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CHAPTER I

Introduction

The brain is one of the most remarkably complex systems in nature. Yet, despite

the enormous amount of research dedicated to it, it is probably the least understood

system. There are 100,000,000,000 neurons in the brain and approximately 7000

connections per neuron. At the fundamental level of a single neuron, it already begins

to get complicated; there are hundreds of different types of neurons, each with their

own distinct biological properties and functions, with more discovered with every

month of new journal articles. Neurons are supported and nourished by an equal

number of glial cells, which for a long time, were thought to play only a supporting

role in the brain; however, recent research has shown that these cells are integral to

cognitive and functional processes [1, 2, 3, 4, 5].

At the next level are the connections between neurons. Connections can be ex-

citatory, inhibitory, modulatory, or otherwise, depending on the cell types involved.

On small scales within ensembles of neurons, specific neuronal subtypes form connec-

tions to other specific subtypes, within certain distances, and sometimes in specific

directions. Other types of neurons innervate (and connect to) all other neuron types,

integrating a wide range of input characteristics. On a larger scale, some regions

route the flow of information and processing throughout the brain. For example, the

basal ganglia is able to ’select’ the strongest functional inputs by combining feed-
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forward/feed-back connections between layers and utilizing the various arrangements

of neuronal subtypes within each layer [6, 7, 8, 9].

To make matters even more complicated, the brain is constantly changing. On

the cellular level, through a process called neurogenesis, new neurons are being born

in the olfactory bulb[10, 2, 11] and hippocampus well into adulthood [12, 13, 11]. A

growing and expanding area of research, the study of neurogenesis has helped overturn

the widely held assumption that a brain contains all the cells it will ever need at

birth. In the hippocampus, these cells integrate with existing neuronal ensembles

and are believed to assist in the formation of new memories [14, 15]. Changes on the

network level occur through synaptic plasticity, the strengthening and weakening of

connections between neurons. Again in the hippocampus, where short term memories

are stored, memory traces are constantly being modified and overwritten with new

ones via the modification of synapses [16, 17, 18, 19]. Over the past 60 years, after

the concept of the modification of neuronal connections was introduced by Hebb,

the understanding of the brain as a highly adaptable and modifiable system has only

grown. These ideas are now essential to our understanding of learning and adaptation

through experience.

Beyond all the biological components and network structure lies the true complex-

ity of the brain, in that the brain is constantly changing over time, both rapidly and

in the long term. These dynamics arise from shifts in activity on the neuonal firing

rate level, all the way to the routing or flow of information between brain regions.

This is in contrast to other networks such as social and computer networks, which

remain static over periods of time that allow for study. In the simplest reduction,

the brain is a network of coupled oscillators (neurons)... about 100 billion of them.

Then to say that the brain would be chaotic and unpredictable would be an immense

understatement. To make things even more complicated, the brain’s activity is con-

tinuously being altered by its surroundings. When awake, the brain is interacting
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with the environment, acquiring sensory and cognitive data, and processing this in-

formation to respond with appropriate actions. From autonomic functions, motor

responses, and cognitive processes, changes in the brain’s activity allow an individual

to perform a diverse and complex range of tasks. It is this range of dynamics that

allows a child to learn math in a classroom at one moment and play soccer at recess

the next moment. The brain is just as active when asleep, as it uses this state to

encode memories and experiences [20]. Research has even shown that the hippocam-

pus and neocortex replay the same patterns of activity from the previous day while

asleep to store memories [21, 22, 23]. This introduction will briefly discuss some of

the experimental methods used to measure these dynamics, as well as the different

time and length scales relevant to them.

Many of the questions about the brain posed 50 years ago still remain. What is

the cellular/structural foundation of a memory, and how is it stored and recalled?

How are different things such as colors, sounds, faces, and locations integrated into

complete images? How does the brain effectively determine what aspects of everyday

experience to learn and record and which to not? How are decisions made quickly

and effectively, utilizing (and learning from) past experiences? What we have learned

is that structure and dynamics play a much bigger role than neuroscientists once con-

sidered. The utilization of the mathematical concepts of graphs/networks is rapidly

becoming appreciated as a way to understand the structure of the brain [24, 25, 26].

The use of measures previously designed for other complex physically interacting sys-

tems has given us insight into and allowed us to resolve interactions and brain states

we would have never seen previously.

The goal of the work in this dissertation is to first understand the interactions

between the cellular and network levels in the brain and second to understand how

the resultant neuronal activity plays a role in function. This is primarily done though

computational (computer) models with some analysis of in vivo data. Chapter II
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investigates the network topology of gap-junction coupled cells and the resultant dy-

namics. The results are put in the framework of the basal ganglia, the brain region

associated with action selection and decision making [27]. The results from these sim-

ulations are shown to compare well with novel data from the Berke lab regarding the

basal ganglia [28]. Chapter III demonstrates the drastically different dynamics that

are possible when varying network properties are combined with oscillatory currents

in a heterogeneous neuronal network. These results are very pertinent as the role

of oscillations in the brain is a major active area of research today. Finally, chapter

IV presents a novel mechanism where neurons with the ability to classically resonate

and shift this resonance frequency in response to a depolarization, can provide the

ideal basis for efficient learning. This occurs because the spatio-temporal patterning

of network activity is highly specific and uniform for these neurons, providing the

ideal conditions for spike-timing dependent plasticity-based learning.

The following sections are only a brief introduction to the biology and physics used

in this dissertation; the specifics are left to the chapters themselves. The biology will

cover the basics of neurons, synapses, axons, dendrites, and neurotransmitters. The

physics and mathematics will cover the basics of networks and their usefulness in

understanding the brain. The final sections will give an introduction to three open

questions in neuroscience today that will be addressed by the chapters.

1.1 The neuron

The neuron is the fundamental cell of the brain. It can be thought of as a single

processing unit, where larger and larger groups of neurons/units are able to carry

out more and more complex computations. Figure 1.1 shows the basic structure of a

typical neuron, though there are numerous different types that can look very different

from this model. When the neuron receives no inputs, the cell body of the neuron,

or soma, is in a state of electrochemical equilibrium where the ionic concentrations
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Axon terminal

Myelin sheath

Axon

Soma

Dendritic tree

Figure 1.1: Model of a typical neuron. The dendritic tree is where the neuron receives
input from other neurons. This structure can vary greatly in size and
complexity and correspondingly can influence the functional properties of
the neuron. The soma is where inputs from the dendrites are integrated
and the action potential is generated. The action potential then travels
down the axon, the output component of the neuron. The speed and
efficiency of the action potential is greatly enhanced by the myelin sheath
and nodes of Ranvier insulating around the axon.
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Figure 1.2: Action Potential. Initially a neuron is in electrostatic equilibrium at 70
mV. If sufficient excitatory input current is received, the neuron depolar-
izes via an inward flow of sodium ions. This occurs until an outflow of
potassium ions causes the neuron to repolarize. The neuron overshoots its
original resting potential and requires 3 ms to come back to rest. During
this refractory period the neuron is not able to receive any input or fire
action potentials. Certain neurons, like fast-spiking interneurons, have
much faster action potentials and briefer refractory periods.

of sodium, potassium, calcium, and chloride rest at 70 mV. The soma is also where

synaptic inputs from the dendrites are integrated and this equilibrium is broken,

generating an action potential. An action potential is characterized by the rapid

depolarization, via the inflow of sodium ions, and repolarization, via the outflow of

potassium ions, of the cell followed by a refractory period where it is not able to

fire another action potential (Figure 1.2). The influx and outflux of these ions are

gated by conductance channels. For example, Na has two conductances, one near

the resting potential and one near the top of the action potential. The in/outflux of

these ions switch at their reversal potential, preventing runaway hyperpolarization or

depolarization. In a typical neuron this entire process takes 4-5 ms, but for certain

neurons, such as the fast spiking interneuron, it may happen much more quickly

[29, 30].

One of the most complete mathematical models used to describe the anatomy and
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dynamics of a neuron is the Hodgkin and Huxley Model [31, 32, 33]. There are many

variants, which can include an arbitrary number of ion channels and compartments,

but a relatively common one is presented below. It is a two compartment (s - soma,

d - dendrite) model where,

the somatic compartment is described by:

C
dV s

dt
= −IL − INs − IKdr − gc(V

s − V d) + Inoise, (1.1)

the dendritic compartment is described by:

C
dV d

dt
= −IL,d − gc(V

d − V s) + Iext, (1.2)

where the currents are IL = gL(V
s − VL) is the somatic leak current, IL,d =

gL(V
d − VL) is the dendritic leak current, INa = gNam

3
∞h(V s − VNa) is the sodium

current, and IKdr = gKn
4(V s − VK) is the delayed potassium current. VL, VNa, and

VKdr represent the leakage, sodium, and potassium reversal potential respectively

while gL, gNa, m, h, gK , and n control the conductance channels for those currents.

Chapter 3 uses this model briefly to study the interaction between single neuron and

network resonances.

1.1.1 Anatomy

1.1.1.1 Chemical and electrical synapses

The most common type of neuron to neuron connection is the chemical synapse.

It is formed between the axon of the pre-synaptic cell and the dendrite of the post-

synaptic cell at a junction called the synaptic cleft (Figure 1.3A). The chemical

synapse is only activated when a pre-synaptic neuron fires an action potential (Fig-

ure 1.2), triggering a cascade of neurotransmitters to be released across the synap-

tic cleft. There are three primary types of chemically-mediated synapses: excita-
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Axon

Dendrite

Synaptic cleft

Synaptic vesicle 

and neurotransmitter

Voltage gated Ca    channel

Receptor

++

Presynaptic membrane

Postsynaptic membrane

Gap-junction channel

Potential imbalance

Chemical Synapse

Electric Synapse

A

B

Figure 1.3: Chemical and electrical synapses. A - The chemical synapse is shown.
During an action potential, the neurotransmitters travel in vesicles across
the synaptic cleft from the pre-synaptic axon to the post-synaptic den-
drite. The pre-synaptic cell determines whether the connection is excita-
tory, inhibitory, or modulatory. The action potential may backpropogate
down both the axon and dendrite of the pre- and post-synaptic cells, a
vital mechanism in neuronal plasticity. B - The electrical synapse or gap-
junction is shown. Here ions travel freely across the channel, allowing the
contacting cells to equilibrate their membrane potentials. This connection
is bi-directional and occurs in the absence of any action potential.

8



tory, inhibitory, and modulatory. Excitatory connections, commonly mediated by

glutamate, depolarize the post-synaptic neuron leaving it more likely to fire. In-

hibitory connections, commonly mediated by gamma-aminobutyric acid (GABA),

cause a post-synaptic cell to polarize, leaving it less likely to fire. All of the chemical

synapse-specific work in this dissertation focuses on these two types of connections.

The third type of connection covers a wide family of neurotransmitters/channels as-

sociated with modulatory effects on post-synaptic cells. One of the most common

of these is dopamine, a neurotransmitter that can affect the sensitivity of specific

channels [34]. In addition to the type of connection being specific to the pre-synaptic

neuron, each neuron typically expresses one type of neurotransmitter, meaning it can

only mediate one type of chemical connection.

The second type of connection between neurons is the electrical synapse or gap-

junction [35, 36, 37, 38]. The gap-junction is a direct connection between two cells’

membranes or proximal dendrites, by which ions can freely pass Figure 1.3B [39, 40].

A diagram of the gap-junction connection is shown in Figure 1.3b. The gap-junction

is distinct from the chemical synapse in three important ways. First, the activation of

this synapse does not require an action potential but is instead caused by an imbalance

of the membrane potentials of the two neurons, causing ions to flow to equilibrate

this imbalance. The second distinction is that there is no defined permanent pre/post

synaptic cell; the gap-junction is bi-directional. The third distinction follows from

the first two, and is that there is no excitatory/inhibitory distinction. Whether one

cell will depolarize or hyper-polarize another is simply dependent on their relative

membrane potentials. All together, these properties have an important influence over

brain activity. The most significant effect is that these cells encourage synchronization

of firing activity, not only amongst themselves but between other neuronal types that

they are connected to [41]. Historically, gap-junction connections were thought to

be rare in the brain, but recent studies have demonstrated that they are far more
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prevalent and important that once believed. This makes understanding the behavior

of these connection types that much more important [42]. Chapter II will discuss

them extensively and present computational work using them.

1.1.1.2 The axon

The axon is the primary output mechanism of the cell through which the action

potential travels. It is characterized by a long, thin projection that may stretch any-

where from < 1mm to one meter, as in the case of spinal cord motor neurons. To

overcome the potential for signal loss over long distances, axons are usually coated

with a myelin sheath which is broken into sections by the nodes of Ranvier. These

myelinated sections act as insulated capacitor-like segments, causing the action po-

tential to ’jump’ along the axon and propagate faster than it would continuously.

At the end of the axon is the axon terminal, where it makes a connection with

the dendrites of other neurons. While each neuron may have only one axon (some

have zero) the terminal(s) allow for connections to multiple post-synaptic cells. An

extensive discussion and quantitative detail on the electrophysiology of axonal fibers

can be found in Hodgkin and Huxley’s seminal work [31, 32, 33].

1.1.1.3 The dendrite

Post-synaptic to the axon, the dendrite is the primary receiving mechanism of

the neuron. It has a branched tree-like shape and each neuron may have numerous

dendritic projections, with the entire structure called the dendritic tree. Some neuron

types, like the granule cell, may have small and simple dendritic trees, while others,

like the Purkineje cell, may have large, complex, and highly innervating trees. The

size of these trees is not random but serves distinct functional purposes in their specific

brain regions.

Each dendrite receives input from the axon of another cell via the synapse (see
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Figure 1.4: Neuronal Firing Patterns. A - Tonic or regular spiking pattern. B - Phasic
or bursting spiking pattern. C - Fast-spiking pattern

Synapse). The input is transformed into an electrical cascade and travels down the

length of the dendrite from the synapse to the soma. The electrical transmission

through the dendrite is well described by passive cable theory, first developed by

Hermann and Cramer in the late 19th century, and further refined by numerous other

scientists [43]. When the combined input from all synapsed dendrites reaches the

soma, it is integrated.

1.1.2 Neuronal dynamics

The neuron is capable of a wide range of voltage dynamics in response to the

synaptic current it receives from other neurons. These dynamics are dependent on

both the properties of the neuron itself, and characteristic of the current it receives.

Starting with the output of a neuron, there are three common classifications of neu-

ronal discharge (action potential) patterns. Tonic or regular spiking neurons [44, 45]

fire constantly in response to uniform input currents, and typically have the slowest

firing rates. Accordingly, these neurons are capable of a wide range of different firing

rates, dependent on the specific value of the input current they receive [46]. Phasic

neurons fire in rapid bursts in response to a current [47]. Phasic firing patterns can

create shifting states of excitation and inhibition which may generate some of the

oscillations seen in the brain [48, 49]. Finally, fast-spiking neurons are able to fire
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at constantly high firing rates which can provide a constant inhibitory suppression of

large populations of neurons [30, 50, 45, 51]. Figure 1.4 shows qualitative examples

these three firing patterns.

In addition to the variety of spiking patterns a neuron is capable of, the dynamic

properties of the extracellular current input to a neuron also greatly influence the

activity of the neuron. Among the most prevalent and well studied of these, especially

from a physical perspective, are the resonant properties of neurons and the external

oscillations they may produce [52, 53]. In this section, I will discuss two classifications

of neurons, non-resonating and resonating neurons, and the computational models

that can be used to describe these types. The resonance response has been attributed

to the generation of many of the oscillations measured throughout the brain [54, 55,

52].

1.1.2.1 Oscillations and the resonance properties of neurons

In a real neuron, or equally complex biological model, a number of voltage gated

channels control the outflux and influx of ions into the cell. These channels act

like the resistor, inductor, and capacitor elements in a circuit, giving the neuron the

dynamic properties of an oscillator. These oscillatory properties are not transient

effects, but play a significant role in the functioning of the brain [56, 57, 58, 59,

52, 56, 60, 61, 62, 63, 64]. At the sub-threshold/sub-firing level, oscillatory input

current can coordinate the voltages of larger populations of neurons through phase

synchronization of the oscillatory neurons. This coordination can provide windows of

activity to gate cognitive function and other processes.

An even more interesting phenomenon can occur if this input frequency matches

the neuron’s fundamental frequency set by the properties of the ion channels. In this

range, the neuron can exhibit a classical resonance frequency. Not every neuronal

subtype exhibits a resonance frequency, but there is significant evidence that some
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Taken from ‘Resonance, oscillation, and the intrinsic frequency 

preferences of neurons’ by B. Hutcheon and Y. Yarom.

Trends in Neurosciences, Vol. 23 No. 5, 2000

ZAP input current

Figure 1.5: Properties of Neuronal Resonance. Left column - Response to a constant
subthreshold depolarizing current. Center column - Response to ZAP
current. Right Column - Impedance profile. A - Passive response of
neuron. B - Weak resonance condition. C - Enhanced resonance condition
D - Determining the frequency window of resonance. This figure was taken
from [52]
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neurons can resonate classically [54, 65, 66, 67]. The resonance properties of real

and simulated neurons are commonly investigated via ZAP and patch-clamp ZAP

currents [68, 65, 69]. The ZAP current is a frequency-space based analysis where

the frequency of an input current is increased over time to elucidate any impedance

responses and help us understand the different damping effects that the currents can

have. The resulting voltage response is then the impedance of the neuron, and any

bounded peaks in this impedance suggest a resonance effect. Here we will investigate

the properties of a neuron necessary to generate these resonances. This discussion is

drawn from work by Hutcheon and Yarom [52] and Izhikevich [53].

The first step to inducing resonance in a neuron is that it must exhibit the prop-

erties of a low-pass filter. This is achieved via the leakage current and membrane

capacitance. Figure 1.5A demonstrates the impedance profile of such a neuron. If

a neuron is dominated by the membrane and leakage time scales, or if the model is

designed with only these properties, then this alone will not allow it to resonate. A

commonly used model, and one used in Chapters 2 and 3 of this thesis, which displays

these properties is the leaky integrate and fire model [70],

τm
dV

dt
= −V (t) +RI(t) (1.3)

where τm is the membrane time constant, V is the membrane voltage, R is the

resistance, and I is the current. Such a neuron’s impedance will decay with increasing

frequency of current input (Figure 1.5A right) and act as a low-pass filter. This is

because the membrane cannot respond to fast changes in the external current, thus

increasing frequencies will only serve to lower the voltage response of the neuron.

In order to achieve a weak resonance condition, the properties above must be

coupled with a current that actively opposes and activates slowly in response to a

change in voltage (Figure 1.5B). Here the impedance peaks at a specific intermediate

frequency range. In the neuron, the delayed potassium current (IK) provides this
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mechanism. This current is analogous to the gravitation force on a pendulum and

the spring constant, except that its response is delayed. IK allows the neuron to

equilibrate its voltage in an oscillatory fashion, thus setting the time scale for the

resonance frequency itself.

Unfortunately (to those who really desire resonance in neurons) the IK makes

achieving resonance more difficult while concurrently making it possible. This is

because IK significantly dampens the voltage response of a neuron, making the reso-

nance response weak and intrinsically difficult to achieve. Fortunately, the neuron has

mechanisms to enhance this resonance as well. This is achieved through ’persistent’

INa channels or INaP channels that act in a similar way to the depolarizing typical

INa current by activating and enhancing the voltage changes in a neuron. Figure 1.5C

demonstrates how this current enhances resonance.

In computational neuroscience, these properties can be achieved through a model

like the Resonate-and-Fire neuron [71], or through a properly parameterized Hodgkin

and Huxley neuron [32, 33] amongst a variety of other models. I use the resonate and

fire model in Chapter 4 of this thesis. The equation for such is,

dx

dt
= bx− ωy (1.4)

dy

dt
= ωx+ by (1.5)

where x and y are the internal state variables, ω scales the resonance frequency,

and b the voltage response. It is important to understand the distinction between

’integrators’ (Equation 1.3) and ’resonators’ (Equations 1.4, 1.5). Integrators simply

add up the input current at some rate dependent on the leakage. Resonators oscillate

from input current changes and have intrinsic frequency preferences. The use of either

will introduce a different set of dynamics into the neuronal network system, and
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Increased randomness

Local Small-world Random

Figure 1.6: The Watts and Strogatz paradigm for small-world network design. First
a network with periodic boundary conditions is connected locally (to its
two nearest neighbors on each side in this case). The network is then
partially rewired satisfying a small-world condition dependent on its ini-
tial rewiring radius. Finally a network is completely rewired leaving a
randomly coupled network.

selecting the proper model is dictated by the properties one is trying to understand.

It is important to note however, that these properties are only valid for oscillatory

currents where the mean input is zero, ⟨Ioss⟩ = 0 . In an interesting paper by

Izhikevich [53], he studied the response of neurons to periodic depolarizing ’bursts’.

These bursts have positive currents, and hence only depolarize neurons. In this case

the integrate and fire type of neuron will in fact depolarize more with higher frequency

currents because the more frequent the spikes, the more the current behaves like a

constant. Alternatively, a periodic burst into a resonating neuron will still resonate

with spiking at the proper frequency. Such a distinction is important because both

depolarizing bursts and oscillations are prevalent throughout the brain.

1.2 Complex networks

Large scale interacting networks are common across biology, physics, technology,

finance, and society. Whether it be the brain, spin-glasses, the Internet, the stock
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Node/vertex

Edge/link

Figure 1.7: Basic network design concepts. A - A directional connection between two
verticies via a link. B - One and two way connections between a trio
of verticies. C - A locally coupled network. D - A randomly coupled
network. E - A network featuring a hub vertex.

market, or a senior class in high school, interacting elements form systems with com-

plex activities [72]. Understanding the behavior of these systems, called graph theory

in mathematics, has been gaining more and more prevalence in the scientific commu-

nity, especially with advances in computers and the complicated models that can be

tested on them. Work in this field is approached by designing complexity at the nodes

of these networks (i.e. a 17 compartment Hodgkin-Huxley neuron model) and/or in

the complexity of the connections themselves (i.e. social networks). Furthermore, by

including large numbers of nodes and connections in computer simulations of theses

networks, population dynamics can be measured directly rather than inferred from

smaller scale approximations. The work in this thesis focuses on the intersection be-

tween these three approaches. In the following sections, we will give an overview of

previous work in this field as well as the biological basis we have used in modeling

the neuronal networks of the brain.

1.2.1 Basic network design

In graph theory the basic element of a network is called a vertex or node and the

edges are the links between them Figure 1.7A. In the case of a brain network model,
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these vertices are neurons and the edges are the axonal and dendritic connections.

Network connections may be independent of direction (such as social networks of

friends or gap-junction networks in the brain) or have distinct directionality between

them (like epidemiological networks or chemical synapses). Such specifications are

important because the dynamics of these networks depend greatly on the flow and

direction of information (Figure 1.7B).

Beyond connections between pairs of vertices is the larger scale connectivity in

the network. The network topology, architecture, or structure as it is typically called,

refers to the overall arrangement of connections. The ’degree distribution’ is used to

quantify this connectivity and is defined as the number of connections (N ) per vertex

plotted against the probability that a vertex will have N connections. Figure 1.7C

demonstrates a simple network with regular or local connectivity. Here connections

are only made between ’nearest neighbor’ vertices. Figure 1.7D demonstrates another

common topology with random connectivity. Here vertices have equal probability of

being connected anywhere within the network. Finally, Figure 1.7E demonstrates

a hub topology. Here all vertices are linked via a single hub, or central vertex. A

common example of this would be the airport network in the United States. Recent

work by Perc [73] demonstrated that single oscillating hub cells can act as pacemakers

and set the frequency of the entire network. An extension of this architecture is called

a scale-free network where the degree distribution follows a power law, with only a

few vertices making many connections. Since the work in this thesis does not cover

this type of topology, we refer the reader to [74, 72] for further discussion.

1.2.2 Small-world networks

In the seminal work by Watts and Strogatz, they present a methodology of not

only designing networks, but defining their structure by those design parameters [75].

This idea was based on the small-world experiment performed by Stanley Milgram in
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1967 [76]. Milgram sent out letters to random people across the United States with

the explicit instructions to mail the letter to a specific individual in New York, if they

happened to know him. If they didn’t know him, they were instructed to send the

letter to an acquaintance they thought might know him (i.e a friend in New York or

another mail carrier). Milgram found that, on average, it took only six mailings of the

letter, or six connections, to reach this specific person. These are called small-world

networks, and this paradigm is the foundation for the design of the brain networks

in this thesis. In building a small-world network, one begins with completely local

connectivity and rewires a percentage of these connections anywhere in the network.

Within an intermediate range of rewiring probability, depending on the initial wiring

parameters, the network achieves small-world properties. This means that there are

a large number of local connections and a small number of random connections that

stretch across the network. This creates a topology where it will only take a few

number of links to trace from one vertex to any other vertex in the network. In

the brain, many different areas have been classified as small-world networks. These

include regions of the cortex, hippocampus, and the basal ganglia to name a few

[77, 78, 79]. In Boccaletti’s review on complex networks, he classifies the parameters

of a number of small world brain networks [72]. I will leave a technical discussion of

this to Chapter II, however Figure 1.6 demonstrates this design.

1.2.3 The network dynamic: Synchronization and oscillations

What happens when goods/money change hands at different rates in an economic

system? How long did it take Milgram’s letters to reach the mail carrier in New

York? How long does it take information to filter through the basal ganglia? All of

these become realistic considerations once we realize that not all networks are static

systems. In the brain, the neurons/nodes are dynamic and their states shift over time.

Milgram’s letters took a longer time to reach their destination if they had further to
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travel, meaning the vertices were time dependent. One phenomenon that can result

from this is synchronization. Imagine if I, in Ann Arbor, MI, decided to mail two

sets of letters. The first set went to everybody in San Francisco, CA and second

went to everyone in New York City, NY. If I mailed these letters on the same day,

then (assuming a uniform mail service) everybody in New York would simultaneously

receive a letter in a couple of days, and everybody in San Francisco would receive

their letters a few days after that. Therefore, there will be a synchronous receipt of

letters by everybody in New York and, a few days later, a synchronous receipt in San

Francisco.

Consider again New York City and San Francisco. Now imagine I mailed every-

body in New York and told them to send a letter to everybody in San Francisco,

who, in return, would send letters back to New York. This process would repeat

itself every time somebody received a letter, and say it took five days for these letters

to travel across the country. What I would have generated is an oscillation of mail

flowing across the country with a period of ten days, where the travel delay sets the

frequency of the oscillations. This concept of network-generated oscillations is fun-

damentally different than those generated by individual units. It has been proposed

as the generator of a number of rhythms in the brain, especially slower rhythms that

are longer than the time constants of individual neurons [80, 81, 82]. This subject

will be of significance to the work in Chapter IV.

1.3 Neuronal network dynamics: The anatomical vs. func-

tional structure at different scales

In reality the brain cannot be understood by simply mapping a network topology

or by determining the properties of a single neuron. The true nature of the brain’s

biological structure lies at the intersection of the two. Neurons are integrated into
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Figure 1.8: Functional Structure Diagram. Diagram showing the overlap and inter-
play between anatomical structure, dynamics, and functional structure.

complex networks that can behave drastically differently with modifications to either.

In fact, the brain’s proper functioning is so intricately dependent on both that the

failure of either cellular or structural/connectivity mechanisms result in the neurolog-

ical diseases we are so familiar with today. The problem is that, in trying to combine

already biologically complicated neurons with equally complicated networks leaves

us with an immensely complex neuronal network structure. To surmount these chal-

lenges we must make simplifications and reductions about the brain system we seek to

understand. This will allow us to construct reasonable models on which simulations

and analyses can be performed on appropriate time scales and computing power.

One of the most effective ways to simplify the understanding of the brain is to dif-

ferentiate between anatomical and functional structure. Firstly, anatomical structure

is just that, the actual network structure that the axons and dendrite makes in the

brain. Every image that is published regarding fixed (fluorescent) stained neurons

and connections, shows the anatomical connections within networks of the brain. In

the context of this thesis, much work has been dedicated to the understanding of

anatomical structure in the striatum [40, 83], the hippocampus [36, 84, 85], and the

cortex [37, 86, 87, 88, 89].
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The anatomical structure is not the whole story. Physical synapses may be silent,

others may be significantly stronger than others, and neurons can have strong influ-

ences over others while not being physically connected. These considerations have lead

researchers to study the functional connectivity in the brain [90, 79, 78, 91, 92, 93].

Functional connectivity is measured by methods that consider the dynamics of the

brain networks themselves. The underlying paradigm is that neurons, networks,

or regions that are functionally coupled will either have correlated or causal dy-

namics indicating a connection between the two. A vast array of different mea-

sures has been designed to understand the functional relationship between two neu-

rons/networks/regions. These include mean phase coherence [94], causal entropy [95],

information integration [96], functional clustering [97], and transfer entropy [98], to

name a few. It is important to understand the differences between these two types of

connectivities because, while the anatomical connectivity lays the structural frame-

work throughout the brain, it is the functional connectivity that determines the overall

activity. Figure 1.8 qualitatively describes this relationship.

1.3.1 Scales and regions in the brain

By dividing the brain into different functional regions and subregions, and un-

derstanding how these regions interact between different size scales, we can further

simplify our understanding of the brain. The classifications have obviously become

more refined over time but the concept remains the same. They arise because of

historically difficult experimental/clinical challenges in recording whole brain activity

and the more modern computational challenges of simulating the brain. Experimen-

tally, it is impossible to measure the behavior of the entire brain while concurrently

measuring the activity of each individual neuron. Computationally, with even the

most complex computers, it is (nearly) impossible to model every single neuron and

connection, while completing this task in a reasonable amount of time (though re-

22



searchers are trying, see Whole Brain Project). Conceptually, or theoretically, the

behavior of even the smallest subunits of the brain seems to vary so greatly that the

integration of these units has proven an immense challenge to understand. Here I

will discuss the four major size scales commonly delineated in research, and how I

use some of them in my computational work. I will also discuss their relevance both

anatomically and functionally; however, note that these size distinctions are purely

transient, and can vary greatly in their actual physical sizes.

To start at the biggest scale, the whole brain is itself a network of four classically

anatomically and functionally defined regions. The brainstem can be thought of as

an output and input node. It receives sensory input from the peripheral nervous

system and controls movements downstream of the spinal cord. The diencephalon

contains components such as the thalamus that regulate and filter activity. The

cerebellum is the primary motor control area of the brain. Finally, the cerebrum

contains the cortex, frontal lobes, and basal ganglia regions responsible for cognitive

processing, decision making, and memory storage, amongst other processes. At this

scale, brain regions are not connected randomly, instead each connection serves a

particular purpose to route information throughout the brain. In the lab or clinically,

these large-scale regions are typically recorded via electroencephalography (EEG) [99]

or magnetic resonance imaging (MRI) techniques [100]. The former benefits from high

temporal resolution while the latter from spatial resolution. Even an MRI however,

is spatially limited to sub-regions of the cortex while the EEG cannot distinguish

single spikes due to noise and filtering. These limitations only allow us to average

the activity and interaction of large-scale regions; however, often times, as in the case

of the basal ganglia or hippocampus, important processes are occurring at smaller

scales and shorter times.

The next step down in size is the level of certain brain regions. Experimentally,

the functional connectivity can be determined by applying measures using data from

23



intracranial EEG [101, 102, 103, 104], fMRI [105, 106, 107] or similar techniques.

On the other hand, the anatomical connectivity is often determined by examining

slice preparations. From the functional recordings we can determine the interactions

between subregions like the CA3, CA1, and dentate gyrus of the hippocampus with

invasive techniques that still allow the subject to freely interact with its environment.

Coupling these interactions with the anatomical connectivity allows the development

of corresponding network models. These models can even begin to include single

neurons and their complicated dynamics. But typically, these models are still greatly

reduced, for example modeling 1000 neurons in place of 1 million. Regardless of

this, recent computational modeling work at this scale has contributed greatly to our

understanding of these subregions.

The next scale is the level of groups of neurons, or neuronal ensembles, which

is where most of the research in this thesis lies. It is also the scale where we can

most easily classify the anatomical topology of neuronal networks (e.g. small-world).

Within each structure of the brain lie different layers or areas, depending on the over-

all design. These layers or areas typically contain a limited diversity of neurons, some

of which interact with other layers/regions, and others where connections remain

within those areas. At these scales, statistical mechanics describe the network topol-

ogy, and connectivity is understood via percentages and probabilities. in vitro slices

and cultures have provided much insight into the anatomy of these groups of neurons.

To measure dynamics, these areas may be studied in vivo via the use of tetrodes [108]

and in vitro via multi-electrode arrays [109, 110]. These measurements can then lead

to various determinations of the functional structure, as discussed above. From a

modeling perspective, this scale is quite tractable. Many computational studies have

been performed on these scales with varying complexities of neurons. In Chapter II,

I will specifically investigate the striatal subregion of the basal ganglia to understand

the properties of gap-junction coupled networks. I will demonstrate how the anatom-
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ical structure of the gap-junction connections clearly dictates the resultant dynamics,

transforming a homogeneous anatomical structure into a heterogeneous functional

structure and activity pattern.

Finally, we arrive again at the scale of individuals or pairs of neurons. Via patch

clamping techniques, the membrane potential interactions between cells can be per-

formed at very precise levels. Anatomical structure is relatively simple at this level,

but the different interactions between similarly connected neurons can provide enor-

mous insight into different functional connections. Computationally, immensely com-

plex and realistic neuron models can be employed to study the interactions between

pairs of neurons. While these studies may be valuable in understanding the effects

of firing rate, phase responses, and modulations, they lack the network structural

complexity to elucidate any advanced functioning that occurs in the brain.

1.3.2 Selecting specific properties of brain activity

From the discussion above, it is clear that there are a tremendous amount of in-

teractions going on at all scales of the brain. Arising from all these interactions are

numerous properties and characteristics of activity that can be measured. Determin-

ing which characteristics are important will dictate the necessary complexity of the

neuron and network model to be designed. For example, it may not be necessary to

integrate neuronal subtypes into the network structure that consists of only a fraction

of a percent of the total population physiologically. Unfortunately, such reductions

are not always as simple as percentages, as you will see in Chapter II, where a single

interneuron can enervate and influence hundreds of other neurons. These decisions,

while necessary, must be done cautiously and with a thorough understanding of the

biology involved and mechanisms utilized.
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Figure 1.9: STDP learning rule. Shown is a characteristic, non-symmetric, decaying
exponential STDP learning rule. When the presynaptic neuron fires be-
fore the postsynaptic neuron the synapse is strengthened. Alternatively,
if the presynaptic neurons fires after the synapse is weakened.

1.4 Synaptic plasticity and how dynamics modify topology

The introduction of Hebbian learning was revolutionary to the field of neuro-

science. The idea that ’neurons that fire together, wire together’ gave scientists a

basis by which connections in the brain could be modified and adapted. Through

this principle, dynamics are able to modify the structural connectivity, and therefore

the current activity, of the brain shape and its future shape. Subsequent research

has built on this concept and we now have a much more concrete understanding of

this rule. Work by Henry Markram and others has shown that the temporal order of

this firing dictates whether connections are straightened or weakened, and by what

amounts [111, 112, 113, 19, 114, 115, 116, 17]. Despite this great progress, neurosci-

entists have yet to answer how the brain translates spike-timing dependent plasticity

(STDP) to cognitive learning.

The basis of STDP relies on the concept that two neurons that fire closer in time

26



are linked by some cognitive or functional process and therefore should be linked

physiologically. Let us take neuron A and B as an example, STDP rules state that

the closer in time that A and B fire, the stronger the synaptic change should be

between them. Additionally, STDP indicates that there should be a causal relation-

ship between the neurons. For example, if neuron A fires slightly before neuron B,

then the causal relationship is A → B and the uni-direction connection from A to

B should be strengthened. Alternatively, if B fires before A, then A cannot have

caused B and the synaptic connection should be weakened. As these time differences

become smaller and smaller, the synapses will strengthen or weaken more and more.

A significant amount or research (see above) has demonstrated that this is in fact

true. Figure 1.9 and Equations 1.6 and 1.7 demonstrate the most commonly used de-

caying exponential relationship between the firing time difference and the % synaptic

change,

%Change = A+e
−tdiff

τ+ (1.6)

%Change = −A+e
tdiff
τ− (1.7)

where the top(bottom) equation is for positive(negative) time differences tdiff , ±A

scales the % synaptic change, and τ± is the time constant for synaptic change. It is the

goal of much research in neuroscience to now take the well understood properties of

STDP and translate them to rules that dictate the learning and encoding of memories

in the brain. Such an achievement would mark a significant leap in our understanding

of such a fundamental property of cognition.
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1.5 The network topology and dynamics: Pattern formation,

oscillations, resonance, and learning in the brain

The preceding sections have discussed the framework to combine network topol-

ogy and neuronal models to understand how they affect the dynamics of neuronal

systems. In the following sections, I will introduce specific brain systems and prop-

erties that exemplify these interactions and discuss how they are tied together. I

will also introduce a specific mechanism of how dynamics can ’go-back’ and influence

topology via spike-timing dependent plasticity. A recurring theme in these sections

will be the emergence of unique spatio-temporal patterns of activity that may be

generated by the network topology itself, or by the current dynamics of the input the

neurons receive. These patterns include the formation of spatial heterogeneities in

overall network activity, the emergence of oscillations in overall firing rates, and the

emergence of classical resonance-like properties in otherwise non-resonating networks

of neurons.

1.5.1 Gap-junction networks and the basal ganglia

Recent studies have shown gap-junctional connections to be far more prevalent

in the brain than once thought. One region where they may play a vital role in

functioning is in the striatum of the basal ganglia [40, 117, 27]. The basal ganglia

is one of the most complex areas in the brain (Figure 1.10), acting as a filter to

eliminate or select certain actions or decisions. The malfunctioning of this region is

associated with movement disorders such as Parkinson’s disease, Huntington’s disease,

and Tourette’s syndrome [118, 119, 120]. The striatum is the largest and primary

gateway component of the basal ganglia, receiving input directly from the cortex.

In the striatum, gap-junctional connections are present on fast-spiking interneurons

(rapidly repolarizing inhibitory neurons whose connectivity is limited to within the
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Figure 1.10: A connectivity diagram for the basal ganglia (inside the gray box). Input
is received from the cortex into the striatum and the subthalamic nucleus
(STN). Globus pallidus external (GPe), Globus pallidus internal, sub-
stantia nigra pars reticulata (SNr), and substantia nigra pars compacta
(SNp). Excitatory connections/area are denoted in red, inhibitory in
blue, and modulatory in yellow. Within each region however, there may
be a diverse range and multiple types of connections. The output of the
basal ganglia is to the spinal cord, brainstem, thalamus, and feedback
pathways into the basal ganglia.
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striatum). These interneurons receive excitatory input from the cortex and form

electrical connections between themselves and GABAergic connections with medium

spiny neurons.

The cellular and network basis for this action selection and filtering is still an

active area of research. One common theory is that, through a large amount of in-

hibition, the basal ganglia is able to restrict all but the strongest and most coherent

inputs [6, 121, 8]. Another common theory is that the precise timing of activity

in the various components of the basal ganglia allows for ’gating’ of sensory input

through oscillation windows and synchronous inhibition [118, 56]. The work in Chap-

ter II investigates the network basis for such activity that may support these ideas.

The gap-junction inhibitory network provides a fascinating basis of study because of

the two connection topologies, a type of network that is not often studied. I show

that there is a strong dependence of the interneuron network activity on the spe-

cific topology of that network. From varying the connectivity from local to random,

and changing the strength of both types of connections, the network activity passes

though numerous regimes. The most interesting of these regimes is a range of spatio-

temporal pattern formations that allow specific, spatially localized, subsets of neurons

to be synchronously active while others are quiet. Changing the inhibitory connectiv-

ity from local to random further modifies the activity pattern from one synchronized

area to multiple synchronized areas. This spatially heterogeneous activity provides

a potential basis for the specific inhibition, or dis-inhibition of downstream neurons.

These results give us insight into how the network topology influences how decisions

may be made and what can go wrong when the topology of the striatum is disturbed.

The results are then compared to in vivo experimental data from Joshua Berke’s lab,

and it is shown that the simulations correspond well to their novel results. This work

was published in Physical Biology in 2010 [27].
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1.5.2 Oscillations in the brain and interaction with network topology

Oscillations are ubiquitous throughout nearly all regions of the brain. Categor-

ically broken down into alpha(8-12Hz), delta(1-4Hz), theta(4-8Hz), beta(13-30Hz),

and gamma(30-70Hz) bands, they are generated by the overall modulation of activity

of a neuronal population to a specific frequency. In the basal ganglia, oscillations are

integral to motor control, and the alterations of the oscillations have been shown to

be associated with Parkinson’s disease and other movement disorders [118, 56]. In

the hippocampus and cortex, theta rhythms are thought to play a role in learning

and memory retrieval [58, 81, 122, 123, 57]. In those same areas, gamma rhythms are

though to be important to synaptic strengthening via spike-timing dependent plas-

ticity (see next section) because the high frequency provides the ideal time windows

for firing and modification [124] between the peaks and troughs. In the motor cir-

cuitry, EEG measurements have shown that specific frequencies from certain regions

are associated with movements [8? , 125]. During the whole movement these mea-

sured frequency changes correspond to a highly coordinated sequence of events from

planning to execution.

The mechanism for the generation of these oscillations is one area currently un-

dergoing study. As I have already discussed, one proposal is that they are generated

from the networks themselves, as opposed to individual neurons and their properties.

Synaptic transmission delays between excitatory neuronal ensembles can generate re-

verberation between the two groups, just like the mailed letters across the country.

Another mechanism, proposed especially for higher frequency oscillations, is by an

inhibitory fast-spiking interneuron network [123, 30]. The synchronization of these

networks is known to be enhanced by gap-junction connectivity, and the work in

Chapter II has demonstrated the dependence of this synchronization and these oscil-

lations on network topology.

Chapter III will cover a much less investigated area on oscillations, how the net-
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work structure interacts with dynamic oscillations when they are input into neuronal

ensembles. I present data from a computational study in which oscillating currents

of varying frequencies and amplitudes are input into a network of neurons. The net-

work is heterogeneous in that a subset of neurons are coupled more strongly (i.e. a

memory trace) than the rest of the network. The overall connectivity strength of the

network is changed along with the amplitude and frequency of the input oscillation.

The results demonstrate a network-resonance condition, or the ability for the synap-

tically strengthened subset to selectively fire in response to certain frequencies. The

mechanisms behind this activity are a unique interplay between the dynamics of the

individual neurons (i.e. time constant), the dynamics of the network (i.e.synaptic de-

lay), and the topology of the network itself (i.e. number of connections).These result

suggests that certain frequency ranges can have specific effects on neuronal activity

dependent on the properties of the network itself.

1.5.3 STDP learning via and oscillations and resonance

Chapter IV introduces a possible mechanism by which the brain may convert

subthreshold input signals into coherent spatio-temporal patterns of network activity

and then consistent STDP learning. This is done in the framework of STDP learn-

ing, presented above, and input oscillations that we know are prevalent throughout

the brain. In these simulations, a neuronal network receives subthreshold oscilla-

tions at the classical resonance frequency of the neurons, causing the network to be

active. The specific resonance responses are then additionally shifted by another

subthreshold signal current. I demonstrate that the combination of these input oscil-

lations, resonance, resonance frequency shift, and STDP provide an ideal mechanism

for converting correlated input signals to coherent learning. This learning modifies

the topology of a previously random network to reflect the temporal relationships of

the different patterns they receive. Specifically, one region of the network receives a
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time varying current with a Gaussian profile, while another receives a slightly delayed

Gaussian current. I observe that strong unidirectional connections form between the

two regions with the region receiving the preceding (following) Gaussian forming out-

putting (receiving) connections from the other region. Additionally, this model is

shown to naturally demonstrate the properties of frequency related phase precession

which is gaining notice in experimental neuroscience today [57, 126].

All together, the work I will present to you in this thesis will focus around the

concepts of oscillations, spatio-temporal pattern formation, and synchronization, as

they relate to network topology. I will demonstrate how the network structure can

govern dynamics, how structure and dynamics can interact, and how dynamics can

govern structure. The goal of this thesis is not to decipher and explain every bit of

observed activity or structure in the brain, but to explain and quantify the underlying

the physical properties that govern these processes and formations, and to provide

insight into the interactions between them.
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CHAPTER II

Local dynamics of gap-junction-coupled

interneuron networks

2.1 Introduction

At any scale in the brain, the neuronal network structure plays a significant role

the the resultant dynamics. In particular, local connectivity, where connections are

formed only with neighboring neurons, can have completely different functionality

than connections which stretch long distances across regions. For example, short

range connected neuronal subsets may function as local processors while long range

connections may serve to integrate these processors. Another layer of complexity can

be added if neurons have two types of connections simultaneously, one that has local

connectivity properties and one that has global properties. This chapter investigates

such a network topology, in the context of electrical gap-junction and inhibitory

connections, and how their connectivity structure completely dictates the dynamic

spatio-temporal patterns of activity formed.

Networks of interneurons coupled by electrical gap-junctions (GJs) and inhibitory

electrical synapses are vital features of many brain circuits. Interneurons in the

neocortex [127], visual cortex [86], and hippocampus [60] serve to coordinate and

synchronize the activity of larger populations of neurons [30], and this synchronizing
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role is well described by computational models of interneuron networks [128, 129, 130,

131, 132]. However, the activity of interneuron networks does not simply serve to set

the pace of brain circuits. For example, recent studies have demonstrated unexpect-

edly asynchronous firing of GJ-coupled striatal fast-spiking interneurons (FSIs; [28]),

and how such activity emerges from and is constrained by network connectivity is not

well understood [117].

We wish to extend the computational study of interneuron networks by system-

atically investigating the effects of network topology and GJ connection strength on

the spatio-temporal activity patterns of interneuron networks. Differences in network

and connection properties may allow interneuron networks to have distinct functions,

and corresponding distinct activity patterns, in different brain regions. The first half

of this chapter is a general study on interneuron dynamics that covers a wide range

of connection topologies and connection strengths. We introduce our reduced net-

work model and the metrics we employ to quantify the observed patterns of network

activity. We then use these metrics to study spatial network patterns and their tem-

poral stability as a function of connectivity levels, connectivity strength, and network

macrostructure. The intent is for these studies to be applicable to any GJ-coupled

networks of inhibitory neurons.

In the second half of this chapter we use our computational analysis of interneuron

networks to gain insight into observed firing patterns of striatal FSIs [133]. We

show that subtle alterations in the input to the network can cause transitions from

unstable to stable patterns, and we compare these observed transitions to results

obtained in electrophysiological studies of striatum during action selection. In vivo

these neurons receive direct inputs from the cortex [134], are coupled together by

GJs on their dendrites [135] and provide strong perisomatic GABAergic inputs to

> 100 nearby striatal projection neurons [121]. FSI-mediated inhibition appears to

play an important role in the selection and suppression of actions (discussed in [28]),
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Inhibitory Layer

 Inhibitory Synapses

Gap Junctions

Figure 2.1: Network architecture. General network layout of the FSI interneuron
layer (red) and coupled excitatory input layer (green). The interneuron
layer is internally coupled via both inhibitory connections and GJ connec-
tions. The excitatory input layer has direct connections to corresponding
neurons in the network.

and a deficit in this cell population may contribute to Tourette Syndrome [136].

Understanding the relationships between FSI anatomical connectivity, firing patterns

and behavioral functions is therefore an important area of current research.

2.2 Modeling

2.2.1 Simulations

2.2.1.1 General network architecture

The interneuron network consists of 200 neurons arranged on a 1-D lattice Figure

2.1. The network has periodic boundaries, forming a ring structure. The neurons were

connected using the Small World paradigm [75], where neurons are initially connected
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to all neighbors within a distance r, then connections are removed randomly and

reconnected anywhere in the network with a probability of p. Thus, on average,

every neuron has a 1− p probability of connecting to its neighbors and a probability

p of connecting to any other neurons in the network. Thus, for p = 0 we obtain solely

local network connectivity, for p = 1 the connectivity is fully random.

To investigate the relative contributions of electrical and chemical networks, we

modified connectivity parameters for the inhibitory and the GJ networks separately.

For the synaptic inhibitory component, the wiring radius of inhibitory connections

was set to (ri) = 5, 10, or 30 with a rewiring probability (pi) ranging from 0-1 in

increments of 0.05. For the GJ component, radii started smaller, with the wiring

radius of GJ connections (rg) = 3, 5, 10, or 30, and the rewiring probability (pg)

again ranged from 0-1 in increments of 0.05.

Each simulation was run over 2 seconds and all measurements, unless otherwise

stated, are the averaged values over 10 independent simulations. Each independent

simulation had distinct connectivity due to separate rewiring, random initial voltages,

and driving patterns.

2.2.1.2 External network input

For homogenous driving (section 2.3.1), the interneuron network was stimulated

by a layer of 200 uncoupled excitatory neurons, unidirectionally connected 1-to-1

with the interneurons. Each excitatory neuron fired as a random Poisson process

with mean of 20 Hz. For non-homogeneous driving (section 2.3.2), in addition to the

driving described above, a subpopulation of 20 contiguous excitatory neurons (id#

90-110) were given additional properties. Either we increased the firing rate of this

subset of neurons, by a factor ranging from 1 to 16, or we kept the firing rate identical

to the rest of the population while increasing the correlation of firing times within

this subset. The amount of correlation is quantified by a jitter (ms) which is the
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Gaussian deviation in firing times from the mean firing of neurons in this subset. A

jitter of 0 will give perfectly correlated firing while a width near the average firing

rate will return the same random firing pattern as all other neurons.

