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Abstract 
 

Drosophila melanogaster, the fruit fly, has compound eyes consisting of around 

750 facets called ommatidia, arranged in a regular hexagonal grid.  Each facet is centered 

on a suite of 8 photoreceptor neurons (R1-R8), of which R8 is the first retinal cell to 

attain a specific fate.  In this dissertation I present a multiscale model of R8 photoreceptor 

specification in the developing eye imaginal disc.  This pattern-forming system is 

characterized by an expanding field of R8 cells arranged in a regular hexagonal pattern 

formed behind a wave of distortion and differentiation known as the morphogenetic 

furrow.  The basic model consists of ordinary differential equations defined on a lattice 

representing a cellular epithelium, and is based on observed genetic interactions centered 

on the proneural transcription factor-encoding gene atonal.  It includes cell-autonomous 

autoactivation, long-range diffusible activation, and shorter-range inhibition.  Patterning 

very similar to that observed in the eye can be observed given appropriate choice of 

parameters and initial conditions. 

First, I examine a simplified version of the model analytically, explaining its basic 

behavior and exposing the multiscale nature of the process.  If the propagation of the 

pattern is slow compared to the more local activity of cell differentiation, regular patterns 

with single R8 cells are generated reliably, and the system is very robust to parameter 

changes. 
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Next, I investigate the system in restricted 2D cases.  I find that the behavior of 

the system is well-explained for regimes of interest by starting with a simple case, and 

applying the results to successively more complex systems.  Specifically, I characterize 

the model’s behavior at the levels of a single cell, two cells, several cells, and small 

patches of epithelium.  I use these results to make specific predictions and to explain the 

patterning behavior of eye-discs. 

Lastly, I examine the application of modeling small groups of cells to long-range 

patterning.  I accomplish this by approximating the overall system as a finite-state 

machine.  This represents a new theory of neural fate specification in the eye disc, and 

provides an ample basis for future experimental and theoretical work. 
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Chapter I: 
 

Introduction 
 

 In this thesis I present a model of R8 specification in the Drosophila eye.  This is 

a basic and compelling system for the study of pattern formation in biological systems (1-

4).  The simplicity and regularity of the pattern produced (a steadily expanding hexagonal 

grid of cells producing a particular transcription factor) gives hope that the system might 

be understood in something approaching its entirety, and the large body of knowledge on 

the underlying genetics provides a solid starting point for bottom-up modeling (1-3, 5).  

Indeed, starting with known genetic interactions, one can build a mathematical model that 

produces a patterning system very similar to that observed in real fly eyes (6). 

 

Organization and Multiscale Approach 
What happened when we set out to analyze the mechanism of this formal, 

mathematical system was surprising.  Despite the simplicity of the interactions that form 

the basis of the model, and despite the simplicity of the end results (the hexagonal 

pattern), the pattern seemed to propagate by no known mechanism.  This was interesting, 

and observations quickly piled up.  The model made unexpected predictions, which were 

subsequently, empirically, proven correct by experiment.  At some point we realized that 

whatever was going on to produce these behaviors, it was very difficult to reduce to a 
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single process, and progress became possible when we started treating the system as 

multiscale. 

The first task in analyzing the pattern formation system as a multiscale model 

involved casting it in its simplest possible form:  1D instead of 2D, and with a minimal 

set of fields and parameters.  The (empirically observed) genetic interactions put into the 

model turned out to function in very distinct, modular ways, in this context.  One of these 

modules involved the stabilization of local transcriptional states, and the other extended 

the patterned field by destabilizing the transcriptionally inactive state.  We were able to 

separately analyze these two processes and recombine the results to get complete 

solutions to the patterning system.  This produced a wealth of knowledge about the 

existence and stability of pattern-forming solutions, and confirmed our suspicion that for 

patterning to occur reliably, the two processes had to have very different intrinsic rates.  

The problem was, indeed, very naturally multiscale.  A few interesting findings came 

from this work, namely the fact that the patterning mechanism was entirely new, and that 

it exhibited breathtaking robustness to parameter variations within a few simple 

constraints.  I will discuss this work in Chapter II. 

The initial discovery of a new patterning mechanism was exciting, and the 

implications interesting, but the work was very formal, and likely too simplified to apply 

directly to biological observations.  We set out to generalize the results to 2 dimensions 

(appropriate for a cellular epithelium) and a more complex genetic model.  Forewarned, 

this time, we broke this system into the same functional modules as the simpler model.  

We expected, given that the system was more complex in several ways, that each of the 

sub-problems would be more difficult.  We treated the small, fast, local subsystem first.  
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It was surprising how well it yielded to further sub-division.  Due to the discrete nature of 

the system, there were three distinct levels meriting their own analysis:  A point-like 

system consisting of one cell, a high-symmetry system of several equivalent cells, and 

systems that are large enough that their embedding in 2D is important.  Interestingly, 

analysis of these subsystems yielded a wealth of explanations and experimental 

predictions for biological systems.  It also reopened the issue of proneural cluster 

resolution (the process by which a single cell from amongst several precursors is selected 

to become a neuron), and suggested that, in the eye disc, at least, this does not proceed by 

the textbook mechanism (3,7-14).  This work is discussed in Chapter III. 

The largest scale we address, here, is also the one that captured our attention in 

the beginning:  The formation of a particular, long-range, regular pattern.  This, again, is 

much more complicated than the slow, long-range 1D system of Chapter II, and it has 

turned out to be very interesting, indeed.  Over the course of Chapters II and III, we 

repeatedly reduced continuously variable systems of ODEs to binary or other simple 

systems.  This pays dividends in Chapter IV, in which discretized time, and discrete 

pattern states lead us to treat the whole system from the perspective of finite state 

machines and symbolic dynamics.  It should become clear, at this point, why the original 

attempts at explaining this patterning system in terms of continuous ODEs or, even 

worse, PDEs didn’t work.  The continuous equations exist, but set up fundamentally 

different systems in certain (easily achieved) limits, and it is these systems that are more 

easily understood as pattern-forming.  This largest level presents an almost impossibly 

rich area of study, but I will discuss several results and applications that have to do with 

large-scale patterning. 
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Now that you know where we’re going, in fairly vague terms, I will spend the 

remainder of the introduction relating enough of the pertinent background information for 

the details presented in chapters II through IV to make sense, and for the implications to 

be clear. 

 

The Drosophila Eye 
 The fruit fly Drosophila melanogaster, being an insect, has a compound eye 

composed of about 750 facets, called ommatidia (15).  Each ommatidium in the adult eye 

is centered on a suite of 8 photoreceptor neurons (R1-8), and has a total membership of 

20 cells (16).  The ommatidia are remarkable for their identical appearance and the fact 

that they are packed into a perfect hexagonal, crystalline array in the adult eye (1-4,17).  

These clusters of cells are not clonally derived, but begin differentiating from the 

unpatterned retinal epithelium of the eye-antenna imaginal disc during the third instar 

period of larval development (2,18).  Each ommatidium is founded by a single cell 

expressing the proneural basic helix-loop-helix (bHLH) gene atonal (ato), which will 

eventually become the R8 photoreceptor (19,20).  These cells are specified and begin 

differentiating as a front of physical distortion (the morphogenetic furrow, MF) moves 

across the epithelium from posterior to anterior (2,18).   In front of the MF the cells are 

unpatterned, while behind the MF one finds a characteristic hexagonal pattern of single 

cells expressing atonal against a background of undifferentiated cells.  This process has 

been reviewed extensively, and used as a modeling target (1-4,21-23).  In subsequent 

steps, each R8 cell interacts with the surrounding epithelium, inducing adjacent cells to 

differentiate into the other neurons and supporting cells observed in the adult eye (2,20-

24).
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Figure 1:  Adult Drosophila eye, scanning electron micrograph.  In this image the 
overall structure of the adult eye is clearly visible.  Each facet corresponds to an 
ommatidium, and sits in front of eight photoreceptors, R1-8, as well as supporting cells.  
There are roughly 750 ommatidia in each eye, and they form a regular hexagonal array.  
Photo Courtesy of the Dartmouth Electron Microscope Facility. (15,25) 
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 After retinal specification, and furrow initiation, progress of the MF is driven by 

chemical morphogens secreted by the differentiating neurons behind it, specifically 

Hedgehog (1-3,26-30).  The secreted factor Decapentaplegic is expressed near the 

boundary of activation of Hedgehog signaling (26).  In addition to driving the MF itself, 

Hedgehog is considered to be a key factor in promoting the differentiation of cells as the 

MF traverses them (1-3).  The proneural gene atonal encodes a bHLH transcription factor 

that becomes active upon dimerization with the product of the gene daughterless, and is 

the characteristic proneural gene for R8 specification (19,20,33).  The expression of 

atonal is initially diffuse, but is refined to single (future R8) cells as the MF passes, and 

the R8 fate becomes irreversible (1-3,17,32,33,46,47). 
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Figure 2:  A third-instar eye disc with Senseless stained.  This is the origin of the 
hexagonal pattern observed in the adult eye.  The retinal field (of which this image is 
roughly the posterior-dorsal quadrant) is unpatterned until a wave of distortion and 
differentiating activity, the morphogenetic furrow (MF), proceeds across it from posterior 
to anterior (left to right, in this image.  The MF is slightly further to the right than the 
right-most stained cells).  Behind the MF, R8 cells have been specified in a regular 
hexagonal array, and can be identified by their expression of atonal (or other genes, like 
senseless).  These R8 cells then go on to initiate a cascade of recruitment that results in 
local cells becoming the other photoreceptors and support cells of the ommatidium.  
Photo courtesy of Nick Baker. (1-3,31) 
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Because the columns (columns are parallel to the MF, rows are perpendicular) of 

R8 cells are specified sequentially, and the positions of R8 cells in sequential columns are 

so strongly correlated (each column is staggered along its long axis by one-half a row 

spacing, producing a hexagonal packing of R8s), it seems likely that each column is 

specified using the previous one as a template (1-3).  The idea that each ato-expressing 

cell is able to inhibit its neighbors and prevent or suppress their ato-production is termed 

lateral inhibition (34).  The detailed molecular mechanism of this inhibition is not known, 

though Notch is certainly integral to it, as is the Notch-ligand Delta (34,36,37,40-42,46).  

Loss of function (LOF) phenotypes for either of these genes result in an overpopulation 

of R8 photoreceptors (45-47).  There are other genes involved in the patterning process 

with more subtle phenotypes, however, including Epidermal growth factor receptor 

(Egfr), echinoid (ed), and scabrous (sca) (48-58).  The translated product of scabrous is 

secreted and has been shown to associate directly with Notch, though the scope of its 

physiologic role is uncertain (54).  In eye development, scabrous LOF results in a 

phenotype with too many R8 cells, which are arranged in a much less perfect array than 

observed in WT flies (50).  Additionally, in sca- flies there are many more of the specific 

patterning defect known as twinned R8s, in which two adjacent cells both attain R8 fate, 

an extremely rare occurrence in WT (49). 

 To understand the process by which a secreted activator, secreted inhibitors, and 

cells with multistable internal networks of transcription factors could lead to this 

behavior, Lubensky and colleagues decided to produce a minimal, bottom-up 

mathematical model of the system incorporating the interactions known from genetic 

studies (6).  The cellular regulation network and the simplification used to study 
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patterning are shown in Figure 5.  The minimal effects that seemed most important to 

address in a model included a long-range, diffusible activator that would promote 

differentiation, and, through other factors, its own production, as is observed with the 

Hedgehog gene; at least one transcription factor capable of sustaining its own production 

locally through autoactivation, as evidenced by ato; and some inhibitory mechanism by 

which a cell with high ato would tend to repress ato in nearby cells.  The model consisted 

of coupled differential equations on a lattice representing auto-activation, long-range 

diffusible activation, and short-range diffusible inhibition, and was able to produce, for 

appropriate choice of parameters, solutions to the equations that represented propagating 

waves of activation leading to the specification of a hexagonal array of single cells 

expressing the transcription factor.  More significantly, they were also able to produce a 

stable pattern of stripes of R8 cells behind the MF if the hexagonal template was 

destroyed.  This predicted an interesting phenotype observed when a sca- eye disc has 

lateral inhibition through Notch temporarily knocked out by a temperature-sensitive 

allele, and is illustrated in Figure 4 (6,31). 
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Figure 3:  Simulation compared to eye disc patterning.  A)  Shows a simulation by 
Lubensky, et al. of their pattern-forming model on a random grid of cells.  The green 
color is the variable, a, which represents (roughly) the proneural bHLH transcription 
factor Atonal.  B)  Shows an eye disc image stained for Atonal (green) and another 
nuclear gene product, Dac (magenta), shown for contrast.  The resemblance between 
simulation and real world is striking. Simulation courtesy of David Lubensky, 
photograph courtesy of Nick Baker. 
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Figure 4:  Stripes in simulation and eye disc.  A)  Shows a simulation with defective 
inhibition (compared to a hexagonal patterning, as in Figure 3) given a stripe initial 
condition.  In this case the color red is related to the model variable, s, which (roughly) 
represents Senseless.  A pattern of stripes of R8s is propagating down the field behind the 
MF.  B) an eye disc stained for Senseless (red), and Elav (green, a marker of neuronal 
differentiation).  This eye disc has a loss-of-function mutation in the gene scabrous, 
which encodes a secreted protein involved in inhibition, and a conditional (temperature 
sensitive) allele of Notch, which transduces inhibition.  When the MF was near the 
middle of the region shown, the temperature of the larvae was reduced, and Notch ceased 
to function until the permissive temperature was restored.  This resulted in a destruction 
of the template pattern produced by the hexagonal array of cells, and led to a pattern of 
stripes being formed behind the MF, henceforth.  Photograph courtesy of Nick Baker. 
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This finding motivates the further study of their main conclusion: that patterning 

in the Drosophila eye proceeds by a novel, non-Turing, non-competitive, non-oscillator 

mechanism, by a process resembling crystal growth through epitaxy.  In this thesis, I will 

examine this model more closely and try to gain an analytic understanding of how it 

works and what conditions it requires.  This is a problem in multiscale modeling, in 

which I break down the genetic interactions in a single cell to their fundamental 

properties, and use this simplified understanding as a functional module to assist in 

understanding the next larger system (two cells, in this case), which I will use to 

understand 7 cells, etc., up to the tissue patterning level. 

The model itself consists of three or four fields defined on a spatial lattice where 

each node is taken to represent a single cell.  It is important to note that, in the interest of 

making a model that illuminates the mechanism of patterning, we do not model 

individual genes, per se, but observed genetic interactions (59).  Thus, each field, and 

each arrow may represent the collective action of one or two different molecular species, 

or the overall activation of an entire pathway.  The version with three fields, which I 

consider in Chapter II, includes a non-diffusing, auto-activating, transcription factor  

(analogous to ato, and representing the overall neurogenic status of the cell), a diffusible 

inhibitor,  (representing the observed action of the Notch-Delta pathway, though not in 

mechanistic detail, which remains somewhat obscure in this case, and involves many 

genes, including scabrous), and a diffusible activator  (representing Hedgehog 

signaling, and the overall differentiating signal that progresses with the MF).  A nearest-

neighbor hopping term represents diffusive transport of the mobile factors.  An expanded 

version of the model with a second transcription factor, s, in a mutually positive feedback 
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loop with a is needed to recapitulate the proneural clusters observed in eye discs.  I use 

this model in the generalization to small 2D systems contained in Chapter III.  I also use 

this model when a specific model is called for in the long-range patterning studies of 

Chapter IV, though much of the discussion of that work is model-independent. 

The motivation behind this model was to couple the genetic subsystems known to 

exist in the developing eye disc, which are critical to its basic behavior, and observe their 

function.  The regulatory network that results has the appearance of one that was made by 

coupling functional subsystems (a opposed to the structural subsystems they are): one 

that supports a propagating front, namely an auto-activator with cooperative nearest-

neighbor effects, and another that can support stable patterns of activation, namely a 

short-range activator and a longer-range inhibitor (4,60,61).  Evidence puts ato, the non-

diffusing activator, in the master role, promoting the generation of both the positive and 

negative diffusible signals (2,32,34).  The effects of these signals are then “felt” as they 

feed back on ato.  Pursuing this functional separation of subsystems aids our 

understanding of the system.  
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Figure 5: Regulation Network Diagram.  A) a simplified regulation network showing 
some interactions involved in patterning.  Dotted lines represent genetically-defined 
interactions which are not understood in mechanistic detail.  In some situations, Notch 
activity can stimulate proneural activity.  Delta is generally membrane-bound, but is able 
to act at considerable apparent distances by the extension of filipodia.  There is 
considerable evidence in this, and related systems, that Egfr activity interacts 
considerably with Notch signaling.  Notch signaling, in general, proceeds when ligand 
binding to the Notch receptor allows the Notch intracellular domain to be cleaved off.  
This is then transported to the nucleus where it interacts with the inhibitor Suppressor of 

Hairless to remove inhibition on the Enhancer of split (E(spl))complex of transcription 
factors.  In turn, E(spl) inhibits ato expression.  It should be clear that even the 
“complicated” network shown here is a major simplification of the gene-by-gene 
signaling network.  B) A further simplification of the regulatory network, as studied in 
Chapter II.  Diffusible activating activity is lumped onto h, with inhibitory activity 
lumped onto u.  The variable a represents the state of internal proneural signaling.  C) 
The regulatory network studied in Chapters III-IV, where a second transcription factor, s, 
allows staged activation of proneural activity.  (62-66) 
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Modeling Biological Pattern Formation 
 The next section introduces a few systems that form patterns that have been 

studied in a biological context.  I will be brief, since their main role in the rest of this 

work is as a counterpoint:  Things that we can clearly demonstrate are not happening in 

the R8 model. 

Morphogen gradients 

 Most fundamental to the field of biological pattern formation, which studies the 

introduction of reliable and complex order to an initially homogeneous system (the 

ovum), is the concept of the morphogen.  This is usually defined as a diffusible chemical 

capable of inducing cells to attain different fates as a function of its concentration (2).  

The canonical morphogen is Bicoid, a maternal factor that induces anterior-posterior 

(AP) polarity to the Drosophila embryo (67-68,70).  The bicoid mRNA is fixed in one 

pole of the embryonic syncytium (which defines “anterior”), and protein is translated 

locally (69).  The protein (a transcription factor) is diffusible, and produces a gradient 

that decreases in concentration towards the posterior pole of the embryo (67).  The 

Wolpert “French Flag” model of patterning is a conceptual touchstone relating to this 

morphogen gradient, and gets its name from the determination of three different cell 

types (bleu, blanc, rouge…) arrayed along the anterior-posterior (AP) axis (71).  In the 

simplest formulation this pattern is the result of fate-determining transcription factors that 

are activated at different concentrations of Bicoid protein.  There is truth in this model, 

but it is more a starting point than a complete understanding.  The observed robustness of 

patterning along the AP axis to variations in embryo size, for instance, is poorly predicted 

by a static threshold model unless all protein degradation occurs at the embryo’s posterior 
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pole, and is a current focus of theoretical efforts (72-84).  The French flag (and many 

other morphogen-based models of patterning) is a steady-state model of pattern 

formation.  There are certain analogies to be drawn with the R8 patterning system, but no 

static morphogen picture can hold true for very long in this process, as it is highly 

dynamic and iterative.  The concept of an activation threshold will be very important, 

though. 

 Distinct models have been proposed to explain the observed robustness of 

morphogen gradients and their interpretation in the Drosophila embryo.  Bicoid, as well 

as Decapentaplegic (dpp) signaling, which plays a role in Dorsal-Ventral (DV) 

patterning, are focuses of these studies (72-84).  A system with a Bicoid-like inducer 

gradient, with an inhibitory gradient oriented in the opposite direction, which is 

interpreted by cells in such a way that a boundary is fixed where activation and inhibition 

are equal in magnitude can divide a patterning field (embryo) into fields of constant 

relative size, regardless of fluctuations in the overall size of the embryo (72).  This can 

also be effected by having a counterpropagating activator and inhibitor that interact 

stoichiometrically to diminish each others effect (83).  A different robustness mechanism, 

validated for the DV system in flies as well as Xenopus, involves the active shuttling of 

Dpp (or its frog homologue, Admp) toward the dorsal portion of the embryo, where the 

inhibitor-morphogen complex is proteolytically degraded, releasing the active morphogen 

(75,82,84). 

It has been noted that robustness of a morphogen gradient to gene dosage (taken 

to mean the source-strength of a diffusible morphogen), can be effected by nonlinear 

breakdown of that morphogen (60).  Likely related to this finding is the fact that, at least 
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in the Hedgehog and BMP pathways, morphogens tend to be consumed by receptor-

mediated endocytosis, and also tend to stimulate the production of their receptors (2, 75, 

82, 84). 

Turing-unstable and related systems 

 Alan Turing, famous primarily for his epochal work on computation and 

cryptographic theory, has, it could be argued, dominated the field of biological pattern 

formation for more than 50 years.  He realized that diffusion coupled with appropriate 

chemical reactions could act to increase the spatial gradients of chemical species, not just 

to dissipate them (85).  Thus, the Turing instability entered the scene.  A Turing 

instability is a particular type of stability associated with a homogeneous steady state and 

characterized by a balance between competing but coupled processes.  In a spatial system 

a large-amplitude pattern can arise from small fluctuations if the activating component is 

much more local than the stabilizing inhibitory feedback.  In linear stability analysis, this 

is represented by instability of the steady state to certain, finite-wavelength perturbations, 

but stability to others, specifically spatially homogeneous ones, and its presence (or 

absence) is easily confirmed. 

 The nature of the Turing instability is worth reviewing here.  Take a two-

component reaction diffusion system defined in 1D: 

 ta t, x( ) = f a,u( ) + Da xxa

tu t, x( ) = g a,u( ) + Du xxu
 (1) 

 

 We will eventually take a to be an activator, and u an inhibitor.  Setting all the 

derivatives equal to zero, we solve for a homogeneous steady state, and define new 

variables 1 and 2, as below. 
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 a = a0 ,u = u0 xxa = xxu = ta = tu = 0

1 t, x( ) = a t, x( ) a0

2 t, x( ) = u t, x( ) u0

 (2) 

 

Linearizing the equations about the steady state then gives the following, with the 

local Jacobian replacing the nonlinear reaction terms. 

 t 1 t, x( ) f

a a=a0 ,u=u0
1 +

f

u a=a0 ,u=u0
2 + Da xx 1

t 2 t, x( ) g

a a=a0 ,u=u0
1 +

g

u a=a0 ,u=u0
2 + Du xx 2

 (3) 

 

The key to finding a Turing instability is to look for stability as a function of 

perturbation spatial-scale by taking the spatial Fourier transform of the linearized 

equations: 

 q( ) =
1

2
x( )eiqx  (4) 

 

This gives the following system of linear ordinary differential equations (ODEs). 

 t 1 t,q( ) = f

a a=a0 ,u=u0
1 +

f

u a=a0 ,u=u0
2 q2Da 1

t 2 t,q( ) = g

a a=a0 ,u=u0
1 +

g

u a=a0 ,u=u0
2 q2Du 2

 (5) 

 

Or, equivalently, where we have collected terms and simplified notation: 

 
=

a f q2Da u f

ag ug q2Du

 (6) 

 

The solutions to linear, homogeneous ODEs are summarized by the eigenvalues 

of the Jacobian, which satisfy the following relationship, where we have further 

simplified notation, and introduced the eigenvalue, . 
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 fa q2Da fu

ga gu q2Du

= 0  (7) 

 

Since we already defined their roles, we can set fa and ga to positive values and fu 

and gu to negative ones.  Under these conditions (as well as others less relevant to the 

current discussion), it is possible for the largest eigenvalue to be a positive real number 

for a finite range of q.  This is illustrated in Figure 6, where it is also clear that the 

stability to perturbations is decreased as Du is increased relative to Da. 



