1, 1/2 1, 1/2 , 0, 0, .
f k k

k k a k k k k

eff

h
h

k


    


    (5.11) 

5.2.2 Transport-Corrected Fick’s Law 

The principle component of CMFD is the introduction of an exact relationship 

between the cell-edged currents and the cell-averaged scalar fluxes in the form of a 

“transport-corrected” Fick‟s Law: 

    1, 1/2 1/2 0, 1 0, 1/2 0, 1 0,
ˆ .k k k k k k kD D              (5.12) 

Keeping the notation consistent with Fick‟s Law and diffusion theory, 
1/2kD 

 is a 

dimensionless quantity interpreted as the diffusion coefficient of the “staggered cell” 

defined between the centers of cell k  and cell 1k  , divided by the width of the 

staggered cell: 
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 (5.13) 

The parameter 
1/2

ˆ
kD 

 is a dimensionless correction factor that accounts for the part 

of the transport solution that does not obey Fick‟s Law.  For diffusive problems (where 

Fick‟s Law holds), 
1/2

ˆ
kD 

 is small in magnitude.  Eq. (5.14) defines the correction factor: 

 
 1, 1/2 1/2 0, 1 0,

1/2
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ˆ .
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  
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

 



 (5.14) 

[We note that Eq. (5.13) makes the interpretation of 
1/2kD 

in the CMFD method 

consistent with the interpretation of the cell-averaged diffusion coefficient divided by cell 

width in Fick‟s Law.  However, it is not necessary to define 
1/2kD 

 this way.  The 

parameter 
1/2kD 

 is free; any definition of 
1/2kD 

 may be chosen.] 

Eq. (5.12) thus relates the cell-edge currents 
1, 1/2k 

 (1 1)k K    to the cell-

average scalar fluxes 
0,k  and 

0, 1k 
 in Eq. (5.12).  Something slightly different must be 

done to relate the boundary currents 
1,1/2  and 

1, 1/2K 
 to their neighboring cell-average 

scalar fluxes. 

5.2.3 Boundary Conditions 

To obtain a relationship between 
1,1/2  and 

0,1/2 , we operate on Eq. (5.2) by 

 
1

0
2 d  , then manipulate one side of the resulting equation to extend the integration 

limits: 
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We therefore relate 
1,1/2  and 

0,1  by 

 
1,1/2 1 0,12 (0) ,J B    (5.15) 

 where 
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To obtain a similar relationship between 
1, 1/2K 

 and 
0,K , we operate on Eq. (5.3) 

by  
0

1
2 d 


 , and perform a similar procedure: 
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We therefore relate  
1, 1/2K 

 and 
0,K  by  
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5.2.4 CMFD Equations 

Eqs. (5.12), (5.15), and (5.18) enable us to formally eliminate the 1  terms in Eq. 

(5.11) and obtain equations for the scalar fluxes 
0,k  in terms of the yet-unknown 

correction factors 
1/2

ˆ
kD 

 and nonlinear functionals 1B  and .KB   For 2 1,k K    we get 
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and similar equations are obtained for 1k   and K .  These equations form a linear 

system of equations, 

 ,yA =  (5.22) 

where A is a tri-diagonal matrix: 
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The elements of A  are:
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The vector y  has the following elements: 
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For fixed source problems, this matrix equation has a unique solution for 
0,k  because the 

source vector contains the known terms: 
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For criticality problems, the matrix equation is an eigenvalue problem because the source 

vector contains the unknown fission source: 
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f k
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eff

s
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
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
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The normalized eigenfunction 
0,k  and the eigenvalue 

effk  are solved for by iteration. 

We note that all of the preceding equations were derived without approximation 

from Eq. (5.1)-(5.3).  Thus, if the flux-weighted quantities 
, ,a k , ,f k  and 

1/2
ˆ

kD 
 and the 

boundary functionals 1B  and KB  are known exactly, then Eq. (5.22) exactly determines 

the coarse-mesh scalar fluxes 
0,k , and the eigenvalue .effk   However, 

, ,a k , ,f k  and 
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1/2
ˆ

kD 
, 

1B , and 
KB  are not known exactly: they are typically estimated by a single high-

order transport sweep of Eq. (5.1) on a fine grid.   The fine grid transport sweep generates 

the fine grid scalar flux and currents 
0, j  and 

1, 1/2j 
, which are used to collapse the 

parameters in Eqs. (5.6)-(5.10), (5.13)-(5.14), and 
1B  and 

KB .  We use the subscript j  to 

denote quantities defined on the fine grid.  The number of fine cells per coarse cell is 

denoted by the CMFD parameter “ p ”, so the thk  coarse cell consists of fine cells  

( 1) 1j p k    through j kp .   

Once 
, ,a k , ,f k 1/2

ˆ
kD 

, 
1/2kD 

, 1B , and KB  are estimated, Eq. (5.22) is solved 

efficiently for an “updated” coarse grid solution 
0, .k   The updated coarse grid solution 

0,k
 
can then be used to update the old fine grid solution 

0, j : 

 
0,

0, 0,

0,

( 1) 1
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j k j pk
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
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


  




 (5.29) 

After the updating takes place, the scattering source in the high-order transport method is 

updated with the new fine grid scalar flux estimate, and the process is repeated until the 

fine grid flux converges. 

CMFD is therefore an efficient way to solve detailed transport problems on a 

coarse mesh without incurring any extra homogenization or spatial truncation errors.  In 

the next section, we briefly discuss how Lee, et al., adapted the CMFD method to 

accelerate the Monte Carlo solution of transport problems. 

5.3 CMFD-Accelerated Monte Carlo (The HCMFD-I Method) 

M.J. Lee, et al., proposed CMFD-Accelerated Monte Carlo [2][17][4], a hybrid 

method that uses Monte Carlo to estimate the parameters in Eqs. (5.6)-(5.10), correction 

factors
1/2

ˆ ,kD 
 and boundary functionals 1B  and KB .  In this work, we refer to CMFD-

Accelerated Monte Carlo as “the HCMFD-I method”,  in order to emphasize the 

similarity between this method and the HCMFD-II, -III and -IV methods proposed later 

in this chapter. 
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In HCMFD-I, the cell-edge currents and fine grid scalar fluxes, as well as the flux-

weighted cross sections in Eqs. (5.7)-(5.9) are estimated in Monte Carlo using surface 

crossing tallies and path length estimators.  The correction factor 
1/2

ˆ
kD 

 in Eq. (5.14) is 

then computed from these stochastically estimated quantities.  We rename the correction 

factor in the HCMFD-I method ( )

1/2
ˆ I

kD 
 to distinguish it from the deterministically-

estimated correction factor 
1/2

ˆ
kD 

 in Eq. (5.14): 
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 (5.30) 

The HCMFD-I method can now be described: 

1. A standard Monte Carlo method is used to simulate the random histories of 

fission neutrons born from an estimated fission “bank”.  Some of these 

histories end in fission events, producing new fission sites.  When all random 

histories have been completed, a new fission “bank” is obtained for the next 

cycle. 

2. While the standard Monte Carlo process generates the fission neutron 

histories, it also (using tracklength and surface estimators) generates estimates 

of the integrals and currents in Eqs. (5.6)-(5.10).  After all the fission neutrons 

in a generation have been processed, the quantities 
, ,t k  

, ,a k  and 
,f k  [Eqs. 

(5.7)-(5.9)], 
1/2kD 

 [Eq. (5.13)] and 
1/2

ˆ
kD 

 [Eq.(5.14)] are calculated. 

3. Using the estimated quantities from step 2, the coarse-grid Eqs. (5.22) are 

solved for 
0,k  and .effk  

4. Feedback (optional): The Monte Carlo fission source “bank” obtained in step 

1 is modified to become consistent with the normalized fission source 

, 0,

, 0,

1

f k k k

K

f k k k

k

h

h

 

   






 obtained from the solution of the CMFD equations in step 3.  

This is done by randomly duplicating or deleting fission sites in each coarse 
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cell, making the spatial distribution of the fission bank and 
, 0,f k k   

consistent.) 

5. Return to step 1 and repeat for as many inactive and active cycles as are 

deemed necessary. 

The HCMFD-I method has several benefits.  First, Monte Carlo does not require 

homogenization procedures or incur truncation errors, so the stochastically-computed 

1/2
ˆ

kD   
have only statistical errors.  Additionally, the flux-weighted cross sections and 

correction factors are nonlinear functionals that can be computed more accurately than 

traditional linear quantities, as demonstrated in Chapter 4.  We emphasize that the fission 

source does not need to be well-converged in order to obtain accurate quantities for the 

CMFD calculations.  The elliptic CMFD equations propagate information quickly 

throughout the system, and the HCMFD-I method can accelerate Monte Carlo source 

convergence when feedback is used.  When feedback is not used, the solution of the low-

order CMFD equations is still more accurate than that of standard Monte Carlo.  These 

features are demonstrated in Chapters 6 and 7. 

5.4 Sensitivity Issues in the HCMFD-I Method 

Lee, et al., demonstrated that HCMFD-I with feedback can be used to accelerate 

Monte Carlo source convergence in difficult eigenvalue problems.  However, it was 

observed [4] that the method did not perform as well as the Functional Monte Carlo 

method [12][13][14].  Functional Monte Carlo is a different hybrid method proposed by 

Larsen and Yang that uses Eddington factor-type nonlinear functionals in quasi-diffusion-

like equations.   

We emphasize that Functional Monte Carlo, HCMFD-I, as well as the previously 

presented H-MC-S2 and H-MC-S2X methods all rely on Monte Carlo estimation of 

nonlinear functionals.  However, the different functional definitions, and different low-

order equations in each of these methods result in significant performance differences 

among the methods, as observed by Lee.  In this section, we attempt to understand why 

HCMFD-I does not perform as optimally as Functional Monte Carlo.  

Consider the following nonlinear functional whose numerator is the thn  angular 

moment of the angular flux: 
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0

nM
F

M




  (5.31) 

The operators  nM    have been introduced, where     
1/2 1

1/2

1

1
.

j g

j g

x E
n

x E
d dEdx 

 

 
         

The random variable F  is generated by estimating the true flux,   , with some 

statistical error in Monte Carlo: 

   .     (5.32) 

We assume that sufficient histories are simulated so that the statistical error is small 

compared to the true value: 
 

1



.  The estimated functional, 

   ,FF F    (5.33) 

can be written in terms of the estimated flux: 
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
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




 
  

 
 
  

 

  
       

  

 (5.34) 

Using  
 
 0

nM
F

M




  and neglecting terms order 2

  and higher, and the estimated 

functional can be written: 



 

129 

    
   

0

0

n

n

M M
F F F

M M

  

 

 
    

 

 (5.35) 

Therefore, the relative error in the functional is approximately: 

 
     

0

0

.
nF

n

M M

F M M

  

 
   (5.36) 

The relative error in the functional is therefore related to the relative error of the 0th  and 

thn  angular-spatial-energy moments of the flux.  We established that 
 

1



 when 

sufficient Monte Carlo histories are simulated.  However, the magnitude of 
 

n

n

M

M




 has a 

subtle dependence on n .   

For n  even,  nM   is strictly non-negative because the function n  and the 

angular flux are both non-negative.  The term 
nM   

can be positive or negative, but is 

small in magnitude because 
  oscillates in sign, causing partial cancellation when the 

function n

   is integrated over all angles.  Thus, 
 

1
n

n

M

M




, and 1F

F


 for n  

even. 

For n  odd,  nM   resembles a current.  It can be positive or negative, but its 

magnitude is close to zero for diffusive problems where the angular flux is mostly 

isotropic.  Again, 
nM   is small in magnitude, but the ratio 

 
n

n

M

M




 could be extremely 

large despite small 
 




 when n  is odd.  Therefore, 

 
F

F


 is not guaranteed to be small: 

the error in F  can be larger than F  itself when n  is odd. 

This shows that nonlinear functionals having odd angular moments of the flux can 

be sensitive to small statistical errors.  Small statistical errors in the odd angular moment 

of the flux term do not imply small errors in the nonlinear functional.  We see now that 
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HCMFD-I utilizes the odd angular moment term 
1, 1/2k 

, in the definition of the correction 

factor in Eq. (5.30).  In contrast, Functional Monte Carlo uses only even angular 

moments of the flux.   

There is, in fact, some flexibility in defining the correction factor in HCMFD-I.  In 

the following sections, we reformulate the correction factor with the goal of reducing its 

sensitivity to statistical fluctuations. 

5.5 The HCMFD-II Method 

We now consider the identity obtained by applying  
1

1
d 


  to Eq. (5.1): 

 
2 1( ) ( ) ( ) 0.t

d
x x x

dx
    (5.37) 

Here we have introduced the notation 

 
1

1
( ) ( , ) , 2.n

n x x d n   


    (5.38) 

Integrating over 1/2 3/2 ,k kx x x    we obtain 

 
3/2

1/2
2, 3/2 2, 1/2 1( ) ( ) 0,

k

k

x

k k t
x

x x dx



       (5.39) 

and define:

 

 

 

3/2

1/2

3/2

1/2

1

1, 1/2

( ) ( )
.