2.2.1.3 Inhibitory connections

To model the dynamics of the neuron we used the leaky integrate-and-fire neuron

model:

τm
dV j

dt
= −αjV

j +RsI −
∑
k

wjk
synS

jkIksyn (2.1)

Here, V j is the membrane potential of the jth neuron, τm = 0.5ms is the time

constant; α is a leakage coefficient which is different for every cell, α ∈ [1:1.3]; Iksyn

is the synaptic current generated at the time of the spike, wjk
syn defines the chemical

synapse coupling strength; Sjk is the synaptic connectivity (adjacency) matrix; I is

a uniform external current which keeps the neurons readily excitable, I = 0.5; Rs is

the neuron resistance Rs = 1.

The synaptic current is activated after the pre-synaptic neuron reaches a threshold

Vthresh = 1 and fires an action potential. The pre-synaptic neuron is then returned to

V = 0 and remains there for a refractory period tref = 5ms. The synaptic current is

of the form

Iksyn(t) = e
−(t−tkspike)

τs − e
−(t−tkspike)

τf (2.2)

where (t − tkspike) is the time since the last firing of the presynaptic neuron, τs =

3ms is the slow time constant, and τf = 0.3ms is the fast time constant. The variables

τs and τf are chosen such that the post-synaptic potential lasts approximately 2ms.
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2.2.1.4 Electrical connections

The GJ connections differ from synaptic connections in several important ways.

First, GJ connections are bi-directional: current can flow in either direction between

two neurons. Second, they have no activating threshold: voltage-equilibrating ion

flow occurs even at membrane voltages subthreshold for spiking. When spikes do

occur, GJs can partly communicate this event in the form of a spikelet [42, 38],

which is modeled via the addition of a excitatory term to the leaky-integrate-and-fire

equation:

τm
dV j

dt
= −αjV

j+RsI−
∑
k

wjk
synS

jkIksyn+
∑
m

gjmgapG
jm(Imsyn(t)+σgap(V

m−V j)) (2.3)

Here, gjmgap denotes the efficacy of GJ connections; Gjm is the gap junction con-

nectivity matrix, V m is the potential of the mth pre-synaptic neuron and V j is the

potential of the post-synaptic neuron. The Imsyn(t) represents the spikelet and the

σgap(V
m − V j) is the voltage equilibrating, dissipative term. In all our simulations

σgap = 1.

Inhibitory coupling constant wsyn = 2 for all simulations while the GJ coupling

constants ggap ranged from 0-0.5, chosen to match the relative synaptic efficiencies

observed in GJ interactions [132].

2.3 Analysis

2.3.1 Definitions of spatial and temporal metrics

2.3.1.1 Spatially localized activation metric, Ω

To measure spatial pattern formation within the network, we computed the degree

to which the firing of locally grouped subsets of neurons deviated from the mean
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population firing rate. Specifically, we calculate the average spike rate, R, for every

neuron in the time window of bt = 400 ms. We then take a spatial sliding window

of varying size bn ∈ [1, N ] along the neuron number axis. The R denotes the time-

binned and neuron population-binned cell firing rates. We then compute the variance

of these binned firing rates:

σ2(bn) =

∑
N(R

′ − ⟨R′⟩)2

N
(2.4)

Thus the variance will be large if there are localized neural groups that have

significantly higher/lower mean spiking rates. Conversely, if the spiking frequency is

uniform, the variance will tend to zero. Since we do not know the size of the localized

groups a priori, the variance will depend on the spatial bin size bn , i.e the maximum

value of variance (σ2(bn)) will be reported for the bin size corresponding to the average

size of activated groups. Thus our measure of spatially localized activation is defined

to be:

Ω = MAXbn(σ(bn)). (2.5)

Figure 2.2 demonstrates different values of Ω for different activity patterns.

2.3.1.2 Temporal Stability metric

To assess network stability we first measured the coefficient of variation (C̄V ) of

firing rates for each individual neuron over the time course of the simulation. This

was defined as the standard deviation of inter-spike intervals (ISIs) divided by the

mean ISI:

CVneuron =
1

⟨ISI⟩neuron

√∑
i(ISIi,neuron − ⟨ISI⟩neuron)2

NISI

(2.6)

Here i is the index of each ISI and NISI is the total number of ISIs for a specific
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Figure 2.2: Illustration of how the Ω and C̄V metrics can describe key features of
network activity. For each subplot, the neuron number is along the y-axis
and timesteps along the x-axis with dots where the neuron has fired. In
cases where locally distinct spatial patterns form, Ω has a correspond-
ingly higher value. The subplots also show that more stable patterns are
associated with lower C̄V values. In addition, all plots in the left column
show examples of globally synchronous states (GSS), while the central
and right columns demonstrate localized activation states (LAS).
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neuron. The overall stability measure is simply the mean C̄V for all neurons in the

network. If the neurons show stable firing rates C̄V will be lower (Figure 2.2).

2.3.2 Electrophysiological data acquisition and analysis

2.3.2.1 Recording striatal FSIs

The recordings in this section were performed in the Berke Lab at the University

of Michigan by Professor Joshua Berke and Dr. Gregory Gage.

Individual neurons were recorded extracellularly from the striatum of four rats

implanted with tetrodes (four 12.5 m nichrome wires twisted together) during per-

formance of a simple choice task [137]. Thirty-nine striatal FSIs were identified using

previously established waveform and activity criteria [138, 28]. Neural signals were

sampled with high temporal precision (31,250 samples/sec) and wide-band filtering

(1-9,000 Hz) to minimize distortions of waveform shape [137]. During daily recording

sessions, rats were placed in a dimly illuminated operant behavior box with an array

of five nosepoke holes on one wall. The simple choice task required hungry rats to

nose-poke an illuminated hole and hold there until receiving a go signal (a white noise

burst). During the hold period, an instruction cue was delivered to a speaker inside

the operant box: a 250 ms tone of either high (4 kHz) or low (1 kHz) pitch. If the rats

chose to move leftwards after hearing the low tone, or rightwards after the high tone,

they were rewarded with a 45 mg sucrose pellet, which they collected from the wall

opposite the nosepoke holes. The total hold time required to correctly complete the

trial was pseudo-randomly selected to be between 900-1250 ms (uniform distribution)

while the tone delay varied from 250-350 ms after initial nosepoke. If the rats failed

to hold until the go signal, trials were aborted and a 10-15 s timeout period began

(with houselights on). All recording sessions were made from rats that had already

learned the task (mean: 74.4 % correct trials).
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2.3.2.2 Cumulative stability analysis of rat striatal FSIs and simulated

data

To assess the stability of firing as rats were instructed which way to go, we ex-

amined spike times within 500ms of the instruction cue. For each neuron, only trials

with at least five spikes before and five spikes after event onset were included in the

analysis. Altogether we included 828 trials in which rats were cued to make a right-

ward movement, with 22/39 neurons providing sufficient stability shifts, and 1/2 of

the neurons accounting for more than 95% of the recorded trials. For leftward move-

ments we included 818 trials, with 22/39 neurons providing more than 10 stability

shifts, and 1/2 of the neurons accounting for 94% of the recorded trials. For each of

these trials we calculated the pre- to post-cue shift in temporal stability, ∆C̄V i :

∆C̄V i = 2
C̄V i,before − C̄V i,after

C̄V i,before + C̄V i,after

(2.7)

where i denotes the trial index. A positive ∆C̄V i thus represents an overall

stabilization of the network after the cue, while a negative ∆C̄V i its destabilization.

We then calculated the mean stability shift over all trials for left and right movement

choices:

∆C̄V = ⟨∆C̄V i⟩ (2.8)

To compute statistical significance of the observed mean shift in stability (∆C̄V )

we created 1000 surrogate trials by randomly exchanging the sequences of pre- and

post- cue spike trains for each trial. This process was repeated 1000 times, allowing

us to obtain randomized distributions of the mean stability shift of the surrogate tri-

als (∆C̄V surrogate ). We then computed the surrogate mean and standard deviation.

The significance levels and scores were established assuming a Gaussian distribution

around the surrogate mean. This analysis allowed us to determine whether the ob-
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Figure 2.3: Qualitative changes in network activity arising from the topology of GJ
connectivity. ggap vs. Ω for ri = 30, pi = 1, rg = 5, and pg = 0 (white
circles), 0.3 (gray circles), 1 (black circles). Selected raster plots depicts
examples of network dynamics for different values of pg. As ggap increases
so does Ω , to a peak value, before the network fails to sustain a pat-
tern and Ω declines. The highest value of Ω occurs when pg = 0 (local
connectivity) and declines as pg approaches 1 (random connectivity).

served mean stability shifts are merely due to random fluctuations or represent a

statistically significant event. For comparison, an identical calculation was performed

on the spike trains obtained from the simulation and we repeatedly recorded activity

of a single (and the same) neuron on different simulation runs.

2.4 Dynamics of FSI networks

To better understand the dynamics of interneuron networks with both inhibitory

synapses and GJ channels we used two separate connection topologies converging on

the same neurons (Figure. 2.1). We observed that, contrary to many previous results

that demonstrated the formation of predominantly synchronous states of activity

[128, 129, 130, 131, 132], these interneuron networks are capable of a wide range of

dynamical regimes and activity patterns. We show that by changing the topology

of both the inhibitory and GJ connectivity, in addition to spatially uniform and

synchronous activity, the network also exhibits highly non-uniform spatio-temporal
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patterns (Figure 2.3). These states can be grossly divided into three groups:

Localized activation state (LAS) There are one or more well defined groups ex-

hibiting synchronous high frequency firing, while other regions of the network remain

nearly silent (Figure 2.3 center). These regions may be temporally stable throughout

the simulation or change their position rapidly.

Random activation state (RAS) The network exhibits low firing rates and random

patterning predominantly driven by the input layer (Figure 2.3, left).

Globally synchronous state (GSS) A high fraction of the cells fires synchronously,

with varying frequency dependent on overall network excitation (Figure 2.3).

We investigated the emergence of these spatio-temporal patterns as a function of

the underlying networks topologies, connectivity strength, and connectivity density.

We assessed the spatial non-uniformity of network response, and the temporal stabil-

ity of network activity, using the Ω and C̄V metrics respectively (defined in section

2.2.1).

Finally, we compared the activity patterns obtained in our computational model

with those observed experimentally, obtained from striatal FSI recordings of freely

moving rats performing a decision task.

2.4.1 FSI network dynamics driven by homogenous input

2.4.1.1 Properties of electrical synapses, and spatial pattern formation

in the electrical-inhibitory network

In this section we investigated the spatial activation pattern of the network as a

function of electrical connectivity parameters. We monitored changes in the SLA met-

ric (Ω) as a function of connection topology (lines with colored circles) and electrical

coupling strength ggap (x-axis; Figure 2.3).

We observe that for fixed connectivity rg and for weak electrical coupling the net-

work exhibits the RAS. This is due to the fact that the network activity is solely driven
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Figure 2.4: Inter-domain synchrony and lack of synchrony between domains. ri = 30,
pi = 0 (right column),1(left column), rg = 5, and pg = 0 For the LAS
regime the neurons within active regions are synchronous. However, if
multiple regions are active (right column) the population subsets are not
necessarily synchronous across the entire network

by the input layer that exhibits random homogenous activity patterns. When the GJ

connectivity of the network increases to intermediate values of coupling strength, the

network activity exhibits the highly non-uniform spatial pattern characteristic of the

LAS. The observed pattern forms because of a GJ-mediated equilibration of the po-

tentials, of locally connected interneurons, These local groups of neurons then become

collectively active (quiescent) when a significant amount of excitation(inhibition) is

input. Specifically, the local connectivity of GJs mediates the formation of discrete,

high activity domains that inhibit other regions of the network. The firing frequency

of neurons within these domains is well above mean input frequency, while the rest of

the network is relatively quiescent, firing significantly below the input frequency. Ad-

ditionally, the neural activity is highly synchronized within each activated domains,

with neurons firing within 3ms of each other, but the multiple domains remain unsyn-

chronized amongst each other (Figure 2.4). The locations and sizes of the activated

47



rg = 10

ggap

rg = 30

pg =  0

pg =0.3

pg =  1

rg = 5

Ω

rg = 3

Ω

ggap

0

0.  4

0 0.  1 0.  2 0.  3 0.  4 0.  5
0

0.  8

0

0.  7

0

0.  7

0 0.  1 0.  2 0.  3 0.  4 0.  5 0 0.  1 0.  2 0.  3 0.  4 0.  5

0 0.  1 0.  2 0.  3 0.  4 0.  5
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Figure 2.6: Changes in spatial patterning (Ω) as a function of topology (pg) of GJ
network, for rg = 3, 5, 10 The connectivity of the inhibitory network is
unchanged and is set to pi = 0, ri = 30. For rg = 3, 5, 10, ggap = 0.45,
0.21, 0.095 respectively, as chosen to give the highest Ω values (see Figure
2.5).
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domains depend on the connectivity properties of both electrical and inhibitory net-

works. Moreover, the local, high activity pattern can be spatially stable (i.e. encom-

pass the same group of cells) throughout the simulation, or change rapidly in time

(see section 2.3.1.2 below).

For high values of electrical coupling, network activity becomes random and spa-

tially uniform once again. In this case there is also significant reduction of the mean

firing frequency, confirming previous findings in striatal FSI network simulations [117].

This is due to current shunting via GJs, which reduces the probability of neurons

reaching action potential thresholds.

We then investigated the occurrence of the LAS, RAS and GSS as a function

of electrical network connectivity (Figures 2.5 and Figures 2.6 ). We varied the GJ

coupling, ggap ∈ [0, 0.5] and network topologies pg ∈ [0, 1] for three values of GJ

connectivity, rg = 3, 5, 10, 30.

The LAS patterning is clearly a function of locality of the electrical connections,

with more local connections leading to the LAS state.

We observed that, as the total number of GJ connections (equal to 2rg per cell)

increases, non-uniform patterning is obtained for lower values of electrical connection

strengths, ggap, and the ggap range for LAS significantly narrows (Figure 2.5). This is

primarily due to the fact that the increased number of connections offsets the effects

of coupling strength.

At the same time, as pgap → 1 , the network transitions to the synchronized state

and the spatially resolved patterns no longer form (Figure 2.6). The emergence of

the GSS for more random connectivity patterns generally agrees with the in vitro

experimental evidence observed in studies of interneurons in the cortex [81, 130, 39]

as well as simulation studies [128, 139, 131, 132].

This transition seems to take place for lower values of rewiring when the network

connectivity is sparser. Additionally, as the network connectivity increases, there is
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cal and random inhibitory coupling but its spatial characteristics change
significantly.

an evident increase in the number of synchronously firing neurons per cycle (Figure

2.6).

2.4.1.2 Topological effects of inhibitory connectivity on network pattern-

ing

We also more closely examined the properties of the formed patterns as a func-

tion of the structure of the inhibitory network connectivity. We varied the rewiring

parameter and the connection density of the inhibitory synapses (i.e., pi ∈ [0, 1] and

ri = 3, 5, 10, 30; Figure 2.7).

We observed a dramatic change of the patterning as a function of the topology

of the inhibitory network. The multiple activated regions observed for both local GJ

and synaptic connectivities, is replaced with a single active region when pi → 1. This

is due to the fact that now activated regions generate global inhibition to rest of the

network, providing competition to each other (Figure 2.7).

2.4.1.3 Excitatory chemical synapses do not support LAS formation

Finally, to confirm that the formation of the non-uniform spatio-temporal pattern

is due to the sub-threshold equilibrating characteristic of electrical networks, and not
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of local active zones. Ω vs. gexcit (excitatory connections instead of GJs)
for varying the topology and connection strengths of the GJ network - ri
= 30, pi = 1, rg = 3, 5, 10, and pg = 0, 0.3, 0.5, 1.0. There is no pattern
formation, even as the connection strengths are increased to arbitrarily
high values, twice the strength of the GJ networks.

primarily mediated by the chemical synapse excitatory-like interaction, we simulated

networks with identical macrostructure properties and bi-directionality but with GJ

connections replaced by excitatory connections (i.e. the sub-threshold equilibrating

term was removed so that neural interactions were similar to these of the chemical

synapses). We observed that, even for a significantly higher strength of connections

(two-fold), these networks were unable to form the LAS patterns.(see insets Figure

2.8). This demonstrates that, despite the excitatory networks ability to depolarize

locally connected neurons, the lack of any equilibration properties cannot generate a

LAS.
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Figure 2.9: Measurement of stability (C̄V ) vs. GJ coupling strength (ggap) for varying
topology (pg = 0.0 (white), = 0.3 (gray), = 1 (black) and connectivity
(rg = 3, 5, 10,30) of the GJ network. The connectivity of the inhibitory
network remains unchanged and is set to ri = 30 and pi = 1. For small rg
the stability measure C̄V increases (the network becomes more unstable)
as ggap increases. As the number of GJ connections increases the network
is stable over a wide range of GJ coupling strengths.
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2.4.1.4 Temporal pattern stability of LAS as a function of electrical and

inhibitory network connectivity

We also investigated the temporal stability of the observed patterns (Figure 2.9).

The overall shift in the C̄V peak(s) follows that of the Ω metric: as rgap increases,

the width of the peak narrows and occurs for smaller values of ggap. For low values of

ggap the network exhibits high stability (lower values of C̄V ). This is due to the fact

that for the low coupling values the network activity is dominated by the input layer

that provides random and uniform activation patterns (please refer to Figure 2.3 for

raster plot examples).

For the higher values of GJ coupling, as the local regions of high activation form,

the network shows decreased stability. This results from the rapid shifts of LAS

regions Which in turn are due to random local fluctuations of spike frequency and

their temporal correlations. These fluctuations cause rapid formation of new LAS

regions while shutting down the old ones.

However, especially for the high and random GJ connectivity regime, there is a

narrow parameter range that for which stability of the patterning is increased. The

reasons are twofold: 1) for the lower connectivity range, low C̄V values indicate

decreased spatial fluctuations in region of high activity (see bottom-right panel of

(Figure 2.2), and 2) for the high connectivity regime, this is due to high activation of

the whole network that leads to high frequency GSS firing patterns.

2.4.2 Stabilization of network dynamics in response to non-homogenous

inputs

The results above were obtained with random, homogenous input to the interneu-

ron network. We next investigated the consequences of perturbing this homogeneity,

by increasing either input firing rate or input firing synchrony, in one region of the

network (Figure 2.10). The panels A and C show an example of increasing the input
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layer firing rate, in a specific region, without changing the firing rate elsewhere in

the network, and the resultant interneuron layer activity. The panels B and D depict

changes in interneuron activity due to the introduction of correlations in the firing of

the input layer.

We found that relatively small manipulations of either parameter could produce

a rapid stabilization of FSI network activity and a significant amplification of the

response (firing rate) of the corresponding network region (Figure 2.10 E, F) accom-

panied by decrease in firing rate of other network regions. To quantify this effect we

calculated the ratio of average firing frequency of neurons within the corresponding

region and other parts of the network. In Figure 2.10 E a small 2-5 times increase

in the noise level of specific input neurons can increase the ratio of FSI response 30

fold. In Figure 2.10F a temporal correlation (synchrony) increase, with no increase in

firing rate of the input neurons, can induce an 8 fold FSI firing rate response. Both

examples return expected ratio values of 1 when at nominal values (1 for noise ratio

and 0 for the correlation, corresponding to random firing times). The ability of a

GJ-coupled FSI network to detect and amplify small input asymmetries, in terms of

a higher frequency or temporal coherence, and achieve a corresponding stable network

activity pattern is a potentially highly useful feature. In the case of the striatum,

it could be helpful in the selection and stabilization of planned courses of action.

Decision-making involves the assessment of often equivocal or noisy evidence in order

to make a commitment a highly non-linear, non-equivocal response (see Discussion).

Additionally, a shift in temporal stability (CV) accompanied changes in both these

parameters. Figure 2.10G demonstrates that as the selected regions activity ratio

increases, so does the stability (CV decreases). For the temporal correlation shifts

(Figure 2.10H) we observed that this stabilization occurs at an even lower frequency

response. This is not surprising however, as the nature of the temporally correlated

input leads to a more temporally stable firing rate. In these figures we measured the
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CV ratio or the relative CV shift as the actual CV value divided by the nominal CV

value obtained from uniform and random input.

2.4.2.1 Stability analysis using experimental and simulated data from

single neurons

To investigate whether such dynamics actually contribute to striatal function,

we wished to compare our simulations to experimentally obtained spike trains from

striatal neurons. We used a data set of FSIs recorded in rats performing a simple

choice task (see Methods and [137]. We compared periods of time immediately before

and after presentation of an auditory cue that instructs animals which way to move

(at a later time). Thus, before the cue onset, both left and right actions are equally

probable for the animal, but following cue onset rats know which way they need to

go to receive a reward. We assume here that the cue, and/or preparation of a specific

movement, corresponds to preferential input of specific subsets of cortical inputs to

striatal networks.

Employing the same measures used in the network simulations above would require

the simultaneous recording of many FSIs, which is not technically feasible at the

current time. Instead we exploited the fact that we had many behavioral trials for

each individually-recorded FSI and examined the stability of the firing pattern across

repeated trials with the same instruction cue and movement. We also performed the

same analysis for individual simulated FSIs over 100 independent trials. In both the

model and experimental data, we observed a similar stabilization of firing pattern

(Figure 2.11). Additionally, both experimental and simulated neurons accompanied

stabilization with a range of firing rate increases or decreases.

We assessed the stabilization of firing for all experimentally recorded neurons

(Figure 2.11) by comparing it to the surrogate generated trials (see section 2.2.3).

The epochs were calculated as 250 ms before and after the cue. Although striatal
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FSIs show diverse, behavior-linked, firing patterns in this and other tasks [28, 137],

we still found overall increased stabilization in the FSI population.

For all leftward movements 8/39 neurons showed a significant stabilization, 2/39

neurons showed a significant destabilization, 6/39 neurons showed a statistically in-

significant stabilization, 7/39 neurons showed a statistically insignificant destabiliza-

tion, and 16/39 neurons had insufficient statistics. The mean shift for all 39 neurons

was ⟨∆CVleft⟩ = 0.11 and the surrogate trials gave ⟨∆CVsurrogate,left⟩ = 0.00± 0.015,

giving a Z score = 7.3 and P value = 2.87 ∗ 10−13. For all rightward movements 6/39

neurons showed a significant stabilization, 2/39 neurons showed a significant destabi-

lization, 11/39 neurons showed a statistically insignificant stabilization, 5/39 neurons

showed a statistically insignificant destabilization, and 15/39 neurons had insufficient

statistics. The mean shift for all 39 neurons was ⟨∆CVright⟩ = 0.10 and the surrogate

trials gave ⟨∆CVsurrogate,right⟩ = 0.00 ± 0.016, giving a Z score = 6.3 and P value =

2.98 ∗ 10−10.

We also analyzed the simulated data using an identical method. Like the experi-

mental data, simulated neurons may show an increase in firing rate if that neuron is

within the stimulated region (neurons 90-110, Figure 2.10) or a decrease if it is located

outside of it. Regardless of these firing rate changes however, the neurons exhibit an

overall stabilization (left on right columns, Figure 2.11). This effect is demonstrated

in panels C and D of Figure 2.10. For simulations, 1039/1352 trials showed a positive

stability shift. The mean shift was ⟨∆CVsim⟩ = 0.36 and the surrogate trials gave

⟨∆CVsurrogate,sim⟩ = 0.00± 0.020, giving a Z score = 18 and P value =4.44 ∗ 10−16.

2.5 Discussion

We found that neuronal networks in which nodes are coupled by both inhibitory

chemical synapses and gap junctions can support a wide range of dynamic states, that

depend critically on network architecture. Although the random vs. local nature of
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connectivity is a key parameter for both the chemical and electrical synapses, these

two types of connection play non-interchangeable roles in setting network dynamics

(schematically described in Figure 2.12). In particular, relatively local connectivity

of the electrical network mediates the formation of discrete domains of highly active

synchronized neurons (LAS state). This type of pattern formation is in stark contrast

to the globally synchronized state that is created by a more widely distributed GJ

connectivity in interneuron networks [129, 131, 132].

We further found that interneuron networks can show a sudden switch from unsta-

ble to stable temporal pattern formation, prompted by modest changes in the spatial

distribution of input spiking rate or synchrony. We hypothesize that such dynam-

ics may serve to support a search-and-select function of interneuron networks that

could be useful in various brain networks. Finally we examined the activity patterns

of real striatal FSIs and found evidence for a comparable switch from unstable to

stable firing as actions were selected. These results both support a role for striatal

FSI dynamics in decision-making, and begin to provide an functional explanation for

59



anatomical observations of local GJ connectivity in the striatum [40].

Interneuron network architectures vary between brain regions. For example, cor-

tical and hippocampal CA1 GJ networks are much more uniformly distributed in

structure without much variation along relevant spatial dimensions [36, 37]. In con-

trast, recent evidence shows that the striatal topology is highly irregular, with regions

of higher and lower density and connectivity [40]. These differing network structures

may result in distinctly different activity patterns of otherwise similar neurons. Our

results support the idea that such structural differences result in distinct dynamic

properties, that support distinct functional roles.

From a functional side, interneurons in the visual cortex [86, 37] and CA1 hip-

pocampal formation [127, 35, 36] facilitate synchronization between their connected

neurons by global population bursts [35, 132, 39]. Conversely, while striatal FSIs have

similar intrinsic properties to FSIs elsewhere, they behave quite idiosyncratically in

their firing rate, synchronization [28], and oscillatory entrainment [140]. Striatal FSIs

may be participating in the formation of local microzones of enhanced activity, con-

sistent with the idea that this structure processes information in a more parallel and

fractured fashion than the integrated computational spaces established in hippocam-

pus [60, 140].

These ideas will benefit from future studies on both the simulation and experi-

mental sides. The conditions leading to spatial pattern formation should be further

explored, for example by manipulating different parameters of inputs to simulated

FSI networks and by incorporating features of projection neurons as well. Additional

electrophysiological studies should reveal whether the stabilization of striatal FSIs

occurs for a range of decision types, and by using a greater number of densely packed

recording sites may be able to detect coordinated activity within very local microre-

gions. New technologies are also opening the door to direct and selective manipulation

of FSIs within networks (e.g. [30]) and thus will allow additional critical tests of the
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relationships between FSI network pattern formation and behavior.
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CHAPTER III

Interaction between connectivity and oscillatory

currents in a heterogeneous neuronal network

3.1 Introduction

The last chapter demonstrated how the network structure plays a critical role in

the spatio-temporal dynamics of a neuronal network. In the brain however, more than

just the network structure can influence the dynamics. In particular, external currents

can interact with the network structure to elicit different types of activity. The

dynamic characteristics of these currents play a significant role in the resultant activity

of these structures, as they reflect the variety of things we learn, experience, and

interact with throughout the day. This chapter therefore takes the next logical step,

and combines network topologies with different characteristics of input currents. This

is done in the context of oscillations, a very prevalent and important mechanism in the

brain. As you will see in this chapter, the interaction between the network structure

and input-dynamics greatly influence the output-dynamics in neuronal networks.

The oscillatory patterning of neural activity is ubiquitous and is thought to play

a major role, in many functions, across nearly all regions of the brain [56, 57, 58,

59, 52, 56, 60, 61, 62, 63, 64]. Delta (1-4 Hz) [141], theta ( 4-10 Hz)[142, 59], alpha

(8-12 Hz)[141], and gamma (25-100 Hz)[143, 57, 58, 144, 82, 145] frequencies are more
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than just categorical denominations as each range is prominent and have independent

functions in different areas. Accordingly, a considerable amount of work has been ded-

icated to the mechanisms involved in the generation of these oscillations (for example

[81, 82, 123] and references therein). These mechanisms can be broadly divided into

two groups: intrinsic cellular mechanisms and network based mechanisms. It is known

that single cells can exhibit intrinsic oscillatory rhythms that are mediated by sub-

threshold voltage dependent currents or after hyperpolarization [123, 146, 54, 55, 82].

For example, certain neurons are postulated to classically resonate in response to

subthreshold oscillatory current [68, 67]. From a network perspective, studies have

shown that interacting cell assemblies can also mediate the formation of oscillatory

patterning of their activity [80, 81, 82]. Recent work by Vervaeke et al. has demon-

strated a (de)synchronization dependence on the local organization of the chemical

synaptic connections in the Golgi interneuron network of the cerebellum [147].

An equally extensive amount of research has focused on the role of these os-

cillations during information processing. Various studies have suggested their role

during learning [59], various stages of sleep [148], and recall [59] amongst many other

processes. Oscillations are thought to act as a gating mechanism [124, 149], aid in

enhancing connections via spike-timing dependent plasticity [144], or serve in the

coordination of large separated groups of neurons [150]. From a more physical per-

spective, input frequencies have also been studied in the context of stochastic reso-

nance, or the enhancement of an oscillatory signal in the presence of specific noise

[151, 152, 153, 73].

Most of the work done until now has focused on the role of oscillations in homo-

geneous networks, i.e. networks having uniform structural and dynamical properties

throughout their assembly [154, 155]. Brain networks however, are highly heteroge-

neous. Even within the same brain structures, such as the neocortex or hippocampus,

the local network connectivity is being constantly altered by different processes. The
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long-term potentiation or depression of synapses that underlie learning lead to the

selective formation of cells ensembles with higher connectivity densities and increased

synaptic connection strengths [156, 157]. In this chapter we focus on understanding

how a uniform oscillatory drive interacts with structural heterogeneities in a neuronal

network and how it may provide a dynamical backbone for information processing.

Such an oscillatory drive is common throughout the brain both externally, as in the

pacemaker medial septum leading the hippocampus [158], or from intrinsic sources,

as in the slow-pyramidal and fast-basket cell interaction in the cortex [159]. We have

found that the frequency of the input oscillation can act as a control parameter for

the patterning of activity in the network. We show that for certain, large sets of net-

work parameters, as well as specific ranges of frequency/amplitude of oscillation, the

activity of the network region with modified structural properties can be selectively

enhanced. This enhancement is in the form of an increase in total firing rate or in the

increase of phase coherence of neuron spike times. Furthermore, the frequency ranges

where the phase coherence of the heterogeneity are enhanced are significantly differ-

ent than the frequency ranges where the firing rates are increased. These effects are

modulated by the number of connections, synaptic coupling strength, and network

structure.

Our results provide an insight into the possible dynamical underpinnings of the

differential roles of oscillatory drive in the neural networks. We demonstrate that

otherwise similar input oscillations can have drastically different effects depending on

the properties of the network structure, and therefore different functional roles in the

brain.
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3.2 Modeling

3.2.1 Network architecture

We modeled a neuronal network consisting of groups of 200 excitatory and 200

inhibitory neurons. Both groups were arranged on a 1-D lattice with periodic bound-

ary conditions forming a ring structure. The network elements were coupled using

the Small-World paradigm [75] where neurons are initially connected to their nearest

neighbors within a radius r, then randomly rewired anywhere within the network

with probability p. Thus, p = 0 returns a uniform and locally coupled network and

p = 1 returns a randomly and globally coupled network. A more realistic propor-

tion of excitatory to inhibitory neurons is 80% - 20% and we have used the 50% -

50% ratio for symmetry purposes only. The results of this chapter are maintained

for either ratio and we refer the reader to section 3.4.3 where we investigate a range

of excitatory-inhibitory ratios. The use of a 1-D model was chosen to best suit the

standard definitions of ’nearest neighbor distances’ and other parameters in the Small-

World paradigm [75] as well as in the interest of time, as more neurons are needed

to model a 2-D architecture to the same accuracy. Previous work has also shown

the neuronal dynamics are readily translatable from 1-2-3D cases [160, 161, 162]. To

insure the robustness of our results however we briefly investigate a 2-D network in

Section 3.4.4.

There were four connection topologies to consider for these two networks: the

connections within the excitatory network (re, pe), within the inhibitory network

(ri, pi), from the excitatory to the inhibitory network (re−i, pe−i), and from the

inhibitory network to the excitatory network (ri−e , pi−e). The connectivity radius of

connection types were set to be the same, re = ri = re−i = ri−e = r. We varied the

connectivity structure emanating from the excitatory network (rewiring parameter

pe = pe−i = p) and investigated rewiring parameter values p ∈ [0, 1]. We set the
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connectivity emanating from inhibitory cells to be random pi = pi−e = 1 such that

the inhibitory layer imparts global inhibition to the excitatory layer.

3.2.2 Integrate-and-Fire neuron model

It is known that neurons, and accordingly oscillator neuron models, can have

distinct and complex interactions with oscillatory depolarizing currents. The goal of

this work was to understand the interactions that result from the network itself and

not on effects stemming from the dynamics of single neurons. Therefore we have used

the leaky integrate-and-fire neuron model throughout most of our simulations. This

model lacks a oscillating properties and a classical resonance frequency, therefore all

frequency responses are direct properties of the network interactions themselves. This

is not to say however, that the interaction between neuronal and network dynamics

are not prevalent in real brain systems, quite the contrary is true, only that we

seek to reduce the system to a network response to better understand this particular

underlying mechanism. Sections 3.4.5 and 3.4.6 briefly cover the the interactions with

more complex resonating neuron models.

C
dV j

dt
= −αj(V − V j

rest) + Iext +
∑
k

wk
synS

jkIksyn (3.1)

Here, V j is the membrane potential of the jth neuron, α is a leakage coefficient

which is different for every cell, 1/Rs = αj ∈ [0, 0.1]µS; Iksyn is the synaptic current

generated at the time of the spike, wj
syn defines the excitatory or inhibitory synaptic

coupling strength and each element positive/negative for excitatory/inhibitory neu-

rons; Sjk is the synaptic connectivity (adjacency) matrix; and Iext is an external cur-

rent (see next section). We investigated a range of synaptic couplings wsyn ∈ [0, 0.3]

increments of 0.1. For the simulations in this chapter the value of capacitance was

C = 0.5nF hence ⟨τj⟩ = 10ms and Vrest = −70mV . We employed Eulers method to

solve for the voltage with timesteps of dt = 0.25ms.
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The synaptic current is activated after the presynaptic neuron reaches a threshold

Vthresh = −54mV and fires an action potential. The pre-synaptic neuron is then

returned to Vrest and remains there for a refractory period tref = 10ms. The synaptic

current is of the form:

Iksyn(t) = (e
−(t−tkspike)

τs − e
−(t−tkspike)

τf )Ibase (3.2)

where Ibase = 8nA scales the synaptic current, (t− tkspike) is the time since the last

firing of the presynaptic neuron, τs = 3ms is the slow time constant, and τf = 0.3ms is

the fast time constant. The variables τs and τf are chosen such that the post-synaptic

potential lasts approximately 2 ms. There was a 2.5 ms synaptic delay between each

neuron. We have investigated networks with different transmission delays and no

major differences were detected.

To create the heterogeneity in the network, we selected a group of 20 adjacent

neurons (usually IDs 90-110) and increased their synaptic coupling strength (wsyn)

by 30% as compared to the rest of the network. This 30% increase was maintained

when the overall wsyn was increased for the entire network. We also investigated a

range of other connection strength enhancements and by designing the heterogeneity

via added connections. We referred to this region as the structurally enhanced region.

Varying the size of this region did not have a qualitative effect on our results.

Additionally, each neuron was individually exposed to a Poisson noise. The ran-

dom probability of a neuron firing was set to 0.05% per time step, resulting in an

average firing rate of 2 Hz in the absence of any other input.

3.2.3 External oscillating current

We controlled the oscillatory input into the network via the external current Iext.

Both the excitatory and inhibitory neurons were driven by the external oscillating

current ⟨Iext⟩ = 0:
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Iext = Adrsin(fdrt+ δ), (3.3)

where Aoss is the amplitude of the oscillation, fdr is the driving frequency and δ is

a random starting phase. We investigated fdr ∈ [3, 90]Hz in increments of 3 Hz and

Adr ∈ [0.4, 1.2]nA in increments of 0.1 nA. This oscillation may be thought of as an

external current source [158] or an intrinsically generated current source input into

this specific population of neurons [147].

3.3 Analysis

We used two metrics to quantify the behavior of the network: regional firing

rates (activity) and the mean phase coherence (MPC). The firing rate was defined as

the number of firings per neuron per second and was calculated separately over the

enhanced region and the rest of the network. To quantify how active the enhanced

region was over the rest of the network, we defined the activity ratio as the firing rate

of the enhanced region divided by the firing rate of the rest of the network.

We used the MPC to measure the amount of phase locking between cells [94, 71].

The MPC ranges between 0 (least coherent) and 1 (most coherent). The MPC is

calculated pair-wise between neurons inter-spike-intervals via the equation, for the

MPC between neuron n and m:

MPCnm =

∣∣∣∣∣ 1S
S∑

s=1

eiϕnms (j)

∣∣∣∣∣ (3.4)

Here S is the total number of measurements of cell ms spike times within the first

and last firing of cell n and ϕnms is the phase between cell n and m for interval j

containing s. The phase is defined as
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ϕnms(j) = 2π
τnj ,ms

τnj

, (3.5)

where

τnj
= tnj+1

− tnj
; (3.6)

is the inter-spike-interval j for neuron n containing s and

τnj ,ms = tms − tnj
; (3.7)

is the time difference between the initial firing of neuron n, on interval j, and the

firing s, of neuron m, with the condition,

tnj
≤ tms ≤ tnj+1

(3.8)

Finally, to calculate total MPC we take the average of all MPC pairs across all

neurons,

MPC =
1

NM

N∑
n

M∑
m

MPCnm (3.9)

where N = M = 200 are the total number of neurons.

As before, we also computed the MPC of the enhanced region, outside region,

and the MPC ratio to determine the difference in coherence. Because the MPC is a

pair-wise calculation, and can be very time intensive, the outside region was defined

as a random subset of 20 adjacent neurons not in the enhanced region.

3.3.1 Power spectral density

To compute the power spectral density (PSD) plots, we binned the total spiking

output (10 ms bins) of the enhanced and outside region. This was simply a sum
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of ones (if the neuron fired) and zeros (if it did not). We then used the MATLAB

Fast-Fourier Transform function on the complete 2000 ms simulation.

3.3.2 Resonate and fire neuron model

To better understand the generality of our results, we investigated the basic

phenomena for two other classes of neurons: the resonate-and-fire and Hodgkin-

Huxley Type I models. The resonate-and-fire neuron was based off the model pre-

sented by Izhikevich [71]. We selected the model because the classical resonance

frequency/condition was easily modified and achieved. The model is a 2-D linear

system where x is the current like internal variable and y is the voltage like internal

variable. Here

dx

dt
= −x− ωy + Iext + wsyn,j

∑
k

SjkIksyn (3.10)

and

dy

dt
= −ωx− y (3.11)

For a full discussion refer to [71]. For our analysis, we adjusted the parameters of

the neuron, ω = 0.2, 0.3, and 0.4 (all other values remain the same), to resonate at

roughly 30, 45, and 60 Hz respectively.

3.3.3 Hodgkin Huxley neuron model

We selected a Type-I non-resonating Hodgkin Huxley interneuron neuron based

off a model by Wang and Busaki [123] and generalized by Pfeuty et al. [132]. These

neurons had two compartments (somatic and dendritic) with sodium, potassium, and

leak currents, along with an excitatory and inhibitory coupling in the same manner

as our simulations. A brief summary is provided below; for the detailed description
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we refer you to [132, 123]. The model is divided into a somatic compartment (s) and

dendritic compartment (d). The dynamics of the somatic compartment are given by:

C
dV s

dt
= −IL − INs − IKdr − gc(V

s − V d) + Inoise, (3.12)

the dendritic compartment is described by:

C
dV d

dt
= −IL,d − gc(V

d − V s) + Iext, (3.13)

where the currents are IL = gL(V
s−VL), IL,d = gL(V

d−VL), INa = gNam
3
∞h(V s−

VNa), and IK = gKn
4(V s − VK).

IL is the leak current, INa transient sodium current and IKdr is the delayed recti-

fier potassium current, m,h, n are voltage dependent conductances. We implemented

these equations with following parameters: gNa = 35mS/cm2, VNa = 55mV, gK =

9mS/cm2, Vk = −75mV, gL = 0.1mS/cm2, gc = 0.3mS/cm2, VL = −65mV,C =

1F/cm2

3.4 Interaction of network properties and oscillations

Our goal was to understand the interaction between network topology and oscil-

latory input on the dynamics of a heterogeneous neuronal network. For this reason

we have created a network that has a localized region of increased connectivity (wsyn

is fixed to 30% higher than the rest of the network). To investigate the differences of

network response within the synaptically enhanced region, we measured the spiking

activity and MPC within the region and within the rest of the network, and took

the ratio of the two values. Throughout this chapter we monitored these values as a

function of the driving frequency fdr of input.

We first studied the change of activity for the enhanced region, the outside re-

gion, and the ratio of these two while changing the oscillatory input frequency fdr

72



 

 

5
 

 
1.  4

3.  2
 

 0

2.3

 

 
0.  3

 

 

0.  4

1.  2
 

 

0.  2

0.  6

1

0.  6

0.  3

0.  2

0.  1

0.  3

0.  2

0.  1
10 50 90 10 50 90 10 50 90S

y
n

ap
ti

c 
C

o
u
p

li
n
g

 (
w

sy
n
)

Driving Frequency (fdr) [Hz]

r = 3

ln(Firing Rate)

MPC

Enhanced Region Outside Region Ratio

10

45

2

14

0

15

0.  2

0.  5

0.25

0.65

0.  3

1

1.  3

1.0

10 50 90 10 50 90 10 50 90

Driving Frequency (fdr) [Hz]

Enhanced Region Outside Region Ratio

F
ir

in
g
 R

at
e

M
P

C

r = 3, wsyn = 0.25

A

B
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and the network coupling strength wsyn. Figure 3.1 shows vastly different spatio-

temporal activity patterns depending on these parameters. At lower frequencies, for

the whole range of synaptic couplings, the entire network is active due to the peaks

of the slow oscillations acting as ’almost constant’ depolarizing currents. At higher

frequencies, and higher synaptic coupling strengths, only the enhanced region is able

to maintain spiking activity. This increase in activity is generated and sustained by

the enhanced region’s increased synaptic coupling strength, causing each excitatory

pre-synaptic spike to have a stronger post-synaptic depolarization. This is then in-

herently a network effect, and will be dependent on the connectivity properties (wsyn

and r). Figure 3.1 further suggests however, that the network properties interact with

individual neuron input properties (fdr and Adr). This will be expanded upon and

explained in the following sections.

Overall, the network activity displayed three gross behaviors as a function of driv-

ing frequency: a random state where the oscillation is not sufficient to stimulate the

network and the activity is primarily driven by external noise; a network-wide burst-

ing state typically mediated by slow oscillations; and a state where the enhanced

region is predominantly active, typically mediated by higher frequency oscillations.

Additionally we observed changes in the mean phase coherence within the hetero-

geneity. That enhancement typically occurred for lower frequencies, just before the

transition from the global bursting to increased activity of the enhanced region.

Figure 3.2 depicts an overall summary of the obtained results for changing char-

acteristics of the input current. The color plots in Figure 3.2A depict the natural

logarithm of the activity ratio between the enhanced region and rest of the network

for different values of connectivity (r = 3, 4, 5). Figure 3.2B represents the MPC ratio

for the two regions. The three rows represent three different values of overall network

coupling strength. The x-axis on the color plot represents the driving frequency fdr,

while the y-axis is the amplitude (Adr).
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For weak network coupling strength (Figure 3.2, wsyn = 0.1, all r) we observed a

narrow band of increased activity ratio that is highly dependent on the driving ampli-

tude. The changes in MPC ratio are largely insignificant, showing minimal enhance-

ment for frequencies just preceding the activity enhancement. For the intermediate

and high network coupling strength regime (for all r) we observed a significant shift of

the activity increase towards the high frequency regime for all oscillatory amplitude

values. Furthermore, we also observed a large frequency regime where the network

heterogeneity displays an increased MPC. This occurs for low frequencies preceding

the transition to enhanced region activity enhancement (Figure 3.2, wsyn = 0.2, r =

4).

The observed changes in the activity ratios and MPCs are due to two competing

processes. In the weak coupling regime the enhanced region displays a increase of

its activity for a discrete low frequency range. This occurs because the oscillations

are slow enough that the peaks of the oscillation provide a sufficient time window to

sustain network induced activity. This activity is only maintained in the enhanced

region because the increased excitatory synaptic potentials depolarize neighboring

neurons sufficiently. This can be see in Figure 3.3 where for low < 20Hz frequencies

both the enhanced region and the outside network can sustain activity. Above this

frequency however, only the enhanced region can sustain activity. This frequency

range is preceded by a phase locking of the neurons to a slow (< 20Hz) oscillatory

drive and invokes synchronous activity within the enhanced region. This synchronous

activity further increases the enhanced region’s ability to maintain activity because

the excitatory post-synaptic potentials are highly coincident.

For the intermediate and high values of network coupling, the resonance effect

is superseded by the enhanced region’s propensity to easily enter a highly active,

reverberatory regime with natural frequencies around 70 Hz. This reverberation is

generated by the enhanced region’s neurons integration time (controlled by the leak-
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Figure 3.3: Spectral Density analysis of the total network response to oscillatory
drive. We plotted the PSD of the averaged activity for the enhanced (top)
and outside (bottom) regions vs. the driving frequency fdr ∈ [3, 90]Hz.
For r = 3, 4, and 5 the synaptic coupling is fixed at wsyn = 0.3, 0.2, and
0.15 respectively. Adr = 0.8nA for all simulations. The bottom row de-
picts raster plots for driving frequency denoted by the black lines for r =
3 (left), r = 4 (middle), and r = 5 (right).

77



Input Frequency
1 90

Input Frequency
90

-0.2

1.6

M
P

C
 R

at
io

1

18

A
ct

iv
it

y
 R

at
io

R = 5

Input Frequency
1 90

Input Frequency
90

-0.2

1.4

1

25

R = 4

11

τ

  10 ms

  40 ms

  100 ms

  

  

membrane

A B

C D

Figure 3.4: Changing the membrane time constant τmembrane adjusts the Frequency
Response of the Network. The activity ratio and MPC ratio for increasing
membrane time constants. A and C. Oscillation amplitude is fixed at
Adr = 1.2nA, r = 5, and wsyn = 0.1 B and D. Oscillation amplitude is
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age current and synaptic input), synaptic delay, and refractory period matching the

frequency of the oscillation, allowing sustained activity to quickly pass back and forth

throughout the enhanced region. Basically each neuron is ready to integrate up and

fire again at the peaks of each oscillation inducing a network resonance effect. Con-

currently, the rest of the network is strongly inhibited by the inhibitory network

receiving increased input from the enhanced region. Figure 3.3 also shows the net-

work’s propensity to fire at this rate (top right) and the drastically increased activity

when the input frequency is in this range. Additionally Figure 3.3 shows how the

number of connections (changing the synaptic current each neuron receives) affects

the frequency dependencies. From this it is clear that increasing the number of con-

nections decreases the integration time of the neuron, generating a stronger band of

activity in the high frequency 70-80 Hz range.

We also investigated the effects the refractory period and membrane time con-

stants had on the frequency dependence. Figure 3.4 shows the effects of varying

membrane time constants (on the neuron). Not surprisingly, as we decrease the leak-
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age, decreasing the time the neuron takes to integrate up, the natural resonance

frequency of the network increases. Figure 3.4 A shows the 4̃0 Hz peak we achieved

for our standard τ = 10ms, a shift to a peak of about 70 Hz for τ = 40ms, and a

maximal frequency response of 80-90 Hz for τ = 100ms. Accordingly the activity

ratio increases because the enhanced region is firing at a higher frequency and there

is increased excitation. It is also interesting to note that the MPC peaks only for the

lower frequency current induced activity. This implies a trade off between high and

low frequency induced network resonances. The higher frequencies generate the high-

est activity ratios, but the lower frequencies generate high activity ratios as well with

increased coherence, a possibly important property for numerous brain functions.

Figure 3.5 demonstrates the effect the refractory period has on the frequency

dependence. From what we have discussed above it is not surprising that a faster

refractory time actually benefits slower oscillations. The faster refractory periods

allow neurons to fire more than once under a single slow oscillation, important for

sustaining activity under each peak. A 10 ms refractory period however is ideal for the

high frequency regime because each neuron is simply recharging when the oscillation

is in its trough. A 14 ms refractory period is too slow for either of these processes.
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3.4.1 Different designs of the enhanced region

We then investigated how significant the heterogeneous enhancement needs to be

to observe the robust activation differences. We did this by increasing/decreasing the

synaptic coupling of the enhanced region by changing the excitatory coupling strength

while keeping all other excitatory and inhibitory connections the same (Figure 3.6A).

We observed that a relatively small increase in excitatory connection strengths within

the enhanced region (around 20% over the rest of the network) allows for a significant

increase in activity. This is in comparison to experimentally observed effects of spike

timing dependent plasticity which can be on the order of 200%. This change in

the excitatory balance provides an adaptive mechanism for the network to respond

differently, depending on the overall strength of synaptic heterogeneities.

We also investigated changes in activity when we built the enhanced region through

the addition of connections within the region while keeping wsyn the same as the rest

of the network. We added connections by inserting a random fraction of additional

local connections for and increased radius (r + 2). Figure 3.6B demonstrates that a

50% increase in the number of connections was enough to increase the activity ratio.

It is important to note however that this 50% increase in number of connections was

significantly higher than the 20% increase in wsyn needed to increase the activity

ratio.

3.4.2 Activity enhancement and network topology

Next we investigated how the network topology affects the enhanced region ac-

tivity ratio. To do this we have varied the rewiring parameter p ∈ [0, 1] from local

(p = 0) to random (p = 1). We observe that as the connectivity becomes more

global the activity ratio attenuates (Figure 3.7). This is due to the fact that as local

connections are abolished the network becomes more homogeneous and random and

thus the differentiation between the enhanced region ceases to exist. We still however
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observed significant activity enhancement for intermediate rewiring topologies near

the small-world regime.

3.4.3 Changing the number of inhibitory neurons

In this section we investigate the effect the number of inhibitory neurons has on

the overall observed behaviors. The overall connectivity parameters remain the same

for these simulations but a random percentage of inhibitory neurons are removed

from the nominal 200. If in/out connections happen to land on the removed neuron

the conenction(s) accordingly cease. Figure 3.8 shows the activity and MPC ratio

for two prevalent ranges. Interestingly we observe that the activity ratio increases

slightly as the number of inhibitory neurons decreases for the 40 Hz peak parameter

range and decreases for the 80 Hz peak parameter range. This occurs because the

enhanced region, already firing at its maximal firing rate, at 80 Hz, drives the in-

hibitory region, which randomly inhibits the rest of the network (Figure 3.8B). When

the overall number of excitatory neurons/connections is decreased there is less inhi-

bition to the excitatory network, increasing the activity outside the enhanced region
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only, hence lowering the activity ratio. Conversely, for the lower activity ratio 40 Hz

peak, less inhibition allows the enhanced region to fire at a slightly higher firing rate

and frequency peak Figure 3.8A. Recent computational work by Fisher et al. [163] has

shown that target spiking rates can be achieved in networks with different balances

of excitatory and inhibitory neurons. Such a system might also respond variably to

different input frequencies, as this result would suggest. Aside from this slight shift

however, the frequency dependent transitions remain largely the same for the activity

ratio, and identical for the MPC ratio. This is not surprising because the inhibitory

network layer acts only as regulator to the inhibitory network layer. It is unable

to self-sustain activity because ⟨Iext⟩ = 0 and the synaptic input is hyperpolarizing.

The only driver of this network then, besides noise, is the activity of the excitatory

network, which is in-turn limited by the activity of the inhibitory network. Therefore

a steady baseline state of activity is easily achieved and even a large reduction in

the inhibitory population has a negligible effect. This result is important because it

demonstrates that the frequency dependent activity shifts are robust across a wide

range of excitatory-to-inhibitory neuron ratios.
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3.4.4 Frequency response of a 2-D network

1-D simulations of neuronal networks are widely used across much of neuroscience

research. Though unlikely, here we wanted to ensure that these results were not

just artifacts of a 1-D network simulation. Here we simulated a 20 ∗ 10 periodic 2-D

network where the synaptic coupling strengths were necessarily modified to account

for the increased connections for a given connection radius (Figure 3.10A). We clearly

see that we can recover both the low frequency and high frequency activity ratio

responses, and the MPC dependence remained similar to the previous result.

3.4.5 Comparison to a resonate-and-fire neuron

We have specifically chosen a non-resonating neuron model for this chapter to

most clearly interpret the impact of the network properties, as opposed to the res-

onant properties of an individual neuron. A full analysis of the interaction between

a single neurons resonance and network properties will be left to another work In

this section however, we briefly compare our results to that of a networked Izhikevich

resonate-and-fire model (RAF) [71], to ensure that the responses we have observed

are ubiquitous.
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Here we adjusted the parameters of the RAF neuron, w = 0.2, 0.3, and 0.4 (all

other values remain the same), to resonate at roughly 30, 45, and 60 Hz respectively.

We then performed an identical analysis as previous sections with wsyn = 0.3, Adr =

1.2nA, r = 4. Figure 3.10 shows the activity ratio and overall firing frequency of these

networks RAF neurons and each frequency. We clearly see the same enhancement

in the activity ratio for higher and lower frequencies (Figure 3.10, Column 1). The

only part of the activity ratio curve that is affected is the range where single neuron

resonance occurs, where the entire network is active, and the activity ratio accordingly

goes to 1. We can see this range in Figure 3.10, Column 2.

From these results it is clear that the single neuron dynamical properties super-

impose onto the network response. The network response is therefore maintained.

3.4.6 Comparison to a Hodgkin and Huxley neuron

Finally we compared our results to a more biologically realistic Hodgkin-Huxley

(HH) neuron. We used a two compartment (soma and dendrite) neuron to contrast
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to our integrate-and-fire results Figure 3.11 demonstrates the activity ratio response

of these neurons to the varying input frequencies. The HH model neuron did not

resonate at any frequency between 1-90Hz, but did have increased impedance at

higher frequencies, indicating a weak frequency preference. It is clear that a network

of HH neurons with an enhanced region allows for the same frequency-specific selective

activation of the enhanced region in similar coupling and current ranges. Additionally

we see a shift of the MPC to the frequency range is enhanced. This is not surprising

however, because the individual neurons’ frequency preference, in this range, causes

the firing rate to be modulated at this frequency, therefore enhancing the MPC. What

likely occurs in the brain is a balance between these two behaviors.

While this analysis of HH neurons is by no means a thorough investigation of the

possible interactions between oscillations and network in a complex neuronal model

system, it proves that the observed phenomenon is network driven and independent

of the specific dynamical equations of the individual cells.

3.5 Discussion

Oscillations are believed to have important and distinct functions in numerous

regions of the brain [57, 149, 144, 59]. Their implicated roles also vary widely as a

function of their amplitude and frequency [62, 164]. While high frequency gamma

oscillations are thought to play an important role during focused attention and re-

call [59, 57], slower theta/beta band oscillations are thought to be important for

learning [165, 126]. We have shown that, for a network with a heterogeneous con-

nectivity structure, the frequency and amplitude of oscillations can play a crucial

role in determining activity patterns within different network regions. While higher

frequency oscillations may be optimal for the enhancements in activity of structural

heterogeneities, lower frequency oscillations mediate phase locking within these het-

erogeneities.
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This is due to the fact that the additional network mediated current changes,

in a nonlinear fashion, the response properties of the enhanced region. These lo-

cal changes to network properties can be activated by an oscillatory current within

specific frequency ranges. The specific ranges depend on the neuronal refractory

periods, synaptic communication times, and intrinsic current response, creating an

optimal range of frequency responses.

A different response can be obtained by creating a network heterogeneity through

the addition of a depolarizing current to a group of cells. Here significant enhancement

is obtained throughout most the entire range of driving frequencies and the mean

phase coherence increase is shifted towards higher frequencies (Figure 3.12), with no

activity ratio peaks at specific frequencies.This suggests that a mere change of balance

between excitatory and inhibitory currents due to formation of additional synapses

[166] or background spikes rates [163], cannot generate the same results achieved

otherwise in this chapter.

One set of processes which might employ this frequency response mechanism are

those that involve higher frequency oscillations concurrent with lower frequency oscil-

lations. A commonly observed example is gamma rhythms riding on theta rhythms

during encoding and recall in the hippocampus [142]. Additionally, in recent work by

Colgin et al. [57] they demonstrated that the specific frequency of a gamma oscilla-

tions was routed differentially through either the CA1 or CA3 at different phases of

a theta oscillation. Another well documented use is during playback in sleep [122].

In any of these process, pre-developed short-term memory traces are reactivated for

recall and/or long term encoding. This reactivation is limited to a small number of

traces at a time, not global reactivation of the entire network. If we consider the

enhanced region to be analogous to a short term memory trace, then the selective

frequency response shown in this chapter provides a mechanism allowing a input fre-

quency to selectively reactivate that memory alone without involving other neurons
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and traces in the process. Figure 3.13 demonstrates a model system we have designed

to exhibit the possible use of the interaction between fast and slow oscillations when

more than one heterogeneity is present. Here we have two enhanced regions, (neuron

IDs 40-60 and IDs 140-160) and we input an oscillatory current of 2 Hz and a con-

current oscillatory current of 60 Hz. At the peaks of the 2 Hz oscillation the network

randomly activates one of the enhanced regions, while the other is inhibited due to

the activity from the inhibitory network. When the 2 Hz oscillation is in a trough the

entire network is quiet before either of the enhanced regions are randomly activated

again by the peak. Figure 3.13 may be representative of playback of multiple newly

formed memories during REM sleep as it provides a mechanism to randomly cycle

through memory traces while only activating/encoding one at a time.

In conclusion, the effects that we have discussed in this chapter may provide

the dynamical underpinnings to a number of brain functions that are mediated by

intrinsic oscillatory patterning. For example, the increased re-activation of an already

enhanced region can affect the strength of memory recall or playback during sleep [59,

148]. Additionally, increases in the coherence of neuronal activity can influence spike

timing dependent plasticity between neurons, enhancing the network heterogeneity

[59, 63].
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CHAPTER IV

The resonance frequency shift, pattern formation,

and enhanced network reorganization via

sub-threshold input

4.1 Introduction

The first two chapters of this thesis investigated how both network topology and

the dynamical properties of the the input current can influence the spatio-temporal

dynamics of the resultant neuronal activity. This final chapter comes full circle and

studies how the properties of the input current, coupled with the dynamical prop-

erties of the neuron and neuronal network, can influence the synaptic topology of

the network. Like chapter III, this is done in the context of current oscillations in

the brain, except here we include the resonant properties of the neuron (as opposed

to specifically omitting it in chapter III). We also show how an initially randomly

coupled network, like that used in Chapter II, can transform into a heterogeneously

coupled network, like that used in Chapter III, through spike-timing dependent plas-

ticity mechanisms. Most importantly, we show that this transformation is mediated

by the specific input current pattern, for the first time employing current inputs to

mimic real cognitive inputs.

Sub-threshold brain oscillations have long been thought to play an important role
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in learning and the encoding of memories [81, 59, 126]. For example, measured theta

rhythms (6-10Hz) have been shown to correspond to the ’active learning’ state of

the hippocampus [124, 149]. These oscillations, along with synaptic modification via

spike-timing-dependent plasticity (STDP) provide the necessary basis for the forma-

tion and changes of memory traces in neuronal networks of the brain [126, 18, 157].

The exact mechanisms by which these changes occur however, has been an area of

considerable research and debate.

At the same time it has been demonstrated that certain types of neurons have the

ability to resonate [52, 54] and fire in response to a specific sub-threshold oscillatory

current. Furthermore, it has also been recently shown that this natural frequency can

shift in response to changes in the neuron’s membrane potential [167, 141]. Here we

propose a novel mechanism linking these three experimentally observed phenomena in

which a neuronal network may utilize intrinsic oscillatory patterning, together with

cell’s ability to resonate and dynamically shift its resonant frequency, as a means

to encode patterns based on the characteristics of a sub-threshold signal current.

We show that changing the magnitude of the sub-threshold input can shift the cells’

natural frequency into, and out of, the sub-threshold oscillatory current’s range. This

causes the neuron to resonate and phase lock to the period of the oscillation when

the signal current is within a certain range. We use a network of resonate-and-fire

(RAF) [71] neurons to demonstrate that this mechanism generates a highly selective

spatio-temporal firing pattern. We compare the response properties of this network

to a supra-threshold stimulated RAF network and to a network of supra-threshold

stimulated integrate and fire neurons (IAF), all receiving sub-threshold oscillatory

currents. We show that the RAF frequency adaptation mechanism is far superior

at resolving temporal correlations/differences than the other models. This property,

in conjunction with spike timing dependent plasticity (STDP), can be utilized to

store temporal correlations between different input. Finally, we use this natural
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Figure 4.1: Firing frequency response of a single neuron to varying strengths of the
signal current and frequencies of the oscillatory current. The oscillating
current amplitude is fixed at A = 3 and δ = 1. The color scale denotes
the firing frequency of a neuron

frequency shift mechanism to explain two experimentally observed phenomena in

the hippocampus: the phase precession [168, 169] along theta oscillation observed

in the firing of hippocampal place cells as animal traverses its place field, and the

dynamic changes in phase locking observed between the medial prefrontal cortex and

the ventral or dorsal hippocampus during fear or a working memory task respectively

[170, 171].

4.2 Methods

4.2.1 Resonate and fire neuron

To investigate the performance of proposed resonance adaptation mechanism we

used a network of 200 randomly coupled, excitatory, resonate-and-fire neurons [71,

172]. The neurons are described by a set of two ordinary differential equations repre-

senting the internal current (x ) and voltage (y) of the cell.

dxj

dt
= bxj − ωyj + Ijext (4.1)
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dyj

dt
= ωxj + byj (4.2)

Where, for neuron j, ω = 100 modifies the natural oscillation frequency, b = −1

defines the attraction of the voltage to it’s resting potential, and Iext is the external

current defined as

Ijext = Csyn

∑
k

SjkIksyn + Ijinput. (4.3)

Here, the first term is the synaptic current received from other firing neurons;

Csyn = 5 is the synaptic coupling strength, Sjk is the synaptic connectivity matrix.

The synaptic coupling is defined as

Iksynaptic = e
−(t−tkspike)

τs − e
−(t−tkspike)

τf . (4.4)

Here, t− tkspike is the time since the pre-synaptic neuron firing, τs = 3 and τf = .3.

The variables τs and τf are chosen such that the post synaptic potential has a pulse

shape and lasts approximately 2ms. The second term, Ijinput, denotes external current.

After each neuron fires at x = 1, x is reset to 0 and held there for 10ms – the

duration of the refractory period.

Based on experimental results [167, 141] the resonant frequency shift is set to be

a linear function of the total external current received by the given cell,

ωj = ωj
0 + δIjext. (4.5)

Here ωj
0 is the oscillation frequency in the absence of any external currents, and

δ is a scaling factor. Figure 4.1 demonstrates the resonance response of the neu-

ron for different signal currents and sub-threshold current frequencies. Experimental

studies have demonstrated both positively and negatively sloped responses to neuron
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depolarizations (±δ) [167, 141]. We have chosen δ = 1, however both responses will

produce similar results.

The input current consists of two components and is defined as

Iinput = Afsin(ft) + Isignal. (4.6)

The first component is a sub-threshold oscillatory current of amplitude Af = 3.

For b = −1 and ω = 100 the resonance frequency is between f =15-19 Hz (see above

figure) thus we used f = 17 Hz as our primary input frequency. This frequency can

be easily adjusted without changes to the described behavior. The second component

was a sub-threshold (except when compared with supra-threshold resonate and fire

network) current input to the network (e.g. a sensory input). The specific properties

of the input signal are defined in detail in the next section, however note that the

maximum magnitude of Iinput < 10, whereas the current threshold needed for the

cell to fire, defined by Equation 4.1, is around I = 35. Thus, for the sub-threshold

resonate and fire network, the total input current is well in sub-threshold regime at

all times.

4.2.2 Integrate and fire neuron

To compare the results from the RAF model to another easily tractable model we

used the leaky integrate-and-fire neuron model:

τm
dV j

dt
= −αjV

j +RsI −
∑
k

wjk
synS

jkIksyn (4.7)

Here, V j is the membrane potential of the jth neuron, τm = 0.5ms is the time

constant; α is a leakage coefficient which is different for every cell, α ∈ [1:1.3]; Iksyn

is the synaptic current generated at the time of the spike, wjk
syn defines the chemical

synapse coupling strength; Sjk is the synaptic connectivity (adjacency) matrix; I is
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a uniform external current which keeps the neurons readily excitable, I = 0.5; Rs is

the neuron resistance Rs = 1.

The synaptic current is activated after the pre-synaptic neuron reaches a threshold

Vthresh = 1 and fires an action potential. The pre-synaptic neuron is then returned to

V = 0 and remains there for a refractory period tref = 10ms. The synaptic current

is of the form

Iksyn(t) = e
−(t−tkspike)

τs − e
−(t−tkspike)

τf (4.8)

where (t − tkspike) is the time since the last firing of the presynaptic neuron, τs =

3ms is the slow time constant, and τf = 0.3ms is the fast time constant. The variables

τs and τf are chosen such that the post-synaptic potential lasts approximately 2ms.

4.2.3 Measuring temporal pattern properties: mean phase coherence

We used the mean phase coherence (MPC) to measure the amount of phase locking

between cells [94, 71]. The MPC ranges between 0 (no phase locking) and 1 (maximal

phase locking). The MPC is calculated pair-wise between neurons n and m:

MPCnm =

∣∣∣∣∣ 1S
S∑

s=1

eiϕnms (j)

∣∣∣∣∣ (4.9)

Here S is the total number of spikes of cell m and ϕnms is the phase between cell

n and m for interval j containing s. This phase is defined as:

ϕnms(j) = 2π
τnj ,ms

τnj

, (4.10)

where

τnj
= tnj+1

− tnj
; (4.11)
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is the inter-spike-interval j for neuron n containing spike s of the m-th cell and

τnj ,ms = tms − tnj
; (4.12)

is the time difference between the initial firing of neuron n, on interval j, and the

firing s, of neuron m, with the condition,

tnj
≤ tms ≤ tnj+1

(4.13)

Finally, we take the average of all MPC pairs across all neurons,

MPC =
1

N(N − 1)

N∑
n

N∑
m ̸=n

MPCnm (4.14)

where N = 200 are the total number of neurons.

4.2.3.1 Signal Phase Coherence

We also measure phase coherence of the neurons with respect to the oscillatory

drive. Here the phase of the oscillatory signal at which given cell fired was obtained

directly. The signal phase coherence was calculated in a similar fashion to the MPC.

Mean minimal interneuron interspike interval

To further quantify the temporal spiking pattern between the neurons we calcu-

lated mean minimal interneuron interspike interval (mISI). Namely we calculated the

ISI length for the nearest firing times between every neuron:

ISInm =
1

S

S∑
s=1

|tns − t′ms
| (4.15)

where, t′ms
is the nearest firing of cell m to tns .

Then
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|ISI| = 1

N(N − 1)

N∑
n

M∑
m

ISInm (4.16)

is the mean inter-neuron ISI.

4.3 Results

We compared the performance of the RAF resonant frequency adaptive network

with two other network realizations: an identical RAF network driven by a supra-

threshold signal current, and a non-resonating IAF [173] network driven by a supra-

threshold signal current. All networks received a fixed sub-threshold oscillatory cur-

rent with a frequency of f =17 Hz and an amplitude of Af = 3.

4.3.1 Comparison of neuronal and signal phase locking properties

First we examined the response of the networks to a range of different input

currents. We do this by investigating the degree of selectivity and locking of network

activity as a function of the variance of the input (Isignal). Here, the magnitude of

the input current was drawn from a random Gaussian distribution to vary the signal

currents into each neuron. For each simulation, the specific value of the signal current

was kept constant over time. We computed the mean phase coherence, phase locking

of activity to the oscillatory current, and the mean inter-neuron ISI for the three

types of networks.

Figure 4.2A depicts the phase locking of neuronal activity to the network oscilla-

tory drive as a function of the input variance. One can observe that the phase locking

for the frequency adaptation network is nearly perfect for most of the range, tailing

off for high values of input variance. This indicates that the neurons are locked to spe-

cific phases on the oscillatory current. This is due to the fact that the active neurons

(i.e those that receive appropriate current shifting their natural frequency towards
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the frequency of the oscillatory drive), being effectively oscillators, phase synchronize

with the oscillatory current [174, 175, 71]. Other neurons remain quiescent as they

do not resonate (i.e. their natural frequency is significantly different from that of

the oscillatory drive) and the total input signal they receive is sub-threshold. This

effect is significantly diminished for the RAF network with supra-threshold input,

and almost completely absent in the IAF network. It occurs because the neurons’ fir-

ings are effectively driven by the supra-threshold inputs with the cell firing frequency

determined by the amplitude of this input.

Figures 4.2B and 4.2C depict the MPC changes of uncoupled neurons and cou-

pled networks. The MPC is an indicator of the stability of the phase relationships

between the neurons themselves. This, in turn, determines stability and selectivity of

the generated network activity pattern. The MPC for the uncoupled adaptive RAF

network is shown in blue in Figure 4.2B. Here the MPC is high for low input variance

but declines quickly as the input variance is increased. This is in contrast to the

signal coherence in 4.2A because, even though the neurons are locked to the phase of

the individual oscillatory cycle, they fire at different cycles, depending on the signal

current magnitude. When the neurons are coupled Figure 4.2C, the excitatory con-

nections mediate increased neuronal interactions and firing at the same oscillatory

cycle leading to a higher MPC. By comparison, for both the coupled and uncoupled

case, the supra-threshold RAF and IAF networks have lower MPC. For the supra-

threshold RAF neurons the MPC remains high for a narrow range of signal currents

because of the phase locking of the cells receiving similar input, however for larger

values of the variance the differences in the Isignal lead to significantly different firing

frequencies and thus abolition of phase locking. For the IAF model MPC remains

low over all input variance range.

Figure 4.2D depicts the modulation of the inter-neuron inter-spike intervals (ISI)

as a function of variance of input currents. The mean ISI changes significantly for
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the resonance adaptation mechanism, while it remains constant for other two models.

This indicates an increased signal current selectivity (in terms of spiking coincidence),

as a function of input variance, for the adaptive resonance mechanism compared with

supra-threshold input for both RAF and IAF models. This occurs because, for small

values of variance, the active cells fire within narrow time windows. When the variance

is increased the cells are still locked to the oscillation phase but are firing on different

oscillatory cycles, rapidly increasing the mean ISI value. This effect is abolished for

the other two network realizations as the supra-threshold inputs inhibit cells from

phase locking and thus the specific variance of input has little effect on the ISI. As

we will show below this phenomenon has a large effect on the efficiency of the STDP

driven synaptic modifications.

Finally, Figure 4.3 exhibits the basis for these observations via histograms of the

neuronal firing times. Here we have the total firing for the network on the y − axis

and the time on the x− axis. Panel A shows the resonant RAF model with an input

variance of 0. Here all the neurons fire simultaneously at a phase of π/3 from the peak

of the oscillation. Panel B shows the resonant RAF model with an input variance

of 0.3. Here the neurons fire at a phase near π/3 and on completely different cycles.

Panels C and D are for the suprathreshold RAF and IAF cases respectively and show

that the firings are modulated under the oscillations instead of being phase locked.

4.3.2 Enhanced STDP driven synaptic modifications and the spatio-temporal

correlation of inputs

The results described above indicate that the resonance frequency shift provides

a superior mechanism to translate differences in the input signal characteristics to

distinct patterns of spatio-temporal neuronal activity. Next we investigate how well

these neuronal activity patterns translate to STDP modified network connections. To

do this we used a standard symmetric decaying exponential learning rule to model the
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Figure 4.4: STDP network connectivity changes due to the correlation of Gaussian
inputs. A) The Gaussian profile and temporal shift of the signal cur-
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effects of STDP on the network. Here the synapses may be strengthened (depressed)

by a factor C if the presynaptic neuron fires shortly before (after) the postsynaptic

cell:

Cj(tdiff ) = ∆
Tdiff

|Tdiff |
e

−Tdiff
τ , (4.17)

where tpost and tpre denote time before and after synaptic modification, respec-

tively; Tdiff is the time difference between the presynaptic and postsynaptic neuron

firing, ∆ = 0.1 scales the STDP strength, and τ = 15ms is the STDP time constant

defining the relevant timescale for synaptic changes.

The network was divided into two sub-groups each receiving a signal current with

time-shifted Gaussian profile,

Isignal = D exp−(t− tshift)
2/σ2, (4.18)

where σ = 1.5s, D = 10 for sub-threshold input and D = 80 for supra-threshold

input, Figure 4.4A. For the data depicted on Figure 4.4A-C the time shift between

the two sub-groups was fixed at 0.5s. Figure 4.4B depicts the spike timing raster of

the network, and Figure 4.4C shows the resultant connectivity matrix, obtained at

the end of the simulation (t = 10s), averaged over 100 trials. We see that, within each

sub-region, where neurons receive identical inputs, strong increases or decreases occur

in the synaptic strengths. These changes are symmetrical (the net changes average to

zero), with the specific patterning of STDP changes governed by the initial random

connectivity. More importantly however, one can observe a strong unidirectional

strengthening (weakening) of connections from regions with the leading(following)

Gaussian. This is shown by the increased red connections for connections from 1-100

→ 101-200 and increased blue connections from 101-200 → 1-100

Finally, we investigated how the unidirectional coupling changed as a function of
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the temporal shift between the Gaussian signal currents. We did this for all three

neuron/network models by computing the difference between the mean couplings of

both regions. This will directly measure the extent to which the changes in the

network topology reflect the correlation between the signal currents. Figure 4.4D de-

picts the normalized (per spike) changes in directional connectivity between the two

neuronal sub-groups for the RAF frequency adaptation network with sub-threshold

input (blue), supra-threshold input (red), and the IAF network with supra-threshold

input (green). Clearly the sub-threshold input, together with the resonant frequency

adaptation mechanism, provides the most supportive dynamical environment for the

network reorganization. The changes are reflected in directional connectivity be-

tween the two regions, correlating the time dependence of the signal currents to the

strengthening of connections.

4.4 Discussion

Based on the above results it is clear that the sub-treshold driven neurons ex-

hibiting voltage dependent natural frequency shifts provide very efficient dynamical

substrate for formation of input driven spatio-temporal patterns of activity. This,

coupled with STDP learning, provides an efficient mechanism that underlies the for-

mation of a connectivity topology that maps the characteristics of the input signal(s)

- more so than supra-threshold input driven networks. This effectiveness arises from

the enhanced phase and signal locking, due to the resonance frequency shift response,

and the higher sensitivity in spike timing due to resonance induced firing. In short,

the neurons’ firing times are consistently mapped onto specific, current dependent,

phases of the input oscillation, rather than just being modulated by a supra-threshold

oscillating current.
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4.4.1 Input dependent phase precession

This input-dependent phase locking and phase precession has been observed ex-

perimentally in nearly all parts of the brain involved in learning [57, 122, 126], and

specifically during hippocampal place cell firing [168, 169] when the animal is travers-

ing the place field associated with that cell. While it is relatively difficult to explain

this phenomenon using supra-threshold network realizations, it is an intrinsic property

of the sub-threshold resonance adaptation mechanism we described Figure 4.5.

4.4.2 Dynamic modulation of information transfer between brain modal-

ities

Finally, the voltage dependent natural frequency shift may explain recently ob-

served dynamic changes in information flow between different brain modalities. It

has been shown that the medial prefrontal cortex synchronizes with the ventral hip-

pocampus (vHPC) during anxiety [170] and with the dorsal hippocampus (dHPC)

during working memory tasks [171],specifically in the theta (4-12 Hz) range in both

cases. It is also known that the dHPC and vHPC have slightly different preferred

frequencies of theta that route the flow of information in different states. Such a
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Figure 4.6: Dynamic changes in phase locking between two oscillatory inputs. The
network is driven by two oscillatory inputs having different frequencies
(16 Hz and 17 Hz). Signal coherence is measured with respect to both
signals (red and blue lines). As the Isignal is increased the network switches
locking from one to other signal.

dynamic change in frequency preference between modalities is easily explained within

our model. Different neuromodulatory processes or lower frequency oscillations may

change the membrane depolarization for large number of neurons within a modality

simultaneously, causing a shift in their natural frequencies. This, in turn, may lead to

altered patterns of locking when two oscillatory inputs are present. Figure 4.6 depicts

such a transition for the frequency ranges we used earlier. Here the network receives

two oscillatory inputs with slightly different frequencies. As the cells’ membranes are

progressively depolarized the network shifts from being locked to the lower frequency

input to the the higher frequency one, as reported by the signal coherence.

To the best of our knowledge, we are the first to demonstrate the use of oscillations

and the sub-threshold frequency shift as a mechanism which provides brain networks

with the enhanced ability to encode input patterns.
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CHAPTER V

Conclusions

We have shown that the brain’s complexity lies well beyond its complicated

anatomical structure. This complexity begins with the arrangement of connections

between these neurons, forming an immensely complex structure. Furthermore, net-

works of neurons are connected in a specific manner at different scales in the brain,

each providing different levels of integration and computation. By changing the types

of neurons involved, the number of neurons, or the arrangement of connections be-

tween them (to name a few factors), these networks can elicit vastly different patterns

of spatio-temporal activity that result in very different functionality. These functions

arise from the wide and diverse range of dynamics that the networks are capable of.

From synchrony, phase synchrony, oscillations, resonance, and pattern formation, the

spatial and temporal dynamics of these networks reflect both the input they receive,

the properties of the cells and connections, and the the outputs they provide. To

make matters even more complicated, the brain is not fixed. The dynamical relation-

ships between neurons go back and influence the structure of the brain network itself,

via synaptic plasticity mechanisms, and constantly alter the connectivity landscape

of the brain. Through all these mechanisms the brain becomes a reflection of the

experiences and personality of the individual that posseses it, allowing it to interact

and change the environment around it.
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This thesis has covered three topics which exemplify these properties. Chapter II

studied the electrically connected gap-junction networks in the brain, concurrent with

an inhibitory network, and the spatio-temporal patterns of activity their interactions

produce. Here the short-range gap-junctions supplied the means for local synchrony

generation while the long-range inhibitory connections provided a global inhibition

mechanism. Provided the correct range of connectivity parameters were used, the

resultant activity was a state of locally sustained pattern formation. The changing

of the electrical connectivity from local to random transitioned the network from a

confined, locally synchronous state to a global one. In contrast, the changing of the

inhibitory connections from local to random changed the number of active regions

from a single isolated one to multiple regions, depending on the wiring parameters of

the inhibitory connections. The results were then compared to striatal in vivo data

from the Berke lab, and it was shown that the dynamics resulting from the local gap-

junction connectivity matched well with the experimentally recorded data. Both the

computational and experimental results were novel, and provided insight into how the

patterns of activity supplied by the striatum may contribute to the decision making

process in the basal ganglia.

Chapter III extended the interaction of structure and dynamics to investigate

homogeneous networks. It also introduced oscillatory dynamics into the fold, and in-

vestigated how these oscillations can interact with the network structure to generate

a new kind of dynamics. Here I investigated the ability of a particular oscillatory cur-

rent frequency to elicit a selective response from a topologically ’enhanced’ region of a

network. By changing the strength of connections within the network, the amplitude,

and the frequency of the oscillation, I was able to selectively activate the enhanced

region, activate the entire network, or quiet the entire network. In particular, the

selective activation of the enhanced region was due to a network generated frequency

preference and a corresponding resonant response at higher frequencies. Addition-
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ally, at lower frequencies, the enhanced region showed an increased phase coherence.

These network derived frequency responses further expand our understanding and

speculation to the purpose of oscillations throughout the brain. They also suggest

that otherwise similar oscillations may have completely different functional purposes,

depending on the state of the network.

Chapter IV expands our study of oscillations and proposes a mechanism via which

resonant oscillations can be used in learning through STDP. Here we utilize the fact

that some neurons have the ability to classically resonate, and shift this resonance

frequency due to a sub-threshold depolarizing current. This resonance frequency shift

is translated into stable and highly selective spatio-temporal patterns of activation in

response to varying sub-threshold input currents. These responses are then combined

with a simple and widely used model of STDP to show that the patterns of activation

map to the network topology. To my knowledge, this is the first work to demonstrate

the use of sub-threshold oscillations and resonance to translate spatio-temporal corre-

lations of input into temporal patterns of activity and a spatial mapping of learning.

The goal of this work was not to capture every brain dynamic, all of its individual

components, and form an exact model of the resulting activity. Instead, as it is a the-

sis in physics, it was to identify the underlying neuronal and network mechanisms that

govern the overarching patterns of activity observed throughout the brain. This was

done by first identifying the cellular and network properties that have the strongest in-

fluence on a particular activity. Then, by examining large parameter spaces of network

variables, I was able to understand the interplay between the different properties and

characteristics that arise from each. By doing this, the underlying principles behind

particular mechanisms were established. Also, by studying large parameter spaces

and using simplified non-specific models, the results of each chapter could be trans-

lated to numerous regions and functions of the brain. In future work, by both myself

and others in this field, I see the field of computational and physical neuroscience only
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expanding and becoming more diverse. Particularly, as computing power continues

to grow, even the most basic models will include complexity and scale not possible

ten years ago; however, I do have reservations as simulations become more complex,

that they will begin to resemble, perhaps too much, the brain structures which they

model. When this becomes the case, I believe some of the inherent simplicity and

tractability of these models will accordingly be lost.

The brain is so complex that not only does it take a wide range of experimen-

tal techniques to investigate it, but it also takes a plethora of different approaches

and viewpoints to even begin to understand it. These range from the physiological,

psychological, and cellular to the mathematical and physical methods employed in

this thesis, each with their own strengths and weaknesses. The brain is obviously

a biological system first, and accordingly, a large number of neurobiologist study

the molecular and cellular mechanisms in the brain. Another well established (and

likely the oldest) approach is that of the biopsychologists, and their linking of the

behavioral and physiological understandings of the brain. As part of a relatively new

and emerging field employing methods combining biology, complex systems, math-

ematics, and physics this body of work has ventured to understand the brain from

a range of non-classical perspectives. These approaches have incorporated measures

and methodologies that were previously limited to areas outside of neuroscience. It

is my hope that, by combining these fields, this paper has brought a unique physical

and mathematical perspective to the brain.
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