 20 

 

Figure 6: Turing instability in a 2-component reaction diffusion system.  This figure 
illustrates the larger of the two eigenvalues (representing symmetric perturbations to a 
and u) for the activator-inhibitor system defined by equation (1) as a function of wave-
number, q.  In this case, fa=.4, fu=-.5, ga=.5, gu=-.6, and Da=1; Du is varied as shown.  For 
low enough Du, the system is stable to linearly-small perturbations of all wavelengths.  At 
higher Du a finite range of wave-numbers becomes unstable, and an initially small-
amplitude perturbation will grow. 
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 One difficulty involved in applying the classic Turing pattern paradigm to 

biological systems is the fact that on a developmental scale, chemical morphogens 

primarily act on, and are the end result of, cellular transduction pathways.  These 

pathways can involve numerous genes, feedbacks both positive and negative, and are 

likely to be incompletely characterized.  In addition to functional complexity, this also 

suggests that these pathways do not exist in the continuous (for most purposes) medium 

of diffusing morphogens, but have components confined to discrete cells.  The Turing 

instability generalizes to these conditions, with some important caveats.  Here, we take 

the activator to be maximally local, i.e. confined to cells, as it is in R8 specification, 

which are represented as nodes on a 1D lattice, the inhibitor sub-system is tridiagonal, 

and the entire system is composed of 2N ODEs, where N is the number of cells. 

 

 
(8) 

 

The linearization of this system has a block-form Jacobian, where  is the 

identity matrix:

  
 

 
(9) 

 

 

 

(10) 

 

tax t( ) = f ax ,ux( )

tux t( ) = g ax ,ux( ) + Du u x+1( ) 2ux + u x 1( )( )

Î

 

a

u

=
fa Î fu Î

ga Î gu + Dut̂

a

u

t̂ =

2 1 0 0 ... 1
1 2 1 0 ... 0
0 1 2 1 ... 0
0 0 1 2 ... 0
... ... ... ... ... ...
1 0 0 0 ... 2
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If the boundary conditions are made periodic, as in equation (10), or if we say the system 

is infinite, then the matrix is diagonalized by a block Fourier transform (the discrete 

analog of the spatial Fourier transform from the continuum case), and the eigenvalues are 

the solutions to the following 2x2 system, where T(q) is the qth component of the discrete 

Fourier transform of the nearest neighbor diffusion operator, . 

 

 
(11) 

 

T(q) is zero at q=0, and decreases monotonically to minima at q=±N/2, which represent 

the smallest spatial scale of the system (alternate cells), as shown in Figure 7. 

t̂

fa fu
ga gu + DuT q( )

= 0
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Figure 7:  Fourier transform of the linear nearest neighbor diffusion operator.  
Extrema for the Fourier transform of nearest-neighbor diffusion exist for homogeneity 
(q=0), which is maximally stable, and the wave-numbers representing the smallest 
wavelength possible in the system, alternating cells (q=±N/2), which are maximally 
unstable.  If any wavelengths of perturbation are unstable, these are, as well, and they are 
the most unstable. 
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In equation (11), it is clear that T(q) shows up only once, multiplying Du.  Since Du drives 

the instability, and is always effectively at its most powerful for q=±N/2, the most 

unstable mode of this system is always going to be the shortest wavelength one. 

The Turing instability, then, is a linear property of a steady state that leads to the 

spontaneous creation of patterns from small, spatially-inhomogeneous perturbations over 

a finite range of spatial scales.  The importance of this instability, and how it arises at 

bifurcations of steady states, is very great, and it is the fundamental concept behind the 

formation of dissipative structures in highly-driven systems (61).  The patterns it 

produces, are, indeed, very compelling, and similarities to those observed in the animal 

kingdom have been catalogued at great length, by, for instance, Murray (86).  Relating a 

spontaneous pattern formation event in development to a demonstrably Turing-unstable 

molecular system has proven very difficult, and it is not clear if this mechanism is used at 

all routinely by biology, though putative Turing systems have been characterized (87,88). 

The specification of barb ridges in embryonic chick feathers, dependent on Sonic 

Hedgehog (activator) and BMP-2 (inhibitor), appears to occur by a Turing mechanism, 

which illuminates the way in which these ridges form and bifurcate as the feather grows 

(87).  Similarly, but in an intrinsically 2D geometry, WNT and DKK (activator and 

inhibitor) signaling have been argued to produce the hair-follicle spacing in the skin of 

mice by formation of a Turing pattern, and the clumping of hair follicles in mutants with 

increased inhibition was successfully predicted by modeling (88).  The continuum Turing 

system is important conceptually as reaction-diffusion-type systems are a very natural fit 

for modeling developmental patterning. 
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Chemotactic eukaryotic cells, such as the Dictyostelium amoeba or neutrophils are 

able to polarize their bodies in relation to an external chemical gradient in order to move 

in a specific direction.  They exhibit this behavior in a largely invariant way over a very 

large range of gradient strengths and baseline chemoattractant concentrations.  They are 

also able to change the orientation of their polarization as the gradient changes direction 

(89,90).  Through a simple model, in which a chemoattractant induces production of a 

“readout substance” at the cell membrane, as well as a fast-diffusing cytosolic inhibitor (a 

system that, on the face of it, could exhibit a Turing instability), the behavior in which a 

formed pattern does not persist if the original symmetry-breaking input is changed can be 

replicated (89).  The system, in this case, is not unstable, per se, but merely very, very 

sensitive over a large dynamic range (89, 91).  Termed “balanced inactivation,” this 

illustrates the fact that not all patterns produced by activator inhibitor systems are Turing 

patterns.  Each model must be examined in detail to determine the mechanism at work. 

If an activator is confined to a cell (as a self-activating transcription factor would 

be), and a related inhibitor diffuses normally, the first wavelength to become unstable at a 

Turing bifurcation will always be on the order of two cell diameters.  This case is realized 

in the classic understanding of Delta-Notch lateral inhibition, and is thought to lead to the 

consistent selection of isolated cells expressing Delta.  The mathematical system has been 

studied quite extensively (92-101).  In accordance with the analysis of the discrete Turing 

system, above, it is found that stable patterns with wavelengths on the order of a single 

cell are formed very naturally in systems where cells directly inhibit their neighbors, an 

interaction known as juxtacrine signaling, and obviously pertinent to classic lateral 

inhibition (93).  In order to get patterns with longer wavelengths from this kind of model, 
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however, it has been necessary to replace the lateral inhibition interaction with a positive 

lateral interaction, which allows the generation of a 1D pattern of stripes in a 2D grid of 

cells (98).  This is a significant contortion of Delta-Notch signaling as we know it, and 

the wavelength of the pattern generated in this case is strongly dependent on the strength 

of the positive lateral interaction. 

An instability-driven mechanism for patterning isolated trichoblasts around the 

growing Arabidopsis root tip has been proposed and explored by experiment and 

simulation (102,103).  This system is thought to act by a mechanism very similar, on a 

mathematical level, to classical Delta-Notch lateral inhibition, but involves entirely 

different molecular components, and the direct exchange of the transcription factor 

GLABRA3 and its inhibitor CAPRICE.  Arranged about the circumference of a root tip, 

8 trichoblasts, separated by single non-trichoblast cells are specified consistently as the 

root grows (102).  With evidence of lateral inhibition in this system, as well as the 

impressive robustness with which such a system gives the observed pattern, this may be 

considered a particular triumph of a discrete Turing-like system. 

Other patterning modalities 

 A particularly interesting patterning system that has received much attention, 

lately, is the one that initially patterns somites in vertebrate embryos.  In this system, 

which specifies the fate of the mesoderm along the cranial-caudal axis, synchronized 

oscillations in signaling activity interact with a propagating wave of differentiating 

activity to produce a spatially periodic pattern (104-109).  In an extremely stripped-down, 

mathematical way we can summarize this type of model as follows, where h represents a 
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traveling wave of activity with finite spatial extent (more like a traveling pulse of 

activity), and a a cellular process that is periodic and synchronized across many cells. 

 

 The local interaction of these processes could be “read” by many possible 

mechanisms, but if the domain is taken to be infinite, along with time, the output, s, will 

be periodic in space.  This can be called clock-and-wavefront patterning. 

 s x( ) = f h a( )dt = s e
i
v
x  (13) 

 

This is illustrated in Figure 8. 

 French-flag type systems, and systems where thresholds are applied to Turing 

patterns of morphogens, are sometimes referred to as systems involving prepatterns (2, 

104).  In this class of model, a cell “reads” information about its intended fate from its 

environment, in this case morphogen concentration, and differentiates accordingly.  The 

pattern eventually expressed preexisted the observed outcome, and some aspect of that 

original prepattern has been preserved and propagated.  A second class of models refers 

most typically to the selection of single neurons from amongst groups of proneural cells 

(proneural clusters) through Delta-Notch lateral inhibition through a discrete Turing-type 

instability (2).  In this case, the system is structured such that a large-amplitude pattern is 

guaranteed to arise from the structure of the system, regardless of input.  This involves 

the instability of symmetric states, and symmetry breaking by small fluctuations.  This 

type of process is variation-generating, in that no prepattern is needed, and, in the case of 

 h t, x( ) = h vt x( )

a(t, x) = a ei t( )
 (12) 
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true equivalence of potential precursor cells, results in random fate assignments.  A 

pattern-formation process need not strictly belong to either of these classifications, but 

they provide useful points of reference for understanding the problem. 
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Figure 8:  Clock-and-wavefront patterning.  In this very formal example of clock and 
wave patterning, a substrate field has an oscillating property (a) that we can call 
“activatability,” and a Gaussian-shaped pulse of “activation” (h) proceeds across it.  A) 
shows the patterning activity as a function of time and space.  It is clear that in sequential 
periods of the “clock” a new group of cells is signaled.  B) shows a simple spatial pattern 
specified by this system as it works.  The output, s, is read in this case by simply 
integrating the total, time-integrated product of the two signals, and shows a clearly 
periodic pattern. 
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How is one to classify a clock-and-wavefront system as a prepattern or instability-

driven patterning system?  And, for that matter, where does our R8 system fit in?  In both 

these cases, neither class is wholly satisfying.  If we are to look at the specification of a 

single somite, it becomes clear that clock-and-wave is an iterated prepattern system.  In 

this case, the prepattern is the location of the differentiation-provoking wave examined at 

a time when the oscillator permits differentiation.  The prepattern for the next somite is 

thus different, as the differentiating wave has moved significantly by the time the 

oscillator has cycled once.  This system is iterative and can extend a pattern to a 

seemingly arbitrary size (500 somites in snakes, for instance) (108).  In that way it looks 

very much like the system we are examining in the Drosophila eye, and, in fact, the 

genes involved, and the genetic interactions show significant overlap. 

We find, however, that patterning in our system proceeds by none of these 

mechanisms, including clock-and-wavefront.  The static morphogen picture has been 

discounted, already, since the system is clearly producing the pattern by a cyclic process.  

A Turing instability is not observed in the model, nor is any other behavior dominated by 

the instability of a homogeneous steady state.  Furthermore, a small-wavelength pattern is 

not a pattern seen in the model or in the experimental system at any stage, unless we tune 

parameters specifically toward that goal.  The initial pattern formed can be of any 

wavelength, despite the non-diffusing activator and nearest-neighbor-diffusing inhibitor.  

The clock-and-wavefront model and ours have a certain relationship, but are not the 

same.  In our system there is no need for an oscillator.  Also, the pattern’s spatial scale is 

not determined by the specifics of any time-dependence, as it is in clock-and-wavefront, 

but occurs stably in an entire limit of time-scale separation.  The scale of the pattern in 
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our model is derived from spatial scale of the inhibitor, and the fact that it is iteratively 

regenerated every time the MF encounters its boundary, as defined by a finite activation 

threshold. 

Indeed, it is possible to find that a developmental system, carefully analyzed, does 

not fit easily into one of the classical paradigms of pattern formation, which are 

extremely idealized mathematical constructs.  Using modeling as a descriptive scientific 

tool requires that we use a bottom-up approach, attempting to tease the physics of a 

system from what is known about both its behavior and its components.  According to the 

well-thought-out review of Reeves et al, the underlying geometry and known properties 

of a patterning system should be built into a developmental model explicitly (110).  A 

major part of this is adequately separating the intracellular compartment (occupied by 

transcription factors, among other signaling molecules), and the extracellular space where 

a true chemical morphogen can diffuse.  Except in the case of the juxtacrine models 

presented above, the cellular compartmentalization of various signaling molecules is 

frequently a casualty of modeling analyses.  In the fly eye system this would be a 

mistake, since the pattern is very strikingly one of isolated cells:  The size and nature of a 

cell is clearly important.  Given the nature of the experimental evidence, genetic 

interactions and observable gene activities are often the appropriate starting place for 

building a model, though models based on, for instance, the biophysics of protein-DNA 

interactions between specific promoters and transcription factors have also met with 

considerable success.  It is for this reason that at least some aspect of the internal cell 

transcriptional network should be included in a model.  It is this network that is the end 

effector of cell fate decisions, and to ignore it, as is often done in stories about pattern 
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formation by lateral inhibition, for instance, is to ignore a cellular subsystem that is likely 

absolutely critical in determining observable behavior.  Indeed, the multistability of the 

cell-autonomous transcription network in the fly eye becomes the defining feature of our 

patterning model, and could not have been approximated in the continuum, nor without 

cell-autonomous factors distinct from the diffusible activator and inhibitor.  

Other models that follow the prescriptions laid out above have been proposed, and 

have met with success.  A model of Shvartsman et al. that describes the EGFR-mediated 

specification of the bilateral respiratory organs of the Drosophila oocyte makes explicit 

reference to the cellular production of diffusible factors, and their subsequent diffusion in 

free space, but stops short of a fully cellularized model, instead retaining a PDE model 

with one field that is independent of any spatial derivative (111).  Using this model, they 

correctly predict the formation of paired respiratory structures, as well as the possibility 

of single or multiple respiratory structures in different contexts.  This occurs by a 

mechanism that is not governed by the behavior near a linear instability, but by the 

bifurcations of stable steady states as an input parameter (prepattern) strength is varied.  

This has important parallels with our work, as it is the bifurcations of stable steady states 

(multistability), and attraction to these steady states that define the end pattern.  Our 

system also incorporates cellular structure and the intracellular confinement of signaling 

pathways, and is processive instead of static. 
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Chapter II: 
 

Propagating-Patterning Fronts in 1D Discrete Media 
 

 In this chapter, we use sets of equations related to the basic model equations that 

are designed to probe certain limits and elucidate the pattern-forming mechanism.  We 

concern ourselves with finding model features that more directly characterize its action 

than do the numerical constants in the equations.  Experience led us to believe that the 

timescales involved in pattern determination and front propagation play a central role in 

determining the pattern formation mechanism.  Considering these timescales separately 

allowed us to make considerable analytic progress on the system.  That the assumptions 

involved in our analysis are the same as those required to observe patterning suggest that 

our analysis has gotten to the heart of the matter.  Models of this kind recapitulate 

experimental observations so well that our understanding of the process may be directly 

applicable to the natural system.  Indeed, the impressive robustness of patterning to 

variation of model parameters is perhaps the first piece of information about the fly 

system that modeling has yielded. 

 In this Chapter, we will first discuss the detailed form of the model used for this 

study, including the parameters involved and how they relate to reality.  We will then 

discuss the behavior of an isolated cell in the terms of standard nonlinear dynamics; this 

behavior is quite simple.  We will then examine the two functional subsystems identified 



 34 

previously, namely the support for propagating solutions contained in the a-h subsystem, 

and the support for stable patterned solutions contained in the a-u system, separately, in 

the 1D case.  Identifying solutions to the whole model in 1D that both propagate and 

form patterns is the heart of the study, and we will discuss how self-consistent solutions 

to the sub-problems may be found, joined, and interpreted.  Figure 9 illustrates the most 

important solution types in 1D, which depend on both parameter values and initial 

conditions, and which we seek to explain in this chapter.  Lastly, we will discuss a 

random scan of far-flung parameters conducted to test the analytic understanding of the 

model, and the range of behaviors it supports. 
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Figure 9: Examples of computed results.  A) shows an asymptotically propagating 
front of h (light, green), and the stable pattern of activated a it produces (dark, blue).  B) 
This situation can collapse, and propagation can fail, if the steady state h (shown here 
with a stalled front) produced by the preceding pattern does not produce adequate h to 
trigger the activation of another cell.  This situation always exists for a sparse-enough 
prepattern.  C) If the evolution of a and u is too slow for a recently activated cell to 
inhibit its neighbors before the h front gets to them, an unpatterned front of activation 
may exist.  This solution can exist for parameter sets that otherwise have only stalled 
solutions, as well as ones that have patterning solutions.  This simulation was derived 
from an identical parameter set to A, but with the characteristic timescale of h reduced by 
a factor of 8 to speed up the progress of h. 
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The Model 
 The three-variable model used by Lubensky et al. has the following non-

dimensional form (6): 

 a

t
= fna

a
Aa( ) a +G gmh ,mu

h
H ,

u
U( )

h

h

t
= fnh

a
Ah( ) h + Dh h

u

u

t
= fnu

a
Au( ) u + Du u

 (1) 

 

 is the lattice Laplace operator, and the variables a, h, and u are fields 

representing, respectively, a local activator (Atonal), a diffusible activator (Hedgehog, 

Decapentaplegic), and a diffusible inhibitor (Delta, Scabrous, acting through Notch).  

Each variable has been rescaled so that its natural scale is of order unity.  We have 

chosen to non-dimensionalize time by the decay rate of a.  h and u give the 

dimensionless decay times of h and u.  The source term  in each equation is a 

dimensionless function with 0 f
n

1 for   0 a < .  This restriction reflects the 

fundamental limits to the rate of production of any biomolecule.  For simplicity,  has 

the sigmoidal form: 

 f
n

a( ) =
a

n

A
n

a + a
n

 (2) 

 

This adds the three dimensionless parameters , , and  that characterize 

the scale at which  activates production of itself,  and , and the three Hill 
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coefficients , , and .   and  are diffusion coefficients.  The lattice spacing is 

of order 1. 

There are two terms in the equation for , beyond its (standard) linear decay.  

They reflect the presence of two enhancers at the ato gene that respond under different 

conditions.  The first term, representing the so-called 5’ enhancer, is solely responsible 

for autoactivation, whereas the second term, representing the so-called 3’ enhancer, is 

responsible for transducing signals from  and .  This latter term has a maximum 

strength (relative to the 5’ enhancer) ; the function  varies between 0 and 1.  A Hill-

like functional form for this interaction offers, once more, the desired behavior in a 

simple package.  The fact that negative signaling through a pathway involving Delta, 

Notch, and Scabrous seems able to dominate any quantity of hedgehog-mediated positive 

signaling justifies a non-competitive model for the interaction of these signals (1,3).  

Thus: 

 gmh ,mu

h
H ,

u
U( ) =

h
H( )

mh

1+ h
H( )

mh

1

1+ u
U( )

mu
 (3) 

 

The remaining model parameters ( , , , and ) are thus defined as the 

scales of (respectively) activation and repression, and the associated Hill coefficients. 

In a regular 1D grid with nearest-neighbor interactions, the system reduces to a 

tridiagonal system of ODEs where the spatial variable  indexes cells by their location in 

the grid.  Writing down the full model gives the following test system, which we use for 

the remainder of the studies in this chapter. 
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The main goal of this work was examining the relationship between a propagating 

front of activity and a patterning subsystem subject to its influence, and much less the 

specific dynamics of a local inhibitor, which are quite simple.  For this reason, and to 

simplify computation and analysis, we consider here only the limit 
u

0 .  This reduces 

the order of the dynamical system from 3N to and introduces algebraic constraints.  

That the equations for u are linear and non-singular makes this a trivial change.  What it 

does is enforce the rapidity of u production and diffusion relative to a, so a can be 

regarded as having a local effect which may be activating or inhibitory, and a non-local 

effect that is always inhibitory.  It further prohibits cell-autonomous oscillations that 

could be spawned from the relaxation-oscillator-like structure of the activator-inhibitor 

system.  Since another model system of periodic pattern formation is defined by the 

action of an oscillator, this is pertinent (108). 

 

Cell-Autonomous Behavior 
 Since the model consists of coupled ODEs on a lattice, we can ask about the 

behavior of a single, isolated cell or lattice site, and separate the influences of cell-

autonomous and non-autonomous interactions.  Towards this end, the amount of  at any 
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cell in an infinite 1D grid with zero boundary conditions at  x = ±  due to a single cell 

with activity at x=0, satisfies the relation: 
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The steady state solution is elementary and is given by: 

 u
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= c
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(6) 

 

 The quantity  is the contribution of a cell producing  to the local amount of 

that substance at the same cell.  Clearly, if approaches zero, nothing diffuses, all of the 

u remains local, and 
  
c

0
f .  Conversely, if  is large, most of the substance diffuses 

away, and its local influence tends to zero.  Regarding the two model diffusion constants, 

it is clear that we are mainly interested in Du near the first extreme, and Dh near the 

second.  Examining a single cell, then, we must separately consider local and exogenous 

u, whereas h is mainly exogenous. 
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Figure 10: Single cell stability and dynamics.  A) the a dynamics of an isolated cell 
with h=0 or u= .  At low Aa bistability exists with no external activation. At high Aa 
there is no bistability.  At intermediate values bistability can exist for some amount of 
external activation.  B) the steady states of a versus the (constant) activity of h and u.  C) 
the nullclines representing a’s relationship to h absent any externally generated u.  The 
inhibition present is from the local u production due to finite a.  This distinction has no 
analogue in continuous systems, but is important in determining the stalling of certain 
cases in the discrete case, illustrated as the nullclines for decreasing Au eventually make 
the high steady state completely inaccessible to nodes starting from a=0 and subject to 
finite h.  D-E) show how the dynamics of a and h change with their relative timescales.  
The most long-dashed line in each image represents the case in which a is 
characteristically much faster than h, while the other lines represent increasing departures 
from this limit.  F) The difference between the slowest and the fastest trajectories for a to 
reach its high steady state.  In the case where g(h,u) changes slowly, the time to high 
steady state can be dominated by the time for h to change.  In the case where g(h,u) is 
fast, the intrinsic dynamics of a, as well as the dynamics of its response to the other two 
elements becomes the determining factor.  G) shows the response of the nullclines for 

ta=0 with well behaved (i.e. not early) local u production to increasing amounts of 
externally generated u (uns).  The bifurcation value which represents loss of the low 
(stable) and middle (unstable) steady states proceeds from an unperturbed value, through 
higher values, to values that are unattainable with finite h.  H) shows the dynamics for a 
with no external inhibition and various fixed activations.  The effect of autoinhibition 
means that there is a minimum amount of time between activation and the production of 
enough u to inhibit adjacent cells that is independent of h. 
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Neglecting autoinhibition, the amount of  at a node can be bistable through 

autoactivation (112).  Here, we focus primarily on the case where cells starting at low  

can switch to high  or not, but a cell with high  cannot go back down.  Increased  

can flip a cell to high a as long as abundant  does not inhibit this action; The low steady 

state collides with the unstable saddle in a saddle-node bifurcation.  For this change to be 

irreversible, the complementary bifurcation (the one which would lead to the 

disappearance of the high steady state with decreasing ) must not be accessible, even at 

maximal inhibition or zero activation ( u U , or   h = 0 ).  These cases are illustrated in 

Figure 10(A-C).  Restricting the bistable switch in this way prevents the transient 

formation of a high-amplitude pattern.  Restrictions on  sufficient for the existence of 

bistability for some non-negative value of 
  
g h,u( ) , and bistability at 

  
g h,u( ) = 0  are, 

respectively, 
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and 

 
Aa <

n a 1( )
na 1
na

na
na > 1

 (8) 

 

Evaluated for , these require Aa<1.065 for bistability and Aa<.569 for 

irreversible bistability.  As mentioned, the more stringent requirement is of primary 

interest for this study. 
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 The next step in treating a single cell is to include the  that was produced 

locally, which we call the self-u.  With u=0, a cell with activator concentration  creates 

a  concentration  locally, as given by equation (6).  Below, we have introduced the 

variable  (meaning u-non-self) to represent inhibitor produced elsewhere that has 

diffused to the current location: 
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The equation is now far too complicated to solve exactly for , but it is still easy 

to understand the qualitative form of bifurcation diagrams.  Figure 10(D-G) illustrate the 

behavior of an isolated cell with autoinhibition.  If or is too small, autoinhibition 

will be strong enough to completely abolish the lower saddle-node bifurcation, and a cell 

that is initially in the low state will remain there forever.  Similarly, but physically more 

interesting, since it depends on a non-autonomous quantity, enough  can make the 

high steady state completely inaccessible from the low steady state.  For typical 

parameter values, the high steady state itself is nearly invariant over the range of  

because autoinhibition effectively blocks all activation through the 3’ enhancer. 

 The dynamics by which a cell can make the traverse from low to high steady state 

is also readily understood.  The clearest feature of Figure 10(H) is that there is a region of 

 dynamics where  is high enough to cause significant autoinhibition, and its approach 

to the high steady state is nearly independent of g(h).  In this range it is governed almost 

exclusively by its intrinsic autoactivation timescale.  The region of  dynamics 
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dependent on  shows the potential for a bottleneck if g(h) exceeds the bifurcation value 

very slowly.  If a cell is stuck in this bottleneck, it is still susceptible to repression by .  

This is rarely realized in a 1D system, in which a front propagating with velocity  

produces an effective delay of order  between adjacent cells, but is potentially 

important in 2D, where no delay need exist for cells adjacent in the direction 

perpendicular to the direction of front propagation. 

 Figure 10(E) takes the final step that makes sense for an isolated cell, and 

examines  as a dynamical variable.  The overall rate of  production is attenuated by a 

factor of , and complicated by its diffusive dynamics, but some qualitative aspects of 

its isolated-cell behavior are illuminating.  The production of  is wholly dependent on 

, and its behavior is best understood in relation to the limit where  dynamics is very 

slow, and  can be regarded as quasi-static.  Under these conditions, subject to 

monotonically increasing , with  starting at zero, there is a discontinuity in , and 

for appropriate choice of parameters the production of  looks bistable in its own right 

(much as  does).  This apparent bistability is preserved for any monotonically 

increasing trajectory of externally generated , as long as it exists for quasi-static . 

 
Propagating Solutions 

 Inspired by the behavior observed in fly imaginal discs, we are interested in the 

properties of asymptotically propagating solutions to equation (4) that produce a regular 

pattern of isolated active cells separated by an integral number of inactive cells (one-up-

integer-down patterning or OUID).  In examining potential propagating, patterning 

solutions to these equations, there are really two distinct processes, which are wrapped up 
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with each other to some degree.  The first is a templating process by which lateral 

inhibition selects a pattern; the second is the process by which the pattern is pushed 

forward by the action of .  Given an assumption for the templating, namely the end 

pattern and the rate at which it is produced, we can calculate  at any point.  Similarly, 

given assumptions about a propagating  field, we can deduce the pattern produced.  

What remains is finding self-consistent solutions where the  produced by a pattern of 

activated cells interacts with the template produced by those cells such that the original 

pattern is extended.  A solution of this sort, if stable, may be considered an asymptotic 

pattern-forming limit of the model, which, given appropriate initial conditions, will make 

a regular pattern behind a wave of activation as it proceeds across a grid. 

The h field due to a periodic pattern 

 Above, we quoted the steady-state distribution due to a point-source of a 

substance diffusing on a 1D lattice (equation (6)).  To deal with the dynamics of the 

propagating  front, we need more detailed information.  We would like to solve the 

problem: 

 t
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= f

x
t( ) h
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h
h

x 1
2h

x
+ h
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f

n
t( ) = f vt x( ) x ,q j
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Here f(t) is the stereotyped dynamics of a cell being activated, and the Kronecker 

delta is required to enforce a pattern of activation with integer period q (j runs over all 

integers).  In wildtype flies, it appears that the activation intrinsic to a single cell happens 

on a considerably faster time scale than the overall propagation of the MF from column 

to column of activated cells (1-3).  In this limit ( ),  sees its source term due to 
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 jump from a value nearly zero (for appropriate parameters) to a value determined by 

the high steady state of , which I will call .  The explicit time dependence of  then 

becomes: 

 f
x

t( ) = f
0

vt x( ) x ,q j
 (11) 

 

The impulse-response of the differential equation system is known exactly, and 

the general solution is the sum over all cells of an integral over time, where the integrand 

is the product of the source strength and an exponentially modulated associated Bessel 

function of the 1st kind, . 
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Applying the idealized form of  from equation (11) leads to the simplified 

form:  
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To better understand this expression, it helps to look at the analogous continuum 

problem, where the source term is not patterned, namely: 

   t
h x,t( ) = f

0
vt x( ) h + D

h x ,x
h  (14) 

 

This problem can be solved exactly by transforming into a reference frame 

moving at a velocity, .  Applying appropriate boundary conditions yields the following 

result: 
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The amount of  at x=vt, the point where  production has just been activated, 

decreases monotonically as  increases , and knowing the critical value of h for 

activation and the source strength ( , related to the pattern density) uniquely determines 

the velocity parameter , which was previously arbitrary.  Recall that the value of  that 

triggers local  production is largely determined by the easily-characterized slow-  

limit. 

If one attempts to treat a continuum system with a spatially periodic source term, 

static in the lab frame, by transforming into a moving reference frame, a point at constant 

 z = x vt  does not approach a steady state for any   v 0 , but instead approaches a limit 

cycle with average  given by equation (15).  The amplitude of the deviations of h from 

the ideal, unpatterned case will be relatively small if the largest spatial scale of the source 

pattern is small compared to the smallest spatial scale in the propagating front.  This 

spatial scale is equal to Dh  at v = 0 , which remains a good estimate for most 

parameter sets as typically D
h h

2
v

2 .  For the reference parameter value , 

  
D

h
25.3 and patterns with period 5 (this is the scale that the fly eye discs leads us to 

be most interested in) are effectively averaged over.  See Appendix B for a more detailed 

discussion of the limit-cycle amplitude problem. 
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Significant work has been done on the discrete version of this problem, though 

never with a patterned template (101,113-118).  The basic result we rely on, here, is that 

any deviations from the continuum behavior tend to become inconsequential for 

   
D

h
1 .  This makes sense, since the real difference between the continuous and 

discrete systems is related to how well the discrete difference operator approximates the 

continuum point derivative.  To the degree that these conditions hold, it makes sense to 

treat h as a uniformly translating front, sampled at intervals, the fundamental form of 

which can be approximated easily by the related continuum case, as above, giving us a 

jumping off point for treating the template (and thus the source-density) problem. 

Template Formation in 1D 

So far we have assumed the existence of a large-amplitude pattern that extends 

itself in space and time indefinitely.  We have reason to believe that the activating 

influence due to a forming pattern propagates uniformly in space and time, and that the 

dynamics of individual cells are faster than the overall dynamics of propagation.  With 

slaved to , the total  concentration at point  follows directly from equation (6):  
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For any point in advance of a regularly patterned half-space of identical activated 

cells,  is a geometric series that converges increasingly rapidly for small .  For a 

simple pattern where isolated active points are arranged with a period , so that active 



 49 

points are located at   x = 0, q, 2q, 3q... , and the  production at all of these active 

points is identical (as predicted by their cell-autonomous behavior) the expression for  

at   x 0  is: 

 
  

u
x
= c

0

x

1
q
 (17) 

 

In the section on cell-autonomous behavior, we noted that there is, in general, an 

amount of exogenous  (call it u
threshold

) that can absolutely prevent  from leaving the 

low steady state, regardless of .  Suppose that the role of the template in this model is 

simply to put some cells above this threshold, so that when the  front progresses 

(slowly and uniformly) the next cell to be activated is just the first one it encounters with 

 
u

x
< u

threshold
.  A self-extending pattern in these conditions is subject to two inequalities 

that ensure the next cell to be activated is spaced a distance  from the previous cell, and 

that this is the same as the period of the existing pattern: 

 c
0

q

1
q
< u

threshold
< c

0

q 1

1
q
 (18) 

 

For given constants , , and 
 
u

threshold
, there is no more than one integer  that 

satisfies these conditions.  We understand the physical meaning of these two cases 

(integer solution exists or does not) in terms of a one-dimensional map that gives  in 

each newly activated cell in terms of the value of  in the previous activated cell. 

Let the previously activated cell be located at   x = 0  with inhibitor concentration 

 immediately after activation, and the newly activated cell have inhibitor concentration 

ûm+1  immediately after its own activation.  If this cell is at spatial position x > 0 , then 
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since the  produced at all preceding cells is decaying with the same spatial dependence, 

the following map of  onto ûm+1  relates these, where  accounts for the inhibitor 

produced by the newly activated cell, itself. 

 
  
û

m+1
= û

m

x '
+ c

0
 (19) 

 

For the cell at  to indeed be the next one activated, the pre-activation , 
  
û

m

x , 

must satisfy equation (18).  The graph of ûm+1  versus  is the union of the curves for 

different  that obey these inequalities, and is thus piecewise linear and discontinuous.  

All the linear segments have positive slope less than one (since  < 1), and the 

discontinuities are such that all the segments with   x ' > 1 lie within a finite band of 

allowed ûm+1 .  Illustrations of these maps are shown in figure 4.  This kind of map has 

been described by Jain and Banerjee (119).  Their results discuss what happens if the 

identity line, important for describing the asymptotic behavior of the map, passes 1) 

through a line segment, such that there is one point of intersection (one integer solution to 

equation (18) with 
  
û

m+1
= û

m
) or 2) through a discontinuity between two line segments 

(no integer solutions to equation (18) with 
  
û

m+1
= û

m
).  The structure encountered in 

going from a model of the first type to the second is a discontinuous border collision 

bifurcation.  At such a bifurcation, where there was once a single, stable, period-1 

solution to the map, one enters a regime with stable high-period solutions.  See Figure 12 

for an illustration of a case with a period-4 solution.  These solutions reach arbitrarily 

high periods, and are arranged in parameter space in a complex fractal geometry (119).  

This means that if one varies parameters continuously in such a way as to go from a 

stable period  to a period n+1 pattern (both of which exist), one must pass through a 
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region characterized by high-period asymptotic solutions with each period consisting of 

several cells separated by  and n+1 units in some combination.  Notably, in this 

simplified picture (call it step-function-h) the patterning solution is globally attractive 

given any initial prepattern, and is unique up to an overall translation. 



 52 

 

Figure 11: 1D map relating u at a newly patterned point immediately after its 

activation to the amount of u at the previous activated point.  The blue lines represent 
the map function, as given by equation (19).  The top dashed green line represents the 
maximum amount of u that still permits cell activation.  The lower dashed green line 
represents the minimum amount of u at a point that also implies its neighboring point 
cannot be activated.  In A, the identity line (in red) intersects the fourth line segment of 
the map function, implying the existence a single, stable 1-up-3-down pattern.  In B, the 
identity goes through a discontinuity, so that asymptotically the pattern will alternately 
have gaps between active points of 2 or 3 cells. 
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Figure 12: A detail of a higher-period solution to the pattern template solution.  In 
this case, the overall period is 4q0+1.  The system never becomes chaotic in this limit, 
because the map function always has slope <1, and is not stretching. 
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These results can be generalized for significantly relaxed assumptions.  In the 

original model of equations (4),  is smoothly varying (whereas in the preceding 

paragraphs we have taken it to be a step function in space); also the effect of  is not 

necessarily negligible for u < u
threshold

.  To address the second concern first, in general, 

there is a critical value of , hcrit(u), that reflects the bifurcation value where the low 

steady state of  disappears.  We chose u
threshold

 in the previous analysis so that 

lim
u u

threshold

h
crit

u( ) = .  More generally, 
 
h

crit
u

x
( )  decreases monotonically as a function of 

increasing  toward a finite, positive limiting value.  Additionally, its second derivative 

in space (discretely approximated, of course) is always positive.  These are general 

characteristics of  as determined by the functional form of  in the model. 

To start dealing with the continuous variability of , and its spatial structure, let’s 

approximate the advancing front of activation with a linear function of  z = x vt  

restricted to positive numbers, and with slope . 

 h = max c
3
z,0  (20) 

 

As before, assume that there is a semi-infinite regular pattern on   x 0 and ask 

where the next cell is activated.  As  increases, the first cell where  exceeds  is, 

again, governed by two inequalities. 

 h
crit ,x +1

h
crit ,x

< c
3
< h

crit ,x
h

crit ,x 1
 (21) 

 

These are exactly analogous to the inequalities for  described above, and they 

determine the locations of the discontinuities in the map of  onto ûm+1 .  The existence 
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of solutions and their globally attractive nature is preserved.  Indeed, the structure of the 

map and the solutions is nearly guaranteed for uniformly translating fronts and inhibitor 

decaying exponentially in space.  For further development on this theme see Appendix C. 

Self-consistent solutions 

 Armed with these ideas for understanding front propagation and pattern 

templating, we sought solutions to the full model where the h front created by a pattern 

interacts with the template in such as way as to extend the same pattern indefinitely.  We 

expected that, to the degree the idealizing assumptions were accurate, these predicted 

solutions would match the solutions observed by integrating the full model (equation (4)) 

with appropriate initial conditions.  In addition to the parameters in the basic model, we 

must specify two “new” free parameters, front velocity and pattern density, which 

determine the character of the self-consistent solution. 

 It makes sense to treat front velocity as a continuous variable.  Pattern density, 

that is, the fraction of cells in a regular pattern with high a is more restricted.  For OUID 

patterns, it is the inverse of an integer.  For a fixed value of pattern/source density in the 

continuum limit (  in equation (14)), the value of h at the cusp of the front, z=0, is a 

simple, monotonic function of velocity.  If we have other information that dictates this  

concentration, we can solve for the velocity; in this case we set it equal to the critical 

value, , needed to flip the bistable switch. 

The discreteness of the system and the non-uniform pattern complicate this 

formulation only slightly.  With the spatial pattern enforced arbitrarily, self-consistency 

demands that the h at a certain (pattern-extending) point reach the triggering value at a 
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certain time, allowing one parameter (the velocity  appropriate to a specific pattern 

density, ) to be varied to meet this requirement. 

 
  
v

n
= arg

v 0

h
0

0( ) = h
crit

= h
n

n

v( )  (22) 

 

This is a 1D root-finding problem of a monotonic function in a semi-infinite 

domain: As long as a solution exists, it is easy to find by standard techniques.  In the 

continuum,  is capable of producing a moving front as long as hcrit < 1
2 .  As detailed by 

Elmer, this is not the case in a discrete system, and propagation can fail at much lower 

 (121).  Indeed, this propagation failure is a key prediction of our model.  Since the 

amount of  due to a static pattern increases monotonically with time to its steady state, 

the sufficient condition for the existence of a self-consistent velocity for a spacing of 

individual active cells, , is that the steady state  due to a semi-infinite pattern exceed 

the critical value of activation at the next-to-be-activated point: 

 
 (23) 

 

 Lower pattern densities obviously produce lower equilibrium values of  at all 

cells.  Since  decreases to a finite limit as   u 0 , there is always a minimum pattern 

density, , that can be considered a candidate for a self-consistent period-  solution 

with single active cells.  Self-consistent velocities exist for all .  We choose 

among these options by requiring that the next cell to become activated is always the first 

one triggered by the previous pattern, a formulation of the fast-  assumption.  The idea, 
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here, is that the first cell triggered will quickly become activated and suppress its near 

neighbors.  This requirement is applied quantitatively by asking, for any given pattern 

expanding at its self-consistent rate, whether, at the moment of activation of the 

appropriate next cell,  at any other cell is greater than that cell’s .  This question 

should be asked for every potential value of .  It is possible to have models where the 

number of self-consistent patterns is 0, 1, or more than one.  Cases with one self-

consistent solution and no self-consistent solutions correspond, respectively, to the cases 

discussed in the section on templating with single period-1 solutions or only high-period 

solutions.  Models with more than a single self-consistent solution correspond to cases 

where the change in the shape of the propagating  front due to a change in the pattern 

density is enough to substantially change how  interacts with the inhibitor template.  

We have not been able to generalize about this case very much, except to say that cases 

with two solutions are rare and require very careful choice of parameters.  To get more 

than two solutions seems to require the careful choice of more complicated functional 

forms with more free parameters.  This mechanism is clearly different than that of a 

pattern propagating into a linearly unstable field of cells, a case which has been treated 

(122). 

Parameter Scan 
In order to test the analytic approach and to gain a fuller understanding of the 

model, we conducted a random parameter search in a region of parameter space known to 

contain at least some solutions that yielded behavior of interest.  For the purposes of this 

scan we varied the concentration parameters Aa, Ah, Au, U and H; the operator-strength 

parameter, G; the diffusion constant parameters, Du and Dh; the Hill coefficient mh; and 

the time-scale separation constant h.  We centered the parameter search on a parameter 
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set, , we knew to give results in 2D similar in appearance to the patterning observed 

in actual developing fly eyes. 

 

pref =

Aa = .25

G = 3.475

H = .0193

mh = 8

U = .00001048

h = 371.65

Ah = .75

Dh = 640

Au = .9

Du = .16

 (24) 

 

We did not vary the Hill coefficients for the actions of  and .  These are summarized 

in pstatic . 

 
 (25) 

 

In scanning the parameter space, we sampled the parameters over a large range 

using pseudo-random numbers, made analytic predictions for the model defined by each 

parameter set, and examined the results of integrating that model directly.  The limits of 

the sampled interval and the associated distribution used for each parameter are 

summarized in Table 1.  We generated and tested 640,000 independent sets of parameters 

according to these rules. 
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Parameter Min/pref Max/pref Distribution 

Aa .01 10 Log 

G .01 100 Log 

H .01 100 Log 

mh .0625 1.25 Uniform 

U .01 100 Log 

h .01 10 Log 

Ah .01 5 Log 

Dh .01 100 Log 

Au .01 5 Log 

Du .01 100 Log 

Table I:  Scanned parameters and ranges.  Each model parameter was varied 
independently over a finite range using random numbers.  The minimum and maximum 
values were set by the indicated ratios with the reference parameter set.  For most 

parameters, the distribution that was sampled was 

  

p ln
parameter

p
ref

c , the 

distribution identified in the table as “Log.”  The parameter  was sampled uniformly 

over its range. 



 60 

The sampling limits for this work are necessarily a bit arbitrary; we took our 

target to be two orders of magnitude up and down from each reference value.  This limit 

did not make sense for the variables, , , and , as the model does little of interest 

if they exceed the high steady state of .  We limited the maximum value of  for the 

practical reason that this plays a very direct role in how long an equation system must be 

integrated to examine its asymptotic behavior.  That asymptotic behavior is expected to 

become independent of  (up to an overall rescaling of time) for large enough .  The 

range used is large enough to capture this limit.  Varying the Hill coefficient, , is 

significantly different than varying the other parameters, in that it does not have an 

obvious ratio-metric interpretation.  Values of  represent sigmoidal curves for 

activation by , whereas values of  represent the qualitatively different case where 

activation is most sensitive to changes in  at   h = 0 . 

 We subjected every parameter set to the analyses described in Appendix A, and, 

dictated by the analytic understanding we’ve outlined, predicted whether we expect a 

patterning solution to exist, and what its speed and period should be if one does.  We 

integrated models defined by each parameter set on a 1D grid using arbitrary, randomized 

initial conditions, as well as initial conditions specifically meant to mimic the predicted 

asymptotic pattern-forming attractor.  Using an automated pattern detection scheme, we 

compared the results of each integration both qualitatively and quantitatively to the 

predictions arrived at analytically. 
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Analyzing Patterns 
The first, qualitative, stage of looking at patterns involved classifying parameter 

sets amongst 5 basic types of behavior: Patterning (Figure 9(A)), stalled (Figure 9(B)), 

poorly-patterning, non-patterning (Figure 9(C)), and impermanent fronts.  The first two 

cases, where a solution consisting of a self-extending periodic pattern of isolated active 

cells exists (or does not) are addressed by our theory, and we expect predictions of 

behavior, period, and timing to be accurate in the limit that  dynamics are much faster 

than .  The other cases are categories of behavior we observed in the course of running 

simulations that are not explained in detail by our theory, and represent the failure of our 

assumptions.  Briefly, a poorly-patterning front consists of a solution in which an initial 

pattern leads to a propagating front resulting in some active cells and some inactive cells, 

but without these cells conforming to a periodic solution with isolated active cells.  Non-

patterning fronts exist when an initial pattern leads to a propagating solution where all the 

cells become active.  Some instances of this behavior can be blamed on trivial inhibition: 

when a cell is incapable of fully inhibiting its neighbors.  In this case it is still subject to 

our theoretical predictions.  For our purposes, we consider non-patterning fronts to be 

solutions that show this behavior despite predictions to the contrary.  Impermanent fronts 

are any solutions in which a cell once determined to be active becomes inactive again at a 

later time.  Such solutions would violate a very fundamental aspect of our theoretical 

understanding of the system, namely the irreversibility of activation. 

It was our hope that the parameter sets showing behavior not predicted 

analytically would clearly be the result of the failure of one of the assumptions made 

explicitly in our analysis, namely the separation of timescales between  and  

dynamics, and the irreversibility of a activation.  In discussing patterns, we refer strictly 
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to large-amplitude, long-lived patterns of , as these are the characteristics of the 

biological system that we are modeling. 

Results 
 Qualitative results 

 The results of our parameter scan were entirely consistent with the predictions 

made by techniques based on the analysis of the preceding section; behaviors we did not 

explore analytically began to appear only when the assumptions behind the analytics no 

longer held.  The most interesting assumption, both because of the behavior observed 

during its failure and because its failure likely represents real-world conditions of 

interest, is the large separation of timescales between the advance of the  front and the 

rise of  at a node. 

Of the 640,000 parameter sets scanned, 137,235 had Aa .569, where we anticipate 

that  activation can be transient.  Any parameter sets in which  was transiently high, 

but fell back to a value near the low fixed point (an impermanent front) were in this set.  

Additionally, persistent activation of any sort was exceedingly rare for these parameter 

sets, confined to those where  was very close to the cutoff of .569 or  was never 

produced in significant amounts.  Most of the parameter sets ( 95%) with the offending 

values of  can be described as stalled solutions, given reasonable initial conditions.  

The balance show complicated dynamic behavior. 

Of the remaining 502,765 parameter sets, we predicted 241,572 (or 48%) would 

have no propagating solution.  Of these, 208,348 (86%) were unequivocally stalled.  

About three-quarters of the remaining 33,224 displayed some sort of fairly well behaved 

propagating solution.   Most of these parameter sets gave patterns that either had multiple 
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adjacent active cells, and/or propagated very quickly, in clear violation of the 

assumptions made for stably patterning solutions, and thus in predicting stalled solutions.   

The remainder tended to show behavior suggesting pathologies in the integration itself.  

We examined a subset of these pathological cases individually, pursuing them with 

tighter error tolerances.  Subjected to this treatment, they resolved cleanly into the well-

behaved classifications.  We should mention that a prediction of a propagating solution 

does not necessarily imply that other attractors cannot exist.  Indeed, there is always an 

attractor representing propagation failure for a sparse-enough initial pattern.  Less 

universally, there can be an attractor representing a fast-propagating front with no 

patterning if the maximum source-density is high enough to push the important  

dynamics faster than .  What other asymptotic solutions might exist between these two 

extremes, and what transients are involved in approaching them, are interesting questions, 

though analyzing them in this 1D system is unlikely to yield much in the way of 

biologically relevant information:  We are mainly concerned with the well-behaved 

patterning solutions. 

The theory predicts the other 261,192 parameters sets have some sort of 

propagating solution that can be understood within its framework, if the slow-  

assumption holds.  Of these, 89% had an easily-classified propagating solution, and about 

1% appeared to be truly stalled.  The remainder seemed to yield easy-to-classify behavior 

only when given “special treatment,” i.e. integrated with tighter tolerances, for longer 

times, and over larger domains.  For 24,213 parameter sets the predicted self-consistent 

pattern was a front of uniform activation (i.e. trivial inhibition).  This behavior, which 

must be regarded separately from cases where a uniform front was observed in defiance 
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of expectations, was observed in 19,855 cases (82%), with the remainder showing more 

exotic behavior.  These parameter sets, which tend to produce large amounts of activator 

and very fast fronts, tend to strain the assumptions of the model, but it is unclear what 

qualitative distinction can be drawn between slow-  and fast-  behavior.  We pursued 

quantitative pattern analysis on those 236,932 parameter sets where there was a predicted 

pattern, other than uniformly high , under the idealizing assumptions.  

It should be clear that our predictions about the behavior of parameter sets are, 

broadly speaking, correct.  In the cases of the bad predictions one should keep in mind 

that the parameter space search cast a very wide net.  The reference parameter set is a 

solid, well-behaved citizen, but the parameter space explored extends past 

physiologically meaningful parameter regimes, deep into regimes that we now know are 

almost ridiculous. 

Quantitative Results 

We now turn our attention to the analysis of the simulation data from parameter 

sets where we predicted a pattern-forming propagating front.  It is important to stratify 

these parameter sets by the degree to which they meet the assumptions of the analysis.  

The first assumption, and the easiest to apply, is that up-means-up and down-means-

down:  The production of  and  by nodes at the low steady state must be negligible, 

and the production of  and  at the high steady state must be non-trivial.  The high 

steady state assumptions for  and  have already been applied since these values were 

needed in calculating self-consistent pattern-forming solutions.  The low steady state  

and  production, however, we simply assumed to be zero in the analysis.  This is a good 

assumption for the fly system, but it was occasionally violated by randomly chosen 
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parameter sets.  A strong low-steady-state criterion for  is that at the “point of no 

return,” i.e. the unstable steady state of a at zero activation, the amount of  produced is 

less than half what would be required for that cell to completely inhibit itself.  A 

reasonable low-steady-state requirement for  is that the equilibrium amount of  

produced by an entire field of cells held at the unstable steady state is less than would be 

required to activate an uninhibited cell.  Of the 236,926 parameter sets remaining after 

the previous exclusions, 151,450 simultaneously meet the high-low criteria, and thus 

constitute the parameter sets which test the analytic description of the model equations in 

detail.  The specific analytic predictions we made for these sets break down as follows:  

136,620 have a single propagating regularly spaced solution, 537 have multiple 

propagating regularly spaced solutions, and 14,293 have no period-1 self-consistent 

propagating solution. 

76,118 (56%) of the 136,620 parameter sets predicted to have a single, attractive 

patterning solution made a propagating pattern with single, isolated activated points.  Of 

these, we predicted the correct spatial period for the solution in 97.1%.  This degree of 

agreement is striking, as shown in Figure 13, and is much better than that achieved using 

a simpler model in which the  front is given a square profile, which is only 62.1% 

accurate, and clearly systematically biased as shown in Figure 14.  It remained to check 

whether violation of the slow-  assumption could account for the 44% of parameter sets 

that did not violate any of the criteria already applied but that nonetheless did not produce 

patterning fronts. 
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Figure 13:  Observed versus predicted periodicity for parameter sets showing 

regular 1-up-integer-down patterns.  Each blue dot represents a parameter set.  The 
points described by a particular ordered pair ( [observed, predicted], for instance [5,3] ) 
are assigned a random location within the box describing their neighborhood to give the 
idea of density.  As you can see, the points are very densely concentrated along the 
identity line.  Indeed, >97% of them show perfect agreement. 
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Figure 14:  Null model for period prediction.  The same kind of plot as in Figure 13, 
but using a simpler model for the interaction of the propagating activator and template.  
This situation is analogous to the step-function activator model.  The overall correlation 
of prediction and observation is still clear, but there is obviously a strong bias towards 
predicting periods that are too short. 
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In general, these parameter sets yielded behavior in which multiple adjacent cells 

were activated in the final pattern.  The actual behavior in these cases ranged from 

uniform propagating fronts, in which every cell was activated (recall that some of the 

parameter sets that were predicted to stall also showed this behavior), to complex patterns 

of activated cells not obeying any obvious periodicity, to regular-appearing patterns of 

multiple active cells separated by multiple inactive cells.  While measures of the 

“average” expressed pattern period and spacing (in non-uniform solutions) showed 

significant correlation with the predictions, the absolute accuracy of the predictions was 

much lower than for parameters that showed basic OUID patterning.  It is unclear what 

such observations mean given the qualitative diversity of this group. 

In the classification based on parameter-space arguments so far, we have not 

attempted to evaluate quantitatively how well the assumption of slow  dynamics 

compared to  is met for different parameter sets.  The specific time scales requiring 

comparison are: 1) the time it takes a recently activated node to reach the level of a 

necessary to inhibit its nearest neighbor, and 2) the time it takes the propagating front of 

 to progress 1 lattice site.  These timescales are not independent, and evaluating them 

separately, without careful integration of the full model, requires further approximation.  

We use the self-consistently calculated average front velocity to derive timescale 2.  

Timescale 1 we approximate as the time it takes an isolated, uninhibited node to progress 

from the steady state  at bifurcation, to the level where its nearest neighbors are 

completely inhibited.  This time has a non-trivial dependence on  dynamics, but 

approaches a well-defined lower limit corresponding to constant, maximal activation: 

g h( ) = 1.  The physical assumption at work here is basically that the rise time of a node 
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is dominated by the time it takes the bistable switch to achieve the high state, once it has 

escaped outside influence via autoinhibition. 

Plotting each parameter set on axes reflecting these two time scales shows a clear 

separation between the singly-activated, uniform-front, and more complicated cases, as 

shown in Figures 15 and 16.  The quality of a binary classification is, of course, 

summarized in a 2-by-2 table as defined below, and we generated a linear separator in the 

log-log plane between the two limiting behaviors (patterning and non-patterning).  

 rule1= mx
1i
+ b < x

2i{ }  

  

class = 1 class = 2

rule1 A B

~ rule1 C D

 
(26) 
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Figure 15:  Timescale separation and patterning v. non-patterning behavior.  Each 
point represents a parameter set for which pattern formation was predicted, and was 
either observed as predicted (dark, blue), or for which an unpatterned propagating front 
was observed (light, red).  They are arranged on log-log axes representing (x) the shortest 
possible time for a cell experiencing maximum activation to reach high enough a to fully 
inhibit its nearest neighbor, and (y) t0/n0, where t0 is the amount of time predicted 
between successive activations, and n0 is the predicted period of the pattern.  This 
approximates the amount of time it takes the average h-front to advance one lattice site.  
The black line is a separator generated to maximize a prediction quality statistic.  It 
successfully classifies about 95% of these parameter sets.  It is clear that the conditions 
that allow patterning by the mechanism we describe begin to fail as the internal dynamics 
of a cell can no longer be considered fast compared to front propagation.  It is notable 
that the degree to which the timescales must be different for the behavior to be dominated 
by OUID patterning regardless of specific parameters is not very great. 
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Figure 16:  Timescale separation and complicated patterning behavior.  The same 
plot as in Figure 15, but with an overlay of the points for which a pattern was predicted, 
but neither that pattern nor a uniform propagating front was observed.  Very complicated 
behavior was observed in this set, and these parameter sets are particularly prone to very 
long transient behavior.  Whether these solutions are in the process of settling down to 
one of the better-known behaviors (patterning or non-patterning) or are approaching 
other, more complicated limiting behavior is an open question.  It is clear, however, that 
they arise between parameters that lead to patterning and those that merely propagate. 
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Maximizing the association between the classification and the actual class 

membership in terms of a statistic similar to a phi coefficient,  

 
  

max
m,b

A
2
D

2

A+ B( ) A+ C( ) D + B( ) D + C( )
 (27) 

 

but without penalizing asymmetric misclassification, yields a line where the sensitivity 

and specificity of classification are both in the mid-to-high 90 percents, as are the 

positive and negative predictive values for parameter sets randomly chosen from this 

distribution. 

Inspection of the solutions showing patterns that do not have isolated activated 

nodes reveals that these are concentrated in the region of parameter space that is between 

the more easily classified patterns.  All of this suggests that as one varies parameters in 

such a way that the timescale separation between  and  is reduced, one will first go 

from a situation where a propagating solution with isolated activated points is supported, 

to a region where only more complex patterns are supported, to, finally, a situation where 

the only propagating solution is one for which all the nodes end up activated.  The exact 

nature of the transitional region, unlike the transitional region between patterns of 

different periodicity, is likely to hold very complex behaviors, and is difficult to study, in 

part, because of the very long transients that can be observed there.  It is also likely that 

similar behavior can be observed in regions of parameter space with no predicted 

propagating solutions, as a reduction in the separation of the timescales can send the 

system from a state where all solutions stall to a state where rapidly propagating, poorly-

patterned fronts can exist.  Though some of our data applies to this case, and suggests 

such behavior, it remains to be studied in mechanistic detail. 
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 The analytic theory presented here predicts not only the spatial period of a pattern, 

but also the front speed.  We expect that the quality of these predictions should increase 

with longer times between the activation of nodes, since the (comparatively) invariant 

activation time of a single node, which our calculations effectively set to zero, will have a 

relatively smaller effect on the overall front speed under these conditions.  For the 

parameter sets where we correctly predict the presence of a OUID pattern and its period, 

this is the case, as shown in Figure 17. 



 74 

 

Figure 17: Quantitative comparison of observed versus predicted front velocity.  
Each dot is a parameter set exhibiting its predicted propagating behavior.  The log-log 
axes are the predicted versus observed inverse velocities.  The dashed red line shows an 
example of the deviation from identity that would be expected for adding 1 time unit to 
each step (to account for the finite rise time of a cell).  It is unsurprising that the 
prediction becomes relatively better as the front slows down. 
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Discussion 
 Activator-inhibitor systems, and their ability to form and maintain patterns have 

been studied a great deal.  Starting with Turing, most of this work has focused on the 

potential of reaction-diffusion systems with autocatalysis to have steady states that are 

unstable to finite-wavelength perturbations, and the dynamics of these systems (85-88, 

92-100, 122).  While the continuum has been studied extensively, there have also been 

many studies that have concentrated on cellular systems where isolated cells become 

active (93-100, 122).  In particular, more than one system has been described in which an 

expanding patterned field both drives its own expansion and selects its own pattern 

subject to the linear instability governing a homogeneous steady state (96,122).  The 

patterning system discussed here is unique in that it does not have a finite-wavelength 

linear instability: It does not rely on a large difference in the diffusive behavior of a local 

activator and long-range inhibitor, but on the large difference between the rate of pattern 

stabilization and field expansion. 

Given an array of bistable cells that do not communicate with each other, any 

combination of active and inactive cells is a stable steady state of the system, and any 

arrangement that puts some cells at their unstable steady state is a steady state of the 

system unstable to perturbations of all wavelengths.  The situation is nearly identical in 

this patterning system, with diffusive interactions turned on.  Some of the steady states 

for the non-interacting system (those representing patterned half-spaces of high pattern 

density, for example) are no longer steady states, as they initiate propagating solutions, 

but no previously stable steady states have become unstable, and the cell-autonomous 

unstable steady state is never even approximately realized in the patterning process, let 
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alone simultaneously at multiple adjacent cells.  The mechanism of pattern propagation is 

much more analogous to discrete autocrine models of signal propagation, such as those 

studied by Muratov and Shvartsman, in which cells are treated as a coupled array of 

bistable switches, or the extensively studied discrete Nagumo equation, than any classic 

propagating-patterning model system (115-117, 120).  We have shown that the addition 

of an inhibitor to such a model very naturally gives it the ability to form patterns, and 

these patterns are formed by epitaxy, with template information about each previous 

column of cells being propagated to the next.  Indeed, the specification of single active 

cells by this mechanism is a limiting case of the model, representing the slow expansion 

of a patterned domain.  This means that in appropriate parameter regimes, the patterning 

behavior is essentially independent of parameter variations, a situation we have explored 

numerically. 

At the heart of this patterning modality is the discretization of space represented 

by the cellular field.  The fact that each cell has autonomous internal functioning that is 

not subject to any restrictions of continuity with its neighbors profoundly influences the 

interaction of adjacent cells with, for instance, a propagating front.  As the front 

propagates there is a finite time delay between the activation of one cell and the next.  If 

the internal dynamics of each cell is fast compared to this finite time delay, then the 

perturbation to the aggregate steady state of the two cells caused by the front is, by 

definition, large.  If the internal dynamics are quite fast, the system is far outside the 

realm where linear stability analysis of multiple cells is meaningful. 

Treating a group of cells as switch-like and giving them interactions potentially 

involving activation and inhibition, taken to an extreme, naturally yields dynamical 
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models that are more easily understood as finite state machines than as PDEs based on 

the diffusion equation.  Indeed, the 1D map we presented in Figure 11, with h as a step-

function is exactly this sort of model, and we will return to this concept in Chapter IV.  

What we have done in this work is take a model which is clearly based on the 

continuously variable nature of a biological system and that recapitulates the behavior of 

the system, and show that subject to physiologic assumptions it engages in patterning 

associated with its limiting behavior as an array of switches.  We have shown that this 

behavior is dominant over a large range of parameters, and fails in the cases where 

explicit assumptions based on the observed physiology of the developing fly eye are 

violated.  The exact structure of the boundary between patterning and non-patterning 

solutions remains obscure, and is likely a very difficult problem.  However, we have 

characterized what appears to be the limit of importance, and have made predictions 

about the structure of solutions in parameter space.  For a graphical summary of this 

parameter dependence, see Figure 18. 

That the relevant limit is also one we consider to be physiologically important in 

the developing Drosophila eye, and the model’s previous success in recreating patterning 

phenomena strikingly similar to experimental observations, suggest that this new 

patterning mechanism is the one that evolution chose to do this task, and gives us 

significant clues as to why it did. 
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Figure 18: A theoretical bifurcation diagram for propagation and pattern formation 

with a parameter controlling the relative timescales of cell-autonomous dynamics 

and front propagation as bifurcation parameter.  We take the source density of h as 
the output state, and it can range from 0 (stalled) to f0, the maximum activity of a single 
cell.  The analytic and numerical predictions we make in the paper are appropriate for 
parameter sets and initial conditions lying in regions B and C: stalled patterns and 
parameter sets with fast internal dynamics compared to front propagation.  The structure 
of the boundary between B and A is unknown (gray, region D), but there are parameter 
sets where stable patterning and unpatterned front propagation are observed for different 
initial conditions.  Parameters also exist where no patterning solution is possible, but a 
uniformly activating front is.  Essentially, the parameter space of h can generically be 
divided into three regions: a region of bistability with uniform and stalled solutions 
possible, a region of tristability where uniform, patterned, and stalled solutions are all 
possible, and the slow-h region of bistability between patterned and stalled solutions 
(which we have treated fairly comprehensively).  The transitions between these regions 
could be as simple as saddle-node bifurcations, but if that is the case, the diversity and 
complexity of the transients involved near the boundaries has prevented us from seeing 
them clearly, and it is our feeling that much more complicated structures exist there. 
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Chapter III: 
 

The Activation of Nearly Equivalent Cells, and the 
Resolution of Proneural Clusters 

 
 The variety of patterns that a propagating front in 2 dimensional media could 

generate is much larger than in one dimension.  One key difference is that in more than 

one dimension, cells at the same position along an axis defined by direction of front 

propagation can be activated by a travelling front with an arbitrarily short delay between 

them.  For this reason, it is impossible to define a single characteristic interval between 

the activation of one cell and the activation of the next.  It is necessary to study the 

properties of groups of cells experiencing nearly simultaneous activation: a condition 

similar to what is assumed in many classic pattern formation models.  As has been 

discussed, the model of R8 specification examined here does not appear to operate by one 

of these mechanisms.  In this section I will analyze the function of our model of R8 fate 

specification in circumstances that mimic the selection of a single neural precursor from a 

small group of apparently equivalent cells expressing a proneural transcription factor:  a 

proneural group. 

Eye Context 
 As the MF sweeps across the eye disc, atonal is expressed in distinct stages.  

Anterior to column 0, the earliest column where ato expression is restricted to single 

cells, it is expressed broadly, and then in groups (intermediate groups, IGs, or proneural 
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clusters) that subsequently refine to one ato-expressing cell (47).  Simultaneously, 

senseless expression increases in a few cells of the refining groups until it is expressed at 

a high level in the future R8, alone (2).  This behavior, in which cells are first activated to 

an intermediate stage by signals associated with the MF, and then attain fate-permanence 

by a positive interaction between atonal and senseless, is captured in the 4-variable 

model of Lubensky et al (see Figure 5) (123-127).  The refinement of proneural clusters 

to single cells, which happens in many other contexts, has long been of interest (7-

14,32,41-43). 

The refinement of clusters and the initial specification of their location and 

spacing have usually been regarded as physiologically distinct processes, with the former 

being driven by classical lateral inhibition, and the latter being mediated by longer-

ranged signals mediated by, for instance, scabrous or Egfr (1-3,17,24).  The observation 

that patterning in our model (including the appearance of structures resembling proneural 

clusters) can proceed with a single inhibitor, with one simple interaction with the master 

transcription factor, is surprising in this context; the inhibitor appears to be performing 

two distinct roles.  It is necessary to reexamine the refinement of clusters of cells in the 

context of this model, which seems not to be behaving as previously thought. 

Looking at the cells in a proneural cluster, it is nearly impossible to tell which cell 

will eventually become an R8 by examining atonal expression alone:  They do, in fact, 

appear very nearly identical, as seen in Figure 19.  It is quite simple, however, to look at 

the image of an eye-disc stained for atonal and pick out the one or two most likely cells 

to become R8s from any given proneural cluster; they will be near its posterior apex 

(2,46,47).  This is because our eyes can recognize the pattern of previous R8s, and 
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extrapolate the pattern to the next column.  What is significant about this exercise is that 

it makes clear that there is a hidden variable determining outcome, and the R8 is not 

randomly chosen from within the cluster (13).  This is a good reason to suspect that the 

equivalence of the cells in a proneural cluster is superficial, and restricted to the 

expression of atonal:  Our eyes need no special training to pick out the special cells, and 

are easily cued by the geometric arrangement of the cluster.  What remains is to see if the 

understanding of the model behavior developed in the previous chapter works (with 

appropriate generalizations needed for 2D) to integrate this spatial information. 
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Figure 19:  Schematic and image of wildtype MF stained for Atonal (green) and 

Dachshund (magenta).  A) Shows a schematic of patterning near the MF, with 
previously specified R8 cells (green, single cells) influencing the position of the R8s 
being formed by the MF (right), which are selected from proneural clusters (turqoise).  B) 
This image is a snapshot of patterning near the MF, which is moving from left to right.  
Proneural clusters in various states of resolution are visible.  The red circles highlight the 
cells in these clusters likely to become R8s.  Photograph courtesy of Nick Baker. 
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Approach 
Following the multiscale approach outlined initially, and, once again, led by the 

fundamental autonomy of each cell, we go about this in the following way:  First, the 

behavior of single cells in the 4-variable model must be described in some detail.  

Second, we will attempt to characterize the simplest possible patterning system that has a 

non-trivial patterned solution:  Two cells interacting only with each other.  The important 

connection to be made is the degree to which the two-cell behavior can be predicted from 

the properties of a single cell, and what aspects of (potentially detailed and complex) one-

cell behavior must be known to make these predictions.  Third, we will generalize the 

two-cell theory to small groups of cells that can be considered nearly equivalent in some 

way, which in this case means internally similar, and in direct contact.  Again, this 

involves reducing the behavior of a functional module (a single mutually-inhibitory 

interaction) to its simplest fundamentals and using it as the foundation of our 

understanding of the next-larger level, which is a cluster of several equivalent cells.  

Fourth, we will examine proneural clusters that are not defined arbitrarily, but that arise 

in a simulated epithelium with a preexisting gradient of inhibitor produced by previously 

specified R8s. 

Taken together, this represents a new theory of proneural cluster dynamics 

inspired by the eye disc system.  As a general theory, it can make specific predictions for 

any well-formed question in its purview.  We will discuss two specific predictions it 

makes, and counterpoint them with a classical lateral inhibition picture.  We hope, also, 

to demonstrate the power of applying the analytic approach of dividing a system into 

autonomous functional modules defined by natural scale separations to biological 
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systems that integrate many different signals and processes.  After explaining these 

behaviors, I will show simulation data that confirms the predictions made at each level of 

understanding. 

 

Individual Cells 
 In the previous chapter, we showed that if bistable cells exchange 1) adequate 

activating signals, and 2) adequate inhibitory signals, and provided that the progression of 

the first signal is adequately slow, they are likely to become activated in a self-

propagating pattern characterized by isolated active cells.  We must generalize each of 

these concepts to the more complicated 4-variable model to proceed.  The specific form 

of the model is as follows: 
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 The model discussed in the previous chapter was simplified for the sake of 1) 

facilitating a complete understanding of cell dynamics, and 2) allowing a very broad 

random search of parameter space for unexpected limits of behavior.  This simplification 

eliminated the formation of proneural groups.  Two main differences should be obvious 

between equation (1) and equation (4) of the previous chapter.  First, we have removed 

the regulation of h, and made its time-dependence explicit, and shifted its meaning in 

such a way that h is now activation activity as seen by a, or g(h) from the previous 

chapter.  The progress of a self-activating front is well understood at the level of a single 
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activator, and the characteristic scale and time of h dynamics are such that this field is not 

greatly perturbed by the local behavior of a few cells, regardless of what they do; 

dynamic h is unlikely to add much to a study of patterning in a single proneural cluster 

(115,116).  It is enough to assume that a front exists, which we do by imposing an 

appropriate approximate time dependence on h, as derived in the previous chapter.  

Specifically, we use a piecewise linear form for the spatial variation of h that goes from 

zero to one over unit distance, and translate this form uniformly over space at varying 

velocities.  Second, we have added a positive feedback loop between a and a fourth field, 

s, named for the gene senseless, which encodes a zinc finger transcription factor (126).  

This delayed activation loop allows for staged activation of the proneural transcription 

factor a.  For this arrangement to give the desired behavior, parameters must be chosen so 

that a cell expressing a alone cannot sustain a expression without external activation from 

h, but a cell expressing both a and s can, yielding a bistable switch that goes through a 

distinct, reversible stage of intermediate activation, as illustrated in Figures 20 and 21.  In 

this system, external activation leads cells to produce a, which reinforces its own 

production, but not to a sufficient degree as to make it independently high (127).  This 

level of a, in turn, is sufficient to cause the production of some amount of s, which feeds 

back positively on a.  At some point, the autoactivation of a and the positive feedback 

loop a-s-a become sufficient to maintain a high level of a (and, concomitantly, s) 

production.  This situation can be very similar to the one-stage switch of the 3-variable 

model if the dynamics of s are fast, and s is simply slaved to a.  There is a line in the a-s 

plane that defines the boundary between systems proceeding to the low steady state under 

no external activation (or large inhibition), and those proceeding to the high steady state.  



 86 

This line is the unstable manifold of the intermediate steady state of the a-s system, 

illustrated in Figure 21, and is subsequently called the “fate-permanence separatrix,” or 

simply “the separatrix.”  Third, we have replaced the tridiagonal nearest-neighbor 

diffusion operator with a coupling matrix Dn,n’ that represents the normalized diffusive 

coupling between adjacent cells.  How we define this matrix, in detail, is described in 

Appendix D. 
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Figure 20:  Nullclines and trajectories for different values of h and u.  In each of the 
above graphs, the solid purple line is the nullcline in the a-s plane for ts=0, the various 

blue lines are the nullclines for ta=0, and the red lines are trajectories of the dynamical 
system representing a single cell in the 4-variable model.  A) shows the nullclines for 
h=0 (solid, dark blue), an intermediate value of h (dashed, cyan), and maximal h (dotted, 
cyan), with no externally produced u, and tu=0.  The condition of most interest is when 
a dynamics are faster than s.  In this case, the expression of a and s in a cell starting at 
a=s=0 and experiencing increasing h migrate upward with the lower stable steady state 
until this state is lost in a saddle node bifurcation.  At this point, the trajectory increases 
rapidly in a to an intermediate (proneural cluster-like) state.  The amount of s then 
increases until it reaches a point at which a production can run away toward the 
permanent high steady state.  This is illustrated by the dash-dotted red line.  B) The 
second condition of interest is a cell that has received a proneural signal, but in the course 
of differentiation also receives an inhibitory signal from a neighbor.  The nullclines in 
this graph represent a system with full h activation and increasing (dotted cyan<dash-
dotted<dashed<solid blue) u from an external source.  The red trajectories represent the 
two types of path a partially differentiated cell (the trajectories start at the proneural 
cluster stage, in the figure) could follow upon receiving this inhibitory signal.  The dash-
dotted red line represents a cell that has not yet achieved fate-permanence and returns to 
the low steady state.  The solid red line represents a cell that has differentiated further, to 
the extent that its fate is no longer dependent on external activation, and it proceeds to the 
high a-s steady state. 
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Figure 21:  Nullclines, trajectory, and separatrix for an isolated cell.  Here, the solid 
purple line is the nullcline in the a-s plane for ts=0, the solid blue line is the nullcline for 

ta=0 under maximal activation (no inhibition), the dotted blue line is the same nullcline 
under maximal inhibition, or no activation, and the dashed red line is an actual trajectory 
of the fully dynamical system starting at a=s=0 and suddenly experiencing maximal h.  
In this case, the trajectory moves rapidly to the intermediate value of a, about which it 
appears to experience damped oscillations.  Eventually, it escapes this intermediate state 
and moves to the stable attractor at high a and s.  The dash-dotted green line is the 
unstable manifold of the unstable fixed point of the fully inhibited system.  In such a 
system, any trajectory that starts above this line will end up at the high fixed point, and a 
trajectory that starts below it will end up at a=s=0.  It is the separatrix defining cells that 
will certainly become R8s from those that may or may not.  We define the time T1 as the 
time when a cell’s trajectory crosses this separatrix, and its fate is sealed. 
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 The time it takes for a cell that has received an activation signal to cross the 

immortality separatrix is a key intrinsic timescale of that cell.  Before the cell crosses this 

line, interference from other cells through inhibition can substantially alter its behavior.  

Afterward, its fate is sealed.  For an isolated cell (cell ), this time is a function of the 

amount of (static) external inhibition the cell is receiving, and we will denote it as 

T1 (uns ), where the mnemonic device at work is that this is the time the cell crosses the 

first important threshold (T1), which is a function of the non-self u (uns) it feels.  In 

general, cells are capable of 2 local actions, and pattern formation requires both persistent 

auto-activation, and insurmountable inhibition of neighbors.  The first process is 

summarized in T1, the second is realized when an activated cell has been activated long 

enough that it has produced enough inhibitor to completely suppress a neighbor (cell ).  

This time depends on both the amount of inhibitor felt by cell , which governs how 

quickly inhibitor is produced, and the amount of external inhibitor at cell , which 

dictates how much additional inhibitor is needed to shut that cell down.  We will denote 

this time as Tu (uns ,uns ), which is the time it takes cell  after activation to inhibit an 

adjacent cell, , and can be thought of as the time to critical u.  The concept underlying 

Tu should be familiar from the previous chapter.  T1 is a new concept, for this system, and 

is necessary for comparing similar cells activated at arbitrarily small delays.  Alone, these 

two times are adequate to explain a large variety of patterning behavior, and are a 

simplification of what can be surprisingly complicated single cell behavior.  For a 

sampling of the range of behavior a single cell is capable of, refer to Appendix F.  In that 

appendix we examine the stability of intermediate a at fixed s and uncover the potential 
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for oscillator-like behavior of the system.  The dynamics of cells at this intermediate state 

can be important, as that is where they are most susceptible to external inhibition, but for 

most parameters of interest, we believe this state is not long-lived enough to have much 

effect on fate determination. 

 

Two-Cell System 
 The next step is to examine a system of two identical cells that can interact by 

exchanging u, represented by the following equations, where we have name the two cells 

 and , introduced the constant pc representing the effective population of a proneural 

cluster in which the test cells are embedded, and which act as sinks for inhibitor u, and a 

time delay t which sets a relative delay in their time of activation. 
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Examination of the nullclines of this system reveals 9 steady states at h=0, 

uns =uns =0, and t=0, if the cells are independently bistable.  Four of these steady states 

are linearly stable and represent the ++, +-, -+, and -- states of the system, where + and - 
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refer to cells having either high a production (near 1+B), or low a production (near zero).  

There are also 4 saddle points that correspond to one cell being near a stable state (+ or -), 

and one cell being near its unstable steady state.  We’ll call these saddles +0, -0, 0+, and 

0-.  The ninth steady state is an unstable node, and its nature should be obvious if we give 

it the name 00.  So far, there is nothing about this system to differentiate it from two 

completely independent cells that happen to be graphed on the same axes.  At high h, 

provided G is large enough that the bistable cells can be switched on, the -- stable steady 

state, the unstable node 00, and the saddles 0- and -0 have been lost, which should not be 

surprising given the bifurcation behavior of a single cell.  Four steady states do not 

generically disappear in a single bifurcation, however, so this must be examined a bit 

closer.  Zooming in on this process, it becomes clear that under increasing h, nodes --, -0, 

and 0- coalesce in a subcritical pitchfork bifurcation.  This has codimension-1 because 

there is a symmetry related to the exchange of the two cells.  The single steady state left 

by this process (it makes sense to call it --, still) is a saddle that is attractive along the 

symmetric axis, a1+a2, and repulsive in the antisymmetric direction.  As h increases 

further, -- and 00 annihilate in a saddle node bifurcation, leaving only the steady states 

that have high a in at least one cell.  These relationships are shown in Figure 22. 
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Figure 22:  Nullclines and steady states for a two-cell system.  A) shows the ta=0 
nullclines for two interacting cells and h=0.  The magenta circle marks the ++ stable 
steady state, and the blue circle marks --.  The red circle is the unstable node 00.  The 
paired green circles mark the asymmetric stable steady states, +- and -+.  The purple and 
orange circles mark the various saddles, 0+, +0, -0, and 0-.  B) shows the same system as 
A, but with high h.  Several steady states have disappeared:  --, 00, 0-, and -0.  C)  This 
figure zooms in on the lower 4 steady states as h approaches the first bifurcation, and D) 
shows the same region just after bifurcation.  Varying h as a bifurcation parameter has 
lead to a subcritical pitchfork bifurcation on the a1-a2 axis.  Increasing h even more leads 
to a saddle-node bifurcation between the blue and the red circles. 
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Figure 23:  Bifurcation diagrams for two cells.  In these graphs the convention is that a 
solid line represents a stable steady state, and a dashed line represents an unstable one.  
The color conventions are preserved from Figure 4.  A) shows the coalescence and 
annihilation of the lower steady states (and the invariance of the higher ones) with 
increasing h, with special emphasis on the asymmetric states.  B) shows the same 
process, but looking at the symmetric aspect of a1 and a2.  The similarity of this diagram 
to the simple bistable switch of a single cell should be apparent.  C)  shows the 
bifurcation diagram of the higher steady states, using the maximum strength of a 
hypothetical juxtacrine inhibitor, v, as the bifurcation parameter.  The symmetric high 
steady state, ++, gives rise to two additional asymmetric steady states in a supercritical 
pitchfork bifurcation, which subsequently annihilate with the saddles 0+ and +0.  In the 
end, the only stable steady states are the two high-amplitude asymmetric ones. 
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 The presence of a subcritical pitchfork bifurcation in this system suggests the 

presence of the discrete analog of the finite-wavelength instability that leads to Turing 

patterns.  Closer examination reveals that this is not the case, however, and to make this 

subcritical pitchfork important to the final state of even the two-cell system would require 

an extreme level of parameter fine-tuning, and physiological conditions so idealized as to 

be ridiculous. 

Three conditions would need to be met to have random small fluctuations about 

the newly unstable low symmetric steady state be amplified and quenched into the final 

state, here.  First, the system must be adequately close to having a pitchfork bifurcation.  

A pitchfork is not a generic codimension-1 bifurcation; its existence is allowed by an 

underlying symmetry of the system.  In this case, that symmetry arises from the two 

identical cells: they are exchange-symmetric.  Of course, in real life, the cells are not 

equivalent.  Beyond this, and of more interest to modeling, where idealized structures can 

be realized, there is a static symmetry-breaking influence that will be experienced by any 

two cells:  The external inhibitor they feel from previously specified R8s.  This influence 

is large, and will drive the fraction of cells that actually ever see something like a 

pitchfork bifurcation effectively to zero. 

Second, the instability created by a pitchfork is linear.  It takes time for a 

trajectory to leave the vicinity of the old stable steady state.  This will happen 

deterministically with a characteristic timescale, which, in this case, is near 1, the 

intrinsic timescale of a.  If the system undergoes other changes more quickly than this, 

the influence of the immediately post-bifurcation state can be near zero.  In general, in 

this system, the unstable steady state created by the pitchfork bifurcation is subsequently 
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annihilated by the unstable node, 00, which leads to a finite-width basin of attraction for 

++ extending down to a1=a2=0.  The rapid succession of these events is a structural 

feature of the model, since the influence of h is sigmoidal and monotonic in time.  The 

only obvious way to allow a lengthy pause in the linearly-unstable pattern-forming state 

is to tune the strength of the term containing h and u, (by varying G, most directly) such 

that the saddle-node annihilation of – and 00 never occurs, and the landscape is never 

changed dramatically.  With even slight cooperativity in the equations, this requires very 

fine-tuning of G.  It is worthwhile to recall that G rather directly relates to the strength of 

a promoter on physical DNA.  The idea that the maximum activity of a single promoter 

would need to be tuned to a part in a hundred to ensure proper functioning of an entire 

organ is not easily believed, let alone tuning to parts in thousands or millions (128-130). 

Third, even if two cells have a pitchfork bifurcation, and the topology set by that 

bifurcation persists forever, it is a moot point if the trajectory of two cells never closely 

approaches that steady state.  This brings into play the second large symmetry-breaking 

influence any two cells will experience:  The MF, which has a direction.  In phase space, 

this symmetry breaking is no different in its pitchfork de-idealizing properties than 

differing amounts of external inhibitor, but the dynamic nature of this feature in the 

model, as well as its dramatic appearance in the physical system make it unique. 

Now that we have listed some reasons why the simplest (linear) explanation of 

patterning can’t be correct, we turn to what actually is important to the creation of the 

observed asymmetric steady states.  Let’s begin with some context, as illustrated in 

Figure 24. 
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Figure 24:  Schematic of the two-cell system.  Cell  and  are the two cells that we are 
examining.  They are very close together, and are separated by a distance x in the 
direction of MF travel.  This distance and the velocity of the furrow can be translated into 
a delay time, t, between their respective activations.  The cells also experience an 
inhibitory signal from previously specified R8 cells.  We don’t model these cells 
explicitly, in this case, but determine the behavior of cells  and  for all possible values 
of external inhibitor. 
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 Consider the two cells,  and  to be identical, adjacent, and taken from an eye 

disc epithelium.  In addition to uns  and uns , the externally derived inhibitor at each cell, 

these cells are characterized by their location compared to the movement of the MF.  If 

the MF propagates uniformly at a constant velocity, v, in the x direction, the activation of 

one cell versus the other is characterized by a simple constant time delay. 

 h t( ) = h t + t( )

t =
x x( )
v

 (3) 

 

 Considering independently the possible end state of each cell in a 2-cell 

simulation, we get 2 inequalities relating the cellular characteristics T1, Tu, and t.  For 

cell  to end up in the low steady state, we require: 

 T1 + t > Tu  (4) 

 

That is, cell  must make enough inhibitor to prevent cell  from being activated 

before cell  crosses the separatrix.  A similar condition holds if we require cell  to end 

up in the low steady state: 

 T1 > t + Tu  (5) 

 

 To determine whether these inequalities are satisfied, we can either simulate the 

2-cell system directly, or we can estimate the times from observing single cells.  The 

simplifiying assumption at work, if these methods are to agree, is that the times T1 and Tu 

are not functions of t.  The degree to which this holds true is dependent on parameters, 
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but it is the case for a wide range of parameters of interest.  Figures 25 and 26 show two 

simulations of a system with different ts. 
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Figure 25:  Trajectories over time of two identical cells activated at very small delay.  

The red lines represent a in cells  (starts at t=0) and  (starts at t=4).  The blue line is s 
in cell , and the green line is u in cell .  The red stars mark the point at which R8 fate 
becomes certain for a particular cell, at a delay T1 from initial activation.  The green star 
represents the point at which a cell is able to inhibit its neighbor, Tu.  Of course, this 
value has to do with the amount of u that has been transported to that neighbor, but for 
simplicity, here it is a function of a.  In this instance, Tu > t+T1 , and T1 < t+Tu , so 
both cells end up activated. 
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Figure 26: Trajectories over time of two identical cells activated at larger delay.  The 
red lines represent a in cells  (starts at t=0) and  (starts at t=6.2).  The blue and green 

lines are s and u in cell , respectively.  The red star marks the point at which R8 fate 
becomes certain for cell , at time T1.  The green star represents the point at which that 

cell critically inhibits its neighbor, defining Tu.  Here, Tu < t+T1 , so only cell  
achieves R8 fate. 
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 But wait:  How can this be true, at all?  Varying t, at the point where it is 

becoming just large enough for inequality (4) to be satisfied, T1  is, by definition, 

diverging toward infinity, and thus changing very rapidly.  The key to this seeming 

paradox is that the divergence of T1  is very sudden, and its behavior up until that point is 

basically independent of t.  This is virtually guaranteed by the sigmoidal inhibitor 

production and response found in equation (1) and (2).  In the language of stability 

analysis, we can say that for trajectories of the two cell system, the perturbation 

represented by t near the equality condition of (4) or (5) is large, but the low order terms 

in a series expansion for small t of the perturbed trajectories (expanded about the 

unperturbed trajectories) are very small.  The system’s behavior near the conditions that 

separate important outcomes, then, is highly nonlinear, and behaves nothing like the 

instabilities involved in Turing patterns, or classical Delta-Notch lateral inhibition.  The 

abrupt divergence toward infinity of T1, and the fact that it is basically a cell autonomous 

quantity, otherwise, pushed us down the path of treating the system, as a whole, as a set 

of Boolean variables that evolve solely according to a set of delays that govern their state, 

and the ability of their neighbors to change state. 

 

Multiple Cells 
 If the cells are truly behaving independently, and the numbers T1 and Tu can be 

taken straight from 1-cell trajectories (these trajectories can trivially represent more than 

one cell being simultaneously activated, what is important is that there is only one 

independent trajectory), it is easy to generalize (4) and (5) to apply to cells , , , etc, 
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provided these cells interact with each other identically: i.e. for a compact cluster.  This 

means that we expect the 2-cell analysis, as derived from single cell behavior, to 

generalize by simply writing down inequalities (4) and (5) for all combinations of 

mutually adjacent cells.  It is possible, in theory, to write down distinct inequalities of the 

form (4) and (5) for larger groups of cells with less restricted symmetry, but much of the 

elegance (and thus advantage) of this approach is lost:  The quantitities T1 and Tu can no 

longer be taken straight from single cells, since the delay involved in diffusion of u to a 

non-adjacent cell is much larger than transport to an adjacent one, and will be dependent 

on the many diffusion coefficients linking several nearby cells in roughly equal measure.  

If all the cells are equivalent and adjacent, though, and we examine every possible pair of 

cells to determine if one of the cells will be suppressed by the other, then the outcome of 

the whole system can be summarized by identifying cells that are never effectively 

suppressed by any neighbor.  These cells will end up activated permanently, and become 

R8s. 

 Small groups of cells are well and good, but we are interested in 2D epithelia 

made up of tens of thousands of cells.  It is desirable to map the (understandable) small 

groups of nearly-simultaneously activated cells from the previous discussion onto the 

proneural clusters of eye-disc development, since these co-evolving cells are nearly all 

co-adjacent.  To do so, we need a method of identifying these clusters.  Fortunately, an 

obvious method exists for the eye disc.  Around each R8 precursor cell that has fully 

differentiated (in the model, this means that it is very near its high steady state value for 

a, and has been there for awhile), there is a roughly circular zone of cells that are fully 

inhibited.  Nearby R8 cells have, in general, overlapping zones of complete inhibition.  
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The surrounding, incompletely inhibited cells are thus arranged in a scalloped pattern, 

with points pointing opposite the direction of MF movement.  The cells at these points 

form the natural starting point for delimiting distinct proneural clusters.  An incompletely 

inhibited cell that receives an activating signal and is not contiguous with a preexisting 

cluster founds a new cluster, and contiguous cells can be added to it in the order they 

receive activating signals from the MF (their location on the x axis).  At some point, this 

process can be stopped, as the delays of subsequent cells from the activation of the first 

cell become too large for those cells to be pertinent to the R8 decision. 
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Figure 27:  A small grid showing naturally arising proneural clusters.  In this figure, 
the markers are the centers of cells in a 16x12 cell epithelium.  The contour lines 
illustrate the stationary amount of inhibitor (on a log scale) produced by two template R8 
cells (yellow stars).  The strong, blue contour shows where the inhibitor is at the critical 
level needed to completely inhibit cells from being activated, and separates the 
inactivatable cells (magenta) from the ones of undetermined fate (green).  The boundary 
conditions are periodic in the vertical direction, and the MF moves to the right.  The 
white and black stars that mark some cells identify the first seven cells that can be 
assigned to one of two proneural groups, as explained in the text.  Indeed, this picture 
indicates that seven is probably an over-large number, and that five or six cells need to be 
considered in each case. 
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Parameter Dependence 
 Once again, it is interesting to consider how general this theory of proneural 

group resolution is with respect to models of the form of equation (1).  Compared to the 

model of the previous chapter, the system under examination here is considerably more 

complicated, and we expect it to do the unexpected more frequently.  As well, the nature 

of the tests that must be done are significantly more computationally taxing than the 

integrations of the previous model, preventing us from testing hundreds of thousands of 

parameter sets with relative impunity.  We can, however, do a few thousand. 

 As previously, there are several conditions that must be met by any parameter set 

before we consider it as being subject to this theory.  Analogous to the requirement in the 

previous parameter scan that a be irreversibly bistable is the requirement that a and s, 

taken together, be irreversibly bistable.  This is easily determined by examining the 

number of solutions with 0 a 1+B to the nullclines for ta and ts (equation (6), below), 

which should be three: One stable at a=0, one stable near a=1+B, and one unstable 

somewhere in between.  
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 For there to be an intermediate state, where cells are partially activated, but not 

yet permanently fated, the delay intrinsic to the a-s-a activation loop must determine 

when cells irreversibly become R8s.  This would be undermined if the direct 

autoactivation of a were strong enough to sustain its production absent an external signal, 
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which imposes the further requirement that there be only a single solution to the 

following equation:  A stable fixed point at a=0. 

 0 =
ana

Aa
na
+ ana

a (7) 

 

 For stable, non-trivial patterning solutions to exist, a cell must be able to inhibit 

its neighbors, and must be able to be activated by the available external signal from h.  

Here, the situation becomes somewhat trickier, and simply examining the nullclines for 

an isolated cell is inadequate.  The trouble arises from the ability of a cell to inhibit itself.  

With u fully dynamical (not infinitely fast, as in Chapter II), and cells embedded in an 

irregular 2D geometry, the amount of its own u that a single R8 cell feels depends on its 

own a history, its connections to its neighbors, those cells’ connections to their neighbors, 

etc.  Previously, they were infinitely fast, placed on a regular 1D grid, and self-u could be 

reduced to a function of a.  In short, autoinhibition is necessarily a function of system 

geometry, and we are interested in studying many different geometries.  It is necessary to 

evaluate the “can be activated” and “can inhibit neighbors” requirements empirically (by 

integrating the equations) for each significantly new geometry we introduce. 

In addition to this effect of diffusible u, there is the potentially non-trivial effect 

of summed u from multiple cells activated nearly simultaneously.  To understand this, 

picture a group of cells being activated by the MF.  Each cell is activated at a delay from 

the previous one, as discussed.  If the MF is moving very slowly, the bulk of the 

evolution of a, s, and u in cell  is done by the time cell  is activated, and its trajectory 

is likely to be similar to that of a single, isolated cell.  For two cells activated nearly 

simultaneously (the result of a faster MF, for instance), the trajectory that is modified by 
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the perturbation t is that of the two cells rising in tandem.  This difference, in general, is 

minor for only two cells, as there are delays in the production, diffusion, and transduction 

of u.  Diffusion, though, is linear, and activating more and more cells, even partially, 

leads to more and more u.  It is typical, therefore, for there to be systems where a cell can 

achieve high a production if the MF is slow and it is activated alone, but no cell can 

achieve that state if 7 neighbors are activated nearly simultaneously by a fast MF.  This 

model feature is closely tied to the particular (linear, arbitrary) functional forms chosen 

for transport and decay, so we chose not to investigate it in detail.  The fundamental 

physics it represents may be of considerable interest in the future, though.  It is a 

representative of a class of behaviors related to proneural cluster size, which may be of 

biological relevance in this or another neural fate system.  Investigating it in any useful 

way would almost certainly require a more detailed model of genetic interactions than the 

present one. 

 

Results 
 Here we will address the results of the parameter scan as they pertain to the 

quality of 1-cell predictions of 2-cell behavior, the quality of 2-cell behavior in describing 

the behavior of 7-cell uniform, isolated clusters, and the how well 2-cell behavior informs 

the even-less-ideal case of patterning in randomized cellular epithelia, given a pre-

existing template.  The parameter scan was based two sets of 6400 parameters chosen as 

follows.  We chose a reference parameter set for equation (1) pref, and pstatic,  representing 

parameters we intended to vary and those we intended to leave fixed: 
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pref =

Aa = .65

B = 1

G = 1

Sa = .65

Ua = .00065

s = 2

As = .5

u = 4

Au = 1.2

Du = .5

, pstatic =

na = 4

ns = 4

nu = 12

ma = 4

pa = 12

 (8) 

 

 Using random numbers (x) distributed exponentially according to the distribution 

in equation (9), and multiplying them by the values in pref, we generated test parameter 

sets. 

 p ln x
xref

= c

.25 < x
xref

< 4
 (9) 

 

There were two exceptions to this rule.  s we chose from a uniform distribution 

with minimum .5, and maximum 6, and for u we used an expanded distribution of the 

type in equation (9), where the maximum variation was a factor of 8 up and down, 

instead of a factor of 4.  We examined each parameter set for 1) autonomous a-s 

bistability, 2) a lack of autonomous a bistability, and 3) an ability to prevent activation of 

the a-s switch in neighboring cells.  If a parameter set had these properties, we kept it, 

and we did this until we had accumulated 6400 parameter sets. 

These parameters were further winnowed down after doing 1-cell simulations to 

those exhibiting not just the desired bistable behavior, but also any possibility of 
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accessing the high steady state, given sudden h activation.  For most of the studies 

presented here, we decided that Hill coefficients of 12 for inhibition-related processes 

were probably very high, and reduced these parameters to 8.  This resulted in some 

previously functional parameter sets becoming uninteresting.  We subjected each 

parameter set to several tests.  We integrated the dynamical equations for a single cell, 

using standard Runge-Kutta integration (as included in MATLAB in the function ode45) 

according to equation (2), with a for cell  fixed at zero, and using pc=7, for values of uns  

ranging from zero to 1.2*Ua, noting when that cell crosses the separatrix, and keeping 

track of the amount of u it has produced (for calculating Tu).  We discuss this in more 

detail in Appendix E. 

For parameter sets that could access the high steady state, we then pursued 2-cell 

simulations according to equation (2), and empirically mapped out the t required to 

satisfy the equality conditions for equations (4) and (5) as a function of uns  and uns . 

For 7 cell simulations, we no longer needed to use the parameter pc, which was 

introduced to make the 1- and 2-cell simulations applicable to larger geometries.  For 

each parameter set, we generated 150 randomized 7-cell rosettes.  We set all of the 

elements in Dn,n’ for this geometry to 1, and used the geometry of the cluster only to 

determine 1) the position of each cell with respect to the movement of the MF, and 2) as 

an input to the function used to determine uns for each cell.  This function was based on 

locating two R8 cells separated by 8 cell-cell distances at an adequate distance from the 

cluster such that no cell in the cluster would be completely inhibited.  This produces a 

more-or-less smooth gradient of inhibitor within each cluster decreasing from “posterior” 

to “anterior.”  We integrated these equations until a definite end-state was reached, and 
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recorded which cells had become permanently activated at that point.  We used 11 

different front velocities for each parameter set ranging from very slow to very fast (.02-

2).  This gives 150*11=1650 independent integrations on 7-cell clusters of each 

parameter set. 

Lastly, for each parameter set we generated 8 distinct 192-cell simulated epithelia, 

with randomized cell locations and Dn,n’, as discussed in Appendix D.  Given two 

permanently activated R8 template cells, and the steady state distribution of inhibitor they 

generate as initial conditions, we integrated these systems to stable endpoints with the 

same range of MF velocities as for 7-cell clusters, using a stiff ODE solver (ode15s 

included in MATLAB), and recorded the outcome of each simulation.  The periodic 

boundary conditions used in these simulations mean that each grid gives 2 roughly 

independent proneural clusters, so each parameter set is subjected to 2*8*11=176 trials in 

this geometry. 

 The predictability of 2-cell behavior from 1-cell behavior, and 7-cell behavior 

from 2-cell behavior is remarkable.  Figure 28 summarizes the former, and Figure 29 

shows a specific example.  We present no figure illustrating 7-cell behavior compared 

with the predictions from 2-cell behavior, as the fraction of parameter sets showing a 

better than 90% chance of predicting the correct fate of every cell in a 7-cell cluster 

varies between 90%-95% over a wide range (.02-2) of front velocities.  The parameter 

sets that did not meet this high standard appear sporadic, and we have seen no evidence 

of this aspect of the model breaking down in a concerted way over the scanned range. 
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Figure 28:  Correlation of empirical 2-cell critical t and those deduced from 1-cell 

simulations.  This figure shows the results of the parameter scan as the relationship 
between the critical t needed for one or the other cell to win, as found by simulating a 
pair of cells at zero inhibition, and the same quantity calculated from one-cell simulations 
and using calculated thresholds.  There is some spread, but the identity of these values 
has not been broken in any concerted way over this parameter regime.  This shows that 
the close relationship between 1-cell and 2-cell behavior is quite robust to parameter 
variation. 
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Figure 29:  Predictions and observations of outcomes for a seven-cell cluster.  This 
figure synthesizes the results of comparing 1-cell predictions to a 2-cell system, and 1- 
and 2- cell predictions to 7-cell systems.  For this particular trial, we used a parameter set 
that patterns well, given a slow MF, and gave it a significantly faster MF, so that the 
quantity of twins produced would be meaningfully tested.  The x-axis represents the 
external inhibitor experienced by cell ; cell  experiences none.  The y-axis is t, the 
time cell  is first activated if cell  is activated at t=0.  There are actually two pairs of 
lines on these axes, but they overlay each other very closely.  The red lines represent our 
calculation from equations (4) and (5) of the t values that form the boundaries between 
different outcomes using T1 and Tu from 1-cell simulations.  On the upper half, and to the 
right of the graph, cell  alone becomes an R8.  On the lower left, cell , alone, does.  
Between the lines, both are predicted to be activated.  The blue very lines represent the 
same boundaries, but empirically calculated by simulating 2-cell systems.  The 
agreement, for this parameter set, is obviously very good.  The points graphed on these 
axes each represent the interaction of the first two cells in a randomly oriented and 
position-randomized 7-cell rosette to receive an activating signal.  The blue markers 
show a victory for cell , the green ones for cell , and the red ones represent observed 
twins.  Again, the agreement is very good. 
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 The approximations involved in jumping to a randomized 2D epithelium are 

much more extreme, since the individual diffusion constants between cells now vary 

substantially, and cells in a cluster are not equivalent in other ways influenced by 

geometry.  Looking at parameter dependence over the scanned range for these 

simulations is more revealing, though the physics described above is still remarkably 

robust.  The specific findings are discussed at some length in the captions to Figures 30, 

31, and 32.  We find, essentially, that the random parameter search encounters two 

regions of model failure at slow front velocities.  The first is most interesting, and 

involves an increase in errors of all types (R8s gained, lost, and moved) correlated with 

the parameter changes that increase the strength of cell-cell interactions, namely large Du 

and small Ua.  This is, in fact, what we expect, considering that our quantitative 

understanding of individual cases is based on cells not interacting until a sudden 

threshold-crossing event.  The second model failure involves finding marginal cases:  

Those parameter sets that barely met the requirement that they can inhibit their neighbors 

effectively.  Given the finite and fairly large variation in coupling on a randomized 

lattice, we expect a good fraction of these marginal parameter sets to give bad results 

when we make predictions using Du for all couplings, a result of using Dn,n’=1 for all the 

pairwise calculations. 
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Figure 30:  The results of a parameter scan of simulations done on 192-cell 

randomized epithelia at low front velocity.  The axes show the relative insensitivity of 
cells to inhibition (Ua, x-axis) and the diffusion constant, Du, of models defined by 
individual parameter sets.  In total, there are 3400 markers on this graph.  Blue pluses 
indicate parameter sets where the exact correct outcome of a proneural cluster of four 
cells, as defined in the text, was observed in more than half of 16 trials (2582 parameter 
sets).  Green triangles represent parameter sets where errors were more frequent than that, 
and the majority involved too few cells being activated (301).  Red circles represent cases 
where the majority of errors involved more cells being activated than predicted (473).  
Magenta stars show the unique case of large numbers of errors occurring, but no net 
change in total cells activated from the prediction (44).  Simply graphing the parameter 
sets on these axes reveals 1) the considerable robustness of two-cell predictions as 
applicable to randomized epithelia, and 2) two modes of failure of the theory.  If we look 
at the points representing model failure, it is clear that they fall into two clusters:  One in 
the upper left that consists of all three error modalities, and one in the lower right that 
primarily consists of simulations that specified more R8s than predicted.  The upper left 
cluster of errors is explained as failure of the physics assumed in our model.  High Du, 
and low Ua have the effect of increasing the strength and speed of the dynamic inhibitor 
exchange that goes on within a cluster.  This can lead to complicated dynamics, and we 
expect it to have a generally randomizing effect on observed outcome, which agrees with 
the observation of all potential error species, here.  Parameter sets with low Du and high 
Ua, on the other hand, are marginal with respect to the requirement that a cell be able to 
inhibit its neighbors.  Introducing variation in local Du can send individual pair-wise 
interactions into ranges where a cell either never inhibits its neighbor successfully, or 
does so much later than expected by a model that assumes fixed, uniform Du, resulting in 
more R8s. 
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Figure 31: The results of a parameter scan of simulations done on 192-cell 

randomized epithelia at higher front velocity.  The color-coding of this figure is the 
same as in the previous one, but there are 3362 total markers, of which 2583 are blue 
pluses (parameter sets making good predictions), 228 are green triangles (parameter sets 
where a two-cell analysis overestimates the number of R8s), 541 are red circles 
(underestimate R8s), and 10 are magenta stars (quantity of R8s is right, location is 
wrong).  The distinction of the error clusters has been reduced, here, and the lower right 
error cluster has basically disappeared.  As the front speed increases, we expect more 
cells to become R8s.  As some proneural clusters saturate, with all cells becoming R8s, 
the predictions (of exactly this behavior) will become more accurate.  This explains the 
disappearance of the lower right error mode.  The broadening of the model failure in the 
upper left can be predicted (if not understood in detail) from the fact that our 
understanding and predictions are based on 2 cells interacting.  At larger numbers of 
interacting cells (a faster front, for instance) it becomes less accurate. 
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Figure 32: The results of a parameter scan of simulations done on 192-cell 

randomized epithelia for a very fast front. The color-coding of this figure is the same 
as in the previous two, but there are 3213 total markers, of which 2657 are blue pluses 
(parameter sets making good predictions), 396 are green triangles (parameter sets where a 
two-cell analysis overestimates the number of R8s), 156 are red circles (underestimate 
R8s), and 4 are magenta stars (quantity of R8s is right, location is wrong).  This shows 
the breakdown of pattern formation, (most of the blue pluses represent every cell 
activated), as well as any meaningful interaction between these parameters in this range 
and error production.  Notice that the this figure and the two preceding, represent the two 
limits of pattern formation as outlined in the previous chapter:  Good, steady, 1-up 
patterning, and a uniform, undifferentiated front of activation.  The additional distinction, 
here, is that there is additional parameter dependence that determines the predictability of 
the pattern selected in 2D. 
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Specific Predictions 
In this section we have developed a theory of the behavior of a mathematical 

model based on genetic interactions in single cells.  The scope of the theory, at this point, 

extends to groups of several identical cells, and has been applied to isolated proneural 

clusters in simulated epithelia.  This theory is of considerable use for a few reasons.  

First, and most importantly, it provides a framework for understanding this system 

beyond the simple observation of outcomes of simulations.  It is this system-level 

understanding that is the perennial goal of developmental biologists, and this is a 

significantly complicated system with several interacting signals. 

So far, this understanding is of a formal mathematical model, and its predictions 

must be proofed against experimental results.  It is no hollow theory, though:  Any 

genotype that is sufficiently well understood to mathematize can be evaluated by it, and 

specific predictions made.  The remainder of this section is devoted to discussing three 

specific cases of particular interest.  First, the theory at this stage can explain the 

observation of stripes of R8s specified behind the MF under certain conditions.  Second, 

we will compare this theory with the predictions made by a classical lateral inhibition 

picture.  We will also examine its predictions of the outcome of an experiment in which 

groups of cells with predetermined neural fate are artificially introduced into the eye disc. 

Striped Pattern Possible 

 One of the observations that drove early interest in this model of eye development 

was the fact that it could generate a propagating pattern of stripes parallel to the MF, 

where the lack of dorsal-ventral (DV) patterning in each stripe is recapitulated in the 

next.  This was subsequently observed in eye discs.  A parameter set capable of 
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producing a good, self-propagating hexagonal pattern is not typically capable of 

producing stripes, as it too-powerfully selects single cells, and the stripes break up.  If 

inhibition is made “defective,” however, self-propagating stripes can exist. 

The easiest way to change a patterning parameter set into a stripe-forming one is 

to make a less sensitive to u, and make u dynamics slower.  This destroys the hexagonal 

pattern of the original simulation, but given initial conditions that don’t have any spatial 

pattern parallel to the MF, stripes can be observed. 

In eye discs with a background knockout mutation in the scabrous gene, a poorly 

patterned array of R8s is specified.  The key observation, here, was made when a 

temperature-sensitive allele of Notch was also bred into the flies.  Over the course of 

retinal patterning, the incubation temperature experienced by the larvae was temporarily 

reduced to a degree that Notch function was destroyed.  This transiently destroys the 

signal specifying the location of the next column of R8s, and many R8s are activated with 

little regard for position or density.  Restoring the temperature, and thus Notch function, 

then causes the recapitulation of this stripe down the retinal field.  Conducting the same 

experiment with N
ts and no sca- background yields a similar destruction of effective 

templating, but stripes don’t form; instead, a random-looking pattern of single R8s does. 

There are two main observations in the sca- disc that are pertinent to the current 

analysis.  First, in all cases the sca- disc has more mutually adjacent R8s than seen in 

wildtype; an estimated 20% of R8s are specified as twins, even absent Nts (49).  Stripes 

can be considered an extreme expression of this R8 multiplicity.  Second, stripes are 

reliably formed by stripes, but not from a disordered pattern:  There is initial condition 

dependence of the stripe phenotype. 
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Examining the summary data from the two-cell analysis of various parameter sets 

reveals the origin of this phenomenon.  For a given template, uns is fixed in every cell, 

and the critical delays for selection of a single cell from any pairwise interaction can be 

deduced.  For a patterning system with effective, quick inhibition, the range of delays that 

will yield a twin for a given interaction is quite narrow, and most interactions resolve 

decisively in favor of one cell or the other.  By making the inhibition slower and less 

effective, effectively increasing Tu, this range becomes much larger.  This is very generic 

behavior, and the fraction of twinned cells increases, as does the failure of a regular 

hexagonal pattern. 

The difference between a stripe template and a hexagonal template on cell 

selection is less obvious.  The zone of complete inhibition around R8s is roughly circular, 

and so the arrangement of the first layer of cells that can possibly be activated as the MF 

progresses is scalloped for a hexagonal template.  In this case, distinct proneural clusters 

are formed, and the most posterior proneural cells have, on average, a finite headstart 

over their closest competitors.  Given a stripe template, however, the next closest 

adjacent cell is likely to be oriented parallel to the MF, at a very small time delay.  

Looking at a distribution of time delays for random pair-wise interactions given these two 

templates, then, we expect the distribution of delays for a hexagonal template to be more 

tail-heavy than that for a stripe template, though they are both symmetric about zero and 

have nearly the same domain, which is defined by cell size.  This information is 

summarized graphically in Figure 33. 
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Figure 33:  Summary of pattern v. stripe template analysis.  In this figure, each cross 
represents the intrinsic properties (time delay and external inhibition) of a reference cell 
with zero inhibition and its closest competitor in a simulated proneural group.  The 
shaded regions are where we expect, based on two-cell simulations, both activated cells 
to become R8s.  The blue region represents a parameter set that gives wild-type-like 
results, whereas the salmon region represents a parameter set with a defect in inhibition 
that makes it effectively slower, and gives sca- type results.  The yellow crosses are taken 
from simulated proneural clusters that are defined as they would be given a hexagonal 
grid of template R8s in the previous column.  The green crosses are taken from a system 
with a stripe template at the same MF speed.  Comparing the two distributions to the blue 
region shows qualitatively similar results.  The large majority of cell groups are resolved 
definitively in favor of one cell or the other, with some being activated as twins.  The 
difference between the patterned and the stripe template for the sca- parameter set is 
dramatic, though.  Of course, a much larger number of cells are activated as twins given a 
patterned template, but most still are activated singly.  But with the stripe template, the 
large majority of cells fall within the salmon region.  This indicates that these cells will 
attain R8 fate in large contiguous groups: stripes. 
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For a parameter set that patterns well, the range of delays where twins are 

produced can be very small.  Comparing this data with the distribution of delays 

generated by a hexagonal template versus a stripe template, reveals little:  a marginal 

increase in a low frequency of twinning that may or may not be large enough to observe 

in experiments.  For sca- parameter sets the situation is much more interesting.  The 

behavior of interest is most pronounced when the range of delays resulting in twin 

formation is not simply sampling a narrow segment of the delay distribution near the 

peak delay frequency, but is separating the body and the tails of the distribution.  

Necessarily, in this case a significant number of twins are observed.  Changing the 

template can dramatically change the frequency of twinning.  For a parameter set 

showing a significant, but still distinctly minor, fraction of R8s as twins given a 

hexagonal template, the shift to a stripe template can change the vast majority to twins.  

This results in the specification of large contiguous groups of R8s: stripes. 

Comparison to Classic Lateral Inihibition 

 It helps, in justifying work on a model, to have points of comparison.  How does 

our model improve upon the standard?  Does the standard model have some advantages?  

Can they be tested against each other by experiment?  Etc.  The standard theory of 

proneural cluster resolution involves Delta-Notch lateral inhibition.  In this system, Delta 

is a membrane-bound ligand for the receptor, Notch, and they interact at the apposed 

membranes of the cells expressing them.  Binding of Delta to Notch initiates a signaling 

cascade that results in increased Enhancer of Split (E(spl)) transcription factors in the 

nucleus, which, in this case, act as inhibitors of neural fate (62, 131).  It is not the specific 

proteins or interactions that are different in this model compared to ours.  The difference 
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is in the presence, in the textbook model, of an instability guaranteeing only one cell out 

of a group being able to sustain R8 fate (1-3, 13).  This kind of interaction is easy to 

generate with the opposing-membrane, juxtacrine signaling described above.  The 

equations below are an example of a simple modification of our model that effects this by 

having two inhibitors:  One (u), that sets cluster spacing, and one (v) that resolves 

clusters. 
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Here, the operator vn  encodes the juxtacrine signaling that is a potent source of 

instability.  It represents the sum of the secondary inhibitor v at all the cells adjacent to n, 

but not at n, itself. 

 vn = v
 n 

 n 

Dn,  n 0

 (11) 

 

Proper tuning of the new parameters Va, Av, and v makes the condition where two 

adjacent cells are both at the high-a state unstable, and this leads to significantly different 

bifurcation properties than the model of equation (2). 
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 It is not our current goal to fully explain the range of behaviors possible in this 

new, more complicated model, but some limited studies have yielded results that are of 

interest. 

 The basic function of this model, as we have designed and parameterized it is the 

following.  First, the a-s-h-u subsystem behaves exactly as explained previously.  When 

cells near the high-a (now not necessarily permanent) state, they begin to produce the 

secondary inhibitor, v, relatively slowly.  This inhibitor has no effect on the cell 

producing it, so an isolated cell is unchanged.  If multiple adjacent cells are at the high 

steady state, though, they start aggressively inhibiting each other, and the high state 

becomes unstable in a supercritical pitchfork bifurcation.  Unlike the trivial subcritical 

pitchfork bifurcation we dismissed earlier, this one is impossible to avoid:  The cells have 

been focused to the high steady state, which is nearly independent of uns, and any 

headstart has lost its meaning at this point.  In a physical system, it would be reasonable 

to say that the branch the system ends up following could be determined randomly.  The 

two stable asymmetric steady states generated by the pitchfork bifurcation become more 

and more asymmetric as v builds up in the winning cell.  Eventually these steady states 

annihilate the unstable states 0+ and +0, leaving only the two stable asymmetric steady 

states and the unstable symmetric steady state, as shown in Figures 34 and 23. 
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Figure 34:  Nullclines for unstable symmetric high steady state in the 2-inhibitor 

model of equation (10).  A) shows the nullclines for a system of two bistable cells 
experiencing full activation and v=0.  In this system, we have added a secondary inhibitor 
v, with juxtacrine signaling capability.  The other panels show what happens as this 
inhibitor slowly builds up, which we simulate by incrementally decreasing Va.  B)  At 
high-but-finite Va, the situation remains largely unchanged in terms of steady states.  C)  
Eventually, the ++ steady state can go through a supercritical pitchfork bifurcation, 
becoming unstable and spawning two asymmetric stable steady states (cyan).  D)  As Va 
decreases, the new asymmetric steady states annihilate the +0 and 0+ saddles in saddle-
node bifurcations, leaving only the saddle at ++, and the stable large-amplitude 
asymmetric steady states at +- and -+. 
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 With parameters chosen to permit the behavior described above, this model is 

incapable of producing twins.  Thus, it is also incapable of producing stripes.  This 

means, definitively, that this is not the process going on in sca- discs.  It cannot be 

excluded from WT discs, at this point, and may well apply in other neural fate 

specification systems.  It is almost certainly not important for eye disc patterning for 

another reason, though.  This system prevents twins, but twins weren’t a big problem in 

the simpler model, more of an incidental finding.  In destroying twins, it resolves 

potential twins randomly, with no regard to the template or choosing the “correct” cell.  

This is template-destroying.  Perhaps for twins this isn’t a big deal (see the next chapter), 

but if the cluster is randomly resolving to a single cell from amongst 3, 4, 5 or more 

equivalent possibilites, much of the template information is lost in a single step.  It seems 

reasonable to suspect that even if such a mechanism exists, it is not used except 

infrequently, even in WT discs.  This is analogous to the situation discussed earlier in the 

chapter where an unstable state can only be considered important if trajectories pass 

nearby with any regularity. 

Behavior Near Neurogenic Clones 

 An experiment that gives dramatically different results for our model versus a 

lateral inhibition-containing one is, fortunately, a simple one.  A common technique in 

Drosophila genetics is to use the FLP-FRT system to introduce clones of cells with a 

targeted gene knocked out (133).  The larvae in this case are mosaics of two genotypes, 

and very informative.  Here, we consider mosaic larva eye discs that have a clonal 

boundary separating WT cells on one side from cells that are guaranteed to become R8s 
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(a neurogenic clone, with LOF mutations in E(spl), for example) running through an 

individual proneural cluster. 

 In this situation, the proneural cluster cells in the neurogenic clone will become 

R8s, regardless.  What is in question is the fate of the WT cells.  In a classic lateral 

inhibition situation, it is obvious that the guaranteed winners in the cluster will suppress 

the WT cells in the cluster.  In our model, however, R8 fate is permanent, and determined 

by processes outside the proneural cluster:  The MF and the template of the previous 

column of R8s.  If these processes select a WT R8 naturally, that cell will still be selected 

in addition to the ectopic R8s in the clone, provided the dynamics of their differentiation 

aren’t too perturbed by the mutation.  If the “natural” cell happens to be one of the ones 

in the neurogenic clone, there will be no visible difference in outcome between the 

models.  Thus, our model predicts that there will be R8s specified arbitrarily close to a 

neurogenic clone, but still outside it.  The textbook theory predicts that there will never 

be R8s any closer to a neurogenic clone than the width of a proneural cluster.  Our theory 

additionally predicts that there will be a polarity to this effect with respect to the relative 

orientation of the clonal boundary to the MF.  These predictions are currently being 

tested.  The first, it is safe to say, has been confirmed (31). 
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Figure 35:  Trajectories of a in seven cells incorporating a neurogenic clone.  In this 
graph, each line is the trajectory of a for a cell in a seven-cell proneural cluster.  The red 
lines have a “wild-type” genotype, whereas the magenta ones are a “neurogenic clone,” 
where a mutation has been introduced rendering them immune to the action of u.  It is 
clear that the neurogenic mutant cells will become R8s regardless of what else happens.  
Due to the permanence of R8 fate in this model, and the selection of cells by a 
combination of inhibitor template and timing derived from geometry, it is possible that 
WT cells in such a cluster will also become R8s, if they are selected early enough. 
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Chapter IV: 
 

Long Range Patterning 
 

 Thus far, we have discussed a model of R8 specification based on genetic 

interactions and addressed its ability to form self-propagating, stably patterning solutions 

in 1D, and the generalizations required to analyze cell selection in small sections of 2D 

epithelia.  The last stage of the multiscale model involves using knowledge of a cell-

selection subsystem to predict long-range patterning behavior.  In this section we will 

largely abandon continuous time, and examine the question, “Given an epithelium and an 

initial pattern of R8 cells arranged in a column, what will be the pattern of cells in the 

next column?  And the next?  And the next?”  The answer to this question should inform 

the distinction between the regular pattern-forming WT parameter sets and the disorder-

producing sca- ones.  The knowledge will be more powerful than that, however:  It will 

necessarily be a theory of the production of pattern errors, their persistence, resolution, 

and propagation.  In this section, I will first discuss what patterns we see in eye discs 

stained for Senseless (which corresponds to R8 fate).  Then, I’ll discuss the model 

formalism we have developed to facilitate the study of long-range patterning, and some 

preliminary data from applying it to simulations.  Lastly, I’ll discuss some applications of 

this model formalism to specific biological questions of interest. 
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Order in the Eye Disc 
 The ordering of the R8s of a developing eye disc (hexagonal, stripe, or basic lack-

of) is easy to detect with our own eyes.  Human sight is legendary, when it comes to 

pattern detection, for both its ability to detect subtle order, and to misjudge it.  To address 

patterning at the scale of a whole eye disc, or a large section thereof, we should look at 

the patterns formed with more quantitative rigor.  We have examined eye discs of several 

genotypes immunostained for Senseless, and imaged by confocal microscopy by our 

collaborators in Nick Baker’s lab at Albert Einstein College of Medicine (31).  We 

processed these images with an automatic method for identifying the locations of 

senseless-expressing cells, and registering them with a local coordinate axis representing 

rows and columns, or the direction of progression of the MF.  Since some of the 

genotypes we deal with involve temperature sensitive alleles, or heat-shock promoters, it 

sometimes made sense to divide an eye disc into distinct regions representing pre- and 

post-restrictive temperature regions.  We did this manually, and treated these regions 

separately.  Given the positions of nuclei from R8-specified cells, we attempted to 

evaluate their arrangement in space in a principled way. 

 To detect hexagonal and stripe ordering in an array of R8 cells, we used the 

orientational order parameters e6i , and e2i , respectively, where the angle, , was 

defined in relationship to the local direction of MF progression, and represents the angle 

formed by the vector separating two cells and the local coordinate axis.  Rhe averaging 

was done over cells defined to be neighbors by a criteria based on separation distance 

(134).  The regions containing R8s are often not very large, and frequently have very 

elongated shapes, making edge effects quite significant.  For this reason, we needed to 
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compare the order parameters observed for any given eye disc not with zero, but with 

relevant null hypotheses based on the geometry of that disc.  Generating null hypotheses 

involved defining a region of interest, counting the cells in it, and then repopulating an 

identical region with that number of cells according to some ordering rule.  The first null 

hypothesis we used involved liquid-like ordering, in which cells were not densely packed, 

and had a circular zone of exclusion about their centers.  Populating a defined region 

according to this rule is simple:  Pick a random location, if it is far enough away from all 

the other cells that have been placed so far, accept it, otherwise, reject it and repeat.  A 

rule for a stripe-like hypothesis is similar, but with the addition of a sinusoidal function 

modulating the maximum probability of acceptance as a function of a cell’s displacement 

in the direction of MF progression.  Radii of exclusion and stripe separation were taken 

from image averages.  Appropriate hexagonal patterns are significantly harder to 

generate, so at this point we treated hexagonal patterning as a classification of exclusion 

when a system is compared to the other two patterns.  Any number of specific 

manifestations of the null hypotheses for a given geometry can be generated, and order 

parameters calculated.  The distributions of these order parameters in the complex plane 

provide the basis for reference that the measured order parameter for the actual 

arrangement of R8s should be compared against.  This works marginally well for 

classifying stripes.  Indeed, for experimental results where the stripe-forming behavior is 

somewhat messy, without large continuous stripes, the overall ordering can still be 

detected by order parameter when it might not have been by eye, as in Figures 36 and 37.  

In other cases it works less well than our intuition would suppose, as in Figures 38 and 

39. 
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 Figures 37 and 39 show the summary data that this analysis provides for two eye 

discs with transiently destroyed templating.  In the first disc (Figure 36, analysis in Figure 

37) the template has been temporarily destroyed by increasing Notch signaling via a heat-

shock promoter-driven Notch intracellular domain, direct evidence of which can be seen 

in the broad stripe where no R8s are specified.  The second disc (Figure 38, analysis in 

Figure 39) shows the action of the previously-discussed temperature-sensitive Notch 

allele that allows temporary disruption of R8 suppression.  These genotypes, while they 

do similar things with respect to destroying template order in the DV direction, have clear 

qualitative differences.  The orientational order parameters measure the average of local 

ordering in the locations of cells, and do not require a coherent long-range positional 

pattern to yield a signal.  They are, accordingly, able to detect “stripeness,” even in a 

system (such as the eye disc in Figure 36) where the stripes are broken apart and shifted 

over the pattern region, and not part of a single crystal domain.  Analyzing such a pattern 

with a stripe-detecting orientational order parameter yields strong concordance with a 

distribution of test patterns generated from a stripe-forming hypothesis, and strong 

disagreement with test patterns generated from a disordered hypothesis.  No notable 

hexagonal patterning is observed. 

 This type of ordering in the second, temperature-sensitive Notch phenotype is not 

as robust.  Though at least a couple long, relatively contiguous stripes of R8s are visible 

in the eye disc in Figure 38, and the stripe-detecting order parameter for that system 

shows better concordance with a stripe hypothesis than a disordered hypothesis, the 

degree to which stripe hypotheses can be separated from a disordered hypotheses in this 

geometry, at this density, is not impressive.  This is due to the fact that the stripes, here, 
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have some internal structure, and there is an overall excess of R8 cells.  Indeed, a 

positional order parameter would work better for detecting the order in this disc, whereas 

it is unworkable in Figure 36.  The need to use different pattern detection schemes for 

different genotypes giving related phenotypes suggests that the understanding of the 

pattern that inspired these detection methods is somehow incomplete, and should be 

reexamined. 

 Trouble arises in this type of classification when there are broad distortions to the 

underlying lattice.  This complicates matters, as the eye disc is far from flat and even.  

While it is an epithelial monolayer, it is twisted and bent in 3D into a characteristic shape, 

and it is not clear how this affects the local patterning system (2).  Secondly, for purposes 

of cell-location, we use nuclear staining, but the nucleus does not necessarily represent 

the “true” location of a cell compared to its neighbors very well.  Third, and most 

fundamentally, R8 fate is fixed for a single cell, but the geometry of that cell’s 

neighborhood is dynamic.  The morphogenetic furrow is, recall, so named because it is a 

physical distortion in the epithelium, and it moves; it is also accompanied by changes in 

nuclear location within cells.  These distortions are near their most highly dynamic when 

the patterning process is actively occurring (1-3,17,27-30).  If we could characterize the 

distortions precisely, we could transform the system in such a way that isotropic order 

parameters provide an adequate measure of the pattern.  Unfortunately, the only way we 

can see to arrive at an empirical understanding of these distortions, with the present data, 

would be to do something patently dishonest, like assume a final hexagonal pattern of the 

R8 cells, and calculate an effective local lattice based on that. 
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 It is worth asking why stripe-detection by order parameter still works, at all.  The 

explanation for this is that the direction of the stripes (parallel to the MF), is decoupled 

from the direction of maximum dynamical distortion (perpendicular to the MF), and that 

stripe spacing is considerably larger than within-stripe R8 spacing, making the order 

relatively insensitive to the exact distance range used to calculate neighbor interactions.  

For hexagonal order, there is no such decoupling; stretching any axis affects all other 

predicted spacings and angles for nearest neighbors.  Additionally, the difference 

between cells associated at 90 degrees relative to an axis, versus 0 is dramatic, even with 

the levels of noise and uncertainty in the current system.  The difference between 0 

degrees and 30 degrees (equivalent maximum and minimum probability angles for 

hexagonal patterning) is much smaller, and higher-symmetry long-range order is just 

more delicate in such a finite, suboptimal system. 



 135 

 

Figure 36:  A hs-Nintra, sca- eye disc with Notch intracellular domain driven by a 

heatshock promoter.  To generate stripes in this eye disc, instead of temporarily shutting 
down Notch signaling with a temperature-sensitive allele, Notch signaling was 
temporarily enhanced by driving a gene expressing the Notch intracellular domain (the 
transcriptionally active part) with a heatshock promoter.  The temporary lack of any R8s 
being specified, at all, is visible in the center of the field.  Incidentally, the portion of the 
eye disc on the left side gives a good idea of what the sca- phenotype looks  like in terms 
of R8 specification.  The post-heat-shock patterning seen in the stripe at right is difficult 
to evaluate, by eye.  It appears that it may contain stripe-like order, but the stripes are 
broken and jumbled to a significant degree.  Photograph courtesy of Nick Baker. 
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Figure 37:  Ordering and null-model comparison for the eye disc in Figure 36.  This 
figure shows the results of using a pattern-detection method based on the orientational 

order parameter, ein , which is sensitive to the relative positioning of neighbors with 

regards to a local reference axis defined by MF movement.  n is the order of rotational 
symmetry expected.  In each figure, the blue pluses represent trials of a null model 
consisting of an identical number of cells observed in a region of interest arranged with 
liquid-like order.  The red pluses represent trials of a null model representing cells that 
exhibit both local exclusion (as the blues do), and overall stripe-like positional order.  
The colored ellipses represent the regions containing 95% of the null model distributions, 
given Gaussian behavior.  The green dot on each set of axes represents the orientational 
order calculated from the positions of the cells in the actual eye disc in question.  A) 
shows the order calculations for the portion of the eye disc in Figure 36 that was 
patterned after the template-destroying heat shock.  There is good separation between the 
striped and disordered null models, and the observation clearly falls within the order 
parameter predictions for stripes.  B) shows the same system examined for six-fold 
ordering.  As expected, there is little distinction between the striped and liquid-like null 
hypotheses.  There is also no indication of excess hexagonal order in the eye disc.  C) 
shows the pattern evaluation for the pre-heat-shock portion of the eye disc, which shows 
the unperturbed sca- phenotype.  Testing for stripe-like order shows no disagreement 
with a disordered system.  D) testing for 6-fold order shows, perhaps, a very slight 
amount of hexagonal patterning.  This finding is not robust, at all, and even for wildtype 
discs, random variation and systematic lattice distortion stymie use of the n=6 order 
parameter near the MF, where patterning is actively occurring. 
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Figure 38:  A sca- eye-disc with temperature sensitive Notch that shows a clear 

pattern of stripes.   In this figure stripes were formed after Notch signaling was 
temporarily disrupted with a temperature-senstive Notch allele.  Long, continuous stripes 
of R8s are clearly visible, but they have finite width, which complicates evaluating their 
order.  Photograph courtesy of Nick Baker. 
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Figure 39:  Ordering analysis of the eye disc in the Figure 38.  In these graphs, which 
follow the same labeling convention as Figure 38, we examine the orientational order-

parameters ein , with n=2 and n=6 for the region of the eye disc in Figure 35 that 

appears to contain stripes of R8s.  A) shows, somewhat surprisingly, and illustrative of 
the vagaries of comparing images of different eye discs, with different genotypes, that 
were fixed at different developmental times, is the fact that the null models based on 
liquid-like disorder and stripe-like positional order are not very distinct, according to the 
n=2 order parameter.  Nevertheless, the observed data in this eye-disc favors stripe-like 
order.  B) shows the same data examined for 6-fold symmetry.  There is none. 
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 We decided, after examining this system and its properties, as discussed here, that 

perhaps the statistical-mechanics-inspired viewpoint of ordering was not the best way to 

examine R8 specification (though it is likely useful in other contexts).  This is not, as we 

understand it, a thermal system where many particles interact and seek a minimum in 

some collective thermodynamic potential.  Each column of R8s has a role in specifying 

the locations of the next, but, also, there is some variation that occurs in this process that 

is quenched into the pattern (1-3,49,50).  In this viewpoint, the order of the pattern is 

contained in the process by which one column specifies the next.  This iterative process 

can be understood without having to invoke true long-range order in the distorted eye 

disc.  What order exists is imprecise, and the exact spatial order seen in adult flies arises 

later in development after cell rearrangements.  For R8 specification, though, we have a 

new target.  Previously we studied how an R8 cell is chosen by our model, now we will 

study whether that chosen R8 cell is the right one to extend the previous pattern. 

 

Concept and Method 
 In dealing with a process that has fundamentally discrete time (column 1 specifies 

column 2.  Column 2 specifies column 3:  t1 t2 t3 …), a number of formal 

approaches exist.  A finite epithelium of N bistable cells suggests the classification of its 

state as an N-bit binary number.  If we consider a system that is always in a state where 

every cell can be classified, and these binary classifications are adequately precise (the 

MF moves slowly, essentially), then each state will lead to another, deterministically, and 

the system can be summarized as a deterministic finite-state machine.  If cells can only 

make the transition 0 1, and not the transition 1 0, there will be terminal states that 
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“become” only themselves, and there will be source states that exist only ab initio.  Since 

the system is deterministic, each state will only lead to one other.  Furthermore, if the bits 

are ordered, and the fate of each bit is determined in order, each state will have only one 

state that leads to it:  The overall structure of the system will be like a tangle of many 

separate strings.  Of course, a finite state machine with 2N states is a scary thing, and N 

doesn’t need to get very big before our understanding of the system becomes hopelessly 

clouded.  The goal, then, is to coarse-grain the system in a way that preserves all the 

detail we care about, and is simple enough to facilitate understanding (59,60). 

 This entire thesis has been about coarse-graining in one form or another.  To 

illustrate the goals of coarse-graining the pattern-propagation system, let’s look back on 

the simpler 1D system as a finite-state machine.  On a finite 1D lattice, and given an MF 

moving from left to right, the number of distinct strings is simply the number of different 

initial conditions we allow.  Fate determination rules applied at each step (each time step, 

in this case, is most conveniently defined as “when the next cell is activated”) extend 

these chains until a terminal condition is reached.  In the patterning system, cells that are 

far away from a cell currently having its fate decided by the MF have very little direct 

influence over this decision.  It makes sense, then, to have the first simplification of the 

finite state machine be a reduced number of states representing only the range of states 

near the MF, effectively translating to a moving reference frame.  The system is still 

entirely deterministic, so we expect no branching, but now paths from different initial 

conditions can coalesce, as the details of those initial conditions are “forgotten” by the 

reduced state space.  Coalescing states can be taken to more extreme levels.  If the 

implication of each transition is perfectly understood, along with the initial condition, no 
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information need be lost, but it is likely that the new, rule-based states have little direct 

resemblance to the detailed states of the full system (132).  For purposes of understanding 

and explicating a system in which the rules are unknown, or at least not known in easily-

summarized detail, the intermediate level of simplification seems most desirable.  For the 

1D system this hierarchy of simplification is illustrated in Figure 40. 
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Figure 40:  Coalescing a 1D patterning finite state machine.  A) shows the 
deterministic evolution of 8 allowed initial conditions on a grid of 14 bits.  The rule at 
work here is a simple threshold; if the two bits preceding the right-most ‘on’ bit are ‘off’, 
then the next two bits stay ‘off,’ while the third becomes ‘on’ (red arrows).  Otherwise 
(black arrows), there are three ‘off’ bits followed by one ‘on.’  Since the machine is 
deterministic, and the entirety of the history is stored in the bit-string, the overall 
structure consists of parallel strings.  B) this is the same rule applied to a moving 
reference frame (the bit most recently switched ‘on’ is always the right-most one in each 
state) in an overall field of unknown size.  All but the most recent history of each state is 
“forgotten” at each step, and this machine is much easier to interpret as a single physical 
process.  Even if we didn’t know the different meaning of the red and black arrows (in 
this case, they refer most directly to the size of the frameshift at each step), we could read 
off many aspects of the system.  To wit, it has a periodic absorber, and the general 
approach to that state involves a one-step transient through the state 0001.  C) shows the 
maximum coalescence of this system, where we have redefined the states to match the 
rules (below threshold, not below threshold).  Since we know exactly what the rules 
were, nothing has been lost.  If, however, we didn’t, so much detail has been lost, here, 
that it would be hard to back out the physics of the process. 
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 The familiar branching structure of a Markov process arises when a system is 

probabilistic in some way.  Our model can be quite complicated, but it is deterministic.  

In 1D we treated it as deterministic and regular, with a distinct spatial periodicity to the 

lattice.  In 2D, however, we use a randomly generated lattice of cells, with interactions 

determined by the length of the interface between adjacent cells, as defined by a Voronoi 

tessellation (for more on the lattices, see Appendix D).  For a patterning system in a 

moving reference frame, then, there are an infinite number of states and initial conditions, 

and the whole point of shifting to this viewpoint has been destroyed unless we can make 

a decision as to how to aggregate the states.  In the process of this coarse graining, which 

involves reducing an infinite number of randomly generated states to a finite number of 

state-categories, the system gets a probabilistic interpretation that results in branching 

paths. 

 Given a propagating pattern, and asked which is the next cell that should be 

activated to extend that pattern, it is likely that there will be one or two cells that are, 

essentially, good enough.  There will be many cells, and many more multiple-cell 

combinations, that are very, very wrong.  There are likely to be several possibilities that 

do not fit well into either category:  Cell selections that don’t extend the pattern correctly, 

but don’t totally disrespect it, either.  In a patterning situation, the activation of the 

correct cells is favored by their interaction with the previous pattern.  If a cell is specified 

in an egregious, pattern-destroying location (or locations), that bias for the correct cell to 

be specified in the next column is destroyed, and the situation now favors the 

specification of incorrect cells, which are far more numerous.  Given that we aren’t 

concerned with the specific random pattern generated by a system with a destroyed 
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template, it makes sense to lump all of the badly mispatterned states into one self-

regenerating, disordered state.  What remains to decide is how to treat the transition 

between the perfectly-patterned and the unpatterned states:  The small but significant 

errors. 

 At one extreme, all errors can be treated as very important and treated in full 

detail, bringing us back to square one.  At the other extreme, all errors can be treated as 

fatal, giving us a total of two states:  good pattern, and no pattern.  In between these 

extremes of overwhelming detail and triviality lies the ideal of physics-preserving coarse-

graining.  The “small error” states must be modeled in some detail:  If they are close 

enough to the correct-patterning state that they can lead back to that state with any 

notable probability, they contain important physics.  Treating them more casually can 

significantly change the interpretation of the patterning state, the non-patterning state, or 

both.  How these important “small error” states are defined is dependent on the state-

space loop we decide to call “patterning.” 
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Figure 41:  Coalescence of the 2D patterning system, schematic.  A)  There is one 
state in the patterning system that represents the correct, repeating pattern (state zero).  In 
a 2D system, there are potentially very many states that represent an incorrect pattern 
(yellow squares), and they cannot all be treated in detail, lest the machine become 
hopelessly complicated.  B) Using the assumption that a bad error will, in general, 
produce more bad errors (or at least be very unlikely to spontaneously produce a good 
pattern) we coalesce most of the error states into the stable, absorbing unpatterned state, 
w.  C)  In the most extreme case, all of the states except zero can be coalesced into state 
w.  Our understanding of these processes is necessarily incomplete, though, and if we do 
this we have probably destroyed the detail that will provide a key to understanding the 
system.  A machine more like ‘B’ is desirable. 
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 It is easiest to make this concrete for a system specifying successive stripes of 

R8s.  The perfect, self-regenerating state is that of a continuous, straight stripe.  The 

obvious types of small defects include a cell missing from the stripe (a gap) and an 

ectopic cell present in addition to the stripe, but near it.  These defects arise in different 

quantities for different parameter sets (averaging over many lattices; recall that the 

probabilistic interpretation arises because a new lattice is encountered every time we shift 

reference frame with the MF), and for different error conditions in the template.  They 

can occur in combination, and since single errors only define three distinct states, we are 

capable of treating limited classes of multiple errors.  See Figures 42 and 43 for a 

discussion of how these multiple error states are defined.  The jump from the perfectly 

patterning case to the large-error state is possible, though it tends to be more likely if the 

system already has a small error in the template.  An error-containing template, however, 

can lead back to the perfect stripe (or another small-error state) with significant 

probability.  This would appear in a larger patterning system as a self-healing capability, 

or an ability to completely recover from finite size errors.  This is observed in large 

simulations of stripes, and in eye discs expressing stripes of R8s, as shown in Figure 44. 
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Figure 42:  Basic stripe errors.  A Perfect stripe, a gap, and an ectopic cell.  More error 
states can be enumerated as combinations of unit errors.  In this case the case of stripes it 
is simple to consider a state as leading directly to a new state, without going through a 
branching-recombining process with adjacent unit processes. 
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Figure 43:  Schematic of stripe classification.  On a 5 by n grid, we define a set of 
overlapping regions.  The grid itself is randomized, in practice, and we do simulations on 
many hundreds of these randomized grids.  The blue regions represent the predicted 
location of cells in a stripe, the red ones ectopic locations nearby.  In actuality, the 
regions are rectangular and have much greater overlap than shown.  We first try to assign 
cells to regions such that there is exactly one cell in each of the ‘+’ bins.  Any leftover 
cells are then assigned to ‘-‘ bins.  Examining all possible arrangements with no more 
than one cell in each bin, each arrangement is scored by the number of errors; an empty 
‘+’ bin or full ‘-‘ bin counts as an error, and the overall identity of the state is defined as a 
linear combination of all the minimum-error states.  There are 18 error states (and 1 
perfect state) with 2 or fewer errors, and accounting for translation and reflection 
symmetry perpendicular to MF motion. 
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Figure 44:  Simulation and eye disc showing stripes capable of significant self-

healing.  A) shows s for a simulation on a randomized epithelium with a parameter set 
that forms stripes.  The initial condition was the full activation of the continuous stripe of 
cells on the left.  Subsequent stripes show spontaneous errors (gaps, in this system), that 
can be “healed” in the next stripe.  B) shows a similar observation in stripe-forming eye 
disc stained for Senseless.  Photograph courtesy of Nick Baker. 



 151 

 Developing a coarse-graining for a hexagonally patterning system involves 

additional challenges.  In the fundamental patterning unit of this system, two R8s in a 

regular arrangement (or some perturbation thereof) specify the location (more or less 

well) of a new R8 in the next column.  Each template cell influences the location of two 

new R8s, though, and each new state (states consist of two R8s, taken together) is 

influenced by the outcome of two decisions made by the previous system.  The obvious 

fundamental unit for this system, while its properties fully determine the behavior (as 

long as adjacent outcomes don’t influence each other), does not generalize immediately 

to a large system by simply arranging many independent parallel units.  The unit process, 

is, in fact, just another module in a larger machine with many modules interacting in a 

stereotyped way. 

 Why is this effect obvious for a unit process in the hexagonal system, but not for a 

similar process (where it surely must exist, also) in the stripe-forming system?  The 

answer lies in the number of cells that are influencing the activation of the next R8s, and 

the effective influence of a finite size error in one of them.  In a stripe, there are several 

cells almost directly posterior to a newly specified R8 that are influencing its 

specification strongly, and many cells further away that influence it very little.  A 

perturbation at one of these positions that is more removed along the dorsal-ventral axis 

is unlikely to cause a finite jump in the outcome of the local stripe.  For this reason, as 

long as the single step iteration of a stripe is done on adequately large sections of 

epithelium (which can be quite small), it will represent a sort of mean-field 

approximation of the system as a whole, and that approximation will be good. 
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 To characterize the location of a new R8 specified by 2 R8s in the previous 

column, we use the following procedure.  First, we define a circular zone, centered on the 

point where a new R8 would be optimally specified on average, and large enough to 

incorporate the spatial variation of a random lattice (choosing the radius equal to .6 times 

the mean cell-cell separation works well).  Concentric to this, we draw another circle, 

divided into four quadrants centered posterior, anterior, dorsal, and ventral to the 

“optimum” circle.  These areas represent the regions where a cell can be erroneously 

specified and still be considered a small error.  We divide the circle into the four 

quadrants because those symmetries are broken, and these states are likely to have very 

different properties:  The MF breaks the AP symmetry, and different errors in the two 

template R8s would break the DV symmetry.  We could divide this circle more finely, 

certainly, but it makes more sense to add another kind of error possibility to the coarse-

graining:  Twins.  Twins are, recall from Chapter III, at the very center of our 

understanding of the fate-selection sub-system.  They are also a key feature of mutant 

phenotypes.  In addition to the four obvious small errors that are defined by 

displacements in the location of the specified cell, we treat analogous errors representing 

one of these displaced cells specified ectopically in addition to the correct cell.  Defining 

large error states is simple:  A “zone of influence” of the two template cells is defined as 

a third, even larger concentric circle.  Roughly, if a cell is expressed in this area and not 

within one of the smaller circles, it is the fault of these particular template cells, and it 

counts as a catastrophic error.  Poorly located twins, and multiple R8s of higher 

multiplicity also count as large errors.  There are, accordingly, 10 distinct outcomes for a 
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single input state:  A perfect R8, 4 displaced R8s, 4 orientations of twins, and the 

disordered state. 

The outcomes of adjacent specifications must be combined to make new states.  

There is the obvious state representing a perfect template.  There are the obvious states 

typified by having one cell in the correct location, and the other displaced or twinned in 

one of the ways characterized earlier.  There is also, obviously, the diordered state, which 

will catch all the states we don’t define specifically.  We must decide how to treat the 

case where both of the template cells have a small error.  It is generally the case that two 

small errors adjacent to one another make a larger error, and we will call these error 

states unrecoverable. The exception is when two R8s are displaced in the same direction.  

In this case, they produce a perfect template that is shifted from the previous template, or 

a shifted twin error.  If the two erroneous R8s are specified in a column that is otherwise 

perfectly patterned, the two error states that would have been produced by just one of 

these R8s are still there, just further apart in the DV direction.  The pattern information 

(including discrete phase shifts, not exact locations of cells) is still included in the states. 

In a machine of the size outlined here, it is reasonable to directly measure the 

probability of every transition by doing many simulations on small grids. 
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Figure 45:  Small error states for hexagonal patterning.  The simplest group that can 
be called a state in the hexagonal patterning system is two cells in a column.  If they are 
arranged parallel to the column, and at an appropriate separation for the pattern, this is 
the ideal state we call ‘0’.  The most obvious ways for this state to be modified, but it’s 
nature not completely lost, involve moving one of the cells in relation to the other, 
leading to states ‘1’, ‘2’, ‘3’, and ‘4’.  These states are oriented, and this can be 
significant if they are embedded in a larger system, giving them the modifiers ‘+’, and ‘-‘.  
The states ‘5’, ‘6’, ‘7’, and ‘8’ can be defined by the presence of a twin consisting of the 
correct cell and a displaced cell.  State ‘9’, the disordered state, comprises everything 
else. 
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Figure 46:  The result of a state.  A unit state, defined by two template R8s, or their 
poorly specified analogues, does not lead simply to another state.  It specifies a single 
cell.  This cell can be in the correct location, ‘A’, or a somewhat incorrect location, ‘B’, 
‘C’, ‘D’, or ‘E’, analogous to the relative shifts of the error states.  It can also be a twin 
(A+C, for instance), or completely incorrect (F, B+C, or a triple or higher multiplicity 
R8). 
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Figure 47:  The state-state transition process.  The outcome of two adjacent unit 
processes is necessary to produce the next state.  An error in one process results in two 
related error states in the next state array.  A) shows a simple upward shift of one cell 
produces a state with an increased template interval in the orientation (relative to the 
overall lattice) of Figure 45 (4+), and an adjacent one with a reduced interval in the 
opposite orientation (2-).  B) shows two small errors resulting in a state that is classified 
as a large error.  This is typical, in this system.  The state labeled ‘9’ will propagate its 
influence at each iteration until it dominates the field.  This is deterministic, so our main 
focus is on how rapidly state ‘9’ is generated de novo.  C)  not all small errors add to 
make a large error.  Two adjacent small errors that are related in their displacements can 
produce a shifted but internally unperturbed lattice.  The related errors (4+ and 2-, in this 
case) are still present flanking this area. 
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Figure 48:  Examples of templates used to explore transition space.  A good template, 
a twin, and a displacement shown on a small grid.  The fully inhibited (green) and 
proneural cluster (yellow) cells are shown, here, with reference to the overall pattern, and 
it is clear that the error states will lead to a higher probability of certain errors than would 
a perfect template.  Self healing is also likely in some cases.  The actual lattices used are 
randomized, and the outcomes considered probabilistic. 
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Examples 
 We have explored several parameter sets representing different behavior as 

iterative processes approximated by finite state machines.  Starting with a parameter set 

that was qualitatively biased toward hexagonal patterning behavior, and a parameter set 

that differed only at Ua and u that produced stripes, we produced interpolating parameter 

sets and determined the outcomes of simulations on 1000 distinct 192-cell epithelia for 

every small error state for each parameter set using both hexagonal and stripe templates.  

To interpret the branching nature of the hexagonal pattern we used the following 

simplifying assumption:  That the surrounding pattern seen by any particular cell is a 

perfect pattern.  The results can be interpreted as an approximation to the system 

behavior in the limit of rare errors. 

 A couple of interesting observations can be made on these results, both informing 

our understanding of these particular parameter sets and proofing the method before we 

apply it to bigger, more interesting questions.  The first observation is the relative 

sensitivity of hexagonal patterning to parameter variation compared to stripe patterning.  

In varying the parameters from one situation to the other, we are, of course, using the 

particular parameterization chosen fairly arbitrarily in constructing the model so many 

steps ago.  It is thus not really fair to say something like “good hexagonal patterning is 

not robust because it disappeared very quickly when we varied some parameters,” which 

assumes that the parameters we chose, and the variation of them reflects some natural 

scale of the system.  We can say, however, that while good hexagonal patterning 

disappeared abruptly upon varying the parameters, stripe patterning disappeared 

comparatively gradually and continuously.  This is shown in Figure 49. 
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 Also in Figure 49, the self-healing of the stripe pattern can be observed.  The rate 

at which the system leaves the perfect stripe-forming state is significantly compensated 

by systems re-entering this state from states with some finite error.  This shows up in the 

relationship of the rate out of the patterning state (as measured directly) compared to the 

net rate out of this state after giving the system a chance to evolve for one or more 

iterations (this rate will approach the largest eigenvalue of the linear process).  Here, the 

difference is between 85% of systems leaving the perfect stripe state gross, and 50% 

leaving it, net, for the “best” stripe parameters.  It is likely that if we attempted to 

optimize the stability of this system, we could find much more stable parameter sets.  

Example data and parameter sets can be found in Appendix G. 
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Figure 49:  Rates of leaving the perfect stripe condition for simultaneously 

decreasing u and increasing Ua.  Each line in this graph represents the average 
frequency (y-axis) of a perfect stripe pattern being observed in subsequent columns 
(iteration, x-axis) of a simulation, based on simulations of one patterning step performed 
on 80-cell simulated epithelia.  The blue line (for which stripes are destroyed most 
quickly) represents a parameter set that has been tuned, to some degree, to produce a 
hexagonal pattern.  The cyan line represents a similar parameter set where u and Ua have 
been increased to the point where some stripe-forming behavior can be observed by eye.  
The lines in between represent parameter sets chosen to interpolate between the 
hexagonal-patterning and stripe-forming ones.  We see that the instability of stripes 
decreases as we tune these parameters.  In contrast, if we examine hexagonal patterning 
the same way, it is lost abruptly and completely for a smaller shift in parameters.  Self-
healing can also be observed in this figure as a discrepancy in the slope of each line from 
column 1 to column 2 and the asymptotic slope.  It is clear that imperfectly patterned 
states can lead back to perfect stripes, and this behavior is captured in our coarse-grained 
model.  Neither of these findings speaks definitively about the biology, of course, since 
these represent just a few presumably unimportant parameter sets, but they illustrate the 
use and some of the features of our coarse-graining methodology. 
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 The role of specific intermediate error states in producing self-healing is evident 

in the hexagonally patterning system, and the (still not fine-tuned) parameter set that most 

favors it, as illustrated in Figure 50.  Evaluating the transitions from a perfect template, 

we see a very clear bias toward having the next cell come up shifted toward the template 

cells, suggesting the pattern we defined as optimum is systematically sub-optimal in this 

direction.  The next most common errors are small shifts parallel to the MF.  These errors 

all have relatively high-probability paths back to the perfectly-patterned state, though 

they are also fairly common intermediates on the path to ultimate disorder.  Again, 

concerted optimization of parameter sets could probably reveal parameters with far more 

stable patterning.  With a tool this powerful, though, we can begin to answer less formal 

questions about patterning (and its failure) as observed in nature. 
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Figure 50:  Intermediate error states generated by a sample pattering process.  We 
can also look specifically at the intermediate states experienced as an ordered system 
collapses to diorder.  In this figure each line represents the population of a different small 
error state of a hexagonally patterning system, as observed over many iterations, with an 
initial population of 1 in the perfect-patterning state.  The parameter set is the one from 
Figure 46 that showed the worst stripes (and best hexagonal) pattern.  Clearly, one of the 
small error states dominates, here:  The one shown by the cyan line.  This small error 
state happens to be the one representing an R8 shifted to the posterior of its optimum 
(average) location.  The next-most frequent error states (the blue and green lines) are 
shifts parallel to the MF.  The likely one-step errors can be seen to produce a distinct 
jump in a fourth type of error, in the third iteration, representing R8s shifted in the 
anterior direction.  Small errors involving twins are very unlikely for these parameters. 
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Specific Applications 
WT versus inhibitor-mutant patterning 

 As mentioned previously, and as shown in Figure 36, the R8 cells in a sca- mutant 

eye disc, or one with Egfr-, are not arranged in a hexagonal pattern (50).  This is despite 

the fact that in any very small section of retina, there is likely to be an R8 specified 

roughly anterior to and between two other R8s.  It seems that the basic patterning 

mechanism is not greatly changed, but the pattern, itself, clearly has.  This can be 

explained, in general terms, as a decrease in the stability of a system previously 

optimized for stable patterning when subjected to a random change.  This change in 

overall patterning quality can be observed in analyses of the sort described, here.  More 

importantly, we can tell much more about the action of a “mutation” in the model by 

examining the finite state approximation of the patterning system than can be inferred 

from a snapshot of the level of one chemical at one time point.  Observing end-state 

disorder in an eye disc is, after all, basically analogous to a binary classification of the 

rate of absorption (“fast” or “slow”) of systems to the unpatterned state.  Examining the 

patterning machine approximation we can, for instance, tell if the overall destabilization 

of patterning is due to an increase in the essential error rate, reduced ability to self-heal a 

damaged pattern, or a shift toward more-damaging types of errors.  This, in turn, can help 

us separate system-level roles of the different genes that have patterning phenotypes.  For 

instance, can the increased twinning observed in a sca- eye disc alone account for the loss 

of a long-range pattern? 

 To approach this question, we start with a parameter set that behaves in a 

scabrous-like way:  Producing a bad pattern given a hexagonal template, and producing 
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stripes given a stripe template.  We perform many simulations with a hexagonal template 

on small grids to get values for the transition probabilities between all the tabulated states 

in the patterning machine.  Some of these states are twins, and some paths to disorder 

proceed through a twinned state.  We now imagine another, un-modeled, process that is 

capable of resolving a twin by randomly deactivating a cell.  In this case, whatever the 

transition probabilities from a twinned state were, they are replaced with a 50% chance of 

going to each of whichever states would be represented by having one of the cells 

inactivated.  The effect of this change in the model on the stability of patterning, can be 

estimated without having to generate and characterize a whole new ODE model, as we 

did in Chapter III. 

Intrinsic Errors:  Edge effects and expanding domains 

 An eye imaginal disc is a finite object; it fits inside a larva, and the retinal field is 

roughly round.  The MF as it proceeds across the field is not straight, but convex toward 

the anterior, and specifies the R8s of the next column in the center-most rows of the field 

before specifying the R8s of the previous column near the edge of the field (2,31).  These 

observations may have important implications for modeling.  First, the finite size of the 

field means that there must be edge effects.  Second, not only are the cells in a column 

not specified simultaneously, the order of specification of R8s in a single column is not 

random, and DV symmetry is broken in a well-defined way.  We are now equipped to 

examine the importance of these observations. 

 One more observation:  Even in a wild-type eye disc, there are many R8s 

specified at the edge of the retinal field that are not part of the overall pattern:  For our 

purposes, they are errors.  Despite this, the pattern directly anterior to them is generally 
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intact:  The disruptive influence of these errors does not expand symmetrically as one 

would expect.  These observations suggest the following study. 
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Figure 51:  Eye disc stained for Senseless with attention drawn to pattern errors 

near the edge.   In general, up until this point, we have considered uniform MFs 
proceeding on lattices with periodic boundary conditions, approximating an infinite 
epithelium.  In reality, the eye-disc is finite, and the overall length of R8 columns first 
extends, and then contracts as the MF proceeds from posterior to anterior.  The edge of 
the patterning field affects the patterning system.  Examining the edge of this eye disc we 
see many cells near the edge (labeled with arrows) that do not seem to belong to the 
overall pattern.  Interestingly, they do not seem to affect the pattering of R8s in columns 
directly anterior to them.  This figure also shows the non-uniformity of the MF, itself.  If 
the column being specified near the DV midline is numbered 0, and columns to the left 
have positive number indexes, the column being specified near the edge appears to be 2 
or 3.  Each column, then, is specified starting in the center, and working its way out.  This 
broken symmetry can have an effect on how errors are produced and propagate.  It is 
possible to examine these effects by our iterative method.  Photograph courtesy of Nick 
Baker. 
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 Let’s treat the edge as a source of errors, and the head-start of the MF away from 

the edges as a symmetry-breaking perturbation that could potentially influence the 

propagation of an error to the next column.  This requires at least two different rounds of 

calculating finite state machines.  The first round of calculations is needed to determine 

the kind of errors a boundary might produce, and is accomplished by introducing 

artificially suppressed cells to the small-grid simulations used to estimate the transition 

probabilities.  The second round of simulations is needed to determine the influence of 

the asymmetric MF on the errors produced, and, especially, the asymmetry of the errors 

produced by a mispatterned R8 in its two daughter states.  This effectively doubles the 

minimum number of unique error states, as for a fixed front geometry the state with a 

poorly specified cell located dorsally is no longer related by symmetry to the similar state 

with the poorly specified cell located ventrally.  The task becomes figuring out what the 

eventual fate of the errors anticipated by step 1 is when operated on by step 2, as 

illustrated in Figure 52.  The results, here, could easily be counterintuitive, and this work 

is ongoing, so generalization would be premature.  That the positioning signal from the 

more medial cell is read “first” by the MF seems plausible, though, and this would lead to 

a net flow of errors toward the margins of the eye disc.  Whatever specific predictions are 

generated, they can be tested directly by the introduction of clones that locally destroy the 

pattern, or alter the structure of the MF.  This is, really, a very rich direction for 

exploration.  We are just beginning to appreciate the possibilities presented by examining 

the patterning system by this method.  With this diversity of possibilities, close 

collaboration with our experimentalist colleagues is imperative. 
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Figure 52:  Studying edge effects and MF asymmetry.  A) The edge of the retinal field 
introduces errors into the pattern.  In this figure, the pattern-appropriate cell to become an 
R8 is colored red, but it lies outside the retinal field.  The light blue cell becomes 
specified, instead, making a characteristic error for this edge geometry.  We can use small 
simulations to determine what the characteristics of these errors are and compare this 
with observations.  This can also be used to dictate what the initial conditions should be 
for a study of error propagation near edges or clones.  B) Of particular interest is the 
possible physiological reason the MF is not parallel to columns.  In this figure we show a 
hypothetical differential outcome for a MF angled one way (yellow) and the opposite 
way (red) as it encounters a spontaneous template error (twin).  With the dorsal-ventral 
symmetry broken, the influence of errors no longer needs to propagate symmetrically 
away from an initial event.  This could shed light on the reason edge-created errors seem 
to have no impact on the pattern in the main part of the disc, even directly anterior to the 
initial error. 
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Chapter V: 
 

Conclusion 
 

Starting with an ODE model that recapitulates WT R8 patterning in the 

Drosophila eye disc, as well as unexpected mutant phenotypes, we have developed a 

multiscale theory of the new form of pattern formation that it represents.  The first step 

was to confirm the existence of self-propagating patterning solutions, given appropriate 

choice of parameters and initial conditions in a simplified 1D system.  This study, 

summarized in Chapter II, yielded the following results.  First, the formation of regular 

patterns is possible in this system, and those solutions are stable.  Second, this behavior 

exists in a limit of the system characterized by a large separation of timescales between 

the functional modules governing MF propagation and local fate maintenance, and is thus 

very robust to parameter variations.  Third, more than one stable solution to the equations 

could exist, with drastically different behavior, depending on initial conditions.  The 

patterning system is not characterized by linear instability of a homogeneous steady state 

to inhomogeneous perturbations, or the interpretation of a morphogen gradient by factors 

with many different sensitivities.  Single cells with arbitrarily large separation are 

selected with only one simple, diffusible inhibitor.  All of these results were found in a 

model limit (fast inhibition) that precludes the existence of an oscillator, and thus a clock-
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and-wavefront patterning system, though there is some interesting overlap between the 

function of these systems. 

To understand the model more generally, we attempted to generalize the 

patterning mechanism characterized in 1D to 2D, and a more complicated ODE model 

that reproduces the proneural cluster phenomenon seen in eye discs.  This involved, 

sequentially, characterizing the behavior of ever-larger groups of cells.  First, we 

characterized the behavior of isolated cells in detail, and found we were able to reduce 

their important behavior to the delays they exhibit between receiving an activating signal 

and 1) achieving R8 fate-permanence, and 2) inhibiting their neighbors effectively.  

These thresholds proved to summarize the behavior of pairs of cells, synthetic 7-cell 

proneural clusters, and the proneural clusters that arise spontaneously in an epithelium 

templated with previously specified R8s over a range of parameters.  The distributions of 

outcomes of cell-fate decisions we expect for different initial conditions explains the 

observation of stripes, and frequent twins in inhibition-mutant eye discs.  Additionally, 

our understanding predicts that R8 cells can be specified arbitrarily close to a neurogenic 

clone, such as E(spl)-.  These studies are described in Chapter III. 

Lastly, we have developed a method for looking at long-range pattern formation 

that takes as an input a mechanism of fate selection, such as we characterized in Chapter 

III, and uses a finite-state machine approximation to predict its behavior over many 

iterations.  While still exploratory, this method is directly inspired by the physics of the 

system, as we understand it, and very general in its predictive capabilities.  It can account 

for the ability of patterns to self-heal with respect to small but significant errors, the 

fragility of hexagonal patterning to significant mutations, and the relative robