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CHAPTER I

Introduction

Enumeration of algebraic curves goes back more than 160 years. In 1848, J. Steiner

determined that the number of plane curves of degree d with one node passing

through d(d+3)
2
− 1 points in generic position is 3(d − 1)2. Much effort has since

been put forth towards answering the following question:

How many (possibly reducible) degree d nodal curves with

δ nodes pass through d(d+3)
2
− δ generic points in CP2?

A more algebro-geometric formulation is as follows. Algebraic plane curves of

degree d are zero sets of degree-d homogeneous polynomials with complex coefficients

in three indeterminates, and are thus parametrized by the complex projective space

CP(d+2
2 )−1. The Zariski closure of the subset of such curves with exactly δ nodes is

the Severi variety. Its degree Nd,δ (in this embedding) is the Severi degree Nd,δ, the

number that answers the question above.

Severi varieties have received considerable attention since they were introduced

by F. Enriques [8] and F. Severi [31] around 1915. Much later, in 1986, J. Harris [20]

achieved a celebrated breakthrough by showing their irreducibility. For a detailed

history of Severi varieties, see W. Fulton’s survey article [10].
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A closely related problem concerns the computation of the Gromov-Witten in-

variant of CP2, the number Nd,g of irreducible curves of degree d and genus g in

CP2 which pass through 3d + g − 1 points in general position. After a great deal

of work by many mathematicians and physicists, M. Kontsevich solved this problem

for rational curves in 1994. His celebrated formula [23] for the numbers Nd,0 was

obtained in his study of the quantum cohomology ring of the moduli space of stable

maps, the work which in part earned him a Fields medal. In 1998, L. Caporaso and

J. Harris [6] used deformation theory to develop the first method for computing the

Gromov-Witten invariants Nd,g for any genus g.

This thesis utilizes and extends a recent successful combinatorial approach to

computing Severi degrees and Gromov-Witten invariants of CP2 as well as some of

their generalizations. The approach is based on the tropical geometry technique which

replaces subvarieties of a complex algebraic torus by piecewise-linear polyhedral com-

plexes (see, for example, [13, 27, 30, 32]). Remarkably, many enumerative invariants

survive this degeneration. An instance of this phenomenon is the celebrated Cor-

respondence Theorem of G. Mikhalkin [27] which replaces the computation of the

Severi degree Nd,δ (or the Gromov-Witten invariant Nd,g) by enumeration of certain

tropical plane curves (cf. Section 4.3). One can go one step further and degenerate

tropical plane curves to floor diagrams, a class of decorated graphs introduced by

E. Brugallé and G. Mikhalkin [4, 5]. These purely combinatorial objects, if counted

with appropriate weights, are equinumerous to the tropical curves under consider-

ation, and consequently to the corresponding algebraic curves (cf. Theorem II.10).

This allows for a study of the numbers Nd,δ and Nd,g by combinatorial methods, and

for a development of combinatorial algorithms for their computation.
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The thesis is comprised of three parts (Chapters II – IV) each of which follows one

of the papers [1, 2, 3]. The logical dependence of the chapters and sections is linear,

with the following exceptions. Section 2.5 is independent of Section 2.4. Chapter III

depends on Sections 2.1 – 2.2 only. Chapter IV is (mostly) independent of both

Chapters II and III. Although floor diagrams are the main technical tool utilized in

this thesis, the motivation for their definition and the discussion of their relation to

tropical curves are postponed until Chapter IV as these aspects are not essential for

understanding the earlier chapters.

Chapter II is devoted to the study of Severi degrees Nd,δ in the regime when δ

is fixed while d grows. In 1994, P. Di Francesco and C. Itzykson [7] conjectured

that, for sufficiently large d, the numbers Nd,δ are given by a polynomial Nδ(d) in d

(the “node polynomial”). Recently, S. Fomin and G. Mikhalkin [9] established this

polynomiality using the combinatorial approach alluded to above.

Polynomiality of Severi degrees and explicit formulas for Nδ(d) for small values

of δ have a long history dating back to the 19th century (see Section 2.1). Building

on ideas of S. Fomin and G. Mikhalkin [9], we develop an explicit algorithm for com-

puting the node polynomials for arbitrary δ, and use it to compute Nδ(d) for δ ≤ 14

(see Theorem II.2 and Appendix A), extending earlier results by S. Kleiman and

R. Piene [21]. The methods are combinatorial and make heavy use of floor diagrams

and their template decomposition as introduced by of S. Fomin and G. Mikhalkin [9].

This decomposition recasts the computation of Severi degrees as a (polynomially

weighted) lattice point enumeration in certain simplices (see Theorem II.14 and Re-

mark II.15).

We next investigate the polynomiality threshold of Severi degrees which tells how

large d needs to be for the Severi degree to be given by the evaluations of the node
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polynomial. We improve on the threshold value of S. Fomin and G. Mikhalkin (see

Theorem II.4), and show that L. Göttsche’s conjectural threshold [18] holds and is

sharp for 3 ≤ δ ≤ 14 (see Proposition II.5).

We then compute the first 9 leading terms of the polynomials Nδ(d) for gen-

eral δ (Theorem II.3). This confirms and extends the 1994 prediction made by

P. Di Francesco and C. Itzykson [7].

Chapter III is devoted to enumeration of plane curves which, in addition to pass-

ing through a collection of points, satisfy tangency conditions to a fixed line. These

conditions are encoded by two finite sequences α and β which record tangencies of

various orders to the line at fixed (resp. unconstrained) points. The plane curves sat-

isfying all these requirements are enumerated by the relative Severi degree N δ
α,β, the

degree of the generalized Severi variety introduced by L. Caporaso and J. Harris [6],

which parametrizes such curves. Relative Severi degrees satisfy (and are determined

by) the rather complicated Caporaso-Harris recursion [6].

We show that, for a fixed number of nodes δ, the relative Severi degrees, ap-

propriately rescaled, are given by combinatorially defined “relative node polyno-

mials” Nδ(α; β) in the tangency orders, provided the latter are large enough (for

more details, see Theorem III.1). These polynomials satisfy a “stability condition”

(Theorem III.2). We also give an explicit polynomiality threshold that extends the

threshold for the non-relative case obtained in Chapter II. We use the combina-

torial description to develop a method for computing the polynomials Nδ(α; β) for

arbitrary δ, and use it to compute Nδ(α; β) for δ ≤ 6 (see Appendix C). We also

compute the first few leading terms for general δ (see Theorem III.4).

The methods employed in Chapter III extend those of Chapter II. The argument

relies on a combinatorial description of relative Severi degrees in terms of a more
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refined enumeration of appropriate floor diagrams. The main technical tool is a new

template decomposition compatible with the tangency conditions (see Section 3.3).

Chapter IV presents joint work with A. Gathmann and H. Markwig. It is con-

cerned with the combinatorics of a generalization of floor diagrams for descendant

Gromov-Witten invariants of CP2. These (possibly fractional) invariants “count”

algebraic plane curves which satisfy not only point conditions but also those given

by Psi-classes. The precise definition is via an intersection product on the mod-

uli space of stable maps to CP2. Psi-classes are natural cohomology classes which

come up frequently in the intersection theory of the moduli space of stable curves

or maps. Geometrically, a Psi-condition (together with a point condition) roughly

corresponds to a tangency condition to a generic line. Descendant Gromov-Witten

invariants are qualitatively different from the relative Severi degrees of Chapter III

as different Psi-classes correspond to tangency conditions to different (generic) lines.

We begin Chapter IV by recalling the algebro-geometric definition of (plane) de-

scendant Gromov-Witten invariants and their relative analogues. The latter numbers

satisfy (and are determined by) the Caporaso-Harris formula for relative descendant

Gromov-Witten invariants (Theorem IV.7). We recall the definition of tropical de-

scendant plane Gromov-Witten invariants and their (known) equality to the corre-

sponding classical numbers. We then generalize this definition to tropical relative

plane descendant Gromov-Witten invariants. We introduce the main combinatorial

gadgets of Chapter IV, the Psi-floor diagrams and their relative analogues, which fur-

ther generalize the floor diagrams of E. Brugallé, S. Fomin and G. Mikhalkin [4, 5, 9].

We prove that Psi-floor diagrams count the corresponding tropical curves (Theo-

rem IV.25), and satisfy the same Caporaso-Harris type formula as the correspond-

ing relative descendant Gromov-Witten invariants (Theorem IV.35). It follows that
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tropical relative descendant Gromov-Witten invariants coincide with their algebraic

counterparts. We thus obtain a new correspondence theorem.



CHAPTER II

Computing Node Polynomials for Plane Curves

2.1 Introduction and Main Results

In this chapter we study the degree Nd,δ of the Severi variety parametrizing

(possibly reducible) nodal algebraic curves in the complex projective plane CP2 of

degree d with δ nodes. Equivalently, the number Nd,δ – called the Severi degree – is

the number of such curves which pass through (d+3)d
2
− δ points in generic position.

Severi varieties have received a lot of attention (see, for instance, [6, 20, 29]) since

their introduction by F. Enriques [8] and F. Severi [31] about 100 years ago.

Example II.1. Computing the Severi degree N2,1 amounts to counting plane conics

with 1 node, i.e., line pairs, through 4 points in the plane in generic position (see

Figure 2.1). Thus, we have N2,1 = 3.

Figure 2.1: Three line pairs through four generic points in the plane.

7
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In 1994, the mathematical physicists P. Di Francesco and C. Itzykson [7] conjec-

tured that the Severi degree Nd,δ is given by a polynomial in d, provided that δ is

fixed and d is sufficiently large. It is not hard to see that, if such a polynomial exists,

it has to be of degree 2δ.

Recently, S. Fomin and G. Mikhalkin [9] established this polynomiality using the

combinatorial approach hinted at in Chapter I. More precisely, they showed that

there exists, for every δ ≥ 1, a node polynomial Nδ(d) which satisfies Nd,δ = Nδ(d)

for all d ≥ 2δ. (The δ = 0 case is trivial as Nd,0 = 1 for all d ≥ 1.)

For δ = 1, 2, 3, the polynomiality of Severi degrees and the formulas for Nδ(d)

were determined in the 19th century. For δ = 4, 5, 6, this was only achieved by

I. Vainsencher [35] in 1995. In 2001, S. Kleiman and R. Piene [21] settled the cases

δ = 7, 8. Building on ideas of [9], we develop an explicit algorithm for computing

the node polynomials for arbitrary δ, and use it to compute Nδ(d) for δ ≤ 14.

Theorem II.2. The node polynomials Nδ(d), for δ ≤ 14, are as listed in Appendix A.

In 1994, P. Di Francesco and C. Itzykson [7] conjectured the first seven terms of

the node polynomial Nδ(d), for arbitrary δ. We confirm and extend their assertion.

The first two terms already appeared in [21].

Theorem II.3. The first nine coefficients of Nδ(d) are given by

Nδ(d) =
3δ

δ!

»
d2δ − 2δd2δ−1 − δ(δ − 4)

3
d2δ−2 +

δ(δ − 1)(20δ − 13)

6
d2δ−3+

− δ(δ − 1)(69δ2 − 85δ + 92)

54
d2δ−4 − δ(δ − 1)(δ − 2)(702δ2 − 629δ − 286)

270
d2δ−5+

+
δ(δ − 1)(δ − 2)(6028δ3 − 15476δ2 + 11701δ + 4425)

3240
d2δ−6+

+
δ(δ − 1)(δ − 2)(δ − 3)(13628δ3 − 6089δ2 − 29572δ − 24485)

11340
d2δ−7+

−δ(δ − 1)(δ − 2)(δ − 3)(282855δ4 − 931146δ3 + 417490δ2 + 425202δ + 1141616)

204120
d2δ−8 + · · ·

–
.
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The proofs of Theorems II.2 and II.3 are algorithmic in nature and involve a

computer computation. We describe both algorithms in detail in Sections 2.3 and 2.5,

respectively.

Let d∗(δ) denote the polynomiality threshold for Severi degrees, i.e., the smallest

positive integer d∗ = d∗(δ) such that Nδ(d) = Nd,δ for d ≥ d∗. As mentioned earlier

S. Fomin and G. Mikhalkin [9, Theorem 5.1] showed that d∗ ≤ 2δ. We improve this

as follows.

Theorem II.4. For δ ≥ 1, we have d∗(δ) ≤ δ.

In other words, Nd,δ = Nδ(d) provided d ≥ δ ≥ 1. L. Göttsche [18, Conjecture 4.1]

conjectured that d∗ ≤
⌈
δ
2

⌉
+ 1 for δ ≥ 1. This was verified for δ ≤ 8 by S. Kleiman

and R. Piene [21]. By direct computation we can push it further.

Proposition II.5. For 3 ≤ δ ≤ 14, we have d∗(δ) =
⌈
δ
2

⌉
+ 1.

That is, Göttsche’s threshold is correct and sharp for 3 ≤ δ ≤ 14. For δ = 1, 2 it

is easy to see that d∗(1) = 1 and d∗(2) = 1.

P. Di Francesco and C. Itzykson [7] hypothesized that d∗(δ) ≤
⌈

3
2

+
√

2δ + 1
4

⌉
(which is equivalent to δ ≤ (d∗−1)(d∗−2)

2
). However, our computations show that this

fails for δ = 13 as d∗(13) = 8.

Competing Approaches: Floor Diagrams vs. Caporaso-Harris recursion

An alternative approach to computing the node polynomials Nδ(d) combines poly-

nomial interpolation with the Caporaso-Harris recursion [6]. Once a polynomiality

threshold d0(δ) has been established (i.e., once we have proved that Nδ(d) = Nd,δ

for d ≥ d0(δ)), we can use the recursion to determine a sufficient number of Severi

degrees Nd,δ for d ≥ d0(δ), from which we then interpolate.
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This approach was first used by L. Göttsche [18, Remark 4.1(1)]. He conjectured

[18, Conjecture 4.1] the polynomiality threshold d0(δ) = d δ
2
e + 1, and combined it

with the “Göttsche-Yau-Zaslow formula” [18, Conjecture 2.4] (now a theorem of Y.-

J. Tzeng [34]) to calculate the putative node polynomials Nδ(d) for δ ≤ 28. The

Göttsche-Yau-Zaslow formula is a stronger version of polynomiality that allows one

to compute each next node polynomial by calculating only two additional Severi

degrees Nd0(δ),δ and Nd0(δ)+1,δ, which is done via the Caporaso-Harris formula. Since

Göttsche’s threshold d0(δ) = d δ
2
e+ 1 remains open as of this writing, the algorithm

he used to compute the node polynomials is still awaiting a rigorous justification.

The first polynomiality threshold d0(δ) = 2δ was established by S. Fomin and

G. Mikhalkin [9, Theorem 5.1]. Using this result, one can compute Nδ(d) for δ ≤ 9

but hardly any further1. With the threshold d0(δ) = δ established in Theorem II.4,

it should be possible to compute Nδ(d) for δ ≤ 16 or perhaps δ ≤ 17.

By contrast, our Algorithm 1 does not involve interpolation nor does it require

an a priori knowledge of a polynomiality threshold. Our computations verify the

results of L. Göttsche’s calculations for δ ≤ 14. In our implementations, Algorithm 1

is roughly as efficient as the interpolation method discussed above. (We repeat that

the latter method depends on the threshold obtained using floor diagrams.)

Gromov-Witten invariants

The Gromov-Witten invariant Nd,g enumerates irreducible plane curves of degree

d and genus g through 3d + g − 1 generic points in CP2. Algorithm 1 (with minor

adjustments, cf. Theorem II.10(2)) can be used to directly compute Nd,g, without

resorting to a recursion involving relative Gromov-Witten invariants à la Caporaso–

Harris [6].

1We used an efficient C implementation of the Caporaso-Harris recursion by A. Gathmann.
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2.2 Floor Diagrams

Floor diagrams – the main combinatorial objects of this thesis – are gadgets

which, if counted correctly, enumerate plane curves with certain prescribed prop-

erties. E. Brugallé and G. Mikhalkin introduced them in [4] (in slightly different

notation) and studied them further in [5]. To keep the presentation self-contained

and to fix notation we review them and their markings following [9] where the frame-

work that best suits our purposes was introduced.

Definition II.6. A floor diagram D on a vertex set {1, . . . , d} is a directed graph

(possibly with multiple edges) with positive integer edge weights w(e) satisfying:

1. The edge directions respect the order of the vertices, i.e., for each edge i→ j of

D we have i < j.

2. (Divergence Condition) For each vertex j of D, we have

div(j)
def
=

∑
edges e

j
e→ k

w(e)−
∑

edges e

i
e→ j

w(e) ≤ 1.

This means that at every vertex of D the total weight of the outgoing edges is larger

by at most 1 than the total weight of the incoming edges.

The degree of a floor diagram D is the number of its vertices. It is connected if its

underlying graph is. Note that in [9] floor diagrams are required to be connected. If

D is connected its genus is the genus of the underlying graph (or the first Betti num-

ber of the underlying topological space). The cogenus of a connected floor diagram

D of degree d and genus g is given by δ(D) = (d−1)(d−2)
2

−g. If D is not connected, let

d1, d2, . . . and δ1, δ2, . . . be the degrees and cogenera, respectively, of its connected

components. Then the cogenus of D is
∑

j δj +
∑

j<j′ djdj′ . Via the correspondence
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between algebraic curves and floor diagrams ([9, Theorem 3.9]) these notions cor-

respond literally to the respective analogues for algebraic curves. Connectedness

corresponds to irreducibility. Lastly, a floor diagram D has multiplicity2

µ(D) =
∏

edges e

w(e)2.

We draw floor diagrams using the convention that vertices in increasing order are

arranged left to right. Edge weights of 1 are omitted.

Example II.7. An example of a floor diagram of degree d = 4, genus g = 1, cogenus

δ = 2, divergences 1, 1, 0,−2, and multiplicity µ = 4 is drawn below.

g g g g. ..................
................. ................ ............... ................ ................. ..................

. .................. ................. ................ ............... ................ .................
..................

2- -
j

*

To enumerate algebraic curves via floor diagrams we need the notion of markings

of such diagrams.

Definition II.8. A marking of a floor diagram D is defined by the following three

step process which we illustrate in the case of Example IV.19.

Step 1: For each vertex j of D create 1− div(j) many new vertices and connect

them to j with new edges directed away from j.

g g g g. ..................
................. ................ ............... ................ ................. ..................

. .................. ................. ................ ............... ................ .................
..................

2- - j

*@
@
@@R w @

@
HHHH

PPPPPP
@R
HHj
PPPqw w w

Step 2: Subdivide each edge of the original floor diagram D into two directed

edges by introducing a new vertex for each edge. The new edges inherit their weights

and orientations. Call the resulting graph D̃.

g g g g. ..................
................. ................ ............... ................ ................. ..................

. .................. ................. ................ ............... ................ .................
..................

2 2- - - - j

*

*

j
w w ww@

@
@@R @

@
H
HHH

PPPPPP
@R
H
Hj
PPPqw w w w

2If floor diagrams are viewed as floor contractions of tropical plane curves this corresponds to the notion of
multiplicity of tropical plane curves.
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Step 3: Linearly order the vertices of D̃ extending the order of the vertices of the

original floor diagram D such that, as before, each edge is directed from a smaller

vertex to a larger vertex.

2 2g g g gw w w w ww w w- - - - -.
...................

.................
..............
............
........... ........... ............ ........... ........... ........... ............ ..............

...............
..

..............
.....

-

.
......................

.
....................... ....................... ....................... . ...................... .................... ..................

................
..............

-

.
.......................

.......................
....................... ....................... . ...................... .................... .................. ................ ..............
-
- -.

.............
...........
............ ............. .............. . .............. ............. ............ ........... .............
-

.
....................
.................
.................
................ ................ ................ . ................ ................ ................ .................

................
.

...............
.....

-

The extended graph D̃ together with the linear order on its vertices is called a

marked floor diagram, or a marking of the original floor diagram D.

We want to count marked floor diagrams up to equivalence. Two markings D̃1,

D̃2 of a floor diagram D are equivalent if there exists an automorphism of weighted

graphs which preserves the vertices of D and maps D̃1 to D̃2. The number of markings

ν(D) is the number of marked floor diagrams D̃ up to equivalence.

Example II.9. The floor diagram D of Example IV.19 has ν(D) = 7 markings (up

to equivalence): In step 3 the extra 1-valent vertex connected to the third white

vertex from the left can be inserted in three ways between the third and fourth white

vertex (up to equivalence) and in four ways right of the fourth white vertex (again

up to equivalence).

Now we can make precise how to compute Severi degrees Nd,δ and Gromov-Witten

invariants Nd,g in terms of combinatorics of floor diagrams, thereby reformulating the

initial question at the beginning of Chapter I. Part 2 is not needed in the chapter

and only included for completeness. However, we encounter rational Gromov-Witten

invariants and generalizations again in Chapter IV. Part 2 first appeared in [4,

Theorem 1].

Theorem II.10. [9, Corollary 1.9, Theorem 1.6]



14

1. The Severi degree Nd,δ, i.e., the number of possibly reducible nodal curves in

CP2 of degree d with δ nodes through d(d+3)
2
− δ generic points, is equal to

Nd,δ =
∑
D

µ(D)ν(D),

where D runs over all possibly disconnected floor diagrams of degree d and co-

genus δ.

2. The Gromov-Witten invariant Nd,g, i.e., the number of irreducible curves in

CP2 of degree d and genus g through 3d+ g − 1 generic points, is equal to

Nd,g =
∑
D

µ(D)ν(D),

where D runs over all connected floor diagrams of degree d and genus g.

2.3 Computing Node Polynomials

In this section we give an explicit algorithm that symbolically computes the node

polynomials Nδ(d), for given δ ≥ 1. (As Nd,0 = 1 for d ≥ 1, we put N0(d) = 1.)

An implementation of this algorithm was used to prove Theorem II.2 and Propo-

sition II.5. We mostly follow the notation in [9, Section 5]. First, we rephrase

Theorem II.2 in more compact notation. For δ ≤ 8 one recovers [21, Theorem 3.1].

For δ ≤ 14 this coincides with the conjectural formulas of [18, Remark 2.5].

Theorem II.11. The node polynomials Nδ(d), for δ ≤ 14, are given by the generat-

ing function
∑

δ≥0Nδ(d)xδ via the transformation

∑
δ≥0

Nδ(d)xδ = exp

(∑
δ≥0

Qδ(d)xδ
)
,
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where

Q0(d) = 1,

Q1(d) = 3(d− 1)2,

Q2(d) = −3
2

(d− 1)(14d− 25),

Q3(d) = 1
3
(690d2 − 2364d+ 1899),

Q4(d) = 1
4
(−12060d2 + 47835d− 45207),

Q5(d) = 1
5
(217728d2 − 965646d+ 1031823),

Q6(d) = 1
6
(−4010328d2 + 19451628d− 22907925),

Q7(d) = 1
7
(74884932d2 − 391230216d+ 499072374),

Q8(d) = 1
8
(−1412380980d2 + 7860785643d− 10727554959),

Q9(d) = 1
9
(26842726680d2 − 157836614730d+ 228307435911),

Q10(d) = 1
10

(−513240952752d2 + 3167809665372d− 4822190211285),

Q11(d) = 1
11

(9861407170992d2 − 63560584231524d+ 101248067530602),

Q12(d) = 1
12

(−190244562607008d2 + 1275088266948600d− 2115732543025293),

Q13(d) = 1
13

(3682665360521280d2 − 25576895657724768d+ 44039919476860362),

Q14(d) = 1
14

(−71494333556133600d2 + 513017995615177680d− 913759995239314452).

In particular, all Qδ(d), for 1 ≤ δ ≤ 14, are quadratic in d.

L. Göttsche [18] conjectured that all Qδ(d) are quadratic. This theorem proves

his conjecture for δ ≤ 14.

The basic idea of the algorithm (see [9, Section 5]) is to decompose floor diagrams

into smaller building blocks. These gadgets are be crucial in the proofs of all theorems

in Chapters II and III.

Definition II.12. A template Γ is a directed graph (with possibly multiple edges)

on vertices {0, . . . , l}, for l ≥ 1, and edge weights w(e) ∈ Z>0, satisfying:

1. If i→ j is an edge then i < j.

2. Every edge i
e→ i+ 1 has weight w(e) ≥ 2. (No “short edges.”)

3. For each vertex j, 1 ≤ j ≤ l− 1, there is an edge “covering” it, i.e., there exists

an edge i→ k with i < j < k.

Every template Γ comes with some numerical data associated with it. Its length

l(Γ) is the number of vertices minus 1. The product of squares of the edge weights
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Γ δ(Γ) `(Γ) µ(Γ) ε(Γ) κ(Γ) kmin(Γ) PΓ(k) s(Γ)d d2
1 1 4 0 (2) 2 k − 1 1d d d. ..........................

......................... ........................ ........................ ......................... .......................... 1 2 1 1 (1,1) 1 2k + 1 0d d3
2 1 9 0 (3) 3 k − 2 1d d2

2

. ................. ................ ................ .................. ................. ................ ................ ................. 2 1 16 0 (4) 4
(
k−2

2

)
2d d d. ......................... ........................ ........................ ........................ ........................ .......................... ......................... ........................ ........................ ........................ ........................ ......................... 2 2 1 1 (2,2) 2

(
2k
2

)
0d d d. ......................... ........................ ........................ ........................ ........................ .........................

2 2 2 4 1 (3,1) 3 2k(k − 2) 1d d d. ......................... ........................ ........................ ........................ ........................ .........................

2 2 2 4 0 (1,3) 2 2k(k − 1) 1d d d d. ..................................
................................ ............................... .............................. ............................... ................................ .................................. 2 3 1 1 (1,1,1) 1 3(k + 1) 0d d d d. ..........................

......................... ........................ ........................ ......................... ........................... ..........................
......................... ........................ ........................ ......................... .......................... 2 3 1 1 (1,2,1) 1 k(4k + 5) 0

Figure 2.2: The templates with δ(Γ) ≤ 2.

is its multiplicity µ(Γ). Its cogenus δ(Γ) is

δ(Γ) =
∑
i
e→j

[
(j − i)w(e)− 1

]
.

For 1 ≤ j ≤ l(Γ) let κj = κj(Γ) denote the sum of the weights of edges i → k

with i < j ≤ k and define

kmin(Γ) = max
1≤j≤l

(κj − j + 1).

This makes kmin(Γ) the smallest positive integer k such that Γ can appear in a floor

diagram on {1, 2, . . . } with left-most vertex k. Lastly, set

ε(Γ) =

 1 if all edges arriving at l have weight 1,

0 otherwise.

Figure 2.2 (Figure 10 taken from [9]) lists all templates Γ with δ(Γ) ≤ 2.

A floor diagramD on d vertices decomposes into an ordered collection (Γ1, . . . ,Γm)

of templates as follows: First, add an additional vertex d+ 1 (> d) to D along with,

for every vertex j of D, 1−div(j) new edges of weight 1 from j to the new vertex d+1.
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The resulting floor diagram D′ has divergence 1 at every vertex coming from D. Now

remove all short edges from D′, that is, all edges of weight 1 between consecutive

vertices. The result is an ordered collection of templates (Γ1, . . . ,Γm), listed left to

right, and it is not hard to see that
∑
δ(Γi) = δ(D). This process is reversible once

we record the smallest vertex ki of each template Γi (see Example II.13).

Example II.13. An example of the decomposition of a floor diagram into templates

is illustrated below. Here, k1 = 2 and k2 = 4.e e e e e. ................
............... ............. ............. ............... ................. ................ ............... ............. ............. ...............

................
2- - -j

*
3-

l
D =

e e e e e e. ................
............... ............. ............. ............... ................. ................ ............... ............. ............. ...............

................
.

...................
....................

.................... ..................... ..................... . ..................... ..................... .................... ....................
..................

.
. ................

............... ............. ............. ............... ................. ................ ............... ............. ............. ...............
................

2- - -j

*
3- -

-
j

*

l
D′ =

e e e e e e.
...................

....................
.................... ..................... ..................... . ..................... ..................... .................... ....................

..................
.( ) 2- 3-

-

(Γ1,Γ2) =

To each template Γ we associate a polynomial that records the number of “mark-

ings of Γ:” For k ∈ Z>0 let Γ(k) denote the graph obtained from Γ by first adding

k + i − 1 − κi short edges connecting i − 1 to i, for 1 ≤ i ≤ l(Γ), and then sub-

dividing each edge of the resulting graph by introducing one new vertex for each

edge. By [9, Lemma 5.6] the number of linear extensions (up to equivalence) of the

vertex poset of the graph Γ(k) extending the vertex order of Γ is a polynomial in k,

if k ≥ kmin(Γ), which we denote by PΓ(k) (see Figure 2.2). The number of markings

of a floor diagram D decomposing into templates (Γ1, . . . ,Γm) is then

ν(D) =
m∏
i=1

PΓi(ki),

where ki is the smallest vertex of Γi in D. The algorithm is based on

Theorem II.14 ([9], (5.13)). The Severi degree Nd,δ, for d, δ ≥ 1, is given by the
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template decomposition formula

(2.1)
∑

(Γ1,...,Γm)

m∏
i=1

µ(Γi)

d−l(Γm)+ε(Γm)∑
km=kmin(Γm)

PΓm(km) · · ·
k2−l(Γ1)∑

k1=kmin(Γ1)

PΓ1(k1),

where the first sum is over all ordered collections of templates (Γ1, . . . ,Γm), for all

m ≥ 1, with
∑m

i=1 δ(Γi) = δ, and the sums indexed by ki, for 1 ≤ i < m, are over

kmin(Γi) ≤ ki ≤ ki+1 − l(Γi),

Remark II.15. Theorem II.14 recasts the calculation of the Severi degree Nd,δ as a

lattice point enumeration with polynomial weights. More specifically, each template

collection (Γ1, . . . ,Γm) with
∑m

i=1 δ(Γi) determines a (possibly empty) simplex in Rm

given by

{k ∈ Rm : ki ≥ kmin(Γi) (1 ≤ i ≤ m),

ki + l(Γi) ≤ ki+1 (1 ≤ i ≤ m− 1), km + l(Γm) ≤ d+ ε(Γm)}.

We obtain Nd,δ by enumerating the lattice points in all such simplices with the

polynomial weight
∏m

i=1 µ(Γi)PΓi(ki).

Expression (2.1) can be evaluated symbolically, using the following two lemmata.

The first is Faulhaber’s formula [22] from 1631 for discrete integration of polyno-

mials. The second treats lower limits of iterated discrete integrals and its proof is

straightforward. Here Bj denotes the jth Bernoulli number with the convention that

B1 = +1
2
.

Lemma II.16 ([22]). Let f(k) =
∑d

i=0 cik
i be a polynomial in k. Then, for n ≥ 0,

(2.2) F (n)
def
=

n∑
k=0

f(k) =
d∑
s=0

cs
s+ 1

s∑
j=0

(
s+ 1

j

)
Bjn

s+1−j.

In particular, deg(F ) = deg(f) + 1.
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Data: The cogenus δ.
Result: The node polynomial Nδ(d).
begin

Generate all templates Γ with δ(Γ) ≤ δ;
Nδ(d)← 0;
forall the ordered collections of templates Γ̃ = (Γ1, . . . ,Γm) with

∑m
i=1 δ(Γi) = δ do

i← 1;
Q1 ← 1;
while i ≤ m do

ai ← max
(
kmin(Γi), kmin(Γi−1) + l(Γi−1), . . . , kmin(Γ1) + l(Γ1) + · · ·+ l(Γi−1)

)
;

end
while i ≤ m− 1 do

Qi+1(ki+1)←
∑ki+1−l(Γi)
ki=ai

PΓi(ki)Qi(ki);
i← i+ 1;

end

QΓ̃(d)←
∑d−l(Γm)+ε(Γm)
km=am

PΓm(km)Qm(km);
QΓ̃(d)←

∏m
i=1 µ(Γi) ·QΓ̃(d);

Nδ(d)← Nδ(d) +QΓ̃(d);
end

end
Algorithm 1: Algorithm to compute node polynomials.

Lemma II.17. Let f(k1) and g(k2) be polynomials in k1 and k2, respectively, and

let a1, b1, a2, b2 ∈ Z≥0. Furthermore, let F (k2) =
∑k2−b1

k1=a1
f(k1) be a discrete anti-

derivative of f(k1), where k2 ≥ a1 + b1. Then, for n ≥ max(a1 + b1 + b2, a2 + b2),

n−b2∑
k2=a2

g(k2)

k2−b1∑
k1=a1

f(k1) =

n−b2∑
k2=max(a1+b1,a2)

g(k2)F (k2).

Example II.18. An illustration of Lemma II.17 is the following iterated discrete

integral:

n∑
k2=1

k2−2∑
k1=1

1 =
n∑

k2=1

 k2 − 2 if k2 ≥ 2

0 if k2 = 1

 =
n∑

k2=3

(
k2 − 2

)
.

Using these results Algorithm 1 computes node polynomials Nδ(d) for an arbitrary

number of nodes δ. The first step, the template generation, is explained later in this

section.

Proof of Correctness of Algorithm 1. The algorithm is a direct implementation of

Theorem II.14. The m-fold discrete integral is evaluated symbolically, one sum at a
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time, using Faulhaber’s formula (Lemma II.16). The lower limit ai of the ith sum is

given by an iterated application of Lemma II.17.

As Algorithm 1 is stated its termination in reasonable time is hopeless for δ ≥ 8

or 9. The novelty of this section, together with an explicit formulation, is how to

implement the algorithm efficiently. This is explained in Remark II.19.

Remark II.19. The running time of the algorithm can be improved vastly as follows:

As the limits of summation in (2.1) only depend on kmin(Γi), l(Γi) and ε(Γm), we

can replace the template polynomials PΓi(ki) by
∑
PΓi(ki), where the sum is over

all templates Γi with prescribed (kmin, l, ε). After this transformation the first sum

in (2.1) is over all combinations of those tuples. This reduces the computation

drastically as, for example, the 167885753 templates of cogenus 14 make up only

343 equivalence classes. Also, in (2.1) we can distribute the template multiplicities

µ(Γi) and replace PΓi(ki) by µ(Γi)PΓi(ki) and thereby eliminate
∏
µ(Γi). Another

speed-up is to compute all discrete integrals of monomials using Lemma II.16 in

advance.

The generation of the templates is the bottleneck of the algorithm. Their number

grows rapidly with δ as can be seen from Figure 2.4. However, their generation can

be parallelized easily (see below).

Algorithm 1 has been implemented in Maple. Computing N14(d) on a machine

with two quad-core Intel(R) Xeon(R) CPU L5420 @ 2.50GHz, 6144 KB cache, and

24 GB RAM took about 70 days.

Remark II.20. Using the combinatorial framework of floor diagrams one can show

that also relative Severi degrees (i.e., the degrees of generalized Severi varieties,

see [6, 36]) are polynomial and given by “relative node polynomials” [2, Theorem 1.1].
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Figure 2.3: Branch-and-bound tree for α =
[
0 1
2 0

]
.

This suggests the existence of a generalization of Göttsche’s Conjecture [18, Con-

jecture 2.1] and the Göttsche-Yau-Zaslow formula [18, Conjecture 2.1]. Thus, the

combinatorics of floor diagrams lead to new conjectures although the techniques and

results seem to be out of reach at this time.

Remark II.21. We can use Algorithm 1 to compute the values of the Severi degrees

Nd,δ for prescribed values of d and δ. After we specify a degree d and a number of

nodes δ all sums in our algorithm become finite and can be evaluated numerically.

See Appendix B for all values of Nd,δ for 0 ≤ δ ≤ 14 and 1 ≤ d ≤ 13.

Proof of Proposition II.5. For 1 ≤ δ ≤ 14 we observe, using the data in Appendices

A and B, that Nδ(d) = Nd,δ for all d0(δ) ≤ d < δ, where d0(δ) =
⌈
δ
2

⌉
+1 is Göttsche’s

threshold. Furthermore, Nδ(d0(δ)− 1) 6= Nd0(δ)−1,δ for all 3 ≤ δ ≤ 14.

2.3.1 Template Generation

To compute a list of all templates of a given cogenus one can proceed as follows.

First, we need some terminology and notation. An edge i→ j of a template is said
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Data: A graph A with a distinguished edge e1.
Result: An infinite directed tree of graphs with root A.
begin

forall the edges e2 of A with e2 ≥ e1 (in the fixed order) do
B ← graph obtained from A by moving e2 to the next vertex;
if the natural partial order (from left to right) of the edges of B that are of the same
type as e2 is compatible with the fixed order then

Insert B as a child of A;
Execute this procedure with input (B, e2);

end
end

end
Algorithm 2: A recursion which can generates a tree containing all templates of a given type.

to have length j − i. A template Γ is of type α = (αij), i, j ∈ Z>0, if Γ has αij

edges of length i and weight j. Every type α satisfies, by definition of cogenus of a

template,

(2.3)
∑
i,j≥1

αij(i · j − 1) = δ(Γ).

Note that α11 = 0 as short edges are not allowed in templates. The number of types

constituting a given cogenus δ is finite.

We can generate all templates of type α using a branch-and-bound algorithm

which slides edges in a suitable order. Let Γ0 be the unique template of type α with

all edges emerging from vertex 0. Fix a linear order on the set of edges of type α.

For example, if α =
[
0 1
2 0

]
, we could choose:

d d
2
- d d d. ................

...............
................ ................. .................. . .................. ................. ................ ............... ................
-

< d d d.
.....................

..................
................
..............
.............. ............. ............. . ............. ............. .............. ..............

................
...............

...

...............
......

-

< .

Algorithm 2 applied to the pair (Γ0, e0), where e0 is the smallest edge of Γ0,

creates an infinite directed tree with root Γ0 all of whose vertices correspond to

different graphs. Eliminate a branch if either

1. no edge of the root of the branch starts at vertex 1, or
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δ # of templates δ # of templates δ # of templates
1 2 6 1711 11 2233572
2 7 7 7135 12 9423100
3 26 8 29913 13 39769731
4 102 9 125775 14 167885753
5 414 10 529755

Figure 2.4: The number of templates with cogenus δ ≤ 14.

2. condition (3) in Definition II.12 is impossible to satisfy for graphs further down

the tree.

See Figure 2.3.1 for an illustration for α =
[
0 1
2 0

]
.

A complete, non-redundant list of all templates of type α is then given by all

remaining graphs which satisfy condition (3) of Definition II.12 as every template can

be obtained in a unique way from Γ0 by shifting edges in an order that is compatible

with the order fixed earlier. Note that it can happen that a non-template graph

precedes a template within a branch. For an example see the graph in brackets in

Figure 2.3.1. Template generation for different types can be executed in parallel.

The number of templates, for δ ≤ 14, is given in Figure 2.4.

2.4 Threshold Values

S. Fomin and G. Mikhalkin [9, Theorem 5.1] proved polynomiality of the Severi

degrees Nd,δ in d, for fixed δ, provided d is sufficiently large. More precisely, they

showed that Nδ(d) = Nd,δ for d ≥ 2δ. In this section we show that their threshold

can be improved to d ≥ δ (Theorem II.4).

We need the following elementary observation about robustness of discrete anti-

derivatives of polynomials whose continuous counterpart is the well known fact that∫ a−s−1

a−1
f(x)dx = 0 if f(x) = 0 on the interval (a− s− 1, a− 1).

Lemma II.22. For a polynomial f(k) and a ∈ Z>0 let F (n) =
∑n

k=a f(k) be
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the polynomial in n uniquely determined by large enough values of n. (F (n) is

a polynomial by Lemma II.16.) If we have f(a − 1) = · · · = f(a − s) = 0 for

some 0 ≤ s < a (this condition is vacuous for s = 0) then it also holds that

F (a − 1) = · · · = F (a − s − 1) = 0. In particular,
∑n

k=a f(k) is a polynomial

in n, for n ≥ a− s− 1.

Even for s = 0 the lemma is non-trivial as, in general, F (a− 2) 6= 0.

Proof. Let G(n) be the polynomial in n defined via G(n) =
∑n

k=0 f(k) for large n.

Then F (n) = G(n)−
∑a−1

k=0 f(k) for all n ∈ Z≥0. In particular, for any 0 ≤ i ≤ s, we

have F (a− i− 1) = G(a− i− 1)−
∑a−1

k=0 f(k) = G(a− i− 1)−
∑a−i−1

k=0 f(k) = 0.

Recall that for a template Γ, we defined kmin = kmin(Γ) to be the smallest k ≥ 1

such that k + j − 1 ≥ κj(Γ) for all 1 ≤ j ≤ l(Γ). Let j0 be the smallest j for which

equality is attained (it is easy to see that equality is attained for some j). Define

s(Γ) to be the number of edges of Γ from j0− 1 to j0 (of any weight). See Figure 2.2

for some examples. The following lemma shows that the template polynomials PΓ(k)

satisfy the condition of Lemma II.22.

Lemma II.23. With the notation from above it holds that

PΓ(kmin − 1) = PΓ(kmin − 2) = · · · = PΓ(kmin − s(Γ)) = 0.

Proof. Recall from Section 2.3 that, for k ≥ kmin(Γ), the polynomial PΓ(k) records the

number of linear extension (up to equivalence) of some poset Γ(k) which is obtained

from Γ by first adding k + j − 1 − κj(Γ) “short edges” connecting j − 1 to j, for

1 ≤ j ≤ l(Γ), and then subdividing each edge of the resulting graph by introducing

a new vertex for each edge.

Using the notation from the last paragraph notice that kmin +j0−1 = κj0(Γ), and

thus Γ(k) has k− kmin “short edges” between j0− 1 and j0. Every linear extension of
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Γ(k) can be obtained by first linearly ordering the midpoints of these k− kmin “short

edges” and the midpoints of the s(Γ) many edges of Γ connecting j0 − 1 and j0

before completing the linear order to all vertices of Γ(k). Therefore, the polynomial

(k − kmin + 1) · · · (k − kmin + s(Γ)) divides PΓ(k).

Before we can prove Theorem II.4 we need a last technical lemma.

Lemma II.24. Using the notation from above we have, for each template Γ,

kmin(Γ)− s(Γ) + l(Γ)− ε(Γ) ≤ δ(Γ) + 1.

Proof. As before, let j0 be the smallest j in {1, . . . , l(Γ)} with kmin + j − 1 = κj(Γ).

It suffices to show that κj0(Γ)− j0 − s(Γ) + l(Γ)− ε(Γ) ≤ δ(Γ).

Let Γ′ be the template obtained from Γ by removing all edges i → k with either

k < j0 or i ≥ j0. It is easy to see that l(Γ) − ε(Γ) − (l(Γ′) − ε(Γ′)) ≤ δ(Γ) − δ(Γ′).

Thus, we can assume without loss of generality that all edges i → k of Γ satisfy

i < j0 ≤ k. Therefore, as κj0(Γ) =
∑

edges e of Γ wt(e) it suffices to show that

(2.4) l(Γ)− ε(Γ) ≤
∑

edges e of Γ

[
wt(e)(len(e)− 1)− 1

]
+ s(Γ) + j0,

where len(e) is the length of an edge e. The contribution of the s(Γ) edges of Γ

between j0 − 1 and j0 to the sum is −s(Γ), thus the right-hand-side of (2.4) equals

(2.5)
∑[

wt(e)(len(e)− 1)− 1
]

+ j0

with the sum now running over all edges of Γ of length at least 2. If there are no

such edges, then l(Γ) = 1 and we are done. Otherwise, if ε(Γ) = 1, expression (2.5)

equals
∑

(len(e)− 2) + j0, which is ≥ l(Γ)− 2 + j0 or ≥ l(Γ)− 3 + j0 if j0 ∈ {1, l(Γ)}

or 1 < j0 < l(Γ), respectively (by considering only edges adjacent to vertices 0 and

l(Γ) of Γ). In either case the result follows.
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If ε(Γ) = 0 then expression (2.5) is ≥ l(Γ) + (l(Γ) − 3 + j0) or ≥ l(Γ) − 2 + j0 if

j0 ∈ {1, l(Γ)} or 1 < j0 < l(Γ), respectively. This completes the proof.

Proof of Theorem II.4. By Lemma II.17 and repeated application of Lemmata II.22

and II.23 it suffices to show that d ≥ δ simultaneously implies

d ≥ l(Γm)− ε(Γm) + kmin(Γm)− s(Γm)− 1,

d ≥ l(Γm)− ε(Γm) + l(Γm−1) + kmin(Γm−1)− s(Γm−1)− 2,

...

d ≥ l(Γm)− ε(Γm) + l(Γm−1) + · · ·+ l(Γ1) + kmin(Γ1)− s(Γ1)−m,

(2.6)

for all collections of templates (Γ1, . . . ,Γm) with
∑m

i=1 δ(Γi) = δ.

The first inequality is a direct consequence of Lemma II.24. For the other inequal-

ities, notice that l(Γ)− ε(Γ) ≤ δ(Γ) for all templates Γ, hence

l(Γm)− ε(Γm)− 1 ≤ δ(Γm)− 1

and

l(Γi)− 1 ≤ δ(Γi), for 2 ≤ i ≤ m− 1.

By Lemma II.24 we have

l(Γ1) + kmin(Γ1)− s(Γ1)− 1 ≤ δ(Γ1) + 1

as ε(Γ1) ≤ 1, and the right-hand-side of the last inequality of (2.6) is ≤
∑m

i=1 δ(Γi) =

δ ≤ d. The proof of the other inequalities is very similar.

2.5 Coefficients of Node Polynomials

The goal of this section is to present an algorithm for the computation of the

coefficients of Nδ(d), for general δ. The algorithm can be used to prove Theorem II.3
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and thereby confirm and extend a conjecture of P. Di Francesco and C. Itzykson in

[7] where they conjectured the 7 terms of Nδ(d) of largest degree.

Our algorithm should be able to find formulas for arbitrarily many coefficients of

Nδ(d). We prove correctness of our algorithm in this section. The algorithm rests on

the polynomiality of solutions of certain polynomial difference equations (see (2.13)).

First, we fix some notation building on terminology of Section 2.3. By Re-

mark II.19 we can replace the polynomials PΓ(k) in (2.1) by the product µ(Γ)PΓ(k),

thereby removing the product
∏
µ(Γi) of the template multiplicities. In this section

we write P ∗(Γ, k) for µ(Γ)PΓ(k). For integers i ≥ 0 and a ≥ 0 let Mi(a) denote the

matrix of the linear map

(2.7) f(k) 7→
∑

Γ:δ(Γ)=i

n−l(Γ)∑
k=kmin(Γ)

P ∗(Γ, k) · f(k),

where f(k) = c0k
a + c1k

a−1 + · · · , a polynomial of degree a, is mapped to the

polynomial Mi(a)(f(k)) = d0n
a+i+1 + d1n

a+i + · · · in n. (By Lemma II.16 and the

proof of Lemma II.25 the image has degree a+ i+ 1.) Hence Mi(a)c = d. Similarly,

define M end
i (a) to be the matrix of the linear map

(2.8) f(k) 7→
∑

Γ:δ(Γ)=i

n−l(Γ)+ε(Γ)∑
k=kmin(Γ)

P ∗(Γ, k) · f(k).

Later we will consider square sub-matrices of Mi(a) and M end
i (a) by restriction

to the first few rows and columns which will be denoted Mi(a) and M end
i (a) as well.

Note that Mi(a) and M end
i (a) are lower triangular. For example, for a large enough,

M1(a) =



6
a+2

0 0 0 0 · · ·
−5a+8

a+1
6

a+1
0 0 0 · · ·

5
2
a+ 3 −5a+3

a
6
a

0 0 · · ·
−1

4
(4a+ 1)a 5

2
a+ 1

2
−5a−2

a−1
6

a−1
0 · · ·

1
40

(13a2 − 20a+ 7)a −a2 + 7
4
a− 3

4
5
2
a− 2 −5a−7

a−2
6

a−2
· · ·

...
...

...
...

...
. . .


.
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Lemma II.25. The first a + i rows of Mi(a) and M end
i (a) are independent of the

lower limits of summation in (2.7) and (2.8), respectively.

Proof. It is an easy consequence of the proof of [9, Lemma 5.7] that the polynomial

P ∗(Γ, k) associated with a template Γ has degree ≤ δ(Γ). Equality is attained by

the template Γ on vertices 0, 1, 2 with i edges connecting 0 and 2 (so δ(Γ) = i). As

discrete integration of a polynomial increases the degree by 1 the polynomial on the

right-hand-side of (2.7) has degree 1 + i+ a.

The basic idea of the algorithm is that templates with higher cogenera do not

contribute to higher degree terms of the node polynomial. With this in mind we

define, for each finite collection (Γ1, . . . ,Γm) of templates, its type τ = (τ2, τ3, . . . ),

where τi is the number of templates in (Γ1, . . . ,Γm) with cogenus equal to i, for i ≥ 2.

Note that we do not record the number of templates with cogenus equal to 1.

To collect the contributions of all collections of templates with a given type τ ,

let τ = (τ2, τ3, . . . ) and fix δ ≥
∑

j≥2 τj (so that there exist template collections

(Γ1, . . . ,Γm) of type τ with
∑
δ(Γj) = δ). We define two (column) vectors Cτ (δ)

and Cend
τ (δ) as the coefficient vectors, listed in decreasing order, of the polynomials

(2.9)
∑

(Γ1,...,Γm)

n−l(Γm)∑
km=kmin(Γm)

P ∗(Γm, km) · · ·
k2−l(Γ1)∑

k1=kmin(Γ1)

P ∗(Γ1, k1)

and

(2.10)
∑

(Γ1,...,Γm)

n−l(Γm)+ε(Γ)∑
km=kmin(Γm)

P ∗(Γm, km)

km−l(Γm−1)∑
km−1=kmin(Γm−1)

· · ·
k2−l(Γ1)∑

k1=kmin(Γ1)

P ∗(Γ1, k1)

in the indeterminate n, where the respective first sums are over all ordered collections

of templates of type τ .

It might look like Cτ (δ) is a product of some matrices Mi(a) applied to the poly-



29

nomial 1. However, this is not the case. For example, note that

C(0,0,... )(2) =



9
2
−34
88
−179

2
30
0
...


6=



9
2
−34
88
−179

2
27
0
...


= M1(2) ·M1(0) ·



1
0
0
0
0
0
...


.

This is because, when iterated discrete integrals are evaluated symbolically, the lower

limits of integration of the outer sums can change depending on the limits of the inner

sums (cf. Lemma II.17). This observation makes it necessary to compute initial values

for recursions (described later) up to a large enough δ.

Before we can state the main recursion we need two more notations. For a type

τ = (τ2, τ3, . . . ) and i ≥ 2 with τi > 0 define a new type τ↓i via (τ↓i)i = τi − 1 and

(τ↓i)j = τj for j 6= i. Furthermore, let def(τ) =
∑

j≥2(j − 1)τj be the defect of τ .

The following lemma justifies this terminology.

Lemma II.26. The polynomials (2.9) and (2.10) are of degree 2δ − def(τ).

Proof. Let (Γ1, . . . ,Γm) be a collection of templates with
∑m

i=1 δ(Γi) = δ and type τ .

Then, by applying the argument in the proof of Lemma II.25 to each Γi, the poly-

nomials (2.9) and (2.10) have degree δ +m. The result follows as

δ − def(τ) =
m∑
i=1

δ(Γi)−
∑
j≥2

(j − 1)τj

=
m∑
i=1

δ(Γi)−
∑
j≥2

 ∑
i:δ(Γi)=τj

δ(Γi)

− τj


= #{i : δ(Γi) = 1}+
∑
j≥2

τj = m.

The last lemma makes precise which collections of templates contribute to which

coefficients of Nδ(d). Namely, the first N coefficients of Nδ(d) of largest degree
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depend only on collections of templates with types τ such that def(τ) < N . The

following recursion is the heart of the algorithm.

Proposition II.27. For every type τ and integer δ large enough, it holds that

Cτ (δ) =
∑
i:τi 6=0

Mi

(
2δ − i− 1− def(τ)

)
Cτ↓i(δ − i)

+M1

(
2δ − 2− def(τ)

)
Cτ (δ − 1).

(2.11)

More precisely, if we restrict all matrices Mi to be square of size N − def(τ) and all

Cτ to be vectors of length N − def(τ), then recursion (2.11) holds for

δ ≥ max

(⌈
N + 1

2

⌉
,
∑
j≥2

jτj

)
.

Proof. The coefficient vector Cτ (δ) is defined by a sum that runs over all collections

of templates (Γ1, . . . ,Γm) of type τ (see (2.9)). Partition the set of such collections

by putting δ(Γm) = 1, or δ(Γm) = 2, and so forth. This partitioning splits expression

(2.9) exactly as in (2.11).

A summand can be written as a product of some matrix Mi and some vector Cτ↓i

if δ is large enough, namely if Mi does not depend on the lower limits in (2.9). If we

can factor then the polynomials (2.9) defining Cτ↓i(δ− i) and Cτ (δ− 1) have degrees

2(δ − i)− def(τ↓i) = 2δ − 2i− def(τ) + (i− 1) = 2δ − i− 1− def(τ)

by Lemma II.26 and, similarly, 2δ− 2− def(τ), respectively. By Lemma II.25, if the

matrix Mi(2δ − i− 1− def(τ)) is of size N − def(τ), then it does not depend on the

lower limits if and only if δ ≥ N+1
2

. In order for Cτ (δ) to be defined (and the above

identity to be meaningful) we need to impose δ ≥
∑

j≥2 jτj.

Remark II.28. Later, when we formulate the algorithm, we need to solve recursion

(2.11) together with an initial condition in order to obtain an explicit formula for
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Data: A positive integer N .
Result: The coefficient vector C of the first N coefficients of Nδ(d).
begin

Compute all templates Γ with δ(Γ) ≤ N ;
forall the types τ with def(τ) < N do

Compute initial values Cτ (δ0(τ)) using (2.9), with δ0(τ) as in (2.12);
Solve recursion (2.11) for first N − def(τ) coordinates of Cτ (δ);
Set

Cend
τ (δ)←

∑
i:τi 6=0

M end
i

(
2δ − i− 1− def(τ)

)
Cτ↓i(δ − i)

+M end
1

(
2δ − 2− def(τ)

)
Cτ (δ − 1);

end
C ← 0;
forall the types τ with def(τ) < N do

Shift the entries of Cend
τ (δ) down by def(τ);

C ← C + shifted Cend
τ (δ);

end
end

Algorithm 3: Computation of the leading coefficients of the node polynomial.

the first N − def(τ) entries of Cτ (δ). It suffices to take

(2.12) δ0(τ)
def
= max

(⌈
N − 1

2

⌉
,
∑
j≥2

jτj

)

as for any δ > δ0(τ) the vector Cτ (δ) of length N − def(τ) can be written in terms

of matrices Mi and vectors Cτ ′(δ
′) for various types τ ′ and integers δ′ < δ.

We propose Algorithm 3 for the computation of the coefficients of the node poly-

nomial Nδ(d). We explain how to solve recursion (2.11) below.

Proof of Correctness of Algorithm 3. Proposition II.27 guarantees that the vector

Cτ (δ) is uniquely determined by recursion (2.9). By a similar argument as in the

proof of Proposition II.27 we see that Cend
τ (δ) is given by the formula in Algorithm

3. By Lemma II.26 all contributions of template collections of type τ to the node

polynomial Nδ(d) are in degree 2δ − def(τ) or less. Hence, after shifting Cend
τ (δ) by

def(τ), their sum is the coefficient vector of Nδ(d).

To solve recursion (2.11) for a type τ we make use of the following (conjectural)



32

structure about Cτ (δ) which has been verified for all types τ with def(τ) ≤ 8. This

refines an observation of L. Göttsche [18, Remark 4.2 (2)] about the first 28 (conjec-

tural) coefficients of the node polynomial Nδ(d).

Conjecture II.29. All entries of Cτ (δ) are of the form 3δ

δ!
times a polynomial in δ.

Now, to solve recursion (2.11), we first extend the natural partial order on the

types τ given by |τ | =
∑

j≥2 τj to a linear order with smallest element τ = (0, 0, . . . ).

For example, for N = 4, we could take

(0, 0, 0) < (1, 0, 0) < (0, 1, 0) < (0, 0, 1) < (1, 1, 0) < (2, 0, 0) < (3, 0, 0).

Then solve recursion (2.11) for each τ , in increasing order, using the lowertriangular-

ity of the matrices Mi. For example, to compute the second entry 3δ

δ!
p(δ) of C1,1(δ)

(assuming Conjecture II.29), where p(δ) is a polynomial in δ, we need to solve

C1,1(δ) = M1(2δ − 5)C1,1(δ − 1) +M2(2δ − 6)C0,1(δ − 2) +M3(2δ − 7)C1,0(δ − 3),

or, explicitly, ∗
3δ

δ!
p(δ)
...

 =

∗ 0 0
∗ ∗ 0
...

...
. . .


 ∗

3δ−1

(δ−1)!
p(δ − 1)
...

+

∗ 0 0
∗ ∗ 0
...

...
. . .

∗∗
...

+

∗ 0 0
∗ ∗ 0
...

...
. . .

∗∗
...

 .
The ∗-entries in the vectors C0,1 and C1,0 are known by a previous computation. The

∗-entries in M1, M2 and M3 are given by (2.9). The proof of Lemma II.25 implies that

all denominators ofMi(a) in row j are a+i−j+2 or 1 (after cancellation). To compute

p(δ), or, more generally, the jth entry in Cτ (δ), we first clear all denominators and

then solve the polynomial difference equation with initial conditions

(2δ − def(τ)− j + 1)3p(δ) = p(δ − 1) + q(δ),

p(δ0(τ)) = Cτ (δ0(τ)),

(2.13)
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where q(δ) is a rather complicated polynomial depending on earlier calculations and

δ0(τ) is as in (2.12). One way to solve (2.13) is to bound the degree of the polynomial

p(δ) and solve the corresponding linear system.

Note that a difference equation of the form (2.13) need not have a polynomial

solution in general. Conjecture II.29 is equivalent to all recursions (2.13) appearing

in Algorithm 3 to have a polynomial solution.

As in Section 2.3 (Remark II.19), Algorithm 3 can be improved greatly by sum-

ming the template polynomials PΓ(k) for templates Γ with fixed
(
kmin(Γ), l(Γ), ε(Γ)

)
in advance. Algorithm 3 has been implemented in Maple. Once the templates are

known the bottleneck of the algorithm is the initial value computation. With an

improved implementation this should become faster than the template enumeration.

Hence we expect Algorithm 3 to be able to compute the first 14 terms of Nδ(d) in

reasonable time.



CHAPTER III

Relative Node Polynomials for Plane Curves

3.1 Relative Severi Degrees and Main Results

This chapter is devoted to degrees of generalized Severi varieties parametrizing

plane curves which, in addition to point conditions, satisfy tangency conditions to

a given line. Generalized Severi varieties were first introduced by L. Caporaso and

J. Harris [6] in 1998 (see also [36]) in their study of positive genus Gromov-Witten

invariants of CP2, a work which resulted in their famous recursion.

Fix, once and for all, a line L ⊂ CP2. The relative Severi degree N δ
α,β is the

number of (possibly reducible) nodal plane curves with δ nodes which have tangency

of order i to L at αi fixed points (chosen in advance) and tangency of order i to L at

βi unconstrained points, for all i ≥ 1, and which pass through an appropriate number

of generic points (see Figure 3.1). Similar to the non-relative case, the numbers N δ
α,β

are the degrees of the corresponding generalized Severi varieties.

By Bézout’s Theorem, the degree of a curve with tangencies of order (α, β) equals

d =
∑

i≥1 i(αi + βi). Thus, the number of point conditions (for a potentially finite

count) is (d+3)d
2
− δ − α1 − α2 − · · · . We recover non-relative Severi degrees by

specializing to α = (0, 0, . . . ) and β = (d, 0, 0, . . . ).

In this chapter we show that much of the story of (non-relative) node polynomials

34
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Figure 3.1: An algebraic curve in CP2 with 1 node and tangency of order 2 at a fixed (grey) point
to a line L and tangency of order 1 and 3 at unconstrained points. Hence α = (0, 1) and
β = (1, 0, 1). Additionally, the curve passes through an appropriate number of points
in generic position (only some of which are drawn).

carries over to relative Severi degrees. Our main result is that, up to a simple

combinatorial factor and for fixed δ ≥ 1, the relative Severi degrees N δ
α,β are given

by a multivariate polynomial in α1, α2, . . . , β1, β2, . . . , provided that β1 + β2 + . . . is

sufficiently large. This is maybe quite surprising as the numbers N δ
α,β also satisfy

and are determined by the rather complicated Caporaso-Harris recursion [6].

For sequences α = (α1, α2, . . . ) of non-negative integers with finitely many αi

non-zero, we write

|α| def
= α1 + α2 + · · · , α!

def
= α1! · α2! · · · · .

We use the grading deg(αi) = deg(βi) = 1 (so that d and |β| are homogeneous of

degree 1). The following is the main theorem of this chapter.

Theorem III.1. For every δ ≥ 1, there is a combinatorially defined polynomial

Nδ(α1, α2, . . . ; β1, β2, . . . ) of (total) degree 3δ such that, for all α1, α2, . . . , β1, β2, . . .

with |β| ≥ δ, the relative Severi degree N δ
α,β is given by

(3.1) N δ
α,β = 1β12β2 · · · (|β| − δ)!

β!
·Nδ(α1, α2, . . . ; β1, β2, . . . ).
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Notice that this theorem generalizes both [9, Theorem 5.1] and Theorem II.4.

We call Nδ(α; β) the relative node polynomial and use the same notation as in the

non-relative case if no confusion can occur. We do not need to specify the number

of variables in light of the following stability condition.

Theorem III.2. For δ ≥ 1 and vectors α = (α1, . . . , αm), β = (β1, . . . , βm′) with

|β| ≥ δ, it holds that

Nδ(α, 0; β) = Nδ(α; β) and Nδ(α; β, 0) = Nδ(α; β)

as polynomials. Therefore, there exists a formal power series N∞δ (α; β) in infinitely

many variables α1, α2, . . . , β1, β2, . . . which specializes to all relative node polynomials

under αm+1 = αm+2 = · · · = 0 and βm′+1 = βm′+2 = · · · = 0, for various m,m′ ≥ 1.

Using the combinatorial description we provide a method to compute the relative

node polynomials for arbitrary δ (see Sections 3.3 and 3.4). We utilize it to compute

Nδ(α; β) for δ ≤ 6. Due to spacial constrains we only tabulate the cases δ ≤ 3 in this

work. The polynomials N0 and N1 already appeared (implicitly) in [9, Section 4.2].

Theorem III.3. The relative node polynomials Nδ(α; β), for δ = 0, 1, 2, 3 (resp.,

δ ≤ 6) are as listed in Appendix C (resp., as provided in the ancillary files to [2]).

The polynomial Nδ(α; β) is of degree 3δ by Theorem III.1. We compute the terms

of Nδ(α; β) of degree ≥ 3δ − 2.

Theorem III.4. The terms of Nδ(α; β) of (total) degree ≥ 3δ − 2 are given by

Nδ(α;β) =
3δ

δ!

"
d2δ|β|δ +

δ

3

h
− 3

2
(δ − 1)d2 − 8d|β|+ |β|α1 + dβ1 + |β|β1

i
d2δ−2|β|δ−1+

+
δ

9

h3
8
(δ − 1)(δ − 2)(3δ − 1)d4 + 12δ(δ − 1)d3|β|+ (11δ + 1)d2|β|2+

− 3

2
δ(δ − 1)(d3β1 + d2|β|α1)−

1

2
(δ + 5)(3δ − 2)d2|β|β1 − 8(δ − 1)(d|β|2α1 + d|β|2β1)+

+
1

2
(δ − 1)(d2β2

1 + |β|2α2
1 + |β|2β2

1) + (δ − 1)(d|β|α1β1 + d|β|β2
1 + |β|2α1β1)

i
d2δ−4|β|δ−2 + · · ·

#
,

where d =
∑

i≥1 i(αi + βi).
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Theorem III.4 can be extended to terms of Nδ(α, β) of degree ≥ 3δ − 7 (see

Remark III.20). We observe that all coefficients of Nδ(α; β) in degree ≥ 3δ − 2 are

of the form 3δ

δ!
times a polynomial in δ. In fact, even more is true. It is conceivable

to expect this to hold for arbitrary degrees.

Proposition III.5. Every coefficient of Nδ(α; β) in degree ≥ 3δ − 7 is given, up to

a factor of 3δ

δ!
, by a polynomial in δ with rational coefficients.

The approach in this chapter is similar to the combinatorial methods of Chapter II.

We use of version of the Correspondence Theorem of G. Mikhalkin [27, Theorem 1]

and the floor diagrams of E. Brugallé and G. Mikhalkin [4, 5] which incorporates

tangency conditions (see Theorem III.7). The main new technical tool is an extension

of the template decomposition of floor diagrams of S. Fomin and G. Mikhalkin which

is also suitable in the relative setting (see Section 3.3).

3.2 Relative Markings of Floor Diagrams

The enumeration of plane curves satisfying tangency condition to a fixed line via

floor diagrams requires a refinement of the notion of markings of a floor diagram.

This extension is due to S. Fomin and G. Mikhalkin [9] who extended the work of

E. Brugallé and G. Mikhalkin [4, 5]. Our notation, which is more convenient for our

purposes, differs slightly from [9] where the “relative markings” are defined relative

to the partitions λ = 〈1α12α2 · · · 〉 and ρ = 〈1β12β2 · · · 〉. In the sequel, all sequences

are sequences of non-negative integers with finite support.

Definition III.6. For two sequences α, β we define an (α, β)-marking of a floor

diagram D of degree d=
∑

i≥1i(αi+βi) by the following four step process which we

illustrate in the case of Example IV.19 for α = (1, 0, 0, . . . ) and β = (1, 1, 0, 0, . . . ).
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Step 1: Fix a pair of collections of sequences ({αi}, {βi}), where i runs over the

vertices of D, with:

1. The sums over each collection satisfy
∑d

i=1 α
i = α and

∑d
i=1 β

i = β.

2. For all vertices i of D we have
∑

j≥1 j(α
i
j + βij) = 1− div(i).

The second condition says that the “degree” of the pair (αi, βi) is compatible with

the divergence at vertex i. Each such pair ({αi}, {βi}) is called compatible with D

and (α, β). We omit writing down trailing zeros.

g g g g. ..................
................. ................ ............... ................ ................. ..................

. .................. ................. ................ ............... ................ .................
..................

2- - j

*
αi = (1)

βi = (1) (0, 1)

Step 2: For each vertex i of D and every j ≥ 1 create βij new vertices, called

β-vertices and illustrated as w, and connected them to i with new edges of weight j

directed away from i. For each vertex i of D and every j ≥ 1 create αij new vertices,

called α-vertices and illustrated as gs, and connected them to i with new edges of

weight j directed away from i.

g g g g. ..................
................. ................ ............... ................ ................. ..................

. .................. ................. ................ ............... ................ .................
..................

2- - j

*
αi = (1)

βi = (1) (0, 1)

�
�
���

w
�
�
��

��
����*

w gs
2

Step 3: Subdivide each edge of the original floor diagram D into two directed

edges by introducing a new vertex for each edge. The new edges inherit their weights

and orientations. Call the resulting graph D̃.

g g g g. ..................
................. ................ ............... ................ ................. ..................

. .................. ................. ................ ............... ................ .................
..................

2 2- - - - j

*

*

j
w w ww�

�
���

w
�
�
��

��
����*

w gs
2

Step 4: Linearly order the vertices of D̃ extending the order of the vertices of the

original floor diagramD such that, as inD, each edge is directed from a smaller vertex
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to a larger vertex. Furthermore, we require that the α-vertices are largest among all

vertices, and for every pair of α-vertices i′ > i, the weight of the i′-adjacent edge is

larger than or equal to the weight of the i-adjacent edge.

2 2g g g gw w w w ww gs- - - - -.
...................

.................
..............
............
........... ........... ............ ........... ........... ........... ............ ..............

...............
..

..............
.....

-

.
......................

.
....................... ....................... ....................... . ...................... .................... ..................

................
..............

-

.
.......................

.......................
....................... ....................... . ...................... .................... .................. ................ ..............
-
- -

2
..............

...........
............ ............. .............. . .............. ............. ............ ........... .............
-

We call the extended graph D̃, together with the linear order on its vertices, an

(α, β)-marked floor diagram, or an (α, β)-marking of the floor diagram D.

As before we need to count (α, β)-marked floor diagrams up to equivalence. This

notion is verbatim the same as in the non-relative setting: Two (α, β)-markings D̃1,

D̃2 of a floor diagram D are equivalent if there exists a weight preserving automor-

phism of weighted graphs mapping D̃1 to D̃2 which fixes the vertices of D. The

number of markings να,β(D) is the number of (α, β)-marked floor diagrams D̃ up

to equivalence. Furthermore, we write µβ(D) for the product 1β12β2 · · ·µ(D). The

next theorem follows from [9, Theorem 3.18] by a rather straight-forward extension

of the inclusion-exclusion procedure of [9, Section 1] which was used to conclude [9,

Corollary 1.9] (the non-relative count of reducible curves via floor diagrams) from [9,

Theorem 1.6] (the non-relative count of irreducible curves via floor diagrams).

Theorem III.7. For any δ ≥ 1, the relative Severi degree N δ
α,β is given by

N δ
α,β =

∑
D

µβ(D)να,β(D),

where the sum is over all (possibly disconnected) floor diagrams D of degree d =∑
i≥1 i(αi + βi) and cogenus δ.

Proof. Fix a generic line L in CP2. Let N δ,irr
α,β be the number of irreducible nodal

plane curves with δ nodes and which satisfy tangency conditions to L given by
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sequences α and β as before. Since an irreducible degree d curve with δ nodes has

genus g =
(
d−1

2

)
− δ we have by the definition of cogenus of a floor diagram and [9,

Theorem 3.18] that

N δ,irr
α,β =

∑
D

µβ(D)να,β(D),

the sum over all connected floor diagrams D of degree d =
∑

i≥1 i(αi + βi) and

cogenus δ.

Now fix a collection of d =
∑

j≥1 j(αj+βj) generic points Π in CP2. Let Π1, . . . ,Πt

be a partition of Π into subsets. Similarly, let α1, . . . , αt be sequences which form a

partition of α, that is α = α1+· · ·+αt, and let the sequences β1, . . . , βt be a partition

of β. For each 1 ≤ i ≤ t, let Ci be an irreducible nodal plane curve passing through

the points in Πi with tangency conditions (αi, βi) to L. By Bézout’s theorem, Ci is

of degree

(3.2) di =
∑
j≥1

j(αij + βij)

and, as Ci is irreducible, we have

(3.3) |Πi| =
(di + 3)di

2
− δi,

where δi be the number of nodes of Ci. The curve C = C1 ∪ · · · ∪ Ct is of degree

(3.4) d = d1 + · · ·+ dt

and has tangency orders to L given by (α, β) and has, again by Bézout’s theorem,

(3.5) δ =
t∑
i=1

δi +
∑
i≤j

didj

nodes. Thus, we can express the relative Severi degree as

N δ
α,β =

∑
Π=∪Πi

∑
(di,δi)

∑
(αi,βi)

∏
i

N δ,irr
αi,βi

,
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where the first sum is over all partitions of Π, the second sum is over all pairs (di, δi)

satisfying (3.3), (3.4) and (3.5), and the third sum is over all pairs of collections of

sequences (αi, βi) satisfying (3.2).

A similar analysis holds at the level of floor diagrams and their relative markings.

Let D be a (not necessarily connected) floor diagram. Let V (D) = ∪ti=1Vi be the

partition of the vertices of D given by the connected components of D, and let

D1, . . . ,Dt be the corresponding (connected) floor diagrams. Then, by definition,

δ(D) =
∑t

i=1 δ(Di)+
∑

i<j d(Di)d(Dj). Furthermore, the collection (D1, . . . ,Dt) also

satisfies equations similar to (3.2), (3.3) and (3.4) and the result follows.

Relationship between relative marked floor diagrams and tropical plane curves satis-
fying tangency conditions to a tropical line

Relative marked floor diagrams are closely related to tropical plane curves satis-

fying tangency conditions to a fixed tropical line. Such tropical plane curves were

introduced by A. Gathmann and H. Markwig [15]. As in the non-relative case, we

obtain a relative marked floor diagram by a certain contraction of a tropical plane

curve (if the tropical curve passes through a vertically stretched point configuration).

The setup is as follows: To define tropical plane curves which are “(α, β)-tangent”

to a tropical line and which pass through a generic set of points (whose number we

choose to be such that the count is finite) let d =
∑

i≥1 i(αi + βi) be the necessary

degree of the tropical curve and fix a point configuration P of (d+3)d
2
−δ−α1−α2−· · ·

points in vertically stretched position (see [9, Definition 3.4]). Furthermore, fix a

tropical line L with vertex very far below and to the right of P . Additionally, fix

α1 + α2 + · · · points Pα on L all to the left of P .

Definition III.8 (Definition 3.11 of [9]). A tropical plane curve (α, β)-tangent to

L is a weighted graph Γ in R2 satisfying
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• all edges e of Γ have positive integral weights ω(e),

• all edges of Γ have rational slopes,

• all unbounded edges of Γ are in directions (−1, 0), (0,−1) or (1, 1),

• all vertices v of Γ are balanced, i.e.,

∑
e: v∈∂e

ω(e) · primitive(v, e) = 0,

where the sum is over all v-adjacent edges e of Γ and primitive(v, e) is the

primitive direction of e away from v, i.e., the shortest lattice vector pointing in

the direction of e away from v,

• all unbounded edges in directions (−1, 0) and (1, 1) have weight 1,

• there are β1 unbounded edges with weight 1 in direction (0,−1) which pass

through a point in P , β2 such edges with weight 2, etc.

• there are α1 unbounded edges with weight 1 in direction (0,−1) which pass

through a point in Pα, α2 such edges with weight 2, etc., and

• the weights of the edges passing through Pα is weakly increasing from left to

right.

An example of a tropical plane curve satisfying tangency conditions given by

α = (1) and β = (1, 1) is shown in Figure 3.2 (the coloring of the marked points is

explained later). Notice that for tropical plane curves the tangency order is simply

given by the weight of the edge of the tropical curve intersecting the line. Defini-

tion III.8 only applies to the very special situation of a vertically stretched point

configuration but it can be generalized to arbitrary tropically generic point configu-

rations.
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Figure 3.2: Left: A tropical plane curve passing through a vertically stretched point configuration
satisfying tangency conditions given by α = (1) and β = (1, 1) to the bold tropical line.
Edge weights equal to 1 are omitted. Right: The corresponding relative marked floor
diagram obtained by floor contraction.

A tropical curve Γ as in Definition III.8 defines an (α, β)-marked floor diagram as

follows (c.f. Section 3 of [9]): call a vertical edge of Γ an elevator, and each connected

component of the complement of the (relative interiors or the) elevators in Γ a floor.

Then, as we chose a vertically stretched point configuration, every floor and every

elevator of Γ contains precisely one point from the point configuration P ∪ Pα (c.f.

Theorem 3.17 of [9]). We obtain the (α, β)-marked floor diagram corresponding to

Γ by contracting the floors of Γ to vertices; c.f. Figure 3.2.

In [15], A. Gathmann and H. Markwig consider only irreducible tropical plane

curves (a tropical plane curve is irreducible if it cannot be written as the union of
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two tropical plane curves). Their main focus is a combinatorial interpretation of the

relative Gromov-Witten invariants Nd,g(α, β), which enumerate irreducible algebraic

plane curves of degree d and genus g passing through an appropriate number of

generic points, and which satisfy tangency conditions to a fixed line in CP2 given

by two sequences α and β (analogously to the case of relative Severi degrees). One

of their main results is that Nd,g(α, β) is enumerated by certain irreducible tropical

plane curves (counted with suitable multiplicity). The idea of the proof is that the

enumerations N trop
d,g (α, β) of irreducible tropical plane curves of “tropical degree” d

and “tropical genus” g which are (α, β)-tangent to a generic tropical line (counted

with multiplicity) satisfy the Caporaso-Harris recursion. As this recursion is also

satisfied by Nd,g(α, β), the two sets of numbers agree. The Caporaso-Harris recursion

for tropical plan curves can also be shown with floor diagrams. For example, a

special case of the main result in Chapter IV (Theorem IV.35) is the Caporaso-

Harris recursion of relative genus 0 Gromov-Witten invariants.

The floor diagram technique allows to go well beyond these results. One advan-

tage (besides being a completely combinatorial description of relative Severi degrees)

is the notion of a “template decomposition” which we introduce in the next section.

The building blocks in this decomposition (the “templates”) are the key combina-

torial gadgets which will allow to prove the polynomiality of relative Severi degrees

(Theorem III.1).

3.3 Relative Decomposition of Floor Diagrams

In this section we introduce a new decomposition of floor diagrams compatible

with tangency conditions which we use extensively in Sections 3.4 and 3.5 to prove all

our results stated in Section 3.1. This decomposition is an extension of the template
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decomposition of S. Fomin and G. Mikhalkin [9] discussed in Section2.3.

Recall the definition of a template (see Definition II.12) as it will again be an

essential building block. Our new decomposition of a floor diagram D depends on

two (infinite) matrices A and B of non-negative integers. We require both to have

only finitely many non-zero entries all of which lie above the respective dth row,

where d is the degree of D.

The triple (D, A,B) decomposes as follows. Let l(A) and l(B) be the largest row

indices such that A and B have a non-zero entry in this row, respectively. After

we remove all “short edges” from D, i.e., all edges of weight 1 between consecutive

vertices, the resulting graph is an ordered collection of templates (Γ1, . . . ,Γr), listed

left to right. Let ks be the smallest vertex in D of each template Γs. Record all

pairs (Γs, ks) which satisfy ks + l(Γs) ≤ d −max(l(A), l(B)). Record the remaining

templates together with all vertices i, for i ≥ max(l(A), l(B)) in one graph Λ on

vertices 0, . . . , l by shifting the vertex labels by d − l. See Example III.11 for an

example of this decomposition. Furthermore, by construction, if m is the number of

recorded pairs (Γs, ks), we have

(3.6)


ki ≥ kmin(Γi) for 1 ≤ i ≤ m,

ki+1 ≥ ki + l(Γi) for 1 ≤ i ≤ m− 1,

km + l(Γm) ≤ d− l(Λ).

Given a floor diagram D, a partitioning of α and β into a compatible pair of

collections ({αi, βi}) (see Step 1 in Definition IV.30), where i runs over the vertices

of D, determines a pair of matrices A,B, if α1, α2, . . . , β1, β2, . . . are large enough via

the following identification. The ith row vectors ai and bi of A and B are given by the

sequences αd−i and βd−i, respectively, for i ≥ 1 (so that a1 equals the number of α-

edges of weight 1 adjacent to the various vertices of Λ, and so on, see Example III.9).
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If d− i ≤ 0 set αd−i to be the zero sequence. The sequences αd and βd are given by

(3.7) αd = α−
∑
i≥1

ai and βd = β −
∑
i≥1

bi

if both expression are (component-wise) non-negative.

Example III.9. For α = (1, 1), β = (4, 1) and the floor diagram D pictured below,

the partitioning

e e e e e e e e.
...................

..................
...................

.................... ..................... . ..................... .................... ................... ..................
................

...
-

- -.............
........... ............ ............. . ............. ............ ........... ............
-

............. ........... ............ ............. . ............. ............ ...........
............-

3- ..............
...........
.......... .......... ........... . ........... .......... .......... ........... .............
-

......... .......... ........... ............. . ............. ........... .......... ........-

......... .......... ........... ............. . ............. ........... .......... ........-.............. ........... .......... .......... ........... . ........... .......... ..........
...........
.............

-

2- -.......... .......... ............ ............. . ............. ............ .......... .........
-

.......... .......... ............ ............. . ............. ............ .......... .........-D =

αi = (0, 1) (1)

βi = (1) (1) (2, 1)

determines the matrices

A =

0 0 0 · · ·
0 1 0 · · ·
0 0 0 · · ·
0 0 0 · · ·
0 0 0 · · ·
.
.
.

.

.

.

.

.

.
. . .

 B =

0 0 0 · · ·
1 0 0 · · ·
0 0 0 · · ·
1 0 0 · · ·
0 0 0 · · ·
.
.
.

.

.

.

.

.

.
. . .


In light of (3.7) we consider, for given tangency conditions α and β, only the

triples (D, A,B) which satisfy

(3.8)


∑
i≥1

ai ≤ α (component-wise),

∑
i≥1

bi ≤ β (component-wise),

For fixed d, the decomposition

(3.9)
(
D, A,B

)
−→

(
{(Γs, ks)},Λ, A,B

)
.

is reversible if the data on the right-hand side satisfies (3.6) and the tuple (Λ, A,B)

is an “extended template.”

Definition III.10. A tuple (Λ, A,B) is an extended template of length l = l(Λ) =

l(Λ, A,B) if Λ is a directed graph (possibly with multiple edges) on vertices {0, . . . , l},

where l ≥ 0, with edge weights w(e) ∈ Z>0, satisfying:
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1. If i→ j is an edge then i < j.

2. Every edge i
e→ i+ 1 has weight w(e) ≥ 2. (No “short edges.”)

Moreover, we require A and B to be (infinite) matrices with non-negative integral

entries and finite support, and we write l(A) and l(B) for the respective largest

row indices of A and B of a non-zero entry. Additionally, we demand that l(Λ) ≥

max(l(A), l(B)) and that, for each 1 ≤ j < l − max(l(A), l(B)), there is an edge

i→ k of Λ with i < j < k.

Example III.11. An example of a decomposition of a floor diagram D subject to

the matrices A and B of Example III.9 is pictured below. Once we fix the degree of

the floor diagram the decomposition is reversible (here d = 8).

e e e e e e e e.
...................

..................
...................

.................... ..................... . ..................... .................... ................... ..................
................

...
-

- -.............
........... ............ ............. . ............. ............ ........... ............
-

............. ........... ............ ............. . ............. ............ ...........
............-

3- ..............
...........
.......... .......... ........... . ........... .......... .......... ........... .............
-

......... .......... ........... ............. . ............. ........... .......... ........-

......... .......... ........... ............. . ............. ........... .......... ........-.............. ........... .......... .......... ........... . ........... .......... ..........
...........
.............

-

2- -.......... .......... ............ ............. . ............. ............ .......... .........
-

.......... .......... ............ ............. . ............. ............ .......... .........-

l

e e e e e e e e.
...................

..................
...................

.................... ..................... . ..................... .................... ................... ..................
................

... 3- 2-

(Γ1, 1)
Λ

The cogenus of an extended template (Λ, A,B) is the sum of the cogenera δ(Λ),

δ(A) and δ(B), where

δ(Λ)
def
=
∑
e

i→j

[
(j − i)w(e)− 1

]
, δ(A)

def
=
∑
i,j≥1

i · j · ai,j,

and similarly for B. It is not hard to see that the correspondence (3.9) is cogenus

preserving in the sense that (compare with Example III.11 (cont’d))

δ(D) =

(
m∑
i=1

δ(Γi)

)
+ δ(Λ) + δ(A) + δ(B).

Example III.11 (cont’d). The cogenera of the decomposition are given by

δ(Γ1) + δ(Λ) + δ(A) + δ(B) = 1 + 3 + 4 + 6 = 14.
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(Λ, A,B) δ ` µ κ dmin q(Λ,A,B)(α;β) of Lemma III.13 sd »
0 0
0 0

– »
0 0
0 0

–
0 0 1 () 1 1 0

d d »
1 0
0 0

– »
0 0
0 0

–
1 1 1 (0) 1 1 0d d »

0 0
0 0

– »
1 0
0 0

–
1 1 1 (0) 1 β1(d+ |β| − 1) 0

d d2 »
1 0
0 0

– »
0 0
0 0

–
2 1 4 (2) 4 (d− 3) 1d d2 »

0 0
0 0

– »
1 0
0 0

–
2 1 4 (2) 4 β1(d− 3)(d+ |β| − 2) 1d d d. ......................... ........................ ........................ ........................ ........................ ......................... »

1 0
0 0

– »
0 0
0 0

–
2 2 1 (1,1) 3 2(d− 2) 0d d d. ......................... ........................ ........................ ........................ ........................ ......................... »

0 0
0 0

– »
1 0
0 0

–
2 2 1 (1,1) 3 β1(d− 2)(2d+ 2|β| − 3) 0d d »

2 0
0 0

– »
0 0
0 0

–
2 1 1 (0) 3 1 0d d »

1 0
0 0

– »
1 0
0 0

–
2 1 1 (0) 3 β1(d+ |β| − 2) 0d d »

0 0
0 0

– »
2 0
0 0

–
2 1 1 (0) 3 `β1

2

´
(d2 + 2d|β|+ |β|2 − 5d− 5|β|+ 6) 0d d »

0 1
0 0

– »
0 0
0 0

–
2 1 1 (0) 3 1 0d d »

0 0
0 0

– »
0 1
0 0

–
2 1 1 (0) 3 β2(|β| − 1)(d+ |β| − 2) 0d d d »

0 0
1 0

– »
0 0
0 0

–
2 3 1 (0,0) 3 1 0d d d »

0 0
0 0

– »
0 0
1 0

–
2 3 1 (0,0) 3 β1(|β| − 1)(2d+ |β| − 3) 0

Figure 3.3: The extended templates with δ(Λ, A,B) ≤ 2.

This agrees with the cogenus of D as δ(D) = (d−1)(d−2)
2

− g = 7·6
2
− 7 = 14.

With an extended template (Λ, A,B) we associate the following numerical data.

For 1 ≤ j ≤ l(Λ) let κj(Λ) denote the sum of the weights of edges i → k of Λ

with i < j ≤ k. Define dmin(Λ, A,B) to be the smallest positive integer d such that

(Λ, A,B) can appear (at the right end) in a floor diagram on {1, 2, . . . , d}. We will see

later that dmin is given by an explicit formula. For a matrix A = (aij) of non-negative

integers with finite support define the “weighted lower sum sequence” wls(A) by

wls(A)i
def
=

∑
i′≥i,j≥1

j · ai′j.

We now define the number of “markings” of extended templates and relate them to

the number of (α, β)-markings of the corresponding floor diagrams. This definition

parallels the number of “markings” of a template Γ “at position k”. Recall from



49

Section 2.3 that this number is given by the polynomial PΓ(k) in k provided k ≥

kmin(Γ). For details see Section 2.3.

For each pair of sequences (α, β) and each extended template (Λ, A,B) satisfy-

ing (3.8) and d ≥ dmin, where d =
∑

i≥1 i(αi+βi), we define its number of “markings”

as follows. Write l = l(Λ) and let P(Λ, A,B) be the poset obtained from Λ by

1. first creating an additional vertex l + 1 (> l),

2. then adding bij edges of weight j between l − i and l + 1, for all 1 ≤ i ≤ l and

j ≥ 1,

3. then adding βj −
∑

i≥1 bij edges of weight j between l and l + 1, for j ≥ 1,

4. then adding

(3.10) d− l(Λ) + i− 1− κi(Λ)− wls(A)l+1−i − wls(B)l+1−i

(“short”) edges of weight 1 connecting i− 1 and i, for 1 ≤ i ≤ l, and finally

5. subdividing all edges of the resulting graph by introducing a midpoint vertex

for each edge.

We denote by Q(Λ,A,B)(α; β) the number of linear orderings on P(Λ, A,B) (up to

equivalence) which extend the linear order on Λ. As d ≥ dmin(Λ, A,B) if and only

if (3.10) is non-negative, for 1 ≤ i ≤ l, we have

dmin(Λ, A,B) = max
1≤i≤l(Λ)

(l(Λ)− i+ 1 + κi(Λ) + wls(A)l(Λ)+1−i + wls(B)l(Λ)+1−i).

For sequences s, t1, t2, . . . with s ≥
∑

i ti (component-wise) we denote by(
s

t1, t2, . . .

)
def
=

s!

t1!t2! · · · (s−
∑

i ti)!

the multinomial coefficient of sequences.
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We obtain all (α, β)-markings of the floor diagram D that come from a compatible

pair of sequences ({αi}, {βi}) by independently ordering the α-vertices and the non-

α-vertices. Therefore, the number such markings is given (via the correspondence

(3.9)) by

(3.11)
( m∏
s=1

PΓs(ks)
)
·
(

α

aT1 , a
T
2 , . . .

)
·Q(Λ,A,B)(α; β),

where aT1 , a
T
2 , . . . are the column vectors of A. We conclude this section by recasting

relative Severi degrees in terms of templates and extended templates.

Proposition III.12. For any δ ≥ 1, the relative Severi degree N δ
α,β is given by

(3.12)
∑

(Γ1, . . . ,Γm),
(Λ, A, B)

( m∏
s=1

µ(Γs)
∑

k1,...km

m∏
s=1

PΓs(ks)
)
·
(
µ(Λ)

∏
i≥1

iβi
(

α

a1, a2, . . .

)
Q(Λ,A,B)(α; β)

)
,

where the first sum is over all collections (Γ1, . . . ,Γm) of templates and all extended

templates (Λ, A,B) satisfying (3.8), d ≥ dmin(Λ, A,B) and

m∑
i=1

δ(Γi) + δ(Λ) + δ(A) + δ(B) = δ,

and the second sum is over all positive integers k1, . . . , km which satisfy (3.6).

Proof. By Theorem III.7 the relative Severi degree is given by

N δ
α,β =

∑
D

µβ(D)να,β(D),

where the sum is over all floor diagramsD of degree d =
∑

i≥1 i(αi+βi) and cogenus δ.

The result follows from µβ(D) =
∏

i≥1 i
βi ·
(∏m

s=1 µ(Γs)
)
· µ(Λ) and (3.11).

3.4 Polynomiality of Relative Severi Degrees

We now turn to the proofs of the main result of this chapter by first showing a

number of technical lemmata. For a graph G, we denote by #E(G) the number of

edges of G. We write ||A||1 =
∑

i,j≥1 aij for the 1-norm of a (possibly infinite) matrix

A = (aij).
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Lemma III.13. For every extended template (Λ, A,B) there is a polynomial q(Λ,A,B)

in α1, α2, . . . , β1, β2, . . . of degree #E(Λ) + ||B||1 + δ(B) such that for all α and β

satisfying (3.8) the number Q(Λ,A,B)(α; β) of linear orderings (up to equivalence) of

the poset P(Λ, A,B) is given by

Q(Λ,A,B)(α; β) =
(|β| − δ(B))!

β!
· q(Λ,A,B)(α; β)

provided
∑

i≥1 i(αi + βi) ≥ dmin(Λ, A,B).

Proof. We can choose a linear extension of the order on the vertices of Λ to the poset

P(Λ, A,B) in two steps. First, we choose a linear order on the vertices 0, . . . , l(Λ)+1,

the midpoint vertices of the edges of Λ and the midpoint vertices of the edges created

in step (2) in the definition of P(Λ, A,B). In a second step, we choose an extension

to a linear order on all vertices. Let ri be the number of vertices between i − 1

and i after the first extension, for 1 ≤ i ≤ l(Λ) + 1, and let σi be the number of

equivalent such linear orderings of the interval between i−1 and i (σi is independent

of the particular choice of the linear order). To insert the additional vertices (up to

equivalence) between the vertices 0 and l = l(Λ) we have

(3.13)
l∏

i=1

1

σi

(
d− l(Λ) + i− 1− κi(Λ)− wls(A)l+1−i − wls(B)l+1−i + ri

ri

)
many possibilities where again d =

∑
i≥1 i(αi+βi). If d ≥ dmin(Λ, A,B) then expres-

sion (3.13) is a polynomial in d of degree
∑l

i=1 ri, and thus in α1, α2, . . . , β1, β2, . . . .

The number of (equivalent) orderings of the vertices between l and l + 1 is the

multinomial coefficient

(3.14)

(
|β| − ||B||1 + rl+1

β1 − |bT1 |, β2 − |bT2 |, . . .

)
,

where |bTj | denotes the sum of the entries in the jth column of B. As ||B||1 ≤ δ(B),
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expression (3.14) equals, for all β1, β2, · · · ≥ 0,

(3.15)

(
|β|

β1, β2, . . .

)
(|β| − δ(B))!

|β|!
P (β) =

(|β| − δ(B))!

β!
P (β)

for a polynomial P in β1, β2, . . . of degree rl+1 + δ(B). The product of (3.13) and

(3.15) is

(3.16)
(|β| − δ(B))!

β!
P ′(α; β)

for a polynomial P ′ in α1, α2, . . . , β1, β2, . . . of degree #E(Λ)+ ||B||1 +δ(B) provided

d ≥ dmin(Λ, A,B) where we used that
∑l+1

i=1 ri = #E(Λ) + ||B||1. As (3.16) equals

the number of linear extensions (up to equivalence) that can be obtained by linearly

ordering the vertices in all segments between i− 1 and i, for 1 ≤ i ≤ l+ 1, the proof

is complete.

Recall that, for an extended template (Λ, A,B), we defined dmin = dmin(Λ, A,B) to

be the smallest d ≥ 1 such that d−l(Λ)+i−1 ≥ κi(Λ)+wls(A)l(Λ)+1−i+wls(B)l(Λ)+1−i

for all 1 ≤ i ≤ l(Λ). Let i0 be the smallest i for which equality is attained (it is easy

to see that equality is attained for some i). Define the quantity s(Λ, A,B) to be the

number of edges of Λ from i0 − 1 to i0 (of any weight). See Figure 3.3 for examples.

Lemma III.14. For any extended template (Λ, A,B) and any α, β ≥ 0 (component-

wise) with

dmin(Λ, A,B)− s(Λ, A,B) ≤
∑
i≥1

i(αi + βi) ≤ dmin(Λ, A,B)− 1

we have q(Λ,A.B)(α; β) = 0, where q(Λ,A,B) is the polynomial of Lemma III.13.

Proof. Notice that dmin − l(Λ) + i0 − 1 = κi0(Λ) + wls(A)l(Λ)+1−i0 + wls(B)l(Λ)+1−i0

where dmin = dmin(Λ, A,B). Therefore, the number of short edges which are added

between i0− 1 and i0 in step (3) of the definition of the poset P(Λ, A,B) is d− dmin,
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where as before d =
∑

i≥1 i(αi + βi). Recall that, up to the factor (|β|−δ(B))!
β!

, the

polynomial q(Λ,A,B) records the number of linear extension of the poset P(Λ, A,B)

(up to equivalence). Every such extension is obtained by first linearly ordering the

d − dmin midpoints of the short edges between i0 − 1 and i0 which were added in

step (3) together with the s(Λ, A,B) midpoints of the edges of Λ between i0− 1 and

i0, before extending this to a linear order on all the vertices of P(Λ, A,B). Thus,

q(Λ,A,B) is divisible by the polynomial (d− dmin + 1) · · · (d− dmin + s(Λ, A,B)).

The next lemma specifies which extended templates are compatible with a given

degree.

Lemma III.15. For every extended template (Λ, A,B) we have

dmin(Λ, A,B)− s(Λ, A,B) ≤ δ(Λ) + δ(A) + δ(B) + 1.

Proof. We use the notation from above and write l = l(Λ). Notice that

dmin(Λ, A,B)− l(Λ) + i0 − 1 = κi0(Λ) + wls(A)l+1−i0 + wls(B)l+1−i0 .

Therefore, it suffices to show

l(Λ) ≤ δ(Λ)− κi0(Λ) + s(Λ, A,B) + δ(A)− wls(A)l+1−i0 + δ(B)− wls(B)l+1−i0 + i0.

Let Λ′ be the graph obtained from Λ by removing all edges j → k with either k < i0

or j ≥ i0. It is easy to see that l(Λ, A,B) − l(Λ′, A,B) ≤ δ(Λ) − δ(Λ′). Thus, we

can assume without loss of generality that all edges j → k of Λ satisfy j < i0 ≤ k.

Therefore, as κi0(Λ) =
∑

edges e wt(e), we have

δ(Λ)−κi0 +s(Λ, A,B) =
∑

edges e

[
wt(e)(len(e)−1)−1

]
+s =

∑[
wt(e)(len(e)−1)−1

]
,

where len(e) is the length k − j of an edge j
e→ k and the last sum is over all

edges of Λ of length at least 2. It is easy to see that the matrix A satisfies δ(A) ≥
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wls(A)i + l(A)− 1 for all i ≥ 1, therefore, if l(A) = l(Λ), it suffices to show that

(3.17) l(A) ≤
∑[

wt(e)(len(e)− 1)− 1
]

+ l(A)− 1 + δ(B)− wls(B)l+1−i0 + i0,

where the sum again runs over all edges of Λ of length at least 2. But (3.17) is clear

as all summands in the sum are non-negative and δ(B) ≥ wls(B)l+1−i0 . The same

argument also settles the case l(B) = l(Λ).

Otherwise, we can assume that l(Λ) > l(A) ≥ l(B) and that there exists an edge

0→ i of Λ with l(Λ)− l(A) ≤ i− 1. If, additionally, we have i0 ≤ l(Λ)− l(A) then

wls(A)l+1−i0 = 0 and, using δ(B) ≥ wls(B)l+1−i0 , it suffices to prove that

l(A) + i− 1 ≤ i− 2 + δ(A) + 1

which is clear as l(A) ≤ δ(A).

Finally, if i0 ≥ l(Λ) − l(A) + 1, it remains to show that l(A) + 1 ≤ δ(A) −

wls(A)l+1−i0 + i0. We have (by definition of δ(A) and wls(A)l+1−i0) that

(3.18) δ(A)− wls(A)l+1−i0 + i0 =
∑

(i− 1)jaij +
∑

ijaij + i0,

where the first sum runs over i ≥ l + 1 − i0, j ≥ 1 and the second sum runs over

1 ≤ i < l + 1 − i0, j ≥ 1. As i0 ≥ l(Λ) − l(A) + 1 there exists a non-zero entry

ai′j′ of A with i′ = l(A) ≥ l + 1 − i0. Therefore, the index set of the first sum

of (3.18) is non-empty and the right-hand side of (3.18) is ≥ i′− 1 + i0 = l(A) + 1 as

i0 ≥ l(Λ)− l(A) + 1 ≥ 2.

We now turn to the proof of the main theorem of this chapter.

Proof of Theorem III.1. We first show that (3.1) holds of all α, β with d ≥ δ + 1

where we again write d =
∑

i≥1 i(αi + βi). This implies (3.1) if at least one of

α1, α2, . . . , β2, β3, . . . is non-zero (note that β1 is omitted), because in that case |β|≥ δ

implies d ≥ δ + 1.
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Notice that we can remove condition (3.8) from formula (3.12) of Proposition III.12

and still obtain correct relative Severi degrees as
(

α
aT1 ,a

T
2 ,...

)
Q(Λ,A,B)(α; β) = 0 whenever

(3.8) is violated. The first factor of (3.12) equals

(3.19)

d−l(Λ)∑
km=kmin(Γm)

µ(Γm)PΓm(km)

km−l(Γm−1)∑
km−1=kmin(Γm−1)

· · ·
k2−l(Γ1)∑

k1=kmin(Γ1)

µ(Γ1)PΓ1(k1)

and is, therefore, an iterated “discrete integral” of polynomials. By repeated ap-

plication of [1, Lemma 3.5] (or other means) expression (3.19) is a polynomial in

d if d − l(Λ) ≥ 2
∑m

i=1 δ(Γi). Furthermore, as the polynomials PΓi(ki) have de-

grees #E(Γi) and each “discrete integration” increases the degree by 1 the polyno-

mial (3.19) is of degree
∑m

i=1 #E(Γi) + m. By a literal application of the argument

in Section 4 of [1] one can improve the polynomiality threshold of (3.19) and show

that (3.19) is a polynomial in d if d− l(Λ) ≥
∑m

i=1 δ(Γi) + 1. Furthermore, we have

l(Λ) ≤ δ(Λ) + δ(A) + δ(B). Thus, the first factor of (3.12) is a polynomial in d

already if d ≥ δ + 1 =
∑

i δ(Γi) + 1 + δ(Λ) + δ(A) + δ(B).

The multinomial coefficient
(

α
aT1 ,a

T
2 ,...

)
is a polynomial in α1, α2, . . . for fixed se-

quences of (column) vectors aT1 , a
T
2 , . . . , if α1, α2, · · · ≥ 0. Hence, by Lemma III.13,

the second factor of (3.12) is of the form

(3.20)
∏
i≥1

iβi · (|β| − δ)!
β!

·R(Λ,A,B)(α; β)

for a polynomial R(Λ,A,B)(α; β) in α1, α2, . . . , β1, β2, . . . of degree #E(Λ) + ||A||1 +

||B||1 + δ provided d ≥ dmin(Λ, A,B), where used that δ(B) ≤ δ. By Lemma III.14

the second factor of (3.12) equals expression (3.20) for all α, β with d ≥ dmin(Λ, A,B)−

s(Λ, A,B). Thus, using Lemma III.15, if

d ≥ δ + 1 ≥ δ(Λ) + δ(A) + δ(B) + 1 ≥ dmin(Λ, A,B)− s(Λ, A,B)

the second factor in (3.12) is
∏

i≥1 i
βi · (|β|−δ)!

β!
times a polynomial in α1, α2, . . . , β1, β2, . . .

of degree #E(Λ) + ||A||1 + ||B||1 + δ. Hence (3.1) holds if |β| ≥ δ and at least one
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βi, for i ≥ 2, or one αi, for i ≥ 1, is non-zero. Notice that each summand of (3.12)

contributes a polynomial of degree

(3.21)
m∑
i=1

#E(Γi) +m+ #E(Λ) + ||A||1 + ||B||1 + δ

to the relative node polynomial Nδ(α; β). It is not hard to see that expression

(3.21) is at most 3δ, and that equality is attained by letting Γ1, . . . ,Γδ be the unique

template on three vertices with cogenus 1 (see Figure 2.2) and (Λ, A,B) be the unique

extended template of cogenus 0 (see Figure 3.3).

If α = 0 and β = (d, 0, . . . ) then N δ
α,β equals the (non-relative) Severi degree Nd,δ

which, in turn, is given by the (non-relative) node polynomial Nabs
δ (d) provided d ≥ δ

(see [1, Theorem 1.3]). Therefore, we have Nδ(0; d) = Nabs
δ (d) ·d(d−1) · · · (d− δ+ 1)

as polynomials in d. Applying [1, Theorem 1.3] again completes the proof.

Remark III.16. Expression (3.12) gives, in principle, an algorithm to compute the

relative node polynomial Nδ(α; β), for any δ ≥ 1. In [1, Section 3] we explain how

to generate all templates of a given cogenus, and how to compute the first factor

in (3.12). The generation of all extended templates of a given cogenus from the

templates is straightforward, as is the computation of the second factor in (3.12).

Remark III.17. The proof of Theorem III.1 simplifies significantly if we relax the poly-

nomiality threshold. More specifically, without considering the quantity s(Λ, A,B)

and the rather technical Lemmata III.14 and III.15 the argument still implies (3.1)

provided |β| ≥ 2δ (instead of |β| ≥ δ).

The immediate conclusion from the proof of Theorem III.1 is two-fold.

Corollary III.18. For δ ≥ 1 the relative node polynomial Nδ(α, β) is a polynomial

in d, |β|, α1, . . . , αδ, and β1, . . . , βδ, where d =
∑

i≥1 i(αi + βi)
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Proof. Every extended template (Λ, A,B) considered in (3.12) satisfies δ(A) ≤ δ and

δ(B) ≤ δ. Therefore, all rows i in A or B are zero for i > δ.

Proof of Theorem III.2. By the proof of Lemma III.13 we have, for every extended

template (Λ, A,B),

R(Λ,A,B)(α, 0; β) = R(Λ,A,B)(α; β) R(Λ,A,B)(α; β, 0) = R(Λ,A,B)(α; β).

Hence, by the proof of Theorem III.1, the result follows.

Now it is also easy to prove Theorem III.3.

Proof of Theorem III.3. Proposition III.12 gives a combinatorial description of rel-

ative Severi degrees. The proof of Lemma III.13 provides a method to calculate

the polynomial Q(Λ,A,B)(α; β). All terms of expression (3.12) are explicit or can be

evaluated using the techniques of [1, Section 3]. This reduces the calculation to a

(non-trivial) computer calculation.

3.5 Coefficients of Relative Node Polynomials

We now turn towards the computation of the coefficients of the relative node

polynomial Nδ(α; β) of large degree for any δ. By Theorem III.1 the polynomial

Nδ(α, β) is of degree 3δ. In the following we propose a method to compute all terms

of Nδ(α; β) of degree ≥ 3δ − t, for any given t ≥ 0. This method was used (with

t = 2) to compute the terms in Theorem III.4.

The main idea of the algorithm is that, even for general δ, only a small number of

summands of (3.12) contribute to the terms of Nδ(α; β) of large degree. A summand

of (3.12) is indexed by a collection of templates Γ̃ = {Γs} and an extended template

(Λ, A,B). To determine whether this summand might contribute to Nδ(α; β) we

define the (degree) defects
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• of the collection of templates Γ̃ by

def(Γ̃)
def
=

m∑
s=1

[
δ(Γi)

]
−m, and

• of the extended template (Λ, A,B) by

def(Λ, A,B)
def
= δ(Λ) + 2δ(A) + 2δ(B)− ||A||1 − ||B||1.

The following lemma restricts the indexing set of (3.12) to the relevant terms, if

only the leading terms of Nδ(α; β) are of interest.

Lemma III.19. The summand of (3.12) indexed by Γ̃ and (Λ, A,B) is of the form

1β12β2 · · · (|β| − δ)!
β!

· P (α; β),

where P (α; β) is a polynomial in α1, α2, . . . , β1, β2, . . . of degree ≤ 3δ − def(Γ̃) −

def(Λ, A,B).

Proof. By [1, Lemma 5.2] the first factor of (3.12) is of degree at most

2 ·
m∑
s=1

δ(Γs)−
m∑
s=1

(δ(Γs)− 1) =
m∑
s=1

δ(Γs) +m.

The multinomial coefficient
(

α
aT1 ,a

T
2 ,...

)
is a polynomial in α of degree ||A||1 if aTj are

the jth column vector of A. Recall from the proof of Theorem III.1 that the second

factor of (3.12) is∏
i≥1

iβi
(|β| − δ)!

β!
times a polynomial in α, β of degree #E(Λ) + ||A||1 + ||B||1 + δ.

Therefore, the contribution of this summand to the relative node polynomial is at

most of degree
m∑
s=1

δ(Γs) +m+ #E(Λ) + ||A||1 + ||B||1 + δ

= 3δ − 2
m∑
s=1

δ(Γs)− 2δ(Λ)− 2δ(A)− 2δ(B) + #E(Λ)

= 3δ − def(Γ̃)− def(Λ, A,B)− δ(Λ) + #E(Λ).

The result follows as δ(Λ) ≥ #E(Λ)
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Therefore, to compute the coefficients of degree ≥ 3δ−t of Nδ(α; β) for some t ≥ 0,

it suffices to consider only summands of (3.12) with def(Γ̃) ≤ t and def(Λ, A,B) ≤ t.

One can proceed as follows. First, we can compute, for some formal variable δ̃,

the terms of degree ≥ 2δ̃− t of the first factor of (3.12) to Nδ̃(α; β), that is the terms

of degree ≥ 2δ̃ − t of

(3.22) Rδ̃(d)
def
=
∑ m∏

i=1

µ(Γi)

d−l(Γm)∑
km=kmin(Γm)

PΓm(km) · · ·
k2−l(Γ1)∑

k1=kmin(Γ1)

PΓ1(k1),

where the first sum is over all collections of templates Γ̃ = (Γ1, . . . ,Γm) with δ(Γ̃) =

δ̃. (Notice that (3.22) is expression [9, (5.13)] without the “ε-correction” in the

sum indexed by km.) The leading terms of Rδ̃(d) can be computed with a slight

modification of [1, Algorithm 2] (by replacing, in the notation of [1], Cend by C

and M end by M). The algorithm relies on the polynomiality of solutions of certain

polynomial difference equations, which has been verified for t ≤ 7, see [1, Section 5]

for more details. With a Maple implementation of this algorithm one obtains (with

t = 5)

Rδ̃(d) =
3δ̃

δ̃!

[
d2δ̃ − 8δ̃

3
d2δ̃−1 +

δ̃(11δ̃ + 1)
32

d2δ̃−2 +
δ̃(δ̃ − 1)(496δ̃ − 245)

6 · 33
d2δ̃−3

− δ̃(δ̃ − 1)(1685δ̃2 − 2773δ̃ + 1398)
6 · 34

d2δ̃−4+

− δ̃(δ̃ − 1)(δ̃ − 2)(7352δ̃2 + 11611δ̃ − 25221)
30 · 35

d2δ̃−5 + · · ·
]
.

Finally, to compute the coefficients of degree ≥ 3δ − t, it remains to compute all

extended templates (Λ, A,B) with def(Λ, A,B) ≤ t and collect the terms of degree

≥ 3δ − t of the polynomial

(3.23) Rδ̃(d− l(Λ)) · µ(Λ)

(
α

aT1 , a
T
2 , . . .

) δ−1∏
i=δ(B)

(|β| − i) · q(Λ,A,B)(α; β),

where, as before, aT1 , a
T
2 , . . . denote the column vectors of the matrix A, q(Λ,A,B)(α; β)

is the polynomial of Lemma III.13, and δ̃ = δ − δ(Λ, A,B). Notice that, for an
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indeterminant x and integers c ≥ 0 and δ ≥ 1, we have the expansion

δ−1∏
i=c

(x− i) =
δ−c∑
t=0

s(δ − c, δ − c− t)(x− c)δ−c−t,

where s(n,m) is the Stirling number of the first kind [33, Section 1.3] for integers

n,m ≥ 0. Furthermore, with δ′ = δ − c the coefficients s(δ′, δ′ − t) of the sum equal

δ′(δ′ − 1) · · · (δ′ − t) · St(δ′), where St is the t-th Stirling polynomial [19, (6.45)], for

t ≥ 0, and thus are polynomial in δ′. Therefore, we can compute the leading terms

of the product in (3.23) by collecting the leading terms in the sum expansion above.

Proof of Proposition III.5. Using [1, Algorithm 2] we can compute the terms of the

polynomial RΓ̃(d) of degree ≥ 2δ̃ − 7 (see [1, Section 5]) and observe that all co-

efficients are polynomial in δ̃. By the previous paragraph the coefficients of the

expansion of the sum of (3.23) are polynomial in δ. This completes the proof.

Proof of Theorem III.4. The method described above is a direct implementation of

formula (3.12), which equals the relative Severi degree by the proof of Theorem III.1.

Remark III.20. It is straight-forward to compute the coefficients of Nδ(α; β) of degree

≥ 3δ − 7 (and thereby to extend Theorem III.4). Algorithm 3 of [1] computes the

coefficients of the polynomials Rδ̃(d) of degree ≥ 2δ̃ − 7, and thus the desired terms

can be collected from (3.23). We expect this method to compute the leading terms

of Nδ(α, β) of degree ≥ 3δ − t for arbitrary t ≥ 0 (see [1, Section 5], especially

Conjecture 5.5).



CHAPTER IV

Psi-Floor Diagrams and a Caporaso-Harris Type Recursion

4.1 Introduction

In this chapter we study enumeration of rational irreducible algebraic plane curves

which, in addition to passing through a collection of points, satisfy conditions given

by “Psi-classes” (together with point conditions). Roughly speaking, this means

“counting” algebraic plane curves satisfying tangency conditions to several lines with

one tangency condition for each line. The (possibly fractional) “counts” are defined

via an intersection product on the moduli space of stable maps. We begin by recalling

some general definitions. All curves in this chapter are irreducible.

On the moduli spaces M g,r (resp. M g,r(CPs, d) ) of r-marked genus-g stable curves

(resp. stable maps of degree d to projective space CPs), the Psi-class ψi for i =

1, . . . , r is the first Chern class of the line bundle whose fiber over a point (C, x1, . . . , xr)

(resp. (C, x1, . . . , xr, f)) is the cotangent space of C at xi. These Psi-classes are use-

ful to count curves with tangency conditions, for example. To count curves that

satisfy incidence conditions (e.g. pass through given points), one defines evaluation

maps on the space of stable maps, evi : M g,r(CPs, d) → CPs, which send a stable

map (C, x1, . . . , xr, f) to the image f(xi) of the marked point xi. Then we can pull

back the incidence conditions via the evaluation maps. Finally, we can intersect

61
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Figure 4.1: A rational degree-3 algebraic curve in CP2 with tangency of order 2 at two fixed
points to two fixed generic lines. Additionally, the curve passes through 4 points
in generic position. This curve (fractionally) contributes to the intersection product
ev∗1(pt) ev∗2(pt) ev∗3(pt)ψ3 ev∗4(pt) ev∗5(pt)ψ5 ev∗6(pt) on the moduli space M0,6(CP2, 3).

pullbacks along the evaluation maps and Psi-classes on M g,r(CPs, d). The degrees

of such zero-dimensional intersection products are called descendant Gromov-Witten

invariants. They have been studied in detail in Gromov-Witten theory.

Roughly speaking, a condition given by the Psi-classes ψri together with an inci-

dence condition at the ith point (via the pull back ev∗i (pt)) corresponds to imposing

a tangency of order r + 1 to a fixed general line in CPs at a fixed point (cf. with

Figure 4.1). The contribution can be fractional however (for more details see Sec-

tion 4.2).

Tropical analogues of moduli spaces of stable curves and maps have been intro-

duced in [26, 14], and tropical intersection theory was used to define tropical enumer-

ative numbers for rational curves analogously to the classical world. A. Gathmann

and H. Markwig showed that the famous recursion formulas for the count of plane

curves known as Kontsevich’s formula [16] resp. the Caporaso-Harris algorithm [15]

also hold in the tropical world and can be proven using purely tropical methods.

Tropical analogues of Psi-classes on the space of abstract tropical curves M0,r have
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been introduced by G. Mikhalkin [26], and tropical plane descendant Gromov-Witten

invariants on M0,r(R2, d) by H. Markwig and J. Rau [25]. H. Markwig and J. Rau

show that these tropical plane descendant Gromov-Witten invariants for which every

Psi-condition ψi comes together with a point condition ev∗i pt satisfy the so-called

WDVV equations which can be thought of as generalizations of Kontsevich’s for-

mula [23]. It follows that those numbers are equal to their classical counterparts,

i.e. a correspondence theorem holds here as well. Tropical curves contributing to

the count of such descendant plane Gromov-Witten invariants have higher-valent

vertices at the marked points satisfying the Psi-conditions.

The aim of this chapter is to introduce floor diagrams for plane descendant

Gromov-Witten invariants (such that every Psi-condition ψi comes together with a

point condition ev∗i pt) which we call Psi-floor diagrams. The count of these diagrams

gives exactly the tropical plane descendant Gromov-Witten invariants. Because of

the Correspondence Theorem it then follows that they also give the classical plane

descendant Gromov-Witten invariants. We generalize our definition to relative Psi-

floor diagrams and prove that their count computes tropical relative Gromov-Witten

invariants. Afterwards, we show that the numbers of relative Psi-floor diagrams

satisfy a Caporaso-Harris formula and we show that our formula coincides with the

classical formula by A. Gathmann. It follows that relative Psi-floor diagrams (and

thus also tropical relative plane descendant Gromov-Witten invariants) count relative

plane descendant Gromov-Witten invariants.

The difficulty in generalizing the definition of floor diagrams to tropical curves

satisfying Psi-conditions is that, because of the higher-valent vertices, we cannot

necessarily split the curve into single floors. So we have to introduce multiple floors

which are harder to deal with combinatorially. As a consequence, there is no longer
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a bijection between floor diagrams and tropical curves. Rather, there are several

tropical curves encoded in one Psi-floor diagram since there are many ways how a

multiple floor can look in a tropical curve. Thus, we have to introduce new multi-

plicities for Psi-floor diagrams that encode how many tropical curves correspond to

one diagram.

4.2 Descendant Gromov-Witten Invariants

Let us start by recalling the algebro-geometric construction and computation of

the absolute and relative descendant Gromov-Witten invariants whose corresponding

tropical version we will study later in this chapter. For details in this section we

refer mainly to [11, 24] in the absolute and [12] in the relative case. Throughout this

section we will work with the ground field C of the complex numbers and denote

by A∗(X) and A∗(X) the Chow homology and cohomology groups of a scheme (or

stack) X. A class γ ∈ Ai(X) will be said to have codimension codim γ = i, and the

class of a hyperplane in a projective space CPs will be denoted h ∈ A1(CPs).

4.2.1 Absolute Descendant Gromov-Witten Invariants

For s > 0 and r, d ≥ 0 we denote by M̄0,r(CPs, d) the moduli space of r-marked

rational stable maps of degree d to the projective space CPs (see [11, Section 4]). Its

points correspond to tuples (C, x1, . . . , xr, f) (modulo automorphisms) such that

• C is a connected, complete rational curve with at most nodes as singularities;

• x1, . . . , xr are distinct smooth points on C;

• f : C → CPs is a morphism of degree d, i.e. such that f∗[C] is the class of d

times a line; and

• the tuple (C, x1, . . . , xr, f) has only finitely many automorphisms.
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Intuitively, M̄0,r(CPs, d) can be thought of as a compactification of the space of all

rational degree-d curves in CPs with r marked points. It is a smooth, complete, and

separated stack of dimension (s+ 1)d+ s− 3 + r.

For i = 1, . . . , r there are so-called evaluation maps evi : M̄0,r(CPs, d)→ CPs that

send a tuple (C, x1, . . . , xr, f) to the image f(xi) of the i th marked point. Moreover,

we denote by ψi ∈ A1(M̄0,r(CPs, d)) the i-th cotangent line class (also called the

i-th Psi-class), i.e. the first Chern class of the line bundle whose fiber over a point

(C, x1, . . . , xr, f) is the cotangent space of C at the (smooth) point xi.

In general, descendant Gromov-Witten invariants are now obtained by taking

degrees of zero-dimensional intersection products of Psi-classes and pull-backs by

the evaluation maps on the above moduli spaces. More precisely, pick a1, . . . , ar ≥ 0

and γ1, . . . , γr ∈ A∗(CPs) such that the dimension condition

r∑
i=1

(ai + codim γi) = dim M̄0,r(CPs, d).

holds. Then we define the corresponding Gromov-Witten invariant

〈τa1(γ1) · · · τar(γr)〉CPs
d

def
= deg

(
ev∗1 γ1 · ψa1

1 · · · · · ev∗r γr · ψarr · [M̄0,r(CPs, d)]
)
∈ Q.

For a1 = · · · = ar = 0 we can simply think of this invariant as the number of

rational degree-d curves in CPs passing through r given generic subvarieties of classes

γ1, . . . , γr. For other choices of a1, . . . , ar these numbers do not have an immediate

geometric interpretation, but they occur e.g. in the computation of numbers of curves

satisfying tangency conditions in addition to incidence conditions.

The Gromov-Witten invariants above are all well-known; they can be computed

e.g. using the WDVV and topological recursion relations (see [23, Section 3] , [24,

Corollary 1.3]). In what follows we will need in particular the following invariants of

CP1.
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Lemma IV.1. For all a, b, c, d ≥ 0 with a = 2d− 2 + b we have

〈1 · · · 1︸ ︷︷ ︸
b

h · · · h︸ ︷︷ ︸
c

τa(h)〉CP1

d =
dc

d!2
.

Proof. The equation a = 2d − 2 + b is simply the dimension condition. Let us first

assume that d > 0. By the fundamental class and divisor axioms of Gromov-Witten

invariants (see e.g. [17, Proposition 12]) we then know that

〈1 · · · 1︸ ︷︷ ︸
b

h · · · h︸ ︷︷ ︸
c

τa(h)〉CP1

d = dc · 〈τa−b(h)〉CP1

d .

As the one-point invariant 〈τa(h)〉CP1

d is equal to 1
d!2

by [28, Section 1.4], the result

follows.

In the special case d = 0 we see first of all that we must have b ≥ 2 by the

dimension condition. Thus we can again use the fundamental class and divisor

axioms to reduce the invariant to

〈1 · · · 1︸ ︷︷ ︸
b

h · · · h︸ ︷︷ ︸
c

τa(h)〉CP1

d = dc · 〈1 1 τ 0(h)〉CP1

d = dc

as stated in the lemma (i.e. to 1 for c = 0 and to 0 otherwise).

Our main concern in this chapter, however, will be the plane1 Gromov-Witten

invariants of the projective plane CP2 where each of the classes γ1, . . . , γr above is

the class pt = h2 of a point. By the dimension condition we then need non-negative

integers a1, . . . , ar such that

2r + a1 + · · ·+ ar = dim M̄0,r(CP2, d), i.e. a1 + · · ·+ ar = 3d− 1− r

to get a well-defined number 〈τa1(pt) · · · τar(pt)〉CP2

d . Note that by the symmetry of

the points this number depends only on how often each Psi-power occurs among the

numbers a1, . . . , ar. Let us therefore introduce a simplified notation that reflects this

symmetry and that will be particularly useful when considering floor diagrams later:
1To simplify our terminology we suppress the word “plane” in the context of Gromov-Witten invariants if it is

clear from context that the ambient space is CP2.
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Notation IV.2 (Sequences). Let k = (k0,k1,k2, . . . ) be a sequences of non-negative

integers with only finitely many non-zero entries. We set (compatibly with Chap-

ter III)

|k| def
= k0 + k1 + k2 + · · · ,

Ik
def
= 0 k0 + 1 k1 + 2 k2 + · · · ,

Ik def
= 0k0 · 1k1 · 2k2 · · · · ,

k!
def
= k0! · k1! · k2! · · · · .

Moreover, if k,k′ are two such sequences we define the sequence k + k′ by compo-

nentwise addition and write k ≤ k′ if ki ≤ k′i for all i ≥ 0. To simplify notation, we

will usually write such sequences as finite sequences (k0, . . . ,kn) for some n with the

convention that the remaining entries kn+1,kn+2, . . . are then equal to zero.

Definition IV.3 (Ñd,k and Nd,k). Let d ≥ 0, and let k = (k0,k1,k2, . . . ) be a

sequence of non-negative integers such that Ik = 3d − 1 − |k|. For r = |k| let

a1, . . . , ar be an r-tuple of non-negative integers that contains each number i ∈ N

exactly ki times (in any order), and define

Ñd,k
def
= 〈τa1(pt) · · · τar(pt)〉CP2

d ;

so these are the numbers of rational plane degree-d curves passing through r points

and satisfying in addition a ψi condition at ki chosen marked points for all i. If we

do not choose the points for the ψi conditions but rather only require that among

the r marked points there are ki of them at which a ψi condition is satisfied (i.e.

sum over all tuples a1, . . . , ar above containing each i exactly ki times) then we get

instead the numbers

Nd,k
def
=
|k| !
k!

Ñd,k,
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which will turn out to be more natural when considering floor diagrams later.

4.2.2 Relative Descendant Gromov-Witten Invariants

Relative invariants are very similar to the absolute invariants of Section 4.2.1,

except that we now fix once and for all a line L ⊂ CP2 and count curves in CP2 that

have prescribed local intersection multiplicities with L in addition to satisfying the

evaluation and Psi-conditions above. In the absence of Psi-conditions this amounts

to considering relative Gromov-Witten invariants which are closely related to the

relative Severi degree of Chapter III (the former enumerates only irreducible curves

whereas the latter includes also reducible curves).

More precisely, choose d > 0 and let µ1, . . . , µr ∈ N for some r > 0 such that

µ1+· · ·+µr = d. Setting µ = (µ1, . . . , µr), we denote by M̄0,µ(CP2, d) ⊂ M̄0,r(CP2, d)

the closure of the subset of all (C, x1, . . . , xr, f) such that C is smooth and f ∗L =

µ1x1 + · · ·+ µrxr as divisors on C (see [12, Section 1]). These spaces are called the

moduli spaces of stable maps relative to L; they have dimension 2d− 1 + r.

As in the absolute case, degrees of zero-dimensional intersection products of Psi-

classes and pull-backs by the evaluation maps on the moduli spaces of relative stable

maps are called relative descendant Gromov-Witten invariants. So if we now fix

a1, . . . , ar ∈ N and γ1, . . . , γr ∈ A∗(CP2) such that

r∑
i=1

(ai + codim γi) = dim M̄0,µ(CP2, d),

we can define in a similar way as above an associated relative Gromov-Witten in-

variant

〈τa1(γ1) · · · τar(γr)〉CP2

µ
def
= deg(ev∗1 γ1 · ψa1

1 · · · · · ev∗r γr · ψarr · [M̄0,µ(CP2, d)]) ∈ Q.

If a1 = · · · = ar = 0 this invariant can be interpreted by construction as the number

of plane rational degree-d curves with r marked points that have local intersection
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multiplicity µi and, in addition, pass through a generic subvariety of CP2 of class γi

at the i-th marked point, for all i = 1, . . . , r. In particular, the marked points xi

with µi > 0 will lie on L, whereas the ones with µi = 0 in general do not.

As before, we will restrict our attention in this chapter to a certain subset of these

invariants. Namely, we will only consider choices of µ1, . . . , µr, a1, . . . , ar, γ1, . . . , γr

such that, for all i = 1, . . . , r, we have one of the following cases:

• µi > 0, ai = 0, and γi = h1 (i.e. a marked point lying on a fixed point of L

with a given local intersection multiplicity of the curve to L). For j ≥ 1 we will

denote the number of such i with µi = j by αj.

• µi > 0, ai = 0, and γi = h0 (i.e. a marked point lying on a non-fixed point of

L with a given local intersection multiplicity of the curve to L). For j ≥ 1 we

will denote the number of such i with µi = j by βj.

• µi = 0 and γi = h2 (i.e. a marked point lying on a fixed generic point of CP2 and

possibly satisfying some Psi-conditions). For j ≥ 0 we will denote the number

of such i with ai = j by kj.

By symmetry of the marked points, the three sequences α = (α1, α2, . . . ), β =

(β1, β2, . . . ), and k = (k0,k1,k2, . . . ) determine the invariant under consideration

uniquely. So we can make the following definition:

Definition IV.4 (Ñd,k(α, β) and Nd,k(α, β)). With notations as above, we set

Ñd,k(α, β)
def
= 〈τa1(γ1) · · · τar(γr)〉CP2

µ .

So Ñd,k(α, β) is the number of plane rational marked degree-d curves (C, x1, . . . , xr, f)

satisfying the following conditions:
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• For each i ∈ N fix αi of the marked points on C and a general point on L for

each of them; each of these marked points then has to be mapped by f to the

corresponding given point on L, and C must have local intersection multiplicity

i to L there.

• For each i ∈ N fix βi of the marked points on C; each of these marked points then

has to be mapped by f to L, and C must have local intersection multiplicity i

to L there.

• For each i ∈ N fix ki of the marked points on C and a general point in CP2 for

each of them; each of these marked points then has to be mapped by f to the

corresponding given point in CP2, and C must satisfy in addition a ψi condition

there.

Note that the dimension condition translates to

I(α + β + k) = 3d− 1 + |β| − |k|

in these variables, where we use notation IV.2 also for the sequences α and β

(although they start at index 1 rather than 0). In the same way, the condition

µ1 + · · ·+ µr = d translates to

I(α + β) = d.

As in Definition IV.3 let us also introduce a slight variant of these invariants where

we do not specify which Psi-power condition has to be satisfied at which point xi

with µi = 0, and where we do not mark the non-fixed points on L of the curves: we

set

Nd,k(α, β)
def
=

1

β!
· |k| !

k!
· Ñd,k(α, β).
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Just like their absolute counterparts all relative Gromov-Witten invariants that

we have introduced in this section are actually known to be computable recursively.

To do so one uses a generalization of the Caporaso-Harris formula of [6] that we will

describe now.

4.2.3 The Caporaso-Harris Formula for Descendant Invariants

In this section we want to use relative Gromov-Witten theory to derive a recursive

formula for the numbers Ñd,k(α, β) (and thus also for Nd,k(α, β)) of Definition IV.4.

As in the beginning of Section 4.2.2 let r, d > 0 and µ1, . . . , µr ≥ 0 with µ1 + · · ·+

µr = d. We have then constructed a moduli space M̄0,µ(CP2, d) ⊂ M̄0,r(CP2, d) of

dimension 2d − 1 + r of plane rational degree-d stable maps relative to a fixed line

L ⊂ CP2, and our invariants Ñd,k(α, β) were certain zero-dimensional intersection

products on these spaces.

Since µ1 + · · ·+µr = d there can be at most d marked points xi with µi > 0. Note

that our invariants had no Psi-conditions and at most a codimension-1 evaluation

condition at all these points. So the conditions at these marked points yield a cycle of

codimension at most d — and as the dimension of our moduli space is 2d−1 + r > d

it follows that there must be at least one marked point xi with µi = 0. By symmetry

we may assume without loss of generality that x1 is such a marked point, i.e. that

µ1 = 0. For our invariant this marked point x1 is then required to map to a given

general point in CP2.

The idea of the proof is now to move this generic chosen point to a special position,

namely to a point on L. As we have marked all intersection points of the curves with

L already (note that µ1 + · · · + µr = d) this forces the curves to become reducible

and split up into several components of smaller degree, one of which will be mapped

completely to L. The curves can then be enumerated recursively over the degree.



72

To describe this process more formally we follow the notation and results from

Section 2 of [12]. Note, however, that our current situation is a little simplified

compared to [12] since we have assumed here that µ1 + · · ·+ µr = d.

Construction IV.5 (Moduli spaces D(A,B), see [12, Definition 2.2]). Fix r, d > 0

and a moduli space M̄0,µ(CP2, d) ⊂ M̄0,r(CP2, d) with µ = (µ1, . . . , µr) and µ1 +

· · ·+ µr = d as above.

Choose a partition A = (A′, A1, . . . , At) of {1, . . . , r} for some t ≥ 0, and let µi

for i = 1, . . . , t be the tuple of all µj with j ∈ Ai (in any order). Moreover, pick a

(t+ 1)-tuple B = (d′, d1, . . . , dt) of non-negative integers with di > 0 for i = 1, . . . , t

and d′ + d1 + · · ·+ dt = d. We assume that we have made our choices so that

(4.1) mi def
= di −

∑
j∈Ai

µj > 0

for all i = 1, . . . , t, and thus (by adding all these equations up and comparing the

sum to µ1 + · · ·+ µr = d) so that

(4.2) d′ +m1 + · · ·+mt =
∑
j∈A′

µj.

In this case we now define the space D(A,B) to be

D(A,B)
def
= M̄0,t+#A′(L, d

′)×(CP1)t

t∏
i=1

M̄0,(mi)∪µi(CP2, di),

where (mi) ∪ µi denotes the (#Ai + 1)-tuple obtained by prepending mi at the

beginning of µi, and the maps to (CP1)t for the fiber product are the evaluation at

the first t marked points of the first factor and at the first marked point of each of

the moduli spaces in the second factor. Note that the first factor is a moduli space

of absolute stable maps to the line L ∼= CP1, whereas the second factor consists of

moduli spaces of stable maps to CP2 relative to L.
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By construction, D(A,B) parameterizes stable maps to CP2 with (generically)

t+ 1 irreducible components: one “central” component in L, and t “external” com-

ponents in CP2 all attached to the central one at a point where they have a local

intersection multiplicity to L as given by m1, . . . ,mt. The (t + 1)-tuples A and

B simply parameterize how the marked points and the degree split up onto the

t + 1 components. In this way D(A,B) can be considered as a closed subspace of

M̄0,r(CP2, d).

Note that the case t = 0 is allowed (i.e. there may be no external components at

all), as well as d′ < 1 and d′ > 1 (i.e. the central component may be a contracted one

or a multiple cover of L). The following picture shows an example of a general element

(C, x1, . . . , x5, f) ∈ D(A,B) for d = 5, r = 3, µ = (4, 0, 1), A = ({1}, ∅, {2, 3}),

B = (1, 2, 2), and thus µ1 = (), µ2 = (0, 1), m1 = 2, and m2 = 1.

C

x1

x2

x3

f

f(x1)

f(x2)

f(x3)
H

P2

The importance of these moduli spaces comes from the fact that they describe

precisely the curves appearing when moving a marked point from a general position

in CP2 to L. In fact, all D(A,B) are divisors in M̄0,µ(CP2, d), and we have the

following statement:

Proposition IV.6 ([12, Theorem 2.6]). With notations as above, we have

ev∗1 L · M̄0,µ(CP2, d) =
∑
t,A,B

m1 · · · · ·mt

t!
D(A,B)

in the Chow group of M̄0,µ(CP2, d), where the sum is taken over all t ≥ 0, A, and B

with 1 ∈ A′ and satisfying condition (4.1) (and thus also (4.2)) as in Construction

IV.5.
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As usual in Gromov-Witten theory it is now convenient to replace the fiber product

in the Construction IV.5 of D(A,B) by the “diagonal splitting” trick: the fiber

product X ×CP1 Y of two spaces X and Y with projections p and q to CP1 can be

rewritten as the pull-back of the diagonal of CP1 × CP1 by the map p × q, and as

this diagonal has class h× 1 + 1× h it follows that

X ×CP1 Y = (p∗h+ q∗h) · (X × Y ).