( )

k

k

k

k

x

t
x

k x

t
x

x x dx

x dx






















 (5.40) 

In Eq. (5.40), we have used the notation 1, 1/2k   to suggest that this quantity is an 

approximation to the cell-edged current 
1, 1/2k 

, where the current in cells k  and 1k   

have been weighted over the total cross sections in these cells. Following directly from 

Eqs. (5.39) and (5.40), we define: 
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 

3/2

1/2

2, 3/2 2, 1/2( )

1/2 1, 1/2 0.
( )

k

k

k kII

k k x

t
x

F
x dx






 

 

 
  


 (5.41) 

We now proceed to subtract ( )

1/2

II

kF 
 from the numerator of  ( )

1/2
ˆ I

kD 
.  We emphasize that the 

subtraction of ( )

1/2

II

kF 
from the numerator of ( )

1/2
ˆ I

kD 
does not change the value of ( )

1/2
ˆ I

kD 
 if 

the exact transport solution is used to evaluate ( )

1/2

II

kF 
, since ( )

1/2 0II

kF    in this case.  The 

rationale for this subtraction is that ( )

1/2

II

kF 
 will not be exactly zero when an approximate 

solution to Eq. (5.1) is used to evaluate ( )

1/2.
II

kF 
  For cells that are not optically thick, 

statistical errors in the terms 
1, 1/2k 

 and 1, 1/2k   will, to some degree, cancel.  

Experimentally, we have found that this subtraction reduces the variance in 
1/2

ˆ
kD 

, and 

hence in the solution of the CMFD equations [Eqs. (5.22)].  Performing this subtraction, 

we obtain the expression for the correction factor in the HCMFD-II method: 

 

   
3/2

1/2

1, 1/2 1, 1/2 1/2 0, 1 0, 2, 3/2 2, 1/2
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0, 1 0,
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t
xII
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D
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D

   

 





     





     






 (5.42) 

Again, the expressions for ( )

1/2
ˆ II

kD 
  and ( )

1/2
ˆ I

kD 
 are equivalent when evaluated with 

the exact transport solution, because of the identity in Eq. (5.41).  Therefore, either ( )

1/2
ˆ I

kD 
 

or ( )

1/2
ˆ II

kD 
 can be used in the CMFD method.  The key idea is that these expressions are 

not identical when evaluated with an approximate (e.g., Monte Carlo) transport solution.  

Therefore, when the same Monte Carlo estimate is inserted into Eqs. (5.30) and (5.42), 

different ( )

1/2
ˆ I

kD 
 and ( )

1/2
ˆ II

kD 
 will result. 

We now show that the dependence on the current 1( )x  in Eq. (5.42) is greatly 

reduced from that of Eq. (5.30), where the numerator is directly proportional to the 

current.  Taylor expanding 1( )x about the value 1/2kx  : 

 21
1 1 1/2 1/2 1 1/2 1/2 1 1/22
( ) ( ) ( ) ( ) ( ) ( )k k k k kx x x x x x x x       

         
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and substituting this expansion into the expression 1, 1/2 1, 1/2k k    yields: 
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 (5.43) 

The term 1, 1/2 1, 1/2k k    vanishes when the current is spatially constant, i.e. 

1 1/2( ) 0.kx 
    In this case, statistical errors in estimation 

1, 1/2k 
 and 1, 1/2k   exactly 

cancel.  The cell-edged 
2, 1/2k  terms in the numerator of Eq. (5.42) contribute some 

statistical error, but these terms are even angular moments of the angular flux, and they 

are computed with much less variance than the current.  The expression in Eq. (5.43) is  

( )kO h , i.e., proportional to the size of the coarse mesh.  Thus, the “current” terms 

become small when the “coarse” grid becomes fine. 

5.6 The HCMFD-III Method 

We now reformulate ( )

1/2
ˆ I

kD 
 in a different way.  We introduce the set of tent 

functions 1
2

( )
k

f x


 defined on the coarse grid: 
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1
1/2 1/2 1/2

1
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0 ,

k
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k k khk

x x x x x

f x x x x x x

otherwise



  

  

   


   



 (5.44) 

where the functions 1
2

( )f x  and 1
2

( )
K

f x


 are truncated outside the system.  These 

functions are depicted in Figure 5.1. 
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Figure 5.1 Tent function fk+1/2(x) and its neighbors. 

 

We again consider the balance equation in Eq. (5.37).  Multiplying Eq. (5.37) by 1
2

( ),
k

f x


 

integrating over 1/2 3/2 ,k kx x x    and then integrating by parts, we obtain: 

 
3/2 3/2 3/2

1 1 1
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Using 1/2 1/2 1/2 3/2( ) ( ) 0k k k kf x f x      and evaluating 1
2

( )
k

f x

 , the expression can be 

written: 
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k k tkx
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
 
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where  
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We now define 
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, (5.47) 

where we have used the notation 1, 1/2k   to suggest that this quantity is an approximation 

to the cell-edged current 
1, 1/2k 

.   The tent function in Eq. (5.47) gives higher weight to 

the current closest to the cell edge, so we expect the quantity 1, 1/2k   to be a more accurate 

approximation to 
1, 1/2k 

 than the quantity 1, 1/2k  .  From Eqs. (5.45) and (5.47), we 

define: 
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We now proceed to subtract ( )

1/2

III

kF 
 from the numerator of  ( )

1/2
ˆ I

kD 
.  As before, this 

procedure does not change the value of ( )

1/2
ˆ I

kD 
, provided the exact transport solution is 

used to evaluate ( )

1/2

III

kF 
, since ( )

1/2 0III

kF    in this case.  The resulting expression is the 

correction factor for the HCMFD-III method: 
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
 (5.49) 

We again show that the dependence on the current in Eq. (5.49) vanishes when the 

current is constant.  Introducing the Taylor expansion of 1( )x
 
into the expression 

1, 1/2 1, 1/2k k     yields: 
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(5.50) 

The expression in Eq. (5.50) is equal to zero when the current is spatially constant, i.e., 

when 31
0 12 2

( , ) ( ) ( )x x x     , where 1 1/2( ) 0.kx 
    Again, the expression is ( )kO h , 

and these current terms become smaller as the coarse mesh is refined. 

5.7 The HCMFD-IV Method 

The HCMFD-II and HCMFD-III methods utilize the first and second angular 

moments of the transport equation to derive identities that lower the statistical error in the 

( )

1/2
ˆ I

kD 
 functionals.  In particular, these identities eliminate dependence on the current 

term when the angular flux is a linear function of angle, and the current is constant.  In 

the HCMFD-IV method, we attempt to reduce the statistical error even further by using 

additional transport identities to eliminate dependence on the current term when the 

angular flux is any linear function of angle, i.e., 31
0 12 2

( , ) ( ) ( ).x x x      

We multiply the transport equation [Eq. (5.1)] by the second order Legendre 

polynomial,  21
2 2
( ) 3 1P     and use the recursion relation 3 2

2 3 15 5
( ) ( ) ( )P P P     : 
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Now operating by  
1

1
d


 , we obtain 

 3 1
2

3 2
( ) ( ) ( ) ( ) 0

5 5
t

d d
x x x x

dx dx

 
   , 
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or, rearranging, 

 31
2

3 5
( ) ( ) ( ) ( ).

2 2
t

dd
x x x x

dx dx


      

Now we change the dummy variable x  to x  and operate by  
1/2k

x

x
dx



   to obtain the 

expression 
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Eq. (5.51) is satisfied by the exact solution of the transport equation.  We introduce Eq. 

(5.51)  into the expression 1, 1/2 1, 1/2k k    from the numerator of the ( )

1/2
ˆ III

kD 
 functional: 
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The integral 
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     in Eq. (5.52) can be integrated 

by parts: 
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where 1/2( ) ( ) ( ),k th x f x x
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Unfortunately, the double integral 
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to simplify unless each coarse cell is assumed to be homogeneous.  This is not true in 

general, but if we make this assumption, the expression becomes: 
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 (5.53) 

where 
,t k  is the volume-weighted (not flux-averaged) total cross section in cell k : 
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The integrals in Eq. (5.53) can now be expressed analytically.   
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For 1/2 1/2k kx x x   : 
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For 1/2 3/2k kx x x   : 
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 (5.55) 

The function 1/2 ( )kg x  is graphically represented in the following figure: 
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Figure 5.2 Plot of gk+1/2(x). 

 

We have thus used the additional transport identity in Eq. (5.51) to express the term 
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 functional as: 
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Introducing the notation: 
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the previous expression can be written: 
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The correction functional for the HCMFD-IV method can thus be written only in the case 

of homogeneous coarse cells as: 
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The dependence on the current has been completely eliminated in Eq. (5.61), using 

transport identities to express the current in terms of higher order moments of the angular 

flux.  However, we have now introduced another odd order moment of the angular flux, 

 
1 1

31
3 3 21 1
( ) ( ) ( , ) 5 3 ( , ) .x P x d x d         

 
      We recall that that odd order 

moments generally have more statistical error than even order moments.  In addition, Eq. 

(5.61) can only be derived when the coarse cells are homogeneous, which is not true in 

general.  This is a limitation of the HCMFD-IV method because it requires the CMFD 

calculations be performed on a very fine grid in highly heterogeneous problems. 

5.8 Summary 

In this chapter, we have proposed three hybrid Monte Carlo-CMFD methods 

(HCMFD-II, -III and -IV) that extend CMFD-Accelerated Monte Carlo (HCMFD-I) by 

using extra identities from the transport equation to reformulate the correction functionals 

in the CMFD equations.  The reformulated functionals should exhibit cancellation of 

errors in the current terms.  Therefore, the functionals should be less sensitive to 

statistical errors, and it should be possible to calculate ( )

1/2
ˆ II

kD 
, ( )

1/2
ˆ III

kD 
 and ( )

1/2
ˆ IV

kD 
 more 
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accurately than ( )

1/2
ˆ I

kD 
 with a fixed number of Monte Carlo histories, leading to time 

savings in the Monte Carlo calculation step. 

We compare these four methods in Chapter 6 for a simple fixed source problem in 

order to rank their performance.  The remainder of Chapter 6 consists of numerical 

results for criticality calculations (without CMFD feedback).  In Chapter 7, we present 

numerical results for criticality calculations using CMFD feedback. 
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Chapter 6 

Hybrid Monte Carlo – CMFD Numerical Results 

 

6.1 Fixed Source Problem #1 

The HCMFD-I, -II, -III, and -IV methods were tested on a monoenergetic fixed 

source problem before performing eigenvalue calculations.  An isotropic source was 

uniformly distributed in a slab with vacuum boundaries and the following material 

parameters: 

 

Location [cm] t  [cm
-1

] s  [cm
-1

] Q  [cm
-1

] 

0 20x   1.0 0.8 1.0 

Table 6.1 Material specifications for Fixed Source Problem #1. 

 

Several independent calculations were performed with 1p   (the number of fine cells per 

CMFD coarse cell) to estimate the variance of the solutions of each method, and how the 

variance depends on the number of histories. 

   

Number of 

Independent 

Simulations (K) 

Number of Histories 

per Simulation (N) 
Fine Grid [cm] 

25 N  0.5 

Table 6.2 Monte Carlo numerical properties for Fixed Source Problem #1. 

 

All methods yielded accurate solutions for this test problem, but there were 

differences in the variances of the solutions.  Figure 6.1 plots the variance for each 

method as a function of number of histories in the Monte Carlo simulation. 
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Figure 6.1 Variance of HCMFD methods and standard Monte Carlo for Fixed Source Problem #1. 

 

The variance of each method follows a linear trend, demonstrating the applicability of the 

Central Limit Theorem.  The reduction in variance in the HCMFD-I, -II, -III and –IV 

solutions implies a reduction in the number of histories (and reduction in computational 

expense) needed to achieve a given error.  The ratio of the sum of relative variance of the 

method m to the sum of relative variance of the Monte Carlo solution: 

 ( ) sum of relative variance of method m

sum of relative variance of MC

mf   (6.1) 

indicates the approximate fraction of computing time required by method m  to achieve a 

given error, compared to standard Monte Carlo.  This fraction is approximately 

independent of the number of histories.  The values fractional computing times for this 

test problem (with N=100,000 histories) are reported in Table 6.3. 
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Method ( )mf  

HCMFD-I 0.51 

HCMFD-II 0.24 

HCMFD-III 0.21 

HCMFD-IV 0.18 

Table 6.3 Fractional computing time required for the HCMFD methods to achieve the same error as 

a standard Monte Carlo calculation. 

 

If a standard Monte Carlo calculation is performed to achieve a given error, the HCMFD-

I, -II, -III and –IV methods achieve the same error in 51%, 24%, 21% and 18% of the 

computing time required by standard Monte Carlo.  [We note that the H-MC-S2X 

fractional computing time for this problem is 19%.  Therefore, HCMFD methods –II, -III, 

and –IV appear to have similar efficiency to H-MC-S2X on this specific test problem, 

whereas HCMFD-I appears to be much more sensitive.] 

These numerical results establish a preliminary ranking of the new methods: 

HCMFD-IV, -III, -II and then -I performed better than standard Monte Carlo, in that 

order.   However, since HCMFD-IV is more complex to implement, limited to 

homogeneous coarse cells, and fared only slightly better than HCMFD-III, we did not 

pursue further testing of HCMFD-IV in eigenvalue calculations. 

6.2 Monte Carlo Criticality Calculations 

Before presenting further numerical results, we briefly review the simulation of 

criticality problems in Monte Carlo.  First, an initial spatial distribution of the fission 

source is guessed (the source is often initially assumed to be spatially flat).  Then, N  

fission sites are stored in a “source bank” according to this distribution, representing N  

source particles.  Each source particle is transported to generate a history that terminates 

in leakage, capture, or fission.  When a fission event occurs, the spatial location of the 

event is stored (multiple times, according to the average number of neutrons released per 

fission event,  ) in the “fission bank”.  When all particles in the original source bank 

have been transported, the “cycle” ends.   
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At the end of a cycle, the eigenfunction (normalized flux distribution) and 

eigenvalue (number of particles in the fission bank divided by number of particles in the 

source bank) are estimated.  Then, sites in the fission bank are randomly duplicated or 

killed to make the resulting number of sites in the bank approximately equal to .N   This 

adjusted fission bank is then used as the source bank for the next cycle.  This process 

repeats for several “inactive” cycles in order to converge the fission source.  The 

Shannon entropy [1], 

 
1

ln
K

src k k

k

H P P


   (6.2) 

where 
,

,

1

f k k k

k K

f k k k

k

h
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h

 

   




 


 the fraction of fission source neutrons in cell ,k  is often used 

to determine when the source has converged.  The Shannon entropy begins at a maximum 

or minimum value at the beginning of the calculation, depending on the guessed source 

distribution.  As the fission source converges, the Shannon entropy rises or falls, and 

eventually approaches an asymptotic limit.  The fission source is assumed to be 

converged when the cycle-wise Shannon entropy is asymptotic.  Once the fission source 

has converged, the “active” cycles begin.  The eigenfunction and eigenvalue are averaged 

over only active cycles to produce the reported mean eigenfunction and eigenvalue.  

A criticality calculation therefore consists of sequential “fixed source” calculations 

(referred to as cycles or generations), where the source for cycle i  is the fission source 

from cycle 1i  .  Because of inter-cycle correlation, the fission source converges very 

slowly in problems with high dominance ratios.  For large problems, i.e., light water 

reactor cores, Monte Carlo can be prohibitively expensive due to slow source 

convergence.  For these problems, the fission source does not converge at all, unless the 

number of histories per cycle is high enough to overcome the high dominance ratio.  

Unfortunately, the required number of histories per cycle can be excessively high. 
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6.3 Hybrid Monte-Carlo CMFD Without Feedback 

In the following sections, we consider a non-obtrusive implementation of the 

hybrid Monte Carlo-CMFD methods for criticality problems.  We perform a standard 

Monte Carlo criticality calculation, but during each Monte Carlo cycle, the nonlinear 

functionals required in the CMFD equations are estimated.  At the end of each cycle, the 

Monte Carlo eigenfunction and eigenvalue are estimated, and the functionals are used to 

obtain separate CMFD estimates of the eigenfunction and eigenvalue.  The CMFD 

estimates do not affect the Monte Carlo simulation in any way.  We refer to this 

technique as “Hybrid Monte Carlo-CMFD without Feedback”.  The purpose of this 

exercise is to demonstrate that the HCMFD methods implemented in this “non-obtrusive” 

way are more efficient than standard Monte Carlo.   We compare the Monte Carlo 

eigenfunction and eigenvalue with the HCMFD-I, HCMFD-II and HCMFD-III 

eigenfunctions and eigenvalues, and we show that the HCMFD values are more accurate 

than the Monte Carlo values.  We also show that the HCMFD methods have better source 

convergence and variance properties than standard Monte Carlo. 

6.4 Criticality Problems #1A-#1D: Homogeneous Slabs of Varying Width 

6.4.1 Problem Description 

Problems #1A-#1D are homogeneous fissile slabs of width X , with vacuum 

boundary conditions and isotropic scattering.  The material specifications are listed in 

Table 6.4.  Various slab widths were tested ( 10, 40, 70, 100 cm)X   and assigned 

problem numbers #1A, #1B, #1C, #1D, respectively. 

 

Location [cm] t  [cm
-1

] s  [cm
-1

] f  [cm
-1

]   

0 x X   1.0 0.5 0.2 2.4 

Table 6.4 Material specifications of Criticality Problem #1A-#1D. 

 

The first two eigenvalues of each slab were estimated according to slab geometry 

diffusion theory [1], 
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where 
1

3 t

D 


 is the diffusion coefficient, and * 1
2(0.7104)

t

L X 


 is the effective 

slab width.  The approximate dominance ratio of each problem is presented in the 

following table. 

 

Problem 
Slab Width 

[cm] 
1k  2k  

2

1

k
DR

k
  

#1A 10 0.913899 0.798816 0.874075 

#1B 40 0.956332 0.945496 0.988668 

#1C 70 0.958763 0.955072 0.996150 

#1D 100 0.959386 0.957550 0.998086 

Table 6.5 Dominance ratio as a function of slab width. 

 

As the slab width increases, the dominance ratio approaches unity, and more cycles 

are required in Monte Carlo to converge the primary eigenfunction due to noise from 

slowly-converging higher-order eigenfunctions. We emphasize that problems with large 

dominance ratios are computationally expensive in Monte Carlo because they require 

numerous cycles to converge the fission source due to high inter-cycle correlation.  For 

these problems, the source might not converge unless a very large number of histories per 

cycle is used. 

6.4.2 Numerical Parameters 

The Monte Carlo numerical specifications for Problems #1A-#1D are listed in 

Table 6.6. 
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Problem 
 X

[cm] 

Number of 

Histories/Cycle 

(N) 

Inactive 

Cycles 

(NI) 

Active 

Cycles 

(NA) 

Fine 

Grid 

[cm] 

CMFD 

Parameter 

p  

#1A 10 100,000 100 200 0.5 1 

#1B 40 100,000 100 200 0.5 1,2,4 

#1C 70 100,000 200 200 0.5 1 

#1D 100 100,000 400 200 0.5 1 

Table 6.6 Numerical parameters of Problem #1 for different slab widths. 

 

In addition, benchmark solutions for each problem were generated using S16 discrete 

ordinates calculation with uniform 0.01 cm grids. 

6.4.3 Numerical Results 

We begin with the numerical results for Problem #1B ( 40 cmX  and 1p  ).  The 

Shannon entropy behavior of standard Monte Carlo and individual hybrid CMFD 

methods is presented in Figure 6.2.  Approximately 100 inactive cycles are required for 

the Monte Carlo entropy to converge.  However, even after 100 cycles, the Monte Carlo 

entropy fluctuates around the asymptote, indicating that the source has difficulty staying 

converged from cycle to cycle.   

In contrast, the Shannon entropies of the hybrid CMFD methods converge 

immediately during the first few cycles.  Therefore, the CMFD eigenfunctions converge 

immediately, despite the fact that their input parameters come from a poorly converged 

Monte Carlo solution.  Lee, et al., previously demonstrated the success of HCMFD-I for 

accelerating Monte Carlo source convergence [3][4][5], and these results confirm that 

work.   
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Figure 6.2 Shannon entropy behavior of 40 cm slab (Problem #1B, p=1). 

 

The Shannon entropies of HCMFD-I, -II, and -III all converge immediately for this 

Problem #1B, but the degree of fluctuation about the asymptote is dramatically reduced 

in HCMFD-II and HCMFD-III.  This is beneficial because it indicates that the variance 

of the eigenfunction is greatly reduced.  Fewer active cycles are necessary to accurately 

estimate both the eigenvalue and eigenfunction in HCMFD-II and -III.  The cycle-wise 

eigenvalues in Figure 6.3 exhibit similar behavior. 

 

 

Figure 6.3 Eigenvalue behavior of 40 cm slab (Problem #1B, p=1). 
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Figure 6.4 Eigenvalue behavior of 40 cm slab, magnified (Problem #1B, p=1). 

 

Figure 6.4 is a blowup of the cycle-wise eigenvalue estimates.  The cycle-wise 

HCMFD-II and -III
 effk distributions have less variance than that of HCMFD-I, and 

standard Monte Carlo.  The differences in the HCMFD-II and HCMFD-III eigenvalue 

distributions are negligible for this test problem, where the coarse cells are optically thin 

(0.5 mfp).  However, as shown in Table 6.7, HCMFD-III is slightly more accurate than 

HCMFD-II as the coarse cell width increases.  This dependence on coarse cell size is 

discussed in detail in  Section 6.4.4. 

We now examine the mean eigenfunction (averaged over active cycles) plotted in 

Figure 6.5(a).  The benchmark solution is labeled “SN”.   
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Figure 6.5 Mean eigenfunction and apparent RSD of 40 cm slab (Problem #1B, p=1). 

 

The eigenfunctions of the hybrid CMFD methods are well-converged and have a smooth, 

symmetrical cosine shape.  However, the standard Monte Carlo eigenfunction is slightly 
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Monte Carlo source wobbles during active cycles. 

Figure 6.5(b) plots the apparent relative standard deviation (RSD) of the various 

eigenfunctions.  The apparent standard deviation is the observed measure of how much 

the eigenfunction wobbles, or varies, over active cycles.  However, inter-cycle correlation 

often causes the apparent standard deviation to underestimate the true standard deviation.  
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eigenfunction, underestimation of the true standard deviation leads the user to believe 

that the eigenfunction is more accurate than it is.  We discuss this topic further in Section 

6.4.8.  For now, we emphasize that the apparent standard deviation should not be trusted, 

especially for problems with large dominance ratios. 

6.4.4 Dependence on Coarse Mesh Size 

We now increase p  (the number of fine cells per coarse cell in CMFD) to assess 

the effect on the hybrid method results.  We expect all hybrid CMFD solutions to degrade 

slightly compared to standard Monte Carlo, since less “work” is being done as the mesh 

becomes coarser.  However, we anticipate that HCMFD-II and -III will be more sensitive 

to the mesh size than HCMFD-I.   

We recall that HCMFD-II and -III attempt to cancel statistical error in the cell-

edged current term 
1, 1/2k 

 of ( )

1/2
ˆ I

kD 
 by making use of the following cell-averaged 

currents, respectively: 

 

3/2

1/2
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 (6.5) 

The statistical errors in Eq. (6.4) and (6.5) are both correlated to the statistical error in 

1, 1/2k 
.  As the coarse cell width becomes larger, this correlation decreases, and less 

cancellation of statistical error occurs.  Since HCMFD-I does not make use of the terms 

in Eqs. (6.4) and (6.5), it should be less sensitive to the size of the coarse mesh than 

HCMFD-II and HCMFD-III. 

Comparing Figures 6.2, 6.6, and 6.7, we can see the effects of increasing p  (size 

of the coarse mesh) on source convergence.  The hybrid CMFD methods converge the 
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fission source within a few cycles for all values of p , but the fission source has more 

variance for larger p .  Similar behavior occurs for the cycle-wise 
effk . 

 

 

Figure 6.6 Shannon entropy behavior of 40 cm slab (Problem #1B, p=2). 

 

 

Figure 6.7 Shannon entropy behavior of 40 cm slab (Problem #1B, p=4). 
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for all hybrid methods.  However, as p  increases, the apparent RSD increases more for 

HCMFD-II and -III than for HCMFD-I.  Again, this is expected because of the cell-

averaged approximation to the current used in HCMFD-II and -III. 

 

 

Figure 6.8 Mean eigenfunction and apparent RSD for 40 cm slab (Problem #1B, p=2). 
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Figure 6.9 Mean eigenfunction and apparent RSD for 40 cm slab (Problem #1B, p=4). 

 

Table 6.7 reports the mean eigenvalues and apparent standard deviations for the 

benchmark, standard Monte Carlo, and HCMFD-I,-II, and -III methods.   

 

 

 

 

 

 

 

0 5 10 15 20 25 30 35 40
0

0.01

0.02

0.03

0.04

x (cm)

E
ig

en
fu

n
ct

io
n

(a)

 

 

MC

HCMFD-I

HCMFD-II

HCMFD-III

SN

0 5 10 15 20 25 30 35 40
0

0.5

1

1.5

x (cm)

E
ig

en
fu

n
ct

io
n

 A
p

p
ar

en
t 

R
S

D
 (

%
)

(b)



 

156 

Method Eigenvalue Apparent S.D. 

S16 (Benchmark) 0.956337 - 

MC 0.955782 0.000256 

p=1 

0.5   

HCMFD-I 0.956355 0.000015 

HCMFD-II 0.956338 0.000004 

HCMFD-III 0.956338 0.000004 

p=2 

1   

HCMFD-I 0.956356 0.000015 

HCMFD-II 0.956339 0.000006 

HCMFD-III 0.956338 0.000006 

p=4 

2   

HCMFD-I 0.956360 0.000019 

HCMFD-II 0.956349 0.000013 

HCMFD-III 0.956347 0.000013 

Table 6.7 Mean eigenvalues for Criticality Problem #1B.  

 

As p  and the optical width of the coarse cell k

t

h
 


 increase, the apparent standard 

deviations of ( )II

effk and ( )III

effk  increase more quickly than the standard deviation of ( ).I

effk

Therefore, we must be conscious of the mesh size when using HCMFD-II and HCMFD-

III.  There is a problem-dependent maximum mesh size at which these methods cease to 

be advantageous compared to HCMFD-I. 

6.4.5 Dependence on Dominance Ratio 

We now examine the effect of the dominance ratio on the performances of the 

hybrid methods.  We compare results for the slabs in Problems #1A, #1B , #1C, and #1D  

( 1p  in all cases).  The optical width of the coarse cells is 0.5   mean free paths 

(mfp).  As the slab thickness increases, the dominance ratio increases and causes 

increasingly slow Monte Carlo fission source convergence.  In the following figures, we 

examine the entropy behavior of the different methods.  
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Figure 6.10 Entropy behavior for 10 cm slab (DR=0.874). 

 

 

Figure 6.11. Entropy behavior for 40 cm slab (DR=0.989). 
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Figure 6.12 Entropy behavior for 70 cm slab (DR=0.996). 

 

 

Figure 6.13 Entropy behavior for 100 cm slab (DR=0.998). 

 

Figures 6.10-6.13 are presented with the same entropy scaling.  These figures show 
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This indicates that HCMFD-I is more sensitive to the dominance ratio than HCMFD-II 

and -III.  We now plot the  mean eigenfunctions for the different slab thicknesses.   

 

 

Figure 6.14 Mean eigenfunction for 10 cm slab (DR=0.874). 

 

 

Figure 6.15 Mean eigenfunction for 40 cm slab (DR=0.989). 
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Figure 6.16 Mean eigenfunction for 70 cm slab (DR=0.996). 

 

 

Figure 6.17 Mean eigenfunction for 100 cm slab (DR=0.998). 
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In the following table, we compare the benchmark SN eigenvalues with the standard 

Monte Carlo, HCMFD-I, -II, and -III eigenvalues and apparent standard deviation. 

 

Problem Method Eigenvalue Apparent S.D. 

#1A (X=10) 

S16 0.914483 - 

MC 0.914182 0.000264 

HCMFD-I 0.914498 0.000046 

HCMFD-II 0.914499 0.000017 

HCMFD-III 0.914501 0.000016 

#1B (X=40) 

S16 0.956337 - 

MC 0.955782 0.000256 

HCMFD-I 0.956355 0.000015 

HCMFD-II 0.956338 0.000004 

HCMFD-III 0.956338 0.000004 

#1C (X=70) 

S16 0.958764 - 

MC 0.958328 0.000290 

HCMFD-I 0.958772 0.000008 

HCMFD-II 0.958763 0.000002 

HCMFD-III 0.958763 0.000002 

#1D (X=100) 

S16 0.959386 - 

MC 0.959164 0.000276 

HCMFD-I 0.959393 0.000006 

HCMFD-II 0.959386 0.000001 

HCMFD-III 0.059386 0.000001 

Table 6.8 Eigenvalues and apparent standard deviations for Problems #1A-#1D. 

 

The number of histories per cycle (N) and the number of active cycles (NA) were 

constant for each test problem.  The apparent standard deviation of the standard Monte 

Carlo eigenvalues is approximately the same for each test problem.  However, the 

apparent standard deviation cannot be trusted because it increasingly underestimates the 

true standard deviation as the dominance ratio increases.  This is discussed in Section 
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6.4.8.  The HCMFD-I, -II, and -III eigenvalues are more accurate than the standard 

Monte Carlo eigenvalues: their estimates are generally well within one standard deviation 

of the benchmark.  The HCMFD-II and –III eigenvalues are more accurate than the 

HCMFD-I eigenvalues for all problems except #1A, which has the lowest dominance 

ratio.  This could be due to the fact that the mesh size in Problem #1A is large compared 

to the overall problem, and the current gradient over adjacent cells is larger than in 

Problems #1B-#1D.  As previously discussed, this causes larger statistical variation in the 

HCMFD-II and -III solutions. 

6.4.6 Performance for Small Number of Histories per Cycle 

When the number of histories per cycle is small, the Monte Carlo eigenfunction 

may be inaccurate even when numerous active cycles are performed.  This effect is most 

pronounced in problems with high dominance ratios, and is due to inter-cycle source 

correlation and slow source convergence.  We examine Problem #1D and show that the 

standard Monte Carlo eigenfunction is inaccurate unless a sufficient number of histories 

per cycle are used.  Then, we show that the HCMFD eigenfunctions are more accurate 

than the Monte Carlo eigenfunction when a small number of histories is used. 

Problem #1D was simulated using 500 active cycles and different numbers of 

histories: N=50,000, 250,000 and 1 million histories per cycle.  The standard Monte 

Carlo results are shown in Figure 6.18.  The error in the Monte Carlo eigenfunction is 

apparent even for the N=1,000,000 calculation, but it is worst for N=50,000.  Figure 6.19 

plots the HCMFD-I, -II and –III eigenfunctions for the N=50,000 Monte Carlo 

calculation. 
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Figure 6.18 Standard Monte Carlo eigenfunctions for various number of histories per cycle. 

 

 

Figure 6.19 HCMFD eigenfunctions for small number of histories per cycle. 
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standard Monte Carlo eigenvalue for problems.  This follows logically from the reduction 

in eigenfunction error shown here, and the results in the previous sections.] 

It is important to note that when the number of particles per cycle is too small, the 

correction factors ( )

1/2
ˆ I III

kD 


 and boundary functionals 

1B  and 
KB  cannot be estimated, and 

the CMFD calculations cannot be performed.  For this problem, the CMFD calculations 

could not be performed when 25,000N   histories per cycle. 

6.4.7 Performance for Small Number of Active Cycles 

In high dominance ratio criticality problems, the Monte Carlo estimates of the 

eigenfunction and eigenvalue must be averaged over several hundred active cycles.  The 

Monte Carlo eigenfunction and eigenvalue estimates from a given single cycle are not 

very accurate, but averaging over many cycles reduces statistical errors and produces a 

good estimate of the true values.  We now show that the HCMFD methods require fewer 

active cycles than standard Monte Carlo to obtain accurate estimates of the eigenfunction 

and eigenvalue for a high dominance ratio problem.  

Problem #1D (the 100 cm slab) was simulated with 100,000 histories per cycle 

with 1 active cycle, and with 10 active cycles.  The mean HCMFD and Monte Carlo 

eigenfunctions are compared in Figure 6.20.  The mean eigenvalues are compared to the 

benchmark SN eigenvalue, 
effk  0.959386 in Table 6.9.   The error is listed in per cent 

mille 5(1 pcm 10 ).
k

k

 
  
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Figure 6.20 Eigenfunctions averaged over one and ten active cycles. 
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Method 

Eigenvalue  

(Error compared to SN [pcm]) 

NA=1 NA=10 NA=200 

MC 
0.961257 

(195) 

0.959109 

(-29) 

0.959164 

(-23 ) 

HCMFD-I 
0.959367 

(2) 

0.959393 

(1) 

0.959393 

(1) 

HCMFD-II 
0.959396 

(1) 

0.959392 

(1) 

0.959386 

(0) 

HCMFD-III 
0.959397 

(1) 

0.959392 

(1) 

0.959386 

(0) 

Table 6.9 Eigenvalue averaged over one and ten active cycles. 

 

The results for a single cycle are remarkable: the HCMFD eigenfunctions and 

eigenvalues are very close to the benchmark solution.  The HCMFD-II and -III 

eigenfunctions are significantly more accurate than the HCMFD-I eigenfunction.  The 

three hybrid methods are all much more accurate than the standard Monte Carlo 

eigenfunctions and eigenvalues. 

These results show that the individual cycle estimates of the HCMFD eigenfunction 

and eigenvalue are very accurate.  Therefore, very few active cycles are necessary to 

obtain accurate HCMFD solutions for high dominance ratio problems.  In contrast, many 

active cycles are necessary to obtain accurate solutions in standard Monte Carlo. 

6.4.8 Real vs. Apparent Variance 

We have stated that the apparent standard deviations (square root of the apparent 

variance) plotted in the previous figures should not be trusted yet.  To explain the 

difference between “real” and “apparent” variance, we consider an individual standard 

Monte Carlo criticality calculation with NA  active cycles.  This simulation generates an 

estimate of the mean eigenfunction in a specific spatial cell, ˆ
NA , where the mean has 

been obtained by averaging individual cycle estimates, n , over active cycles.  The 
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apparent variance of the mean eigenfunction,  2 ˆ
NA  , is computed with the sample 

variance of the mean formula from Chapter 1: 

  
2

2 2

1 1

1 1 1ˆ .
1

NA NA

NA n n

n nNA NA NA
   

 

  
   

    
   (6.6) 

The value  2 ˆ
NA   in Eq. (6.6) reflects the uncertainty in the mean ˆ

NA  due to 

fluctuations over the active cycles in an individual simulation. 

If we were to repeat this simulation K  independent times, we would obtain K  

estimates: ,
ˆ
NA k  and  2

,
ˆ

k NA k  .  The “average apparent variance” of the ˆ
NA  samples is 

estimated by averaging the apparent variances: 

  2 2

,

1

1 ˆ .
K

A k NA k

kK
  



   (6.7) 

The “real variance” of the ˆ
NA  samples is estimated using the sample pdf variance 

formula: 

  
2

2
2

, ,

1 1

1 1ˆ ˆ .
1

K K

R NA k NA k

k k

K

K K K
  

 

  
   

    
   (6.8) 

The real and apparent variances of the ˆ
NA  samples in Eqs. (6.7) and (6.8) should be 

identical when there is no correlation of the Monte Carlo eigenfunction between cycles.  

However, correlation does exist between cycles: the fission source from the previous 

cycle determines the fission source for the next cycle.  In high dominance ratio problems, 

the correlation is very high because the eigenfunction (and therefore the fission source) 

changes very little within a cycle.  

Due to inter-cycle correlation, the apparent standard deviation underestimates the 

real standard deviation in standard Monte Carlo.  In this section, we show that the 
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apparent variance of the CMFD eigenfunctions is a much better estimate of the real 

variance of these eigenfunctions than in standard Monte Carlo. 

To demonstrate this, Problem #1C was simulated with 100,000 histories per cycle 

and 25 active cycles.  The simulation was performed K=25 independent times, generating 

25 independent estimates of the mean eigenfunction and apparent variance.  The average 

apparent variance and real variance of the mean eigenfunction were calculated from 

Eqs. (6.7) and (6.8).  The apparent and real relative standard deviations (RSD) are plotted 

in Figure 6.21. 

 

 

Figure 6.21 Real and apparent standard deviations of the mean eigenfunction. 
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We emphasize two important things about Figure 6.21.  First, the real RSD of the 

HCMFD-II and -III eigenfunctions ranges between 1-2% for this test problem, while the 

real RSD of the HCMFD-I eigenfunction is about 2-4%, and the real RSD of the standard 

Monte Carlo eigenfunction is 4-15%.  Therefore, use of the HCMFD-II and –III methods 

results in a significant reduction of real error.  The HCMFD-II and –III methods achieve 

a given real error after approximately 1% of the standard Monte Carlo computing time.  

Therefore, the HCMFD-II and –III methods are 100 times faster than a standard Monte 

Carlo calculation.  This computational savings refers to the number of active cycles 

required (or the number of histories per cycle).  Additionally,  fewer inactive cycles are 

required for convergence, which further increases the computational savings.  

The second important point is that the real RSD of the HCMFD eigenfunctions is 

approximately equal to the apparent RSD.  However, the real RSD of standard Monte 

Carlo is a factor of 4 to 9 greater than the apparent RSD.  This can be seen by plotting the 

ratio of real to apparent standard deviation: 

 
2

/ 2
.R R

R A

A A

r
 

 
   (6.9) 

 

Figure 6.22 Ratio of real to apparent standard deviation. 
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Figure 6.22 shows that for the specified problem, the real error in standard Monte 

Carlo is 4 to 9 times greater than the apparent error.  However, the real error in the 

HCMFD methods is approximately equal to the apparent error.  Therefore, the apparent 

standard deviation of the HCMFD methods is a reliable estimator of the true standard 

deviation.  However, the Monte Carlo apparent standard deviation underestimates the real 

standard deviation by a large factor and should not be trusted.  These results confirm the  

relationship between real and apparent variance of the HCMFD-I method (shown by Lee, 

et al. [5]), and show that the same relationship holds for the HCMFD-II and -III methods. 

6.5 Criticality Problem #2: Two-Fissile Region Slab 

6.5.1 Problem Description 

Criticality Problem #2 consists of a heterogeneous, isotropically-scattering 27 cm 

slab with vacuum boundaries.  Two 5 cm fissile regions are separated by a 7 cm reflector 

and bordered by 5 cm reflectors.  The material specifications are listed in Table 6.10.   

 

Region Location [cm] t  [cm
-1

] s  [cm
-1

] f  [cm
-1

]   

1 0 5x   1.0 0.856 0.0 - 

2 5 10x   1.0 0.8 0.1 2.4 

3 10 17x   1.0 0.856 0.0 - 

4 17 22x   1.0 0.8 0.1005 2.4 

5 22 27x   1.0 0.856 0.0 - 

Table 6.10 Material specifications of Problem #2. 

 

Because the fissile regions in this problem are separated, the eigenfunction is extremely 

sensitive to any small changes in any of the system parameters.  (The eigenvalue is not as 

sensitive.)  The slight asymmetry (0.5%) in the fission cross sections of this problem 

makes source convergence very difficult in both Monte Carlo and deterministic methods.  

The challenges in Problem #2 are characteristic of criticality problems for subcritical 

spent fuel storage facilities. 
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6.5.2 Numerical Parameters 

The Monte Carlo specifications for Problem #2 are listed in Table 6.11. 

 

Number of 

Histories/Cycle 

(N) 

Inactive 

Cycles 

(NI) 

Active 

Cycles 

(NA) 

Fine 

Grid 

[cm] 

CMFD 

Parameter 

p  

200,000 500 500 0.5 1 

Table 6.11 Numerical parameters of Problem #2. 

 

A benchmark S32 solution was performed with a uniform 0.001 cm grid. 

6.5.3 Numerical Results 

The cycle-wise entropy behavior is plotted in Figure 6.23, and the cycle-wise 

eigenvalues for Problem #2 are plotted in Figure 6.24.  

 

 

Figure 6.23 Shannon entropy behavior of Problem #2. 

 

The HCMFD-I, -II, and –III methods converged the fission source within 

approximately the first twenty cycles, compared to 600 cycles in standard Monte Carlo. 
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Figure 6.24 Eigenvalue behavior of Problem #2. 

 

The mean eigenfunctions and their apparent RSD are plotted in Figure 6.25.  The 

HCMFD-II and –III eigenfunctions were very close to the benchmark SN solution.  The 

HCMFD-I eigenfunction was less accurate than the standard Monte Carlo solution, 

shown in Figure 6.26. 
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Figure 6.25 Mean eigenfunction and apparent RSD of Problem #2. 
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Figure 6.26 Relative error in eigenfunction compared to benchmark solution for Problem #2. 

 

This problem was repeated with a larger number of histories per cycle (500,000), 

and similar results were obtained (HCMFD-II and –III were most accurate, followed by 

standard Monte Carlo, and then HCMFD-I).  We emphasize that this problem is 

particularly difficult for most computational methods because small changes in the cross 

sections lead to large changes in the eigenfunction.  Increasing the number of active 

cycles may improve the HCMFD-I solution, but our results suggest that the proposed 

HCMFD-II and HCMFD-III methods are more accurate and less sensitive to statistical 

errors than the HCMFD-I method.  We emphasize that identical particle histories were 

used to generate the MC, HCMFD-I, HCMFD-II and HCMFD-III solutions.  The 

eigenvalues and standard deviations are presented in Table 6.12. 

 

Method Eigenvalue Apparent S.D. 

S32 (Benchmark) 0.957779 - 

MC 0.957618 0.000120 

p=1 

HCMFD-I 0.957897 0.000044 

HCMFD-II 0.957799 0.000016 

HCMFD-III 0.957801 0.000015 

Table 6.12 Mean eigenvalues for Problem #2. 
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The HCMFD-II and -III eigenvalues are closer to the benchmark eigenvalue, and they 

have lower apparent standard deviation than the standard Monte Carlo and HCMFD-I 

eigenvalues.  These results suggest that for extremely sensitive problems like Problem #2, 

the HCMFD-II and HCMFD-III methods are more accurate for calculating both the 

eigenfunction and eigenvalue. 

6.6 Criticality Problem #3: Heterogeneous Reactor Core 

Problem #3 is a 1-D, 1-G heterogeneous reactor core problem formulated by M.J. 

Lee and H.G. Joo of Seoul National University.  The 346.8 cm core consists of 17 

assemblies.  Each assembly consists of 16 pin cells, and each pin cell consists of three 

0.425 cm material regions.  This problem illustrates that the hybrid Monte Carlo-CMFD 

methods are effective for more realistic geometrically-detailed problems.  The core, 

assemblies, pin cells, and materials are defined in the following figures and tables. 

 

R C C B B M B B M B B M B B A C R 

Figure 6.27 Core configuration for Problem #3 consisting of 17 assemblies. 

 

R  1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

 

C  2 2 2 6 2 2 2 2 2 2 2 2 6 2 2 2 

 

M  3 3 3 6 3 3 3 3 3 3 3 3 6 3 3 3 

 

B  2 2 4 6 2 2 2 2 2 2 2 2 6 4 2 2 

 

A  5 5 5 6 5 5 5 5 5 5 5 5 6 5 5 5 

Figure 6.28 Assembly configurations (16 pin cells each) for Problem #3. 
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1 Reflector m6 m6 m6 

 

2 UO2 Pin A m1 m2 m1 

 

3 MOX Fuel m1 m3 m1 

 

4 GD Fuel m1 m4 m1 

 

5 UO2 Pin B m1 m5 m1 

 

6 Water Hole m7 m7 m7 

Figure 6.29 Pin cell configurations (three 0.425 cm material regions each) for Problem #3. 

 

Material Description t  s  a f     
f  

m1 
Water adjacent 

to Fuel 
1.74712e-01 1.73779e-01 9.33242e-04 - 

m2 UO2 Fuel A 3.32736e-01 2.74910e-01 5.78256e-02 7.97840e-02 

m3 MOX Fuel 2.82549e-01 2.14888e-01 6.76607e-02 8.64238e-02 

m4 
UO2 Fuel with 

Gd 
8.58461e-02 4.32728e-02 4.25733e-02 1.85589e-03 

m5 UO2 Fuel B 3.33356e-01 2.75534e-01 5.78218e-02 7.96455e-02 

m6 
Water in 

Reflector 
7.85602e-02 7.77942e-02 7.65957e-04 - 

m7 
Water in Water 

Hole 
9.01554e-02 8.96296e-02 5.25823e-04 - 

Table 6.13 Material cross sections for Problem #3. 

   

The numerical parameters of the calculation are listed in Table 6.14.  The Monte Carlo 

calculation was performed on a fine grid (0.425 cm) with 816 spatial cells, and the hybrid 

CMFD methods were performed on a coarse grid on the quarter assembly level (5.1 cm) 

with  A benchmark S32 calculation was performed with a uniform 0.05375 cm grid.   
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Histories/Cycle Inactive Cycles Active Cycles 
Fine Grid 

[cm] 

CMFD 

Parameter p  

100,000 150 100 0.425 12 

Table 6.14 Numerical parameters of Problem #3. 

 

The Shannon entropy behavior of Problem #3 is plotted in Figure 6.30.  The 

HCMFD calculations converged the fission source within 20 cycles, and the standard 

Monte Carlo source required approximately 150 cycles. 

 

Figure 6.30  Shannon entropy behavior of Problem #3. 

 

The cycle-wise eigenvalue estimates are plotted in Figure 6.31. 
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Figure 6.31 Eigenvalue behavior of Problem #3. 

 

The mean eigenfunction and apparent RSD are plotted in Figure 6.32.  In addition, 

the relative errors of each eigenfunction compared to the benchmark solution are plotted 

in Figure 6.33.  The apparent standard deviations in Figure 6.32 underestimate the true 

standard deviation, but the results in Section 6.4.8 suggest that the HCMFD-I, -II, and –

III methods underestimate the true variance much less than standard Monte Carlo. 
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Figure 6.32 Mean eigenfunction and apparent RSD of Problem #3. 
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Figure 6.33 Relative error in eigenfunction compared to benchmark solution for Problem #3. 

 

From Figure 6.33, the HCMFD-I, -II, and –III eigenfunctions have similar 

accuracy; they each differ about 1% from the benchmark solution.  In contrast, the 

standard Monte Carlo eigenfunction differs up to 3.5% from the benchmark solution.  

While HCMFD-I, -II, and –III have similar accuracy, the apparent standard deviation of 

HCMFD-II and HCMFD-III is about half that of HCMFD-I.  

The eigenvalue results are presented in Table 6.15.  There may be a small bias in 

the Monte Carlo-based calculations, which could be suppressed by using more histories 

per cycle.  However, the HCMFD-I, -II, and –III are much closer to the benchmark 

eigenvalue than standard Monte Carlo. 

 

Method Eigenvalue S.D. 

S16 (Benchmark) 1.212212 - 

MC 1.212821 0.000386 

p=12 

(Quarter 

Assembly) 

HCMFD-I 1.212504 0.000050 

HCMFD-II 1.212512 0.000027 

HCMFD-III 1.212512 0.000025 

Table 6.15 Summary of eigenvalue results for Problem #3. 
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We emphasize that this problem was performed with a very coarse mesh (on the 

quarter assembly level).  As previously discussed, the HCMFD-II and HCMFD-III  are 

more sensitive to mesh size than HCMFD-I, but for this problem, HCMFD-II and 

HCMFD-III still yielded excellent results.  If the mesh size were decreased, the HCMFD-

II and HCMFD-III solutions would improve. 

6.7 Summary of Numerical Results 

At the beginning of this chapter, we showed that the variances of the HCMFD-I, -

II, -III and -IV solutions follow the Central Limit Theorem for a fixed source problem.  

For this problem, HCMFD-IV had the lowest variance, followed by -III, -II, -I and then 

standard Monte Carlo.  We did not pursue further development of HCMFD-IV due to its 

limitation of homogeneous coarse cells.  The computational efficiency of the HCMFD-II 

-III and -IV methods (fractional computing times 18-24%) were comparable to the H-

MC-S2X method (19%) for a monoenergetic fixed source problem, whereas the 

efficiency of the HCMFD-I method was lower (51%). 

We then performed several criticality test problems comparing the performance of 

HCMFD-I, -II, and –III with standard Monte Carlo.  No feedback was performed for 

these simulations, meaning that the HCMFD calculations did not affect the Monte Carlo 

simulation in any way.  The eigenvalues and eigenfunctions of the hybrid methods were 

more accurate, and had less variance, than those quantities computed with standard 

Monte Carlo.  The HCMFD eigenfunctions converged within a few inactive cycles, even 

for problems where the dominance ratio is close to unity.  In contrast, standard Monte 

Carlo required several hundred inactive cycles for source convergence.  In addition, the 

HCMFD eigenfunctions are very accurate when small numbers of histories per cycle are 

used, and when small numbers of active cycles are used.  Overall, the number of inactive 

cycles, number of active cycles, and number of histories can be greatly reduced when 

performing the HCMFD calculations, with HCMFD-II and –III being more accurate than 

HCMFD-I when all numerical parameters are identical.  For a particular problem, we 

demonstrated that the HCMFD-II and –III methods require less than 1% of the standard 

Monte Carlo computing time to achieve equivalent real errors. 

The HCMFD-II and –III methods are more sensitive to the coarse mesh size than 

HCMFD-I, due to the use of a cell-averaged current term in the definition of their 
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correction functionals ( )

1/2
ˆ II

kD 
 and ( )

1/2
ˆ III

kD 
.  However, when the mesh is fine, these methods 

outperform HCMFD-I in terms of accuracy and variance.  As the mesh becomes coarser, 

the performances of these three methods become similar. 

Finally, the apparent standard deviation of the HCMFD solutions is a much more 

accurate estimator of the real standard deviation than in standard Monte Carlo.  In 

standard Monte Carlo, the true standard deviation can be up to an order of magnitude 

larger than the apparent standard deviation.  In HCMFD, the apparent standard deviation 

is approximately equal to the true standard deviation.  Therefore, applying the HCMFD 

methods to Monte Carlo reduces the real error, and this real error can be estimated very 

accurately.  In Chapter 7, we repeat many of these criticality calculations with CMFD 

“feedback”, in which the CMFD fission source is used to update the Monte Carlo fission 

source. 
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Chapter 7 

Hybrid Monte Carlo – CMFD Numerical Results with Feedback 

 

7.1 Hybrid Monte Carlo – CMFD with Feedback 

In Chapter 6, we compared the HCMFD-I, -II and -III methods with standard 

Monte Carlo for various criticality problems.  The results in Chapter 6 were generated 

using the procedure referred to as Hybrid Monte Carlo-CMFD without Feedback.  In this 

technique, the nonlinear HCMFD functionals are estimated during each cycle and an 

HCMFD calculation is performed at the end of the cycle.  The HCMFD eigenfunction 

and eigenvalue do not perturb the Monte Carlo calculation in any way.  We showed that 

the HCMFD-I, -II, and -III eigenfunctions and eigenvalues converge more rapidly than 

the standard Monte Carlo fission source.  In addition, the HCMFD eigenfunctions and 

eigenvalues were more accurate and had less variance than the standard Monte Carlo 

solution.   

In this chapter, we perform criticality problems using Hybrid Monte Carlo-CMFD 

with Feedback.  In this procedure, one method is chosen to perform the feedback:  

HCMFD-I, HCMFD-II, or HCMFD-III.  During the thi  Monte Carlo cycle, estimates of 

the Monte Carlo eigenvalue, Monte Carlo eigenfunction, and HCMFD nonlinear 

functionals are generated.  At the end of the cycle, an HCMFD calculation is performed 

to generate estimates of the HCMFD eigenvalue and HCMFD eigenfunction.  If feedback 

is not applied, the procedure returns to the next Monte Carlo cycle.  When feedback is 

applied, the HCMFD fission source is used to modify the Monte Carlo fission bank to 

match the HCMFD source distribution.  The modified Monte Carlo fission bank is then 

used as the source for cycle 1i  . 

We now describe the details of the fission bank modification.  The fission source in 

HCMFD is converted to a probability density function over coarse cells 1 k K  : 
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 (7.1) 

The HCMFD probability density function in Eq. (7.1) is then multiplied by the target 

number of histories per cycle, N , to determine the desired number of fission sites in cell 

k : 

 .k kN NP  (7.2) 

The unmodified number of Monte Carlo fission sites in cell k , kM  , is then compared 

with kN .  If 1k

k

M

N
 , then each site in cell k  is killed with probability 1kill k

k

k

N
p

M
  .  If 

1k

k

M

N
 , then each site in cell k  is copied k

k

N
f floor

M

 
  

 
 times with  probability 

copy k k
k

k k

N N
p ceil

M M

 
  

 
, and is copied 1f   times with probability 1 copy

kp .  [The 

functions floor and ceil round a real number to the next lowest and next highest integer, 

respectively.]  The result of this modification is a Monte Carlo fission bank of 

approximately N  fission sites; these sites form a distribution that approximately matches 

the CMFD fission source distribution.  Alternatively, the source bank could be modified 

using adjusted particle weights as in Lee, et al. [4][5] 

The HCMFD fission source converges more quickly and is more stable than the 

standard Monte Carlo fission source, especially for high dominance ratios.  Therefore, 

modifying the Monte Carlo source distribution to match the HCMFD fission source 

should accelerate source convergence and stabilize the Monte Carlo source.  The 

HCMFD feedback can be turned off after any given cycle.  We show, however, that the 

Monte Carlo source immediately destabilizes when CFMD is turned off. 

In this chapter, we compare standard Monte Carlo and Monte Carlo with HCMFD-

I, -II, and -III feedback for several criticality test problems.  All entropy, eigenfunction, 

and standard deviation figures reflect the Monte Carlo source entropy and Monte Carlo 
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eigenfunction.  The entropy and eigenfunctions resulting directly from the HCMFD 

calculations are not reported.  However, both the Monte Carlo eigenvalues and HCMFD 

eigenvalues are reported; we show that the HCMFD eigenvalues are more accurate. 

7.2 Feedback Effect on Source Convergence 

In this section, we show that performing Monte Carlo with HCMFD feedback 

converges and stabilizes the Monte Carlo fission source.  When HCMFD feedback is 

turned “off”, the Monte Carlo source destabilizes, so the HCMFD feedback should be 

kept on for all cycles.  We demonstrate the effects of feedback on source convergence on 

Problem #1C, a homogeneous 70 cm slab with a dominance ratio of approximately 0.996.  

The cross sections are listed in Table 6.4.   

 

Location [cm] t  [cm
-1

] s  [cm
-1

] f  [cm
-1

]   

0 70x   1.0 0.5 0.2 2.4 

Table 7.1 Material specifications of Criticality Problem #1C. 

 

The problem was simulated using no feedback (“MC”), feedback during inactive cycles 

(“MC-FB-x (Inactive Only)”), and feedback during all cycles (“MC-FB-x”), where “x” is 

the numeral I, II or III corresponding to the HCMFD-I, -II, or –III method, respectively.  

The numerical parameters are listed in Table 7.2. 

 

Histories/Cycle Inactive Cycles Active Cycles 
Fine Grid 

[cm] 

CMFD 

Parameter p  

100,000 200 200 0.5 1 

Table 7.2 Numerical parameters of Problem #1C. 
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Figure 7.1 Entropy behavior of Monte Carlo with and without HCMFD feedback for Problem #1C. 

 

Figure 7.1 shows that the standard Monte Carlo source converges around cycle 

200.  Applying HCMFD-I, -II, or -III feedback at the beginning of the calculation 

converges the fission source immediately, and keeps the source converged as long as the 

feedback is “on”.  When the feedback is turned off during active cycles, the fission 

source immediately destabilizes, and the Shannon entropy wobbles and diverges from the 
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asymptote.  These source convergence effects can be seen in the mean eigenfunction 

(averaged over active cycles) in Figure 7.2. 

 

 

Figure 7.2 Monte Carlo eigenfunctions with and without HCMFD feedback for Problem #1C. 
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The mean eigenfunction is accurate when feedback is applied for all cycles.  However, 

when feedback is turned off during active cycles (or not used at all), the eigenfunction 

has significant errors. 

As shown in Table 7.3, applying feedback during active cycles improves the 

accuracy of the Monte Carlo eigenvalue slightly, but does not significantly change its 

(apparent) variance.  This is expected because feedback is used only to stabilize the 

fission source at the beginning of each cycle, and the Monte Carlo eigenvalue is 

computed by standard Monte Carlo transport within the cycle.  Additionally, the 

eigenvalue is less sensitive to statistical errors than the eigenfunction in high dominance 

ratio problems.  The HCMFD eigenvalues (computed from the CMFD equations after 

each cycle) are more accurate and have much less variance than the corresponding Monte 

Carlo eigenvalues. 

 

Method Eigenvalue Apparent S.D. 
HCMFD 

Eigenvalue 

HCMFD 

Apparent S.D. 

SN 0.958764 - - - 

MC 0.958328 0.000290 - - 

MC-FB-I (Inactive) 0.958468 0.000267 0.958747 0.000009 

MC-FB-II (Inactive) 0.958823 0.000273 0.958766 0.000002 

MC-FB-III (Inactive) 0.958184 0.000288 0.958765 0.000002 

MC-FB-I 0.958991 0.000302 0.958755 0.000008 

MC-FB-II 0.958322 0.000284 0.958766 0.000002 

MC-FB-III 0.958747 0.000292 0.958765 0.000002 

Table 7.3 Eigenvalue means and standard deviations for Monte Carlo with and without feedback. 

   

The results of this section show that applying HCMFD feedback to Monte Carlo 

converges and stabilizes the Monte Carlo fission source, thereby lowering the number of 

inactive and active cycles required for accurate eigenfunction estimation.  In addition, the 

eigenvalues computed in the HCMFD calculations are much more accurate, and have less 

variance, than the Monte Carlo eigenvalues.  Therefore, we recommend that feedback be 
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turned on for all cycles, and that the HCMFD eigenvalue be reported rather than the mean 

Monte Carlo eigenvalue. 

7.3 Performance for Small Number of Histories per Cycle 

In Chapter 6, we showed that standard Monte Carlo produces inaccurate 

eigenfunctions and eigenvalues when the number of histories is small.  We now show 

that applying HCMFD feedback makes the Monte Carlo results more accurate.  Problem 

#1D (the 100 cm slab from Chapter 6) was simulated using N=50,000 histories.  Figure 

6.19 plots the standard Monte Carlo eigenfunction and the eigenfunctions obtained with 

feedback (averaged over 500 active cycles). 

   

 

Figure 7.3 Monte Carlo eigenfunctions with and without feedback for small number of histories per 

cycle. 

 

The eigenfunctions obtained using feedback in Figure 6.19 are more accurate than the 

standard Monte Carlo eigenfunction.  [We again note that the number of histories cannot 

be arbitrarily low to perform Monte Carlo with feedback.  All regions of the problem 

must be sufficiently sampled in order to estimate the required HCMFD nonlinear 

functionals.  In contrast, standard Monte Carlo can be performed with any number of 

histories.] 
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7.4 Performance for Small Number of Active Cycles 

In Chapter 6, we noted that in high dominance ratio criticality problems, the Monte 

Carlo estimates of the eigenfunction and eigenvalue must be averaged over several 

hundred active cycles in order to reduce statistical errors that are correlated from cycle to 

cycle.  In this section, we show that applying feedback increases the accuracy of the 

Monte Carlo eigenfunction for individual cycles, and consequently fewer active cycles 

are needed.  Problem #1D (100 cm slab from Chapter 6) was simulated with 100,000 

histories per cycle with NA=1 and NA=10 active cycles.  The mean eigenfunctions 

obtained with and without feedback are compared in Figure 6.20.   

 

 

Figure 7.4 Eigenfunctions averaged over one and ten active cycles. 
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The mean Monte Carlo and HCMFD eigenvalues are compared to the benchmark 

SN eigenvalue, 
effk  0.959386 in Table 6.9.   The error is listed in per cent mille

5(1 pcm 10 ).
k

k

 
  

 

Method 

Eigenvalue 

(Error in pcm) 

HCMFD Eigenvalue 

(Error in pcm) 

NA=1 NA=10 NA=1 NA=10 

MC 
0.961257 

(195) 

0.959109 

(-29) 
- - 

MC-FB-I 
0.964815 

(566) 

0.959104 

(-29) 

0.959389 

(0) 

0.959393 

(1) 

MC-FB-II 
0.965008 

(586) 

0.960491 

(115) 

0.959351 

(-4) 

0.959381 

(-1) 

MC-FB-III 
0.961191 

(188) 

0.958884 

(-52) 

0.959410 

(3) 

0.959386 

(0) 

Table 7.4 Eigenvalues averaged over various numbers of active cycles. 

 

The Monte Carlo eigenfunctions with HCMFD-II and HCMFD-III feedback are 

more accurate than the Monte Carlo eigenfunction with HCMFD-I feedback  and without 

feedback for both NA=1 and NA=10 active cycles.  For the individual cycle comparison 

(NA=1), the HCMFD-III feedback resulted in significantly better accuracy than the 

HCMFD-II feedback.  When the number of active cycles increased to 10 (NA=10), the 

mean HCMFD-II and HCMFD-III eigenfunctions behaved similarly. 

Turning on feedback did not improve the accuracy of the Monte Carlo eigenvalue.  

However, the HCMFD eigenvalues were much more accurate than the Monte Carlo 

eigenvalues in all cases (NA=1 and NA=10).  In fact, for a single cycle, the HCMFD-I, -

II, and –III eigenvalues had errors of only 0, 4, and 3 pcm (compared to 195 pcm in 

standard Monte Carlo).  This is a large improvement in accuracy. 

These results show that the individual cycle estimates of the Monte Carlo 

eigenfunction and the HCMFD eigenvalues obtained with feedback are very accurate.  

Therefore, fewer active cycles are necessary to obtain accurate solutions for high 

dominance ratio problems when feedback is used. 
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7.5 Real vs. Apparent Variance 

As noted in Chapter 6, the Monte Carlo source converges very slowly in problems 

with high dominance ratios, causing the apparent variance of the eigenfunction to 

underestimate the real variance.  We demonstrate that when the CMFD feedback is used 

to modify the Monte Carlo fission source, the apparent variance of the resulting Monte 

Carlo eigenfunction is much closer to the real variance. 

To demonstrate this, Problem #1C (the 70 cm slab from Chapter 6) was simulated 

with N=100,000 histories per cycle and NA=25 active cycles.  The simulation was 

performed K=25 independent times with and without feedback, generating 25 

independent estimates of the mean eigenfunction and apparent variance: ,
ˆ
NA k  and 

 2

,
ˆ

k NA k  .  The average apparent variance and real variance were calculated from Eqs. 

(6.7) and (6.8): 

  2 2

,

1

1 ˆ ,
K

A k NA k

kK
  



   (7.3) 

 

2

2 2

, ,

1 1

1 1ˆ ˆ .
1

K K

R NA k NA k

k k

K

K K K
  

 

  
   

    
   (7.4) 

The apparent and real relative standard deviations (RSD) are plotted in Figure 7.5.  The 

ratio of real to apparent standard deviation, 
/

R
R A

A

r



 , is plotted in Figure 7.6.  
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Figure 7.5 Real and apparent relative standard deviations of the mean eigenfunction when feedback 

is applied. 

 

The real RSDs of the Monte Carlo eigenfunctions with HCMFD-II and -III 

feedback (MC-FB-II and MC-FB-III) range between 1-3% for this test problem.  The real 

RSD of MC-FB-I is 2-4%, and the real RSD of the standard Monte Carlo eigenfunction is 

4-15%.  Therefore, use of HCMFD-II and –III feedback results in a significant reduction 

of real error in standard Monte Carlo.  Applying HCMFD-II and –III feedback to the 

Monte Carlo simulation results in real variances which are 3-5% of the real standard 

Monte Carlo variance.  Therefore, the fractional computing time of the Monte Carlo 

simulation with HCMFD feedback is approximately 3-5%, and the feedback calculation 

is 20-35 times faster than a standard Monte Carlo calculation.  This significant 
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computational savings refers to the savings during active cycles.  The actual savings is 

higher when feedback is applied because fewer inactive cycles are required for source 

convergence. 

The ratio of real to apparent standard deviation is plotted in Figure 7.6. 

 

 

Figure 7.6 Ratio of real to apparent standard deviation when feedback is applied. 

 

For the specified problem, the Monte Carlo apparent standard deviation 

underestimates the actual standard deviation by a large factor and should not be trusted.  

However, the real standard deviation in the HCMFD methods is approximately equal to 

the apparent standard deviation.   Therefore, performing feedback is advantageous for 

two reasons: it reduces the real error in the Monte Carlo estimate of the eigenfunction, 

and this reduced real error is well-estimated by the apparent error obtained from a single 

calculation.  This section confirms the results obtained by Lee, et al. [5] for HCMFD-I, 

and shows that the close relationship between real and apparent variance also holds for 

HCMFD-II and HCMFD-III.  
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7.6 Criticality Problem #2: Two-Fissile Region Slab 

7.6.1 Problem Description 

We again consider Criticality Problem #2 from Chapter 6, the heterogeneous, 

isotropically-scattering 27 cm slab with vacuum boundaries and the material parameters 

in Table 6.10. 

 

Region Location [cm] t  [cm
-1

] s  [cm
-1

] f  [cm
-1

]   

1 0 5x   1.0 0.856 0.0 - 

2 5 10x   1.0 0.8 0.1 2.4 

3 10 17x   1.0 0.856 0.0 - 

4 17 22x   1.0 0.8 0.1005 2.4 

5 22 27x   1.0 0.856 0.0 - 

Table 7.5 Material specifications of Problem #2. 

 

The separation of the two fissile regions causes the eigenfunction to be very sensitive to 

small changes in material parameters such as the 0.5% difference in fission cross 

sections.  This problem is computationally “difficult” and is characteristic of the models 

required to analyze spent fuel storage.  We simulate this problem in Monte Carlo with 

and without HCMFD-I, -II, and -III feedback. 

7.6.2 Numerical Parameters 

The Monte Carlo specifications for Problem #2 are listed in Table 7.6.  A 

benchmark S32 solution was performed with a uniform 0.001 cm grid. 

 

 

 

 

 

 

 



 

196 

Method 

Number of 

Histories/Cycle 

(N) 

Inactive 

Cycles (NI) 

Active 

Cycles 

(NA) 

Fine 

Grid 

[cm] 

CMFD 

Parameter 

p  

MC 200,000 500 500 0.5 - 

MC-FB-I, 

MC-FB-II, 

MC-FB-III 

200,000 20 500 0.5 1 

Table 7.6 Numerical parameters of Problem #2. 

 

7.6.3 Numerical Results 

The cycle-wise entropy behavior for Problem #2 is plotted in Figure 6.23.  The 

feedback calculations were performed with many fewer inactive cycles due to the 

accelerated source convergence.  Cycles 21 through 520 are active for the feedback 

calculations, and cycles 501 through 1000 are active for the standard Monte Carlo 

calculations. 

 

 

Figure 7.7 Shannon entropy behavior of Problem #2. 
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Carlo Shannon entropy.  In other words, the fission source distribution fluctuates by a 

larger amount over cycles when HCMFD feedback is applied.  This indicates that the 

HCMFD functionals and low-order equations are sensitive to statistical errors in this 

problem.  However, the HCMFD-II and –III methods appear to be less sensitive than the 

HCMFD-I method.   While the cycle-to-cycle fission source fluctuations are larger when 

HCMFD-II and –III feedback is applied, these statistical errors cancel, and the mean 

eigenfunction over active cycles is significantly more accurate.  The mean eigenfunctions 

and their apparent RSD are plotted in Figure 6.25, and the errors compared to the 

benchmark solution are plotted in Figure 6.26.  

 

 

Figure 7.8 Mean eigenfunction and apparent RSD of Problem #2. 
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 The HCMFD-II and -III eigenfunctions are accurate compared to the benchmark 

SN solution (maximum relative error around 2% compared to 6% in the standard Monte 

Carlo solution).  The HCMFD-I eigenfunction was less accurate than the standard Monte 

Carlo solution (maximum error around 9%).  These results are consistent with results in 

Chapter 6, where Monte Carlo was performed without feedback and the HCMFD-I, -II, 

and –III eigenfunctions were compared.  The errors in the HCMFD-I solution are large 

near the two flux peaks ( 7.5x   and 19.5x  ).  At these spatial locations, the net current 

is close to zero, and statistical errors in the 
( )

1/2
ˆ I

kD  functionals are large because of the 

1, 1/2k 
 term.  The HCMFD-II and –III functionals were specifically formulated to reduce 

statistical error in 
1, 1/2k 

 term, and a marked reduction in error can be seen in these 

methods near the same spatial locations.  

 

 

Figure 7.9 Relative error in eigenfunction compared to benchmark solution for Problem #2. 
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the ability of the HCMFD-II and HCMFD-III methods to perform better than HCMFD-I 

indicate that they are much less sensitive to statistical errors.   

The Monte Carlo eigenvalues for Problem #2 are listed in the following table, 

along with the corresponding HCMFD eigenvalues when feedback is present. 

 

Method Eigenvalue Apparent S.D. 
HCMFD 

Eigenvalue 

HCMFD 

Apparent S.D. 

SN 0.957779 - - - 

MC 0.957618 0.000120 - - 

MC-FB-I 0.957282 0.000117 0.957786 0.000045 

MC-FB-II 0.957722 0.000113 0.957791 0.000016 

MC-FB-III 0.957662 0.000115 0.957767 0.000015 

Table 7.7 Mean eigenvalues for Problem #2. 

 

Applying method -II and -III feedback increases the accuracy of the Monte Carlo 

eigenvalues slightly.  However, the HCMFD-II and -III eigenvalues are much more 

accurate, and they have low apparent standard deviation.  We emphasize that when 

applying feedback, two eigenvalues are generated for each cycle: the Monte Carlo 

eigenvalue and the HCMFD eigenvalue.  We recommend that the HCMFD eigenvalue be 

used because it is more accurate and has less variance. 

7.7 Criticality Problem #3: Heterogeneous Reactor Core 

7.7.1 Problem Description 

Criticality Problem #3 is a 346.8 cm heterogeneous reactor core consisting of 17 

assemblies and a total of 816 material regions. [A complete description of this problem is 

given in Chapter 6.]  This problem is geometrically detailed and has a high dominance 

ratio due to its large size.  We perform Monte Carlo with HCMFD-I, -II and -III feedback 

and compare the results with standard Monte Carlo to demonstrate that feedback can be 

used successfully on geometrically complex problems. 
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7.7.2 Numerical Parameters 

The numerical parameters of the calculation are listed in Table 7.8.  The feedback 

was performed on the quarter assembly level (one coarse cell consists of twelve 0.425 cm 

material regions).  A benchmark S32 calculation was performed with a uniform 0.05375 

cm grid. 

 

Method 

Number of 

Histories/Cycle 

(N) 

Inactive 

Cycles 

(NI) 

Active 

Cycles 

(NA) 

Fine 

Grid 

[cm] 

CMFD 

Parameter 

p  

MC 100,000 150 100 0.425 - 

MC-FB-I, 

MC-FB-II, 

MC-FB-III 

100,000 20 100 0.425 12 

Table 7.8 Numerical parameters of Problem #3. 

 

7.7.3 Numerical Results 

The feedback calculations were again performed with fewer inactive cycles than 

the standard Monte Carlo calculation because the fission source converges much faster 

when feedback is applied.  Cycles 21 through 100 are active for the feedback 

calculations, and cycles 151 through 250 are active for the standard Monte Carlo 

calculations.  The Shannon entropy behavior of Problem #3 is plotted in Figure 6.30. 
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Figure 7.10  Shannon entropy behavior of Problem #3. 

 

The mean eigenfunction and apparent RSD for Problem #3 are plotted in Figure 

6.32, and the errors compared to the benchmark solution are plotted in Figure 6.33. 
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Figure 7.11 Mean eigenfunction and apparent RSD of Problem #3. 
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Figure 7.12 Relative error in eigenfunction compared to benchmark solution for Problem #3. 

 

The Monte Carlo eigenfunctions with HCMFD-I, -II or –III feedback are much 

more accurate than the standard Monte Carlo eigenfunction.  The HCMFD-II and –III 

feedback solutions are slightly more accurate (maximum errors around 1.1%) than the 

HCMFD-I feedback solution (maximum error around 1.7%).  In addition, the apparent 

standard deviation of HCMFD-II and HCMFD-III is about half that of HCMFD-I.  We 

showed that the HCMFD methods all underestimate the real variance by about the same 

factor, so the ranking (but not magnitude) of apparent standard deviations in these three 

methods can be trusted from Figure 6.32. 

The eigenvalue results are presented in Table 6.15.  There appears to be a small 
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per cycle.  The Monte Carlo and HCMFD eigenvalues obtained with feedback are more 

accurate than the standard Monte Carlo eigenvalue. 
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Method Eigenvalue Apparent S.D. 
HCMFD 

Eigenvalue 

HCMFD 

Apparent S.D. 

SN 1.212212 - - - 

MC 1.212821 0.000386 - - 

MC-FB-I 1.212238 0.000353 1.212477 0.000059 

MC-FB-II 1.212583 0.000351 1.212460 0.000029 

MC-FB-III 1.212396 0.000399 1.212455 0.000029 

Table 7.9 Summary of eigenvalue results for Problem #3. 

 

These results indicate that performing feedback on a relatively coarse mesh (quarter 

assembly level) is still beneficial for stabilizing the Monte Carlo fission source and 

calculating more accurate eigenfunctions and eigenvalues.  The time savings for this 

problem was significant, as the number of inactive cycles was reduced by 80%.   

7.8 Summary of Numerical Results 

In this chapter, we described the process of using the HCMFD fission source to 

stabilize the Monte Carlo fission source during a Monte Carlo criticality calculation.  

This “feedback” procedure accelerates fission source convergence, resulting in fewer 

inactive cycles required.  It also stabilizes the fission source once converged, so that the 

source does not “wobble” in high dominance ratio problems.  When feedback is turned 

“off”, the Monte Carlo fission source destabilizes, so we recommend that feedback be 

kept “on”  for all inactive and active cycles.  It was shown that HCMFD-II and HCMFD-

III stabilize the source better than HCMFD-I, but all three converge the source equally 

quickly.   

We note that applying feedback during active cycles alters the Monte Carlo 

transport procedure by modifying the fission source.  Therefore, the solutions obtained 

using feedback during active cycles are not “pure” Monte Carlo solutions.  However, the 

modification is performed by using source biasing factors from an exact system of low-

order equations that has no truncation error.  The parameters in this system of equations 

are nonlinear functionals determined by the same Monte Carlo simulation.  Moreover, we 

have presented numerical results that the solutions obtained using feedback are more 
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accurate than standard Monte Carlo solutions because feedback “pushes” the standard 

Monte Carlo solution in the correct direction for difficult problems. 

In addition, fewer active cycles are required when feedback is applied because each 

individual cycle eigenfunction estimate is more accurate (each cycle begins with a 

converged fission source).  Finally, fewer histories per cycle are required because the 

nonlinear functionals in the HCMFD methods are not as sensitive to statistical errors as 

direct Monte Carlo estimates of the eigenfunction.   

The Monte Carlo eigenfunction obtained using feedback is much more accurate 

than the standard Monte Carlo eigenfunction.  The Monte Carlo eigenvalue obtained 

using feedback is also more accurate than the standard Monte Carlo eigenvalue, but the 

HCMFD eigenvalue calculated after each cycle is much more accurate than both of this 

quantities.  We recommend that the HCMFD eigenvalue be reported rather than the 

Monte Carlo eigenvalue.  For the problems considered in this work, the HCMFD-II and 

HCMFD-III solutions were consistently more accurate, and had less variance, than the 

HCMFD-I and standard Monte Carlo solutions. 

It is well-known that the apparent standard deviation of the standard 

underestimates the real standard deviation of the standard Monte Carlo eigenfunction in 

high dominance ratio problems.  This underestimation is due to strong inter-cycle 

correlation of the fission source.  In high dominance ratio problems, the standard Monte 

Carlo eigenfunction changes very little from cycle to cycle.  However, the HCMFD 

eigenfunctions are only weakly dependent on the standard Monte Carlo eigenfunction, 

and cycle-wise estimates are more randomly distributed about the true mean, and less 

tightly correlated.  Application of feedback from HCMFD calculations therefore makes 

the Monte Carlo fission source less correlated to the previous cycle, and it makes the 

apparent standard deviation of the eigenfunction obtained with feedback approximately 

equal to the real standard deviation.  Therefore, performing feedback is advantageous for 

two reasons: it reduces the real error in the Monte Carlo estimate of the eigenfunction, 

and the real error is well-estimated from a single calculation. 

Overall, in Chapters 6 and 7, we demonstrated the efficiency of nonlinear 

functional hybrid Monte Carlo-CFMD techniques on monoenergetic fixed source and 

criticality problems.  The concept of “feedback” was also explored, whereby the CMFD 
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fission source is used to stabilize the Monte Carlo fission source.  The hybrid Monte 

Carlo-CMFD techniques were very efficient compared to standard Monte Carlo for this 

subset of test problems.  Work published by Lee, et al. [4][5] indicates that these types of 

methods can be successfully extended to include energy dependence using a multigroup 

formulation.  Additionally, these methods can be extended to more general geometries. 
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Chapter 8 

Conclusions 

 

8.1 Summary of Nonlinear Functional Technique 

Several new hybrid Monte Carlo-deterministic methods (H-MC-S2, H-MC-S2X, 

HCMFD-II, HCMFD-III, and HCMFD-IV) using the nonlinear functional approach are 

developed in this thesis.  The nonlinear functional approach consists of two fundamental 

steps: (1) the Monte Carlo estimation of nonlinear functionals, which are ratios of 

integrals of the particle flux, and (2) the deterministic solution of a system of low-order 

algebraic equations that contain these functionals as parameters.  This hybrid technique is 

more complicated than conventional Monte Carlo, but it can offer major computational 

advantages, particularly for systems with high dominance ratios. 

The nonlinear functionals for each hybrid method are formulated by taking space-

angle-energy moments of the transport equation and performing algebraic manipulations 

to obtain a finite system of “low-order” algebraic equations.  The stochastic nonlinear 

functional estimates are used in the low-order equations to solve for the particle flux.  If 

the structure of the low-order equations is favorable, and the functionals are defined 

appropriately, the solution of the low-order equations will have less variance than the 

direct Monte Carlo estimate of the solution.  Theoretical justification was given that 

stochastic estimates of the nonlinear functionals should have less variance than direct 

estimates of standard linear quantities when the same Monte Carlo histories are used to 

evaluate the numerator and denominator of the functional. 

8.2 Summary of Proposed Methods 

We have developed two fundamentally different classes of nonlinear functional 

methods that are computationally more efficient than standard Monte Carlo. The first 

class of methods (H-MC-S2 and H-MC-S2X) have low-order equations resembling 
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discrete ordinates equations.  These methods are developed for continuous-energy fixed 

source problems in 1-D planar geometry.  The second class of methods (HCMFD-II, 

HCMFD-III, and HCMFD-IV) have low-order equations resembling diffusion equations.  

These methods are developed for monoenergetic fixed source and criticality problems in 

1-D planar geometry.  In the following sections, we summarize the formulation and 

performance of these hybrid methods. 

8.2.1 The H-MC-S2 Method 

The H-MC-S2 method was developed from the steady-state, planar geometry, 

energy-dependent, fixed source Boltzmann equation by integrating over phase space to 

obtain low-order equations resembling the one-group S2 (discrete ordinates) equations.  

No approximations in energy or angle were introduced in this condensation process. 

The H-MC-S2 nonlinear functionals resemble flux-weighted cross sections and 

flux-weighted quadrature but do not use the multigroup approximation in energy.  The H-

MC-S2 method therefore has no approximations in angle or energy, but it has small 

statistical and spatial truncation errors.  The spatial truncation errors result from a spatial 

differencing approximation introduced to close the system, and a redefinition of one of 

the functionals to reduce its variance.   

Once the nonlinear functionals are estimated in Monte Carlo, the H-MC-S2 low-

order equations are solved using a simple S2 sweep and source iteration scheme.  The H-

MC-S2 method was shown to be more accurate than standard Monte Carlo and fine-group 

discrete ordinates methods for a core-reflector problem with significant transport effects.  

The H-MC-S2 solution also had lower variance than the history-equivalent direct Monte 

Carlo estimate of the solution.  Therefore, the H-MC-S2 method offers a computational 

advantage over standard Monte Carlo and deterministic methods for “difficult” transport 

problems. 

8.2.2 The H-MC-S2X Method 

The H-MC-S2X method is very similar to the H-MC-S2 method, but the transport 

equation is multiplied by a spatial tent function before integration over space, energy, and 

angle.  The tent function eliminates the need for spatial approximations; consequently, 

the H-MC-S2X method has only statistical errors.  The H-MC-S2X functionals resemble 
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flux-tent function-weighted multigroup cross sections and flux-weighted angular 

quadrature, and the low-order equations are again similar to the one-group S2 equations.  

They can be solved efficiently with a transport sweep and source iteration. 

The H-MC-S2X method was tested on a core-reflector problem with significant 

transport effects.  The H-MC-S2X solution was more accurate than a 250-group discrete 

ordinates calculation, due to the absence of multigroup cross section errors.  In addition, 

the H-MC-S2X method can be used on an arbitrarily coarse spatial grid, a significant 

advantage in numerical neutron transport calculations.  In addition to being more accurate 

than deterministic solutions, the H-MC-S2X solution has less variance than history-

equivalent Monte Carlo estimates of the solution, meaning that a more accurate solution 

can be obtained in less time.   

The time savings for this method compared to standard Monte Carlo was 

approximately 50% for the core-reflector problem.  For a much simpler monoenergetic 

fixed source problem, the time savings was approximately 80%.  The H-MC-S2X method 

is most efficient when energy-dependence is simple, flux is not highly anisotropic, and 

particles are well-sampled in all regions of phase space.  When these conditions apply, 

the nonlinear functional numerators and denominators are highly correlated, and the 

nonlinear functionals can be computed with low variance.  When these conditions are 

relaxed, the functional numerators and denominators become less correlated, and some 

loss of efficiency occurs.  Possible improvements to this method are suggested in Section 

8.3. 

8.2.3 The HCMFD-II, HCMFD-III, and HCMFD-IV Methods   

The HCMFD-II, HCMFD-III, and HCMFD-IV Methods were developed to 

improve the CMFD-Accelerated Monte Carlo method (referred to as HCMFD-I in this 

work).  In CMFD-Accelerated Monte Carlo, nonlinear functionals, referred to as “CMFD 

correction factors”, containing the particle current are estimated in Monte Carlo and used 

in diffusion-like low-order equations.  We provided theoretical evidence that nonlinear 

functionals containing odd angular moments of the flux (such as the particle current) can 

have large statistical errors compared to other terms.  These statistical errors may cause a 

loss of efficiency in CMFD-Accelerated Monte Carlo.   
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To reduce statistical error in the current terms of the CMFD correction factors, 

higher-order moments of the transport equation were used to derive exact expressions 

relating the cell-averaged current to angular moments of the flux.  These expressions 

were used to partially cancel the statistical error that occurs in the current term of the 

nonlinear functional.  Doing this in three different ways resulted in nonlinear functionals  

with less statistical error than the original functional; the use of the different functionals 

define the HCMFD-II, HCMFD -III, and HCMFD-IV methods.  These methods were 

developed for the planar geometry, monoenergetic, steady-state Boltzmann transport 

equation for fixed source and eigenvalue problems. 

For a monoenergetic fixed source problem, the three generalized hybrid Monte 

Carlo-CMFD methods produced solutions that were more accurate, and had less variance, 

than CMFD-Accelerated Monte Carlo (“HCMFD-I”) and standard Monte Carlo.  

HCMFD-IV was the most complicated, limited to the case of homogenous coarse cells, 

and performed only marginally better than HCMFD-III, so it was not tested for criticality 

problems.  The efficiency of the HCMFD-II, -III, and –IV methods were comparable to 

the efficiency of the H-MC-S2X method for monoenergetic fixed source problems 

(roughly 80% savings in computing time). 

For criticality problems, the CMFD functionals are estimated during each cycle, 

and then the CMFD equations are solved for the eigenvalue and eigenfunction.  The 

CMFD results can optionally be used to modify the Monte Carlo fission source using a 

process known as “feedback”.  Monte Carlo was performed with and without HCMFD-II 

and -III feedback, and numerical results showed that the new generalized methods are 

more effective at converging the fission source than CMFD-Accelerated Monte Carlo.   

The proposed HCMFD-II and -III methods (with or without feedback) offer the 

following computational advantages over standard Monte Carlo and HCMFD-I in 

criticality problems: 

(1) Fewer inactive cycles are required to converge the fission source because of 

accelerated source convergence. 

(2) Fewer active cycles are required because of increased fission source stability. 

(3) Fewer particles per cycle are required because the new nonlinear functionals are 

less sensitive to statistical errors. 
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(4) Inter-cycle correlation is reduced, and the apparent error is much closer to the true 

error than in standard Monte Carlo. (This property is also true in HCMFD-I). 

The only apparent disadvantage of the HCMFD-II and –III methods is sensitivity to 

the size of the coarse mesh: the special cell-averaged current terms in the functionals 

become less useful as the coarse mesh becomes thicker, and performance differences 

between the HCMFD-I, -II, -III methods become less significant. 

Overall, the proposed generalized hybrid Monte Carlo-CMFD methods offer 

significant computational savings in “difficult” criticality problems with high dominance 

ratios.  For a homogenous slab with a high dominance ratio, the HCMFD-II and -III 

methods required 1% of the standard Monte Carlo active cycle computing time when no 

feedback was applied.  For the same test problem, Monte Carlo with HCMFD-II or -III 

feedback required 3-5% of the standard Monte Carlo active cycle computing time.  The 

total time savings is even greater because fewer inactive cycles are required to converge 

the fission source.  We note that the efficiencies of the HCMFD methods compared to 

standard Monte Carlo are problem-dependent, and these new methods should be tested on 

different problems of varying complexity to determine the range of possible efficiencies. 

Finally, the HCMFD-II and –III methods are only slightly more complex to 

implement than the HCMFD-I method, and they are significantly simpler to implement 

than Functional Monte Carlo. 

8.3 Future Work  

The methods in this thesis have been successfully developed and tested on a subset 

on neutron transport problems.  We now make several suggestions about the future 

direction of work on these methods. 

8.3.1 The H-MC-S2X Method 

The H-MC-S2X method was developed and tested for continuous-energy fixed 

source problems in planar geometry.  The H-MC-S2X solutions were accurate for all test 

problems, but a loss of computational efficiency was observed for problems with strong 

energy and angle dependence.  This loss of efficiency is due to reduced correlation in the 

nonlinear functional numerator and denominator random variables.  We recommend that 

the H-MC-S2X methodology be extended to utilize a multigroup-like formulation in 
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energy.  In addition, the methodology could be extended to increase the number of 

direction “groups”.  The result of these modifications would be a larger set of nonlinear 

functionals whose numerators and denominators are better-correlated and a larger system 

of low-order equations resembling multigroup discrete ordinates methods.   

In addition, variance reduction techniques should be used in the Monte Carlo 

calculation for problems in which particles are poorly sampled in certain regions.  It is 

unclear if the error in the core-reflector problems is due mostly to poor sampling of 

neutrons in the negative direction or poor correlation in the nonlinear functional 

numerators and denominators. 

Finally, we note that the new H-MC-S2X and HCMFD methods have similar 

computational efficiencies for a monoenergetic fixed source problem (20% of standard 

Monte Carlo computing time).  However, the HCMFD methods have much greater 

computational efficiencies for high dominance ratio eigenvalue problems (1% of standard 

Monte Carlo computing time).  We therefore recommend that the H-MC-S2X method be 

developed and tested on high dominance ratio eigenvalue problems to see whether gains 

similar to the HCMFD methods can be achieved.  One advantage of the H-MC-S2X 

method is the absence of the high variance “total current” functional.  This suggests that 

H-MC-S2X may perform at the same level as the HCMFD-II and –III methods.  Finally, 

extension to 2-D should be studied to examine whether the increased cost of the 

deterministic calculations is justified by the improvement in computational efficiency 

over standard Monte Carlo. 

8.3.2 The HCMFD-II, HCMFD-III, and HCMFD-IV Methods 

HCMFD-II, -III, and -IV methods were successfully demonstrated on a 

monoenergetic fixed source problem.  While HCMFD-IV had the best performance, it is 

currently limited to analyzing problems in which the coarse mesh is homogeneous. If the 

restriction of homogeneous coarse cells could be removed, the method could be 

advantageous over HCMFD-II and HCMFD-III.  However, the improvement in variance 

over these methods must be weighed against the fact that the HCMFD-IV nonlinear 

functional is more complicated. 

The HCMFD-II and –III were extremely computationally efficient on one-group 

high dominance ratio criticality problems.  These methods should be extended to 
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incorporate energy dependence and anisotropic scattering.  In addition, they should be 

derived for multi-dimensional geometries. 

More studies should be done to determine when the performances of the HCMFD-

II and –III methods differ:  they performed very similarly for the test problems 

considered here.  The HCMFD-III functionals are more complicated due to the 

introduction of the spatial tent function, so it may be best to pursue the HCMFD-II 

method unless practical test problems demonstrate that HCMFD-III is significantly 

advantageous. 

8.3.3 Other Future Work  

We also recommend a study on how these nonlinear functional hybrid methods 

amplify or reduce the bias that exists in standard Monte Carlo calculations when the 

number of histories per cycle is too low.  (A bias is said to exist when the average of 

several independent simulations does not converge to the benchmark solution.)  We did 

not perform multiple calculations to confirm whether a Monte Carlo bias exists for the 

“difficult” two fissile-region test problem (Criticality Problem #2 in Ch. 6), but the 

numerical results from a single simulation indicated that HCMFD-I amplified errors in 

the Monte Carlo estimate, whereas HCMFD-II and HCMFD-III reduced these errors.  

Independent calculations should be performed to see whether a true bias exists. The 

magnitude of bias in each method should then be compared, if it exists. 

In addition, studies need to be done on the propagation of random error through 

deterministic equations.  These studies would shed insight on how statistical errors in the 

functionals become amplified in the solution of the “low-order” equations in these hybrid 

methods.  In addition, this would improve our understanding about the optimal structure 

of the low-order equations for these hybrid methods.  

Finally, there are numerous choices in the implementation of these “nonlinear 

functional” hybrid methods.  There is flexibility in how the nonlinear functionals are 

defined and estimated.  For example, in criticality calculations, we generated new 

estimates of the CMFD nonlinear functionals after each Monte Carlo cycle.  However, 

the functionals could be tallied cumulatively over all active cycles.  Additionally, the 

hybrid methods developed in this work may be used with any Monte Carlo variance 

reduction technique, such as weight windows, provided the Monte Carlo simulation 
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generates “fair” estimates of the quantities required in the nonlinear functionals.  Doing 

this would extend the range of possible applications of these methods to include problems 

with areas of very low neutron density, such as radiation shielding problems. 

8.4 Final Remarks 

The nonlinear functional approaches proposed in this work, as well as those 

developed by Yang and Lee, represent a new strategy for using Monte Carlo in particle 

transport simulations.  The development of these hybrid methods is a relatively new area 

of research, and we cannot yet characterize the behavior of these methods completely.  

We have attempted to provide both mathematical and intuitive justification for using the 

nonlinear functional approach.  In addition, we have provided numerical results showing 

that the various “nonlinear functional” techniques can be used successfully on a wide 

array of test problems.  While the new methods are only partially explored, we have 

shown that these techniques are promising and should be extended to more realistic 

problems. 

 

 