Let us apply this formula in the expression for D(A,B) from Construction IV.5 for

each of the t factors CP1 over which we take the fiber product, thus converting

D(A,B) into a sum of 2t terms with no fiber products. By symmetry, we can

then always relabel the external t components so that the ones with the ev∗h term

in the M̄0,(mi)∪µi(CP2, di) factor come first — if there are t′ ∈ {0, . . . , t} of these

components we then have
(
t
t′

)
terms in the diagonal splitting that become the same

after this relabeling. Hence we can rewrite the formula of Proposition IV.6 in the

following form:

ev∗1 L · M̄0,µ(CP2, d) =
∑
t,A,B

t∑
t′=0

m1 · · · · ·mt

t′! (t− t′)!

(
ev∗t′+1 h · · · · · ev∗t h · M̄0,t+#A′(L, d

′)
)

×
t′∏
i=1

(
ev∗1 h · M̄0,(mi)∪µi(CP2, di)

)
×

t∏
i=t′+1

M̄0,(mi)∪µi(CP2, di).

To get a recursive relation for the invariants

Ñd,k(α, β) = 〈τa1(γ1) · · · τar(γr)〉CP2

µ

of Definition IV.4 we now intersect this equation of cycles with the class

ev∗1 h · ψ
a1
1 · ev∗2 γ2 · ψa2

2 · · · · · ev∗r γr · ψarr

(note that γ1 = pt by assumption, and thus the two evaluations ev∗1 L ·ev∗1 h together

give the desired condition ev∗1 γ1 at the first point). The left hand side of the equation



75

is then simply Ñd,k(α, β). Each summand on the right hand side is a product of one

absolute Gromov-Witten invariant of CP1 and t relative Gromov-Witten invariants

of CP2. The invariant of CP1 has the condition ev∗1 h · ψ
a1
1 at the first marked point,

a condition ev∗i h at all gluing points from the last t − t′ external components and

all xi with i ∈ A′ such that γi = h, and no condition at all at the other points. On

the other hand, the t relative invariants of CP2 are again of the type of invariants

considered in Definition IV.4: we can write them as Ndi,ki(α
i + emi , β

i) for the first

t′ and Ndi,ki(α
i, βi + emi) for the last t − t′ invariants, where αi, βi,ki denote the

sequences associated to the marked points xj with j ∈ Ai according to Definition

IV.4. Finally, let us then rewrite the sum over A as a sum over the corresponding

sequences αi, βi, ki. If we set (compatibly with Chapter III)

(4.3) α′
def
= α− α1 − · · · − αt and

(
α

α1, . . . , αt

)
def
=
∏
i≥1

αi!

α1
i ! · · · · · αti! · α′i!

(and similarly for β and k, except that the index of the sequences starts at 0 for k),

then exactly (
α!

α1, . . . , αt

)
·
(

β!

β1, . . . , βt

)
·
(

k− ea
k1, . . . ,kt

)
choices of partitions of A into t subsets will give rise to the same invariants. Here, ea

denotes the sequence with only non-zero entry 1 in the a-th component — we have

to write k− ea instead of k since the first marked point is fixed to lie on the central

component, so there is no choice here where to put this point. Hence our equation
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becomes

Ñd,k(α, β) =
∑
t,t′

∑
α,β,k

∑
B

m1 · · · · ·mt

t′! (t− t′)!

(
α

α1, . . . , αt

)(
β

β1, . . . , βt

)(
k− ea

k1, . . . ,kt

)

· 〈1 · · · 1︸ ︷︷ ︸
|β′|+t′

h · · · h︸ ︷︷ ︸
|α′|+t−t′

τa(h)〉CP1

d′

·
t′∏
i=1

Ndi,ki(α
i + emi , β

i) ·
t∏

i=t′+1

Ndi,ki(α
i, βi + emi)

Note that we must have k1 + · · · + kt = k − ea in each term since marked points

with generic point conditions in CP2 cannot lie in the central component within

L. Moreover, each relative invariant in this expression must of course satisfy the

dimension condition

I((αi + emi) + βi + ki) = 3di − 1 + |βi| − |ki| for i ≤ t′

resp. I(αi + (βi + emi) + ki) = 3di − 1 + |βi + emi | − |ki| for i > t′

of Definition IV.4, as well as condition (4.1)

mi = di − I(αi + βi)

of Construction IV.5. We can think of the first of these equations as determining

di, and of the second as determining mi from αi, βi, and ki. Finally, inserting the

expression of Lemma IV.1 for the absolute Gromov-Witten invariant of CP1 we get

the following result that allows us to compute all numbers Ñd,k(α, β) recursively.

Theorem IV.7 (Caporaso-Harris formula for the relative descendant Gromov-Wit-

ten invariants Ñd,k(α, β)). The relative Gromov-Witten invariants Ñd,k of Definition

IV.4 satisfy the relations

Ñd,k(α, β) =
∑ m1 · · · · ·mt

t′! (t− t′)!
· d
′|α′|+t−t′

d′!2

(
α

α1, . . . , αt

)(
β

β1, . . . , βt

)(
k− ea

k1, . . . ,kt

)
·
t′∏
i=1

Ñdi,ki(α
i + emi , β

i) ·
t∏

i=t′+1

Ñdi,ki(α
i, βi + emi)
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for each a ∈ N with ka > 0. Here, the sum is taken over all 0 ≤ t′ ≤ t and all

sequences α1, . . . , αt, β1, . . . , βt, k1, . . . ,kt such that

• α′ def
= α−α1−· · ·−αt ≥ 0, β′

def
= β−β1−· · ·−βt ≥ 0, and k1 + · · ·+kt = k−ea;

• di def
= 1

3
(I(αi + βi + ki + emi) − |βi| + |ki| + 1) ∈ N>0 for i = 1, . . . , t′, and

di
def
= 1

3
(I(αi + βi + ki + emi)− |βi|+ |ki|) ∈ N>0 for i = t′ + 1, . . . , t;

• d′ def
= d− d1 − · · · − dt ≥ 0;

• mi def
= di − I(αi + βi) > 0 for all i = 1, . . . , t.

It is easy to rewrite this formula so that it computes the invariants Nd,k(α, β)

instead of Ñd,k(α, β):

Corollary IV.8 (Caporaso-Harris formula for the relative descendant Gromov-Wit-

ten invariants Nd,k(α, β)). The invariants Nd,k(α, β) of Definition IV.4 satisfy the

relations

Nd,k(α, β) =
∑

a: ka>0

∑ m1 · · · · ·mt

t′! (t− t′)!
· d
′|α′|+t−t′

d′!2

(
α

α1, . . . , αt

)
1

β′!

(
|k| − 1

|k1|, . . . , |kt|

)

·
t′∏
i=1

Ndi,ki(α
i + emi , β

i) ·
t∏

i=t′+1

(βimi + 1)Ndi,ki(α
i, βi + emi)

where the second sum is taken over the same partitions and with the same conditions

as in Theorem IV.7.

Proof. Inserting the expression of Definition IV.4 for the numbers Nd,k(α, β) in terms

of Ñd,k(α, β) into the formula of Theorem IV.7 gives

Nd,k(α, β) =
∑ m1 · · · · ·mt

t′! (t− t′)!
· d
′|α′|+t−t′

d′!2

(
α

α1, . . . , αt

)
1

β′!

(
|k| − 1

|k1|, . . . , |kt|

)
|k|
ka

·
t′∏
i=1

Ndi,ki(α
i + emi , β

i) ·
t∏

i=t′+1

(βimi + 1)Ndi,ki(α
i, βi + emi)

for all a with ka > 0. Multiplying these equations with ka
|k| and summing them up

for all a then gives the desired equation since
∑

a
ka
|k| = 1.
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4.3 Tropical Descendant Gromov-Witten Invariants

In the last section we have introduced several algebro-geometric descendant ra-

tional Gromov-Witten invariants of the projective plane:

• the absolute invariants Ñd,k resp. Nd,k which count degree-d curves through

points and Psi-conditions as specified by k (see Definition IV.3);

• the relative invariants Ñd,k(α, β) resp. Nd,k(α, β) which count degree-d curves

through points, Psi-conditions as specified by k, and multiplicity conditions to

a fixed line as specified by α and β (see Definition IV.4).

The convention here was that the numbers called Ñ consider all points at which some

condition has to be satisfied as marked points, whereas the numbers called N are

obtained from these by a simple combinatorial factor dividing out some symmetries

in the conditions.

We will now introduce corresponding numbers with a superscript “trop” (e.g.

Ñ trop
d,k ) arising from the count of tropical plane curves, as well as — in the following

Section 4.4 — numbers with a superscript “floor” (e.g. Ñfloor
d,k ) obtained by counting

floor diagrams. The convention mentioned above will still hold for these numbers; we

will see however that the N numbers seem to be more natural from the point of view

of floor diagrams, whereas the Ñ have been more natural in the algebro-geometric

setting. In the end however, all corresponding numbers will turn out to be the same,

e.g. Ñd,k = Ñ trop
d,k = Ñfloor

d,k for all d and k. In fact, this is the main result of this

chapter: that the (rational plane) absolute and relative descendant Gromov-Witten

invariants of algebraic geometry can also be computed using certain counts of floor

diagrams.
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4.3.1 Absolute Tropical Descendant Gromov-Witten Invariants

As mentioned in the introduction, tropical plane2 descendant Gromov-Witten in-

variants can be defined as intersection products on the tropical analogue of the moduli

spaces of stable maps [25]. However, in order to avoid introducing too much nota-

tion, we choose to define them here purely in terms of the combinatorial properties

of the tropical curves which we want to count.

A (rational) abstract tropical curve is a connected metric graph Γ of genus 0, such

that unbounded edges (with no vertex there) are allowed, and such that each vertex

has valence at least 3 (see [14, Definition 3.2]). The unbounded edges will be called

ends, and the length of a bounded edge e will be denoted l(e) ∈ R>0. We say that

such a curve is an n-marked abstract tropical curve if n of the ends are marked by

x1, . . . , xn. Two (marked) abstract tropical curves are isomorphic (and will from now

on be identified) if there is an isometry between them (that respects x1, . . . , xn in

the marked case).

We now want to consider maps from marked abstract tropical curves to R2. For

our later purposes it will be convenient to consider some of the left ends to be marked

ends, whereas the other (non-contracted) ends will be unmarked.

Definition IV.9. Let m ≥ n ≥ 0. A (parameterized plane) n-marked tropical curve

(with m − n marked left ends) is a tuple (Γ, x1, . . . , xm, h), where (Γ, x1, . . . , xm) is

an m-marked abstract tropical curve and h : Γ→ R2 is a continuous map satisfying

the following conditions.

• On each edge e the map h is integer affine linear, i.e. of the form h(t) = a+ t · v

for a ∈ R2 and v ∈ Z2. If V ∈ ∂e and we parameterize the edge e starting

2Since we only consider tropical curves in the tropical plane R2 we again suppress the word “plane” in the context
of tropical (descendant) Gromov-Witten invariants.
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at V , the vector v in the above equation will be denoted v(V, e) and called the

direction vector of e starting at V . If V is understood from the context (e.g. in

case e is an end, having only one adjacent vertex) we will also write v(e) instead

of v(V, e). The lattice length of v(V, e) will be called the weight ω(e) of e.

• At each vertex V the balancing condition∑
e:V ∈∂e

v(V, e) = 0

is satisfied.

• Each marked end xi for i = 1, . . . , n is contracted by h (i.e. v(xi) = 0).

• Each marked end xi for i = n + 1, . . . ,m is a left end (i.e. it is of direction

(−l, 0) for some l ∈ N>0).

Two parameterized tropical curves are isomorphic if there is an isomorphism of the

underlying marked abstract tropical curves commuting with h. The degree of a

parameterized n-marked tropical curve is defined to be the multiset consisting of the

directions of its non-marked ends, together with the directions of the marked left

ends xn+1, . . . , xm. If the degree multiset consists of d copies of each of the vectors

(−1, 0), (0,−1), and (1, 1) we say that the curve is of degree d (see Example IV.12).

Definition IV.10 (Multiplicity of a curve). Let C = (Γ, x1, . . . , xm, h) be a marked

tropical curve of degree ∆ = {v1, . . . , v1, v2, . . . , v2, . . . , vr, . . . , vr} (with v1, . . . , vr

distinct) such that all vertices that are not adjacent to any of the contracted ends

x1, . . . , xn are 3-valent. Let V1, . . . , Vt be the vertices of Γ. For i = 1, . . . , t and

j = 1, . . . , r let bij the number of non-marked ends adjacent to Vi of direction vj.

Then we set νC
def
=
∏t

i=1

∏r
j=1

1
bij !

, and define the multiplicity mult(C) of C to

be νC times the product of the multiplicities of those vertices without adjacent con-

tracted ends (see [27, Definition 2.16]).
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Definition IV.11 (Ñ trop
d,k ). Let d ≥ 1, and let k be a sequence of non-negative

integers with Ik = 3d − 1 − |k|. Furthermore, for n = |k|, fix a vector (a1, . . . , an)

that contains each number i ∈ N exactly ki times (in any order). Let p1, . . . , pn ∈ R2

be points in general position (see Definitions 3.2 and 9.7 of [25]). We define

Ñ trop
d,k

def
=
∑
C

mult(C),

where the sum goes over all tropical curves C = (Γ, x1, . . . , xn, h) (with non-marked

left ends, i.e. m− n = 0) of degree d satisfying

• h(xi) = pi for all i = 1, . . . , n, and

• the end xi is adjacent to a vertex of valence ai + 3 for all i = 1, . . . , n.

It follows from the general position of the points that all other vertices of Γ are then

3-valent.

Example IV.12. Figure 4.2 shows a parameterized 9-marked tropical curve. We

have drawn the contracted marked ends as dotted lines. We did not specify the

lengths of the bounded edges in the abstract curve since they are determined by

the lengths of the images and the (non-zero) direction vectors, which in turn are

determined by the directions of the ends using the balancing condition. The direction

vectors are all primitive except for the edge with weight 2 in the image.

This curve contributes to Ñ trop
5,k , where k = (7, 0, 1, 1), and where we chose a =

(0, 0, 0, 0, 0, 2, 0, 3, 0). Its multiplicity is 1
2
· 1

2
· 2 · 2 = 2. The two factors of 1

2
arise

because two non-marked ends of the same direction are adjacent to the end vertex

of x6 and of x8. The two factors of 2 are the vertex multiplicities of the vertices of

the edges of weight 2 (not adjacent to a contracted end). In the future, we want to

avoid drawing the abstract curve together with its image. Therefore, we introduce
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h(x1)

Γ

h

x3

x5

x7

x8

2

x1

x4

x6

x9

h(x6)
h(x8)

x2

R2

Figure 4.2: A 9-marked tropical curve.

the following shortcut for the picture above. When two edges of the abstract curve

are mapped on top of each other in the image, we choose to draw them separately,

but close to each other. In this way we can recover the parameterizing abstract curve

uniquely (see [25, Lemma 9.9]).

2

For every vector (a1, . . . , an) containing i exactly ki times for all i ≥ 0, the

number Ñ trop
d,k equals the tropical intersection product

∏n
i=1 ev∗i (pi)ψ

ki
i on the moduli

space M0,n(R2, d) of rational tropical n-marked curves in R2 of degree d by [25,

Remark 3.3], and is thus a tropical descendant Gromov-Witten invariant.

Later on, it will be convenient to allow arbitrary orderings of the Psi-powers. This

leads to the following invariants.
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Definition IV.13 (N trop
d,k ). For d ≥ 1 and k a sequence of non-negative integers

with Ik = 3d − 1 − |k| we define the number N trop
d,k

def
=
∑

C mult(C) analogously to

Definition IV.11, where now the sum is over all tropical curves C of degree d with

non-marked left ends, such that for all i there are ki contracted ends whose adjacent

vertex has valence i+ 3.

Obviously, these numbers N trop
d,k are related to the numbers Ñ trop

d,k of Definition

IV.11 by N trop
d,k = |k| !

k!
Ñ trop
d,k .

Remark IV.14 (The equality Ñ trop
d,k = Ñd,k). In [25] it was shown that tropical de-

scendant Gromov-Witten invariants Ñ trop
d,k satisfy the WDVV relations, just as their

classical counterparts Ñd,k do. As the initial values coincide, we can conclude that

Ñ trop
d,k = Ñd,k for all d and k. There is no direct bijection of the corresponding curves

known at this point. Since both pairs of numbers Ñ trop
d,k , N trop

d,k and Ñd,k, Nd,k differ

by the same combinatorial factor, it follows of course that also N trop
d,k = Nd,k. Both

equalities also follow as the special case α = (), β = (d) from our Caporaso-Harris

formulas (see Remark IV.17).

4.3.2 Relative Tropical Descendant Gromov-Witten Invariants

For two sequences α and β with d = I(α + β) let

∆(α, β) = {(−1, 0), . . . , (−1, 0)︸ ︷︷ ︸
α1+β1

, (−2, 0), . . . , (−2, 0)︸ ︷︷ ︸
α2+β2

, . . . ,

(0,−1), . . . , (0,−1)︸ ︷︷ ︸
d

, (1, 1), . . . , (1, 1)︸ ︷︷ ︸
d

}

and consider parameterized n-marked tropical curves of degree ∆(α, β) with m−n =

|α + β| marked left ends (i.e. all the left ends are marked).

Definition IV.15 (Ñ trop
d,k (α, β) and N trop

d,k (α, β)). Let d ≥ 1, and let k be a sequence

with I(α + β + k) = 3d − 1 + |β| − |k|. Furthermore, for n = |k| fix a vector
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(a1, . . . , an) containing each i ≥ 0 exactly ki times. Let p1, . . . , pn ∈ R2 be points

and yn+1, . . . , yn+|α| be y-coordinates in general position (analogously to Definitions

3.2 and 9.7 of [25]). For all i = n + 1, . . . , n + |α| choose a weight µi such that in

total we have chosen each weight k ≥ 1 exactly αk times. In the same way, choose

weights µi for i = n + |α| + 1, . . . , n + |α + β| so that in total we have chosen each

weight k ≥ 1 exactly βk times.

We then define

Ñ trop
d,k (α, β)

def
=
∑
C

1

Iα
mult(C),

where the sum is taken over all tropical curves C = (Γ, x1, . . . , xm, h) with m− n =

|α + β| marked left ends (i.e. all left ends are marked) of degree ∆(α, β) satisfying

• h(xi) = pi for all i = 1, . . . , n;

• the end xi is adjacent to a vertex of valence ai + 3 for all i = 1, . . . , n;

• for i = n+ 1, . . . , n+ |α|, the y-coordinate of h(xi) equals yi;

• for i = n + 1, . . . , n + |α + β|, the marked end xi is of weight µi, i.e. we have

v(xi) = (−µi, 0).

Again, it follows from the general position of the points that all other vertices of Γ

are 3-valent.

We also define the numbers N trop
d,k (α, β) analogously to Definition IV.13 as num-

bers of tropical curves passing through the given points, with ki contracted ends

whose adjacent vertex has valence i + 3 for all i, with non-marked left ends of the

specified weights, and satisfying that the prescribed set of y-coordinates for a given

weight are the y-coordinates of left ends of this weight. The curves are counted

with multiplicity 1
Iα

mult(C) as above. The numbers N trop
d,k (α, β) and Ñ trop

d,k (α, β) are

related by N trop
d,k (α, β) = 1

β!
|k|
k!
· Ñ trop

d,k (α, β).
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Even though tropical descendant Gromov-Witten invariants are defined in [25]

only in the non-relative case, a completely analogous argument shows that the num-

bers Ñ trop
d,k (α, β) can also be interpreted as intersection products of evaluation pull-

backs and Psi-classes on a suitable moduli space of tropical curves. Hence we can

think of these numbers as tropical relative descendant Gromov-Witten invariants.

Example IV.16. The following curve contributes to N trop
5,(6,1,0,1)((1), (2, 1)) with mul-

tiplicity 1
2
· 2 · 2 = 2. We have drawn a grey dot at the end of the up most left end

in order to indicate that its y-coordinate is fixed.

2 2

Remark IV.17 (The equality Ñ trop
d,k (α, β) = Ñd,k(α, β)). There is no direct corre-

spondence known between the numbers Ñ trop
d,k (α, β) and Ñd,k(α, β). However, we

prove in Theorem IV.33 that N trop
d,k (α, β) = Nfloor

d,k (α, β), and we show in Theorem

IV.35 and Corollary IV.8 that the numbers Nfloor
d,k (α, β) and Nd,k(α, β) satisfy the

same recursive relation. It follows that Nfloor
d,k (α, β) = Nd,k(α, β) and thus also that

N trop
d,k (α, β) = Nd,k(α, β). Of course, the analogous statements hold for the numbers

Ñ trop
d,k (α, β) and Ñd,k(α, β) as well.

4.4 Psi-Floor Diagrams

4.4.1 Absolute Psi-Floor Diagrams

Floor diagrams, introduced by E. Brugallé and G. Mikhalkin [4, 5], are enriched

directed graphs which, if counted correctly, enumerate plane curves satisfying certain

point and tangency conditions. In the following, we generalize this definition to Psi-

floor diagrams, and prove that they enumerate tropical plane curves satisfying point,
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tangency, and Psi-conditions. Let us begin with an example motivating in which

sense floor diagrams extract the combinatorial essence of a tropical curve. For a

precise description how to decompose a Psi-marked tropical curve into a Psi-floor

diagram see the proof of Theorem IV.25.

Return to Example IV.12. There we have already chosen a horizontally stretched

configuration (see [9, Definition 3.1], they use vertically stretched). So we expect the

tropical curve to decompose into floors, and the floors are connected by horizontal

edges only. Let us point this out in the example:

2

Each floor is fixed by one point, and the horizontal edges which are not adjacent

to a Psi-point are also fixed by a point. We can already see that the presence of

points satisfying Psi-conditions may lead to multiple floors — the second floor from

the right is of degree 2, since it contains two ends of direction (0,−1) resp. (1, 1). The

marked Psi-floor diagram of this curve can be found in step 3 of Definition IV.21.

In the original setting of floor diagrams [4, 5, 9] there are only single floors with

one end of direction (0,−1) and one of direction (1, 1). There the idea is to shrink

each floor to one vertex, and then first consider a weighted graph on the vertex set

of all floors (a floor diagram). The weights of the edges correspond to the weights of

the corresponding edges of the tropical curve. One obtains the “marking” of the floor

diagram by adding in the ends and points on horizontal edges. Since any direction

vector of an edge inside a floor has y-coordinate 1, a horizontal edge of weight i has

to end at two vertices of multiplicity i each. Therefore, the multiplicity of a floor
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diagram equals the product over the squares of these weights.

Our setting is similar, but differs in a few features which we address now before

giving the precise definition. We have seen already that multiple floors can occur.

Consider a contracted end with Psi-condition ψa in a multiple floor of degree d′

(i.e. d′ ends of direction (0,−1) resp. (1, 1) belong to the floor). If we remove the

contracted end from the abstract graph, we produce a + 2 connected components.

Therefore, we must have a + 2 ≥ 2d′ (the string inequality), since otherwise there

would be a connected component which contains two ends, and thus a string (see [16,

Definition 3.5]), in contradiction to the general position of the points.

As explained above, a multiple floor of degree d′ has d′ ends of direction (0,−1)

and (1, 1). Furthermore, it has some “incoming edges” of directions (−m, 0) and

some “outgoing edges” of directions (m, 0) (for some m ∈ Z>0). Thus the balancing

condition for the x-coordinate implies that the sum of the weights of the incoming

edges equals the sum of the weights of the outgoing edges plus d′. This will be called

the divergence condition of the floor diagram. Note however that we do not draw left

ends of the tropical curve in the floor diagram. Therefore the divergence condition

will be an inequality (that determines how many left ends are adjacent to a floor)

and not an equality.

Psi-points do not need to lie on floors — they can also lie on horizontal edges, as

the following picture shows.

2

Since there may be bounded edges from other floors adjacent to such a Psi-point

on a horizontal edge, we have to include these points in the underlying floor diagram.
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Therefore, we introduce degree-0 vertices corresponding to these points. As we do

not draw ends in the floor diagram, the valence of such a degree zero vertex has to be

the correct one after adding the ends. The Psi-floor diagram (for details see below)

of the tropical curve above is

y y y
1 2 0 1 2 2

2� � .

Here is the formal definition:

Definition IV.18. A (rational) Psi-floor diagram D is a connected, directed graph

(V,E) of genus 0 on a linearly ordered vertex set (V,<) with edge weights ω(e) ∈ Z>0

for all edges e ∈ E, together with pairs (dv, av) ∈ Z2
≥0 for each vertex v in V (which

we call the degree dv and the Psi-power av of v), satisfying:

1. The edge directions preserve the vertex order, i.e. for every edge v → w we have

v < w.

2. There are no edges between degree-0 vertices, i.e. if v → w is an edge then

dv > 0 or dw > 0.

3. For each v ∈ V at least one of the numbers dv and av is positive.

4. For each v ∈ V we have av − 2(dv − 1) ≥ 0 (string inequality).

5. (Divergence condition) For every vertex v we have

div(v)
def
=
∑

edges e

v
e→w

ω(e)−
∑

edges e

w
e→ v

ω(e) ≤ dv.

This means that at every vertex of D the total weight of the outgoing edges is

larger by at most dv than the total weight of the incoming edges.

6. If dv = 0 for a vertex v, then val(v) = av+2+div(v) (where val(v) is the valence

of v).
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We call d(D) =
∑

v∈V dv the degree of a Psi-floor diagram D. A floor of D is

a vertex of positive degree. The type of D is k(D) = (k0,k1, . . . ), where ki is the

number of vertices v of D with av = i for all i ≥ 1, and k0 is the number of vertices

v with av = 0 plus 3d− 1− Ik−#V . The number 3d− 1− Ik−#V that we add

to k0 equals the number of vertices of Psi-power 0 that we will add later and which

makes the equality Ik = 3d− 1− |k| hold. The multiplicity µ(D) of D is given by

µ(D)
def
=

∏
edges e

ω(e)2
∏
v
e→w

s.t. dv=0

or dw=0

1

ω(e)

∏
v: dv=0

1

| div(v)| !
.

The first factor in the definition of multiplicity corresponds, as in the original def-

inition of floor diagram, to vertices adjacent to edges of higher weight. If an edge

of higher weight is adjacent to a contracted end however (e.g. at a vertex of degree

0), this vertex does not contribute and so we have to divide out by one factor of

ω(e) again. The last factor contributes to the factor νC in Definition IV.10 of the

multiplicity of a tropical curve, which arises because ends of the same direction are

adjacent to a vertex.

We draw Psi-floor diagrams using the convention that vertices in increasing order

are arranged left to right, thereby adopting the convention of [9]. Note that in this

chapter we draw the corresponding tropical curves in the opposite direction. We

write the pair (dv, av) below each vertex v. Edge weights of 1 are omitted.

Example IV.19. An example of a Psi-floor diagram D of degree d = 5, type k =

(2, 0, 1, 1), divergences 1, 1,−1,−1, and multiplicity µ(D) = 4 is drawn below.

i i i i2- - -

1 0 2 3 1 2 1 0

Given a Psi-floor diagram D we define, for every floor v, the sets I(v) and O(v)
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by

I(v)
def
= {w → v : dw > 0},

O(v)
def
= {v → w : dw > 0} ∪

∐
{v 1→ ◦},

where the latter set is a disjoint union of the outgoing edges of D at v augmented

by dv−div(v) many indistinguishable edges of weight 1 directed away from v ending

in distinct vertices ◦. These indistinguishable extra ends correspond to left ends of

the tropical curve starting at this floor.

Example IV.19 (continued). We draw the sets I(v) and O(v) by augmenting

the Psi-floor diagrams at the respective vertices. If, for example, v is the third

black vertex from the left, then O(v) consists of the edge between v and the fourth

black vertex and the two edges of weight 1 connecting v with the two adjacent white

vertices.

i i i i2- - -

1 0 2 3 1 2 1 0

�
�
���

y
�
�
���

y
��

��
�

��
�*

y
�
��
���

y
��

��
�

��
�*

y

An edge choice is a collection C(D) of subsets C(v) ⊂ I(v) ∪ O(v), one for each

floor v of D, satisfying |C(v)| = av − 2(dv − 1), and such that C(v) ∩ C(w) = ∅

for distinct floors v and w. If dv = 0 for a vertex v we set C(v) = ∅. The local

multiplicity at v of such a choice is

µv,C(v)
def
=


d
i(v)
v

dv !
· d

o(v)
v

dv !
if dv > 0,

1 if dv = 0.

where i(v) = |I(v)\C(v)| and o(v) = |O(v)\C(v)| are the number of non-chosen

edges in I(v) and O(v), respectively.

The chosen edges will later correspond to the edges of the tropical curve that are

directly adjacent to the Psi-point; the non-chosen edges to those belonging to the
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floor but not directly adjacent to the Psi-point. We will see later in Lemma IV.26

and the proof of Theorem IV.25 that the local multiplicity at v of an edge choice

takes the possibilities for the degree-dv floor and the contribution to the multiplicity

νC of Definition IV.10 into account.

The multiplicity µ(C) of the edge choice C(D) of the Psi-floor diagram D is

µ(C) def
=
∏
v∈V

µv,C(v)
1

|C(v) ∩ {v → ◦}| !
∏

e∈C(v)

1

ω(e)
.

As before, the multiplicity of an edge choice takes for each floor a combination of

contributions to νC and possibilities for a floor into account, furthermore additional

contributions to νC and factors of 1
ω(e)

that arise because an edge of weight ω(e) is

adjacent to a contracted end.

Example IV.20. We picture an edge choice C(D) by thickening all edges in C(v)

at v, for all vertices v of D. Below is an edge choice for the Psi-floor diagram of

Example IV.19. Its multiplicity is µ(C) = 1
2
. Notice that |C(v)| = av − 2(dv − 1) for

all v since none of the vertices has degree zero.

i i i i2- - -

1 0 2 3 1 2 1 0

�
�
���

y
�
�
���

y
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�
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��

�
��*

y
rrrrrrr rrrrrr rrrrrrrr rrrrrrrrrrrrrrrrrrrrrrrrr

Definition IV.21. A marking of a Psi-floor diagram D with an edge choice C is

defined by the following three-step process which we will illustrate in the case of

Example IV.20.

Step 1: For each vertex v of D create dv − div(v)− |C(v) ∩ {v → ◦}| many new

vertices in D and connect them to v with new edges directed away from v.

i i i i2- - -

1 0 2 3 1 2 1 0

�
�
�
��

y
�
�
�
��

y
�
��

��

��
�*

y
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These correspond exactly to the non-chosen edges v → ◦ above, i.e. to the left

ends of the tropical curve that are not directly adjacent to the Psi-point in the floor

(and therefore have to be fixed later by a point condition).

Step 2: Subdivide each non-chosen edge of the original Psi-floor diagram D

between floors into two directed edges by introducing a new vertex for each such

edge. The new edges inherit their weights and orientations. Call the resulting graph

D̃.

i i i i- y2 2 y- - - -

1 0 2 3 1 2 1 0

�
�
�
��

y
�
�
�
��

y
�
��

��

�
��*

y

These extra vertices correspond to points on horizontal bounded edges with no

Psi-condition.

Step 3: Order the vertices of D̃ linearly, extending the order of the vertices of

the original Psi-floor diagram D, such that (as in D) each edge is directed from a

smaller vertex to a larger vertex.

y y i y i i y i i
1 0 2 3 1 2 1 0

- -2 -2 - -.
....................
..................

...................
.................... ..................... ...................... . ...................... ..................... .................... ...................

.................
.

................
....

-

.
...............

.
.............. ............... ................ .................. . .................. ................ ...............

..............
................

-

.
................
..............
............... ................ .................. . .................. ................ ............... ..............

...............
.

-

The extended graph D̃ together with the linear order on its vertices is called a

marked Psi-floor diagram, or a marking of the Psi-floor diagram D.

We added dv − div(v) white end vertices for each v ∈ V before picking the edge

choice. It follows by induction that altogether we add d white end vertices. However,

in step 1 of Definition IV.21 we really only add the non-chosen ones. In step 2 we

subdivide each of the non-chosen edges. There are #V − 1 edges, since the Psi-floor

diagram is a rational graph. Thus, altogether we add d+#V −1 minus the number of
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chosen edges white vertices, i.e. d+#V −1−
∑

v∈V (av−2(dv−1)) = 3d−1−Ik−#V .

It follows that k0 equals the number of vertices v of the floor diagram with av = 0

plus the number of white vertices in the marking.

We want to count marked Psi-floor diagrams up to equivalence. Two such D̃1, D̃2

are equivalent if D̃1 can be obtained from D̃2 by permuting edges without changing

their weights, i.e. if there exists an automorphism of weighted graphs which preserves

the vertices of D and maps D̃1 to D̃2.

The number of markings ν(D, C) is the number of marked Psi-floor diagrams D̃

up to equivalence. In the example, we have ν(D, C) = 7: the white 1-valent vertex

adjacent to the second black vertex (counted from the left) can be inserted in 2 ways

between the second and third black vertex, in 2 ways between the third and fourth

black vertex, and in 3 ways right of the fourth black vertex.

By specializing to the case av = 0 for all vertices v of D we recover the definition

of floor diagrams and their markings of S. Fomin and G. Mikhalkin [9]. In this case

all floors necessarily have degree dv = 1 and no edges get chosen (so C(v) = ∅ for all

vertices v).

Definition IV.22 (Nfloor
d,k and Ñfloor

d,k ). Let d ≥ 1 and k be a sequence of non-negative

integers with Ik = 3d− 1− |k|. Set

Nfloor
d,k

def
=
∑
D

µ(D)
∑
C

µ(C) ν(D, C),

where the first sum is over all Psi-floor diagrams of degree d and type k, and the

second sum is over all edge choices C of D. Correspondingly (see Definition IV.3),

we set Ñfloor
d,k

def
= k!
|k| ! N

floor
d,k .

Remark IV.23. We can also define the numbers Ñfloor
d,k directly using Psi-floor dia-

grams by requiring that the Psi-powers of the vertices of the marked Psi-floor diagram
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(the Psi-powers of the white vertices that are not present in the underlying Psi-floor

diagram have Psi-power 0) occur in a particular order, and by marking the white

end vertices with numbers from 1 to d.

Example IV.24. As an example in degree d = 4 we compute the number

Ñfloor
4,(1,0,0,0,2) =

1

4
.

There are three markings of Psi-floor diagrams of degree 4 and type (1, 0, 0, 0, 2)

which have the Psi-powers in the order (a1, a2, a3) = (0, 4, 4). (Remember that we

draw Psi-floor diagrams from left to right and therefore need to invert the order of

the ai.) Every other order of the ai yields the same answer.

y y i
2 4 2 4

- -

i
�
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��� �
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���

i
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�

��
��*

i
ssssss sssss ssssss ssssss sssss sssssss sssssssssssssssssssss

1
2
· 1

2
· 1

2!
= 1

8

y y i
3 4 1 4
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-
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9 · 1
3
· 3

3!
· 3

3!
· 1

3!
= 1

24

y y i
3 4 1 4

-
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4 · 1
2
· 1

3!
· 9

3!
· 1

3!
= 1

12

The contribution of the third diagram, for example, arises as follows: The under-

lying Psi-floor diagram has multiplicity 4. Choosing the weight-2 edge amounts to a

factor of 1
2
. The degree-3 vertex has no non-chosen incoming edges and 2 non-chosen

outgoing edges, hence the local multiplicity at this vertex is given by the next two

factors. Lastly, as all 3 additional edges at the second vertex are chosen, we need to

multiply by 1
3!

.

4.4.2 The equality Nfloor
d,k = N trop

d,k

Theorem IV.25. Let d ≥ 1 and k be a sequence of non-negative integers with

Ik = 3d− 1− |k|. Then Nfloor
d,k = N trop

d,k .

For the proof of Theorem IV.25 we need the following lemma. For positive integers
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a and b, let S(a, b) denote the Stirling number of the second kind, i.e. the number of

ways of partitioning an a-element set into b non-empty parts.

Lemma IV.26 ([33], (24d)). For integers e, f ≥ 0 it holds that

∑
0≤g≤f

S(e, g)

(f − g)!
=
f e

f !
.

Proof of Theorem IV.25. Pick a horizontally stretched configuration of |k| points

(see [9, Definition 3.1]). Our strategy is as follows: let T be the set of tropical curves

of degree d satisfying the conditions, and let F be the set of marked floor diagrams

of degree d and type k. We will define a (surjective) map from T to F . Let r be

the number of inverse images of a given marked floor diagram D̃ in F . We will show

that each such inverse image is a tropical curve C of the same multiplicity mult(C),

and that mult(C) · r = µ(D) · µ(C), where D denotes the underlying floor diagram

for D̃ and C denotes its choice of edges. Of course, this will then prove the lemma.

Consider a tropical curve in T ; we will now how to construct the corresponding

marked floor diagram in F . As in [15, Theorem 4.3] resp. of [5, Section 5] it follows

that the tropical curve decomposes into floors in the sense that each connected com-

ponent of Γ minus the horizontal edges (i.e. each floor) is fixed by exactly one point.

(A floor can have higher degree here.) For each floor v let dv denote its number

of ends of direction (0,−1) and av the power of Psi of the contracted end (i.e. the

valence of the adjacent vertex minus 3). Shrink each floor to a vertex labeled with

(dv, av). If there is a contracted end with a Psi-condition on a horizontal edge, also

keep this as a vertex and set dv = 0, and av the power of Psi. Let the edges of the

floor diagram be given by the horizontal bounded edges of the tropical curve connect-

ing the floors. We orient the edges towards the left ends of the tropical curve, and

reverse the picture (so the left ends are on the right, and edges are oriented to the
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right). Because of the general position of the points there cannot be two contracted

ends mapped to a horizontal line — thus there cannot be any edges between vertices

of degree 0. If dv = 0 for a vertex we know that the corresponding contracted end

has a Psi-condition, so then av > 0. Of course, if av = 0 then we must have dv > 0.

If there are horizontal ends adjacent to a contracted end on a floor resp. to a con-

tracted end with higher Psi-condition on a horizontal edge, drop them. The other

horizontal ends must be adjacent to a contracted end without a Psi-condition; keep

the contracted end as a white end vertex. Also draw white vertices on horizontal

edges for contracted ends without a Psi-condition on horizontal edges. Thicken the

horizontal edges which are directly adjacent to a contracted end on a floor. A vertex

of degree 0 in the floor diagram comes from a contracted end with a Psi-condition,

say of power av, on a horizontal edge. Since the tropical curve is balanced, the sum

of the weights of the incoming horizontal edges must equal the sum of the weights

of the outgoing. The divergence condition for degree-0 vertices follows. The valence

must be av + 2 (without counting the contracted end itself). We have dropped the

ends adjacent to this vertex however, so we have val(v)− div(v) = av + 2. Now let v

be a vertex of the floor diagram with dv > 0. This vertex comes from a floor of the

tropical curve which contains a contracted end with Psi-power av. If we remove the

contracted end from Γ we produce av + 2 connected components. The floor contains

2dv ends of direction (0,−1) resp. (1, 1). These ends must belong to different con-

nected components since otherwise there would be a string (see [16, Definition 3.5])

in contradiction to the general position of the points. It follows that av + 2 ≥ 2dv

(string inequality) and that av + 2−2dv horizontal edges are directly adjacent to the

contracted end, and thus get chosen (including ends, which we drop). For a vertex

of the floor diagram with dv > 0, the balancing condition in the x-coordinate tells
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us that the divergence condition holds. It follows that we have produced a marked

Psi-floor diagram in F for the tropical curve in T .

Conversely, let now D̃ be a marked floor diagram in F ; we will construct its inverse

images in T . For each white vertex and for each vertex of degree 0 draw horizontal

edges of the appropriate weight through the corresponding point pi. For a vertex of

degree dv > 0 there are several possibilities how it can be completed to a floor of a

tropical curve. We have seen already that — locally around such a floor of a tropical

curve — removing the contracted end produces av+2 connected components of which

av + 2− 2dv are horizontal edges and 2dv are connected components containing one

of the 2dv ends of direction (0,−1) resp. (1, 1). There are o(v) non-chosen outgoing

horizontal edges connected to this floor. Their y-coordinates are fixed by other

conditions. Thus they are distinguishable in the tropical curve, even if they are of

the same weight. These edges must belong to the connected components containing

the ends of direction (1, 1). Assume that g of the dv connected components containing

the ends (1, 1) also contain horizontal edges, whereas dv − g ends of direction (1, 1)

are directly adjacent to the contracted end. Thus we need to partition the set of o(v)

horizontal non-chosen edges into g non-empty parts, corresponding to the g connected

components. For each such choice there is exactly one possibility to complete the

picture to the upper part of a floor of a tropical curve since the y-coordinates of the

horizontal edges are fixed by other points. This part of the tropical curve contributes

a factor of 1
(dv−g)! to the factor νC of the multiplicity of the tropical curve because of

the dv − g ends of direction (1, 1) which are directly adjacent to the contracted end.

Thus we can sum up the possibilities with their contribution to νC as S(o(v),g)
(dv−g)! for each

g. Summing over all g, we get d
o(v)
v

dv !
by Lemma IV.26. This situation is illustrated in

Example IV.27.
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The analogous statement holds for the lower part of the floor of the tropical curve

and the incoming horizontal edges. For any choice of g and a partition (both for the

upper and the lower part of each floor) we can complete the picture uniquely to a

tropical curve.

The multiplicity of the tropical curve is a product of factors contributing to νC

and vertex multiplicities. We have taken care of the factors contributing to νC inside

each floor already. There can still be left ends adjacent to the same vertex that

contribute to νC . This happens either if left ends are adjacent to vertices of degree 0

in the floor diagram, or if they are directly adjacent to a contracted end inside a floor,

i.e. chosen. For the first situation, we get a factor of 1
div(v)!

, for the second situation

we get a factor of 1
|C(v)∩{v→◦}| ! . Now let us consider the vertex multiplicities. We have

seen already that each floor consists of components with one end of direction (1, 1)

resp. (0,−1), and horizontal edges. The y-coordinate of any direction of an edge of

such a component is therefore 1, and thus any vertex adjacent to a horizontal edge

of weight ω(e) is of multiplicity ω(e). If a horizontal edge is adjacent to a contracted

end however, this vertex does not contribute. If this contracted end comes from a

white vertex however, there is another horizontal edge of the same weight adjacent

to it. Thus, any horizontal edge in the floor diagram (without the marking) will

contribute ω(e)2, unless it is adjacent to a vertex of degree 0, or unless it gets chosen

later — in each of these cases it contributes only ω(e).

It follows that all inverse images of a marked floor diagram are tropical curves of

the same multiplicity mult(C), and if there are r inverse images we have mult(C)·r =

µ(D)µ(C).

Example IV.27. Figure 4.3 illustrates how we can complete a vertex of a marked

Psi-floor diagram to floors of a tropical curve. The local picture of D̃ on the left
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2

2

2

2

(2, 4)

2

Figure 4.3: An example of a double floor which (locally) corresponds to several tropical curves.

shows 2 chosen incoming edges and 3 non-chosen outgoing edges adjacent to a floor

of degree 2. The local multiplicity of this edge choice equals 20

2!
· 23

2!
= 1

2!
· 4. We

would like to complete this picture to the floor of a tropical curve. The lower part

is unique. The factor of 1
2!

for the lower part takes care of the two down ends which

are adjacent to the contracted end and thus lead to a contribution of 1
2!

in the factor

νC . For the upper part there are several possibilities. The middle column shows the

S(3, 2) = 3 possibilities for g = 2, i.e. for the case where all components obtained

after removing the contracted marked edge also contain horizontal edges. The right

column shows the S(3, 1) = 1 possibility for g = 1, i.e. for the case where one of the

ends of direction (1, 1) is directly adjacent to the contracted end.

Remark IV.28. It follows immediately that also Ñfloor
d,k = Ñ trop

d,k by taking the order

of the contracted ends resp. vertices into account, both for the tropical curves and

the floor diagrams.
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4.4.3 Relative Psi-Floor Diagrams

We now define relative analogues of Psi-floor diagrams and their markings. Fix

two sequences α and β. Our notation, which is more convenient for our purposes,

differs from [9], where relative floor diagrams and their markings were defined relative

to partitions λ = (1α12α2 · · · ) and ρ = (1β12β2 · · · ).

Let D be a Psi-floor diagram of degree d = I(α + β). A pair ({α(v)}, {β(v)})

of collections of sequences, where v runs over the vertices of D, is called compatible

with D and (α, β), if it satisfies:

1. The sums over each collection satisfy
∑

v∈V α(v) = α and
∑

v∈V β(v) = β.

2. For all vertices v of D it holds that I(α(v) + β(v)) = dv − div(v).

3. If dv = 0 then we require in addition that |α(v)| = 0 and |β(v)| = av+2−val(v).

The sequences α(v) and β(v) correspond to the left (fixed and non-fixed) ends adja-

cent to each floor. For a vertex of degree 0, all adjacent edges are directly adjacent

to the contracted end, and thus there cannot be any fixed ends in this case.

In the non-relative case, i.e. when α = () and β = (d), it necessarily follows that

α(v) = () and β(v) = (1− div(v)) for all vertices v of D.

The (relative) type k(D) = (k0,k1, . . .) of a Psi-floor diagram D is defined as

follows: for all i ≥ 1 let ki be the number of vertices v of D with av = i. Set k0 to be

the number of vertices with av = 0 plus 2d+ |β| − 1− Ik−#V . The latter number

equals the number of white vertices that we will add. This makes the equalities

|k| = 2d+ |β| − 1− Ik, resp. I(α+ β + k) = 3d− 1 + |β| − |k| hold, where the latter

is equivalent to the former since d = I(α + β).

The relative multiplicity of a Psi-floor diagram D together with a collection of
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sequences {β(v)} is

(4.4) µrel(D) = µrel(D, {β(v)}) def
= Iβ ·

∏
edges e

ω(e)2 ·
∏
v
e→w

s.t. dv=0

or dw=0

1

ω(e)

∏
v: dv=0

1

β(v)!
.

For a collection of sequences {β(v)} and a vertex v of D we define the sets Irel(v)

and Orel(v) by

Irel(v)
def
= {w → v : dw > 0},

Orel(v)
def
= {v → w : dw > 0} ∪

∐
{v i→ ◦},

where the latter is a disjoint union of the outgoing edges of D at v augmented by βvi

indistinguishable edges of weight i for all i ≥ 1, directed away from v and ending in

distinct vertices ◦. These indistinguishable edges correspond to the non-fixed ends

of the tropical curve adjacent to a floor, which a priori could be adjacent to the

contracted end, and therefore can be chosen.

Example IV.29. Below we have indicated the sets Irel(v) and Orel(v) in the case of

the Psi-floor diagram of Example IV.19 with α = (1), β = (2, 1), and all α(v) and

β(v) being the zero sequence unless indicated otherwise. The relative multiplicity

µrel(D, {β(v)}) is 4 · 2 = 8.

i i i i2- - -

(dv, av) = 1 0 2 3 1 2 1 0
α(v) = (1)
β(v) = (1) (0, 1) (1)

�
�
���

y
�
�
���

y
2

�
�
���

y

As before, an edge choice C(D) is given by a subset C(v) ⊂ Irel(v) ∪ Orel(v) for

each floor v of D such that |C(v)| = av + 2− 2dv for all v, and C(v) ∩ C(w) = ∅ for

distinct floors v and w. If dv = 0, we set C(v) = ∅. The local multiplicity at v of
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such a choice is

(4.5) µrel
v,C(v)

def
=


d
i(v)
v

dv !
· d

o(v)
v

dv !
if dv > 0,

1 if dv = 0,

where, similarly to the absolute case, i(v) = |Irel(v)\C(v)| is the number of non-

chosen incoming edges and o(v) = |Orel(v)\C(v)|+|α(v)| is the number of non-chosen

edges in Orel(v) together with some additional edges (corresponding to tangency

conditions at fixed points, resp. to fixed left ends).

The relative multiplicity of the edge choice C of the Psi-floor diagram D together

with a compatible pair of collections of sequences ({α(v)}, {β(v)}) is

(4.6) µrel(C) def
= µrel(C, {α(v)}, {β(v)}) def

=
∏
v∈V

µrel
v,C(v)

∏
v∈V

∏
e∈C(v)

1

ω(e)

∏
v∈V

1

c(v)!
,

where c(v) is the sequence given by c(v)i
def
= |C(v) ∩ {v i→ ◦}| for i ≥ 1.

Example IV.29 (continued). An example of an edge choice for the above Psi-

floor diagram together with collections {α(v)} and {β(v)} is given below. As before,

we indicate chosen edges by thickening edges at the vertices where they are chosen.

Notice that |C(v)| = av − 2(dv − 1) at every vertex v since there are no vertices of

degree 0. The relative multiplicity of the edge choice is µrel(C) = 1
2
.

i i i i2- - -

1 0 2 3 1 2 1 0

�
�
�
��

y
�
�
�
��

y
2

�
�
�
��

y
rrrrrrr rrrrrr rrrrrrr

Definition IV.30. An (α, β)-marking of a Psi-floor diagram D with a compatible

choice of a pair of collections ({α(v)}, {β(v)}) and an edge choice C(D) is defined by

the following three-step process which we illustrate in the case of Example IV.29.

Step 1: For each vertex v of D and every i ≥ 1 create β(v)i − |C(v) ∩ {v i→ ◦}|

new vertices (which we call β-vertices and illustrate as g), and connect them to v
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with new edges of weight i directed away from v. Similarly, create α(v)i new vertices

(which we call α-vertices and illustrate as gs) and connect them to v with new edges

of weight i directed away from v.

i i i i2- - -

1 0 2 3 1 2 1 0

�
��

���

y
y �

��
���

y
��

��
�

��
��*

it

Step 2: Subdivide each non-chosen edge of the original Psi-floor diagram D

between floors into two edges by introducing a new vertex for each edge. The new

edges inherit their weights and orientations. Call the resulting graph D̃.

i i i i2- - - y-
1 0 2 3 1 2 1 0

�
��

���

y
�
��
���

y
��

��
�

��
��*

it

Step 3: Order the vertices of D̃ linearly, extending the order of the vertices of

the original Psi-floor diagram D, such that (as in D) each edge is directed from a

smaller vertex to a larger vertex. Furthermore, we require that the α-vertices are

largest among all vertices, and for every pair of α-vertices v > w the weight of the

v-adjacent edge is larger than or equal to the weight of the w-adjacent edge.

y y y i i y i it
1 0 2 3 1 2 1 0

- -2 - -.
................
..............
............... ................ .................. . .................. ................ ............... ..............

...............
.

-

.
...............

.
.............. ............... ................ .................. . .................. ................ ...............

..............
................

-

.
................
..............
............... ................ .................. . .................. ................ ............... ..............

...............
.

-

The (in this example unique) tropical curve mapping to the floor diagram above

can be found in Example IV.16. As in the non-relative case, we call the extended

graph D̃ together with the linear order on its vertices an (α, β)-marked Psi-floor

diagram, or an (α, β)-marking of the Psi-floor diagram D.

In step 1 we added |β| white vertices (of which we later remove the chosen ones),

and in step 2 we subdivide the non-chosen ones of the #V − 1 bounded edges. That



104

is, altogether we added |β|+#V −1−
∑

v∈V (av−2(dv−1)) = 2d−1+ |β|−Ik−#V

white vertices.

As before, we need to count (α, β)-marked Psi-floor diagrams up to equivalence.

Two (α, β)-marked Psi-floor diagrams D̃1, D̃2 are equivalent if D̃1 can be obtained

from D̃2 by permuting edges without changing their weights, i.e. if there exists an

automorphism of weighted graphs which preserves the vertices of D and maps D̃1 to

D̃2. The number of markings νrel(D, C) = νrel(D, {α(v)}, {β(v)}, C) is the number

of (α, β)-marked Psi-floor diagrams D̃ up to equivalence. In our running example

we have νrel(D, C) = 5: the white vertex attached to the floor labeled (2, 3) can be

placed in the linear order at any position to the right of this floor and to the left of

the α-vertex.

By specializing to the case av = 0 for all vertices v of D we recover the definition of

(λ, ρ)-markings of floor diagrams of S. Fomin and G. Mikhalkin [9], for partitions λ =

(1α12α2 · · · ) and ρ = (1β12β2 · · · ). As in the non-relative case, all floors necessarily

have degree dv = 1 and no edges get chosen.

Definition IV.31 (Nfloor
d,k (α, β) and Ñfloor

d,k (α, β)). Let d ≥ 1 and α, β be two se-

quences with I(α + β) = d. Furthermore, let k be a sequence of non-negative

integers with I(α + β + k) = 3d− 1 + |β| − |k|. Set

Nfloor
d,k (α, β)

def
=

∑
D,{α(v)},{β(v)}

µrel(D)
∑
C

µrel(C) νrel(D, C),

where the first sum is over all degree d Psi-floor diagrams of type k and over all

compatible pairs of collections ({α(v)}, {β(v)}), and the second sum is over all edge

choices C of D. Correspondingly (see Definition IV.4), we set Ñfloor
d,k (α, β)

def
= β! ·

k!
|k| ! N

floor
d,k (α, β).

Remark IV.32. As in Remark IV.23, we can also define the numbers Ñfloor
d,k (α, β)
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directly using Psi-floor diagrams. Then we require that Psi-powers of the vertices

of the marked Psi-floor diagram are in a fixed order, and we mark the white end

vertices.

Theorem IV.33 (The equality Nfloor
d,k (α, β) = N trop

d,k (α, β)). Let d ≥ 1 and α, β be

two sequences with I(α + β) = d. Let k be a sequence of non-negative integers

satisfying I(α + β + k) = 3d− 1 + |β| − |k|. Then Nfloor
d,k (α, β) = N trop

d,k (α, β).

The proof is analogous to the proof of Theorem IV.25.

Remark IV.34. Again, it follows immediately that the same equality holds for the

numbers Ñfloor
d,k (α, β) = Ñ trop

d,k (α, β) as well.

4.4.4 The Caporaso-Harris Formula for Floor Diagrams

Now we use Psi-floor diagrams to obtain the Caporaso-Harris type recursion of

Corollary IV.8 for the numbers Nfloor
d,k (α, β). As this recursion formula determines all

the numbers it follows that Nd,k(α, β) = Nfloor
d,k (α, β). As we know by Theorem IV.33

that also Nfloor
d,k (α, β) = N trop

d,k (α, β) holds, we thus have that

Nd,k(α, β) = Nfloor
d,k (α, β) = N trop

d,k (α, β)

for all d,k, α, β, as claimed in Remark IV.14. We use Notation IV.2 and the notation

in equation (4.3) below.

Theorem IV.35 (Caporaso-Harris formula for Psi-floor diagrams). The numbers

Nfloor
d,k (α, β) satisfy the Caporaso-Harris recursion in Corollary IV.8.

Proof. The basic strategy is to examine the possibilities for the largest vertex v′ of

an (α, β)-marking D̃ of a Psi-floor diagram D of degree d and type k which is not

an α-vertex (see step 1 in Definition IV.30 to recall the definition of α-vertices and

β-vertices). The idea is to “cut off” the vertex v′ and to interpret the contributions
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of the connected components of the remaining part again in terms of smaller floor

diagrams.

The complement of v′ and the v′-adjacent edges in D̃ consists of the markings

D̃1, . . . , D̃t of Psi-floor diagrams D1, . . . ,Dt and some isolated α-vertices. For 1 ≤

i ≤ t define

1. di and ki to be the degree and the type of Di, respectively,

2. αi =
∑
α(v) to be the sequence of multiplicities of edge weights between Di

and the α-vertices of D̃, where the sum is over all vertices v in the Psi-floor

diagram Di,

3. βi =
∑
β(v), the respective count for the β-vertices of D̃,

4. mi to be the weight of the edge between v′ and Di.

Of course, mi = di − I(αi + βi).

We will see later that all contributions from the components Di are of the form

Nfloor
di,ki(α

i + emi , β
i) resp. Nfloor

di,ki(α
i, βi + emi). In these cases we necessarily have

(4.7) Iαi +mi + Iβi + Iki = 3di − 1 + |βi| − |ki|, resp.

(4.8) Iαi + Iβi +mi + Iki = 3di − 1 + |βi|+ 1− |ki|.

Now consider the possibilities for the largest vertex v′. We will distinguish three

cases.

Case 1: The vertex v′ is not a vertex of the original diagram D. Hence D̃ looks

locally around v′ as in the following picture.

v′
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Then t = 1, α1 = α and β1 = β−em1 . The (α1, β1)-markings of D with v′ maximal

among all non-α-vertices are in canonical bijection with (α1 + em1 , β1)-markings of

D (by making v′ an α-vertex and, for example, inserting it to the right of the other

α-vertices adjacent to weight m1 edges). This bijection is weight-preserving up to

a factor m1, as edges of weight m1 adjacent to β-vertices contribute a factor of m1

whereas edges adjacent to α-vertices do not (see equation (4.4)). Thus, if v′ is not a

vertex of the original diagram we get a contribution of

∑
m1:βm1>0

m1 ·Nfloor
d1,k1(α1 + em1 , β1).

This contribution equals the summands with d′ = 0 and a = 0 in the sum of Corollary

IV.8: for d′ = 0 the non-vanishing of d′|α
′|+t−t′ implies that |α′| = 0 and t = t′, and

equation (4.7) (which can be rearranged to imply a valence and divergence condition

on v′ as we will show below) implies furthermore that t′ = 1. This finishes case 1.

Now assume that v′ is a vertex of the original diagram D, and denote by d′ and a

the degree and Psi-power of v′, respectively. We need to count the number of ways in

which markings of the Psi-floor diagrams D1, . . . ,Dt can be combined to a marking

of the Psi-floor diagram D. We need to distinguish whether v′ is a floor of D (i.e.

d′ > 0) or not.

Case 2: v′ is a vertex of D, and d′ = 0. Then we obtain the following local

picture for D̃.

v′

(0, a)

Nfloor
d1,k1(α1 + em1 , β1)

Nfloor
dt,kt(αt + emt , β

t)

In this case none of the edges between v′ and the Psi-floor diagrams Di can be

chosen. Notice that (αi, βi+emi)-markings of Di with v′ largest among all β-vertices
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(if we consider v′ as a β-vertex of Di) are in canonical bijection with (αi + emi , β
i)-

markings of Di. This bijection is weight-preserving up to a factor of mi (see equation

(4.4)).

To count the number of ways in which we can combine the markings of the pieces

fix an (αi+emi , β
i)-marking of Di, one for each 1 ≤ i ≤ t. Produce an (α, β)-marking

of D as follows: First, glue the markings by identifying all largest α-vertices in each

of the marking of Di adjacent to an edge of weight mi with each other (thereby

obtaining the vertex v′). Then order the α-vertices of the markings by extending the

partial order on the set of α-vertices given by the markings of the components to a

linear order on all vertices. There are
(

α
α1,...,αt

)
ways to do this.

In a second step, we extend the partial order on the vertices that are less than v′ to

a linear order on all vertices less than v′. As v′ is maximal among the non-α-vertices

of the marking D̃ it has |k| − 1 vertices which are less than v′. Using the earlier

bijection between (αi, βi)-markings of Di with v′ largest among all β-vertices (if we

consider v′ as a β-vertex of Di) and (αi+emi , β
i)-markings of Di we see that there are

|ki| vertices in component i which are less than v′. Hence there are
( |k|−1
|k1|,...,|kt|

)
linear

extensions of the partial order that is induced by the linear orders of the components.

By equation (4.4) the product of the contributions from the t components differs

from the contribution of the marking D̃ by 1
β(v′)!

, but β(v′) = β −
∑
βi = β′. More-

over, we overcount by t! as we labeled the unlabeled components 1, . . . , t. Altogether,

we get a contribution of∑ 1

t!

1

β′!

(
|k| − 1

|k1|, . . . , |kt|

)
·
(

α

α1, . . . , αt

) t∏
i=1

mi

t∏
i=1

Nfloor
di,ki(α

i + emi , β
i),

which equals the summands with d′ = 0 but a > 0 in the recursion of Corollary IV.8.

As before, equations (4.7) and (4.8) imply that v′ has the correct divergence and

valence (see below).
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Case 3: v′ is a vertex of D, and d′ > 0. In this case we obtain the following local

picture for D̃.

Nfloor
dt′+1,kt′+1(αt

′+1, βt
′+1 + emt′+1)

Nfloor
dt′ ,kt′ (αt

′
+ emt′ , β

t′)

Nfloor
d1,k1(α1 + em1 , β1)

Nfloor
dt,kt(αt, βt + emt)

v′

(d′, a)

As then v′ is largest among all non-α-vertices we have C(v′) ⊃ O(v′). Define the

Psi-floor diagrams D1, . . . ,Dt and their markings D̃1, . . . , D̃t as before, as well as di,

ki, αi, βi and mi, for 1 ≤ i ≤ t. Without loss of generality we can assume that there

is a number t′ ∈ {0, . . . , t} such that the edges between v′ and D̃i are chosen at v′

for all i ≤ t′, whereas for i > t′ they are not.

Now consider a component Di. We treat the cases i ≤ t′ and i > t′ separately.

If i ≤ t′ then the (αi, βi + emi)-markings of Di with v′ largest among all β-vertices

(if we consider v′ as a β-vertex of Di) are in canonical bijection with (αi + emi , β
i)-

markings of Di by the same reasoning as for d′ = 0. As we have seen, this bijection

is weight-preserving up to a factor of mi.

If i > t′ then a linear order (up to equivalence) on the vertices of D̃i that can

be extended to a marking of D canonically determines an (αi, βi + emi)-marking of

Di together with a distinguished β-vertex adjacent to an edge of weight mi (namely

the image of the edge of D̃i which is closest to v′ in D̃). Conversely, given an

(αi, βi + emi)-marking of Di together with a distinguished β-vertex adjacent to an

edge of weight mi, this canonically determines a linear order (up to equivalence) on

the vertices of D̃i that can be extended to a marking of D. This (βimi + 1)-to-1 map
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is weight-preserving up to a factor of mi.

Again, to produce an (α, β)-marking of D we need to extend the partial order

on the set of α-vertices given by the markings of the components to a linear order

on all α-vertices. There is no difference to the d′ = 0 case, hence there are
(

α
α1,...,αt

)
different extensions. As before, there are

( |k|−1
k1,...,kt

)
ways to extend the partial order

on the vertices that are smaller than v′ to a linear order.

Also as before, by equation (4.4) the weight of a marking of D differs from the

product of the individual weights of the t components by contributions from the

vertex v′. The local multiplicity at v′ from equation (4.5) is (d′)t−t
′

d′!
(d′)|α

′|

d′!
as the

number of non-chosen incoming vertices is i(v′) = |I(v′)\C(v′)| = t− t′ and

o(v′) = |O(v′)\C(v′)|+ |α(v′)| = 0 + |α′| = |α′|

since α(v′) = α −
∑

i α
i. The second contribution from the vertex v′ is 1

β′!
(see

equation (4.6)), as β′ = β(v′), C(v′) ⊃ O(v′), and hence c(v′) = β(v′), and these are

the only contributions in which the markings of D and the contributions from its

components differ. Moreover, we overcount by t′! ·(t−t′)! as we labeled the unlabeled

components 1, . . . , t′ and t′ + 1, . . . , t.

Divergence and valence conditions for all cases: In all three cases, equations

(4.7) and (4.8) imply that v′ has the correct divergence and valence: summing up

equations (4.7) for 1 ≤ i ≤ t′ and (4.8) for t′ + 1 ≤ i ≤ t yields

Iα− Iα′ + Iβ − Iβ′ + Ik− a+
∑

mi = 3d− 3d′ − t′ + |β| − |β′| − |k|+ 1.

Since I(α + β + k) = 3d− 1 + |β| − |k| we can conclude

−Iα′ − Iβ′ − a+
∑

mi = −3d′ − t′ − |β′|+ 2.(4.9)
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Now replace mi by di − I(αi + βi) and use that d = I(α + β) to obtain the valence

condition at v′:

−a = −2d′ − t′ − |β′|+ 2, resp. 2d′ + t′ + |β′| = a+ 2.

Together with equation (4.9) the valence condition implies the divergence condition

at v′:

−Iα′ − Iβ′ +
∑

mi = −d′, resp. d′ +
∑

mi = I(α′ + β′).

Hence the contributions in the case when v′ is a floor equal the summands with

d′ > 0 in the recursion of Corollary IV.8. This completes the proof.

Of course, one can also prove the recursion in Theorem IV.7 directly using Psi-

floor diagrams. We then have to use the numbers Ñfloor
d,k (α, β) of Remark IV.32, where

we fix an order for the Psi-powers and mark the white end vertices.
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APPENDIX A

Node Polynomials for δ ≤ 14

An explicit list of Nδ(d), for δ ≤ 14, is as below. These polynomials are given

implicitly in Theorem II.11. For δ ≤ 8 this agrees with [21, Theorem 3.1]. For δ ≤ 14

this coincides with the conjectural (implicit) formulas of [18, Remark 2.5].

N0(d) = 1,

N1(d) = 3(d− 1)
2
,

N2(d) =
3

2
(d− 1)(d− 2)(3d

2 − 3d− 11),

N3(d) =
9

2
d

6 − 27d
5

+
9

2
d

4
+

423

2
d

3 − 229d
2 −

829

2
d+ 525,

N4(d) =
27

8
d

8 − 27d
7

+
1809

4
d

5 − 642d
4 − 2529d

3
+

37881

8
d

2
+

18057

4
d− 8865,

N5(d) =
81

40
d

10 −
81

4
d

9 −
27

8
d

8
+

2349

4
d

7 − 1044d
6 −

127071

20
d

5
+

128859

8
d

4
+

59097

2
d

3 −
3528381

40
d

2

−
946929

20
d+ 153513,

N6(d) =
81

80
d

12 −
243

20
d

11 −
81

20
d

10
+

8667

16
d

9 −
9297

8
d

8 −
47727

5
d

7
+

2458629

80
d

6
+

3243249

40
d

5

−
6577679

20
d

4 −
25387481

80
d

3
+

6352577

4
d

2
+

8290623

20
d− 2699706,

N7(d) =
243

560
d

14 −
243

40
d

13 −
243

80
d

12
+

30861

80
d

11 −
38853

40
d

10 −
802143

80
d

9
+

3140127

80
d

8
+

18650493

140
d

7

−
54903831

80
d

6 −
72723369

80
d

5
+

124680069

20
d

4
+

213537633

80
d

3 −
3949576431

140
d

2 −
188754021

140
d

+ 48016791,

N8(d) =
729

4480
d

16 −
729

280
d

15 −
243

140
d

14
+

35721

160
d

13 −
25839

40
d

12 −
320841

40
d

11
+

11847087

320
d

10

+
170823033

1120
d

9 −
6685218

7
d

8 −
1758652263

1120
d

7
+

1102682031

80
d

6
+

59797545

8
d

5 −
510928080111

4480
d

4

−
3283674393

1120
d

3
+

558215113803

1120
d

2 −
3722027733

56
d− 861732459,

N9(d) =
243

4480
d

18 −
2187

2240
d

17 −
729

896
d

16
+

121743

1120
d

15 −
99549

280
d

14 −
824823

160
d

13
+

8776593

320
d

12
+

74122857

560
d

11

−
2188424421

2240
d

10 −
132610923

70
d

9
+

11404136871

560
d

8
+

2852923401

224
d

7 −
3523392270287

13440
d

6

+
4109675615

448
d

5
+

261844582229

128
d

4 −
2156232149611

3360
d

3 −
29528525065861

3360
d

2
+

438722045999

168
d

+ 15580950065,
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N10(d) =
729

44800
d

20 −
729

2240
d

19 −
729

2240
d

18
+

408969

8960
d

17 −
746253

4480
d

16 −
1932579

700
d

15
+

10649961

640
d

14

+
205722099

2240
d

13 −
4375229931

5600
d

12 −
38815692777

22400
d

11
+

30958937073

1400
d

10
+

3413568339

224
d

9

−
3624162885799

8960
d

8
+

134470136581

2800
d

7
+

27023302169081

5600
d

6 −
22514488581251

8960
d

5 −
811909836973903

22400
d

4

+
253124357071961

11200
d

3
+

867510616107447

5600
d

2 −
2800250331071

40
d− 283516631436,

N11(d) =
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d

22 −
2187

22400
d

21 −
729
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d

20
+
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d

19 −
303993
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d
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56670273

44800
d

17
+

47717667
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d

16

+
295979589

5600
d

15 −
11410430877

22400
d

14 −
4051907631

3200
d

13
+

52491198663

2800
d

12
+

3418059518271

246400
d

11

−
20587006282467

44800
d

10
+

2236636275459

22400
d

9
+

49175916627959

6400
d

8 −
1464110674563
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d

7

−
1946239824069277
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d

6
+

3767687640687823

44800
d

5
+

14264414890838423

22400
d

4 −
940418544772283

1600
d

3

−
168280746183263029

61600
d

2
+

5073050867636909

3080
d+ 5187507215325,

N12(d) =
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1971200
d

24 −
6561

246400
d

23 −
2187
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d

22
+
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d

21 −
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d

20 −
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d
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+
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d
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+
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d
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d
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+
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d
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+
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d
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−
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d
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+
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d
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+
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d

10 −
792669234543351
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d

9

−
9506773589164709
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d

8
+

6296062244021929

33600
d

7
+
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d

6 −
582428855393100577
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d

5

−
5477484616918678589

492800
d

4
+

10067756533588172119

739200
d

3
+

4454424013895459501

92400
d

2

−
111952943233924509

3080
d− 95376705265437,

N13(d) =
6561

25625600
d

26 −
6561

985600
d

25 −
19683

1971200
d

24
+

1620567

985600
d

23 −
88209

11200
d

22 −
3212703

17920
d

21
+

262066023

179200
d

20

+
494726373

44800
d

19 −
673360047

5120
d

18 −
35350103511

89600
d

17
+

20952637821

2800
d

16
+

3013479294723
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d

15

−
580214902388013
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d

14
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d

5
+
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d

4

−
73274705967431063281

246400
d

3 −
68173290776099374391

80080
d

2
+

2813974748454890667

3640
d+ 1761130218801033,

N14(d) =
19683

358758400
d

28 −
19683

12812800
d

27 −
6561

2562560
d

26
+

1751787

3942400
d

25 −
4529277

1971200
d

24 −
562059

9856
d

23

+
398785599

788480
d

22
+

5214288411

1254400
d

21 −
4860008991

89600
d

20 −
63174295089

358400
d

19
+

332872084467

89600
d

18

+
3103879378581

985600
d

17 −
4913807521304691

27596800
d

16
+

899178800016807

8968960
d

15
+

279086438050359453

44844800
d

14

−
468967272863997483

51251200
d

13 −
318443311640108577

1971200
d

12
+

328351365725506869

985600
d

11

+
1120586814080571923

358400
d

10 −
9448861028448843949

1254400
d

9 −
30880785216736406143

689920
d

8

+
444525313669622586903

3942400
d

7
+

11429038221675466251

24640
d

6 −
269709254062572016617

246400
d

5

−
74660630664748878665353

22422400
d

4
+

140531359469510983018159

22422400
d

3
+

16863931195154225977601

1121120
d

2

−
64314454486825349085

4004
d− 32644422296329680.
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APPENDIX B

Small Severi degrees

Below we list the Severi degrees Nd,δ for 0 ≤ δ ≤ 14 and 1 ≤ d ≤ 13, which

were obtained by Algorithm 1 (also see Remark II.21). Together with the node

polynomials of Appendix A, this is a full description of all Severi degrees Nd,δ for δ ≤

14, see Theorem II.4. The solid line segments indicate the polynomial threshold d∗(δ)

of Nd,δ. The dashed line segments illustrate the threshold of our Theorem II.4. The

Severi degrees Nd,δ in italic agree with the Gromov-Witten invariants N
d,

(d−1)(d−2)
2

−δ,

as for d ≥ δ + 2, every plane degree d curve with δ nodes is irreducible.
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APPENDIX C

Relative node polynomials for δ ≤ 3

Below we list the relative node polynomials Nδ(α; β) for δ ≤ 3. For δ ≤ 6 the

polynomials Nδ(α; β) are as provided in the ancillary files accompanying [2]. All

polynomials were obtained by a Maple implementation of the formula (3.12). See

Remark III.16 for more details. For δ ≤ 1 this agrees with [9, Corollary 4.5, 4.6]. As

before, we write d =
∑

i≥1 i(αi + βi). By Theorem III.1 the relative Severi degrees

N δ
α,β are given by N δ

α,β = 1β12β2 · · · (|β|−δ)!
β!

Nδ(α, β) provided |β| ≥ δ.

N0(α, β) = 1,

N1(α, β) = 3d
2|β| − 8d|β|+ dβ1 + |β|α1 + |β|β1 + 4|β| − β1,

N2(α, β) = 9
2d

4|β|2 − 9
2d

4|β| − 24d
3|β|2 + 3d

3|β|β1 + 3d
2|β|2α1 + 3d

2|β|2β1 + 24d
3|β| − 3d

3
β1 + 23d

2|β|2

− 3d
2|β|α1 − 14d

2|β|β1 + 1
2d

2
β

2
1 − 8d|β|2α1 − 8d|β|2β1 + d|β|α1β1 + d|β|β2

1 + 1
2 |β|

2
α

2
1 + |β|2α1β1

+ 1
2 |β|

2
β

2
1 − 23d

2|β|+ 21
2 d

2
β1 + 3

2d|β|
2

+ 8d|β|α1 + 11d|β|β1 + d|β|β2 − dα1β1 − 5
2dβ

2
1 − 1

2 |β|
2
α1

+ |β|2α2 − 1
2 |β|

2
β1 + |β|2β2 − 1

2 |β|α
2
1 − 3|β|α1β1 − 5

2 |β|β
2
1 − 83

2 d|β| −
3
2dβ1 − dβ2 − 48|β|2 + 1

2 |β|α1

− |β|α2 + 29
2 |β|β1 − 3|β|β2 + 2α1β1 + 3β

2
1 + 48|β| − 15β1 + 2β2,
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N3(α, β) = 9
2d

6|β|3 − 27
2 d

6|β|2 − 36d
5|β|3 + 9

2d
5|β|2β1 + 9

2d
4|β|3α1 + 9

2d
4|β|3β1 + 9d

6|β|+ 108d
5|β|2 − 27

2 d
5|β|β1

+ 51d
4|β|3 − 27

2 d
4|β|2α1 − 42d

4|β|2β1 + 3
2d

4|β|β2
1 − 24d

3|β|3α1 − 24d
3|β|3β1 + 3d

3|β|2α1β1 + 3d
3|β|2β2

1

+ 3
2d

2|β|3α2
1 + 3d

2|β|3α1β1 + 3
2d

2|β|3β2
1 − 72d

5|β|+ 9d
5
β1 − 153d

4|β|2 + 9d
4|β|α1 + 93d

4|β|β1 − 3d
4
β

2
1

+ 1243
6 d

3|β|3 + 72d
3|β|2α1 + 92d

3|β|2β1 + 3d
3|β|2β2 − 9d

3|β|α1β1 − 35
2 d

3|β|β2
1 + 1

6d
3
β

3
1 + 19

2 d
2|β|3α1

+ 3d
2|β|3α2 + 19

2 d
2|β|3β1 + 3d

2|β|3β2 − 9
2d

2|β|2α2
1 − 23d

2|β|2α1β1 − 37
2 d

2|β|2β2
1 + 1

2d
2|β|α1β

2
1

+ 1
2d

2|β|β3
1 − 4d|β|3α2

1 − 8d|β|3α1β1 − 4d|β|3β2
1 + 1

2d|β|
2
α

2
1β1 + d|β|2α1β

2
1 + 1

2d|β|
2
β

3
1 + 1

6 |β|
3
α

3
1

+ 1
2 |β|

3
α

2
1β1 + 1

2 |β|
3
α1β

2
1 + 1

6 |β|
3
β

3
1 + 102d

4|β| − 54d
4
β1 − 1243

2 d
3|β|2 − 48d

3|β|α1 − 199
2 d

3|β|β1

− 9d
3|β|β2 + 6d

3
α1β1 + 45

2 d
3
β

2
1 − 458d

2|β|3 − 57
2 d

2|β|2α1 − 9d
2|β|2α2 + 116d

2|β|2β1 − 23d
2|β|2β2

+ 3d
2|β|α2

1 + 95
2 d

2|β|α1β1 + 105
2 d

2|β|β2
1 + d

2|β|β1β2 − d2
α1β

2
1 − 2d

2
β

3
1 + 155

2 d|β|3α1 − 8d|β|3α2

+ 155
2 d|β|3β1 − 8d|β|3β2 + 12d|β|2α2

1 + 61
2 d|β|

2
α1β1 + d|β|2α1β2 + d|β|2α2β1 + 37

2 d|β|
2
β

2
1 + 2d|β|2β1β2

− 3
2d|β|α

2
1β1 − 11

2 d|β|α1β
2
1 − 4d|β|β3

1 − 5
2 |β|

3
α

2
1 + |β|3α1α2 − 5|β|3α1β1 + |β|3α1β2 + |β|3α2β1 − 5

2 |β|
3
β

2
1

+ |β|3β1β2 − 1
2 |β|

2
α

3
1 − 3|β|2α2

1β1 − 9
2 |β|

2
α1β

2
1 − 2|β|2β3

1 + 1243
3 d

3|β|+ 70
3 d

3
β1 + 6d

3
β2 + 1374d

2|β|2

+ 19d
2|β|α1 + 6d

2|β|α2 − 845
2 d

2|β|β1 + 48d
2|β|β2 − 27d

2
α1β1 − 40d

2
β

2
1 − 2d

2
β1β2 − 842

3 d|β|3

− 465
2 d|β|2α1 + 24d|β|2α2 − 396d|β|2β1 + 29d|β|2β2 + d|β|2β3 − 8d|β|α2

1 − 33d|β|α1β1 − 3d|β|α1β2

− 3d|β|α2β1 + 2d|β|β2
1 − 11d|β|β1β2 + dα

2
1β1 + 7dα1β

2
1 + 47

6 dβ
3
1 − 92

3 |β|
3
α1 − 6|β|3α2 + |β|3α3

− 92
3 |β|

3
β1 − 6|β|3β2 + |β|3β3 + 15

2 |β|
2
α

2
1 − 3|β|2α1α2 + 87

2 |β|
2
α1β1 − 6|β|2α1β2 − 6|β|2α2β1 + 36|β|2β2

1

− 9|β|2β1β2 + 1
3 |β|α

3
1 + 11

2 |β|α
2
1β1 + 13|β|α1β

2
1 + 47

6 |β|β
3
1 − 916d

2|β|+ 303d
2
β1 − 28d

2
β2 + 842d|β|2

+ 155d|β|α1 − 16d|β|α2 + 1237
2 d|β|β1 − 31d|β|β2 − 3d|β|β3 + 8dα1β1 + 2dα1β2 + 2dα2β1 − 103

2 dβ
2
1

+ 14dβ1β2 + 706|β|3 + 92|β|2α1 + 18|β|2α2 − 3|β|2α3 − 46|β|2β1 + 48|β|2β2 − 6|β|2β3 − 5|β|α2
1

+ 2|β|α1α2 − 197
2 |β|α1β1 + 11|β|α1β2 + 11|β|α2β1 − 271

2 |β|β
2
1 + 26|β|β1β2 − 3α

2
1β1 − 12α1β

2
1 − 10β

3
1

− 1684
3 d|β| − 808

3 dβ1 + 10dβ2 + 2dβ3 − 2118|β|2 − 184
3 |β|α1 − 12|β|α2 + 2|β|α3 + 1184

3 |β|β1 − 102|β|β2

+ 11|β|β3 + 63α1β1 − 6α1β2 − 6α2β1 + 150β
2
1 − 24β1β2 + 1412|β| − 362β1 + 60β2 − 6β3.
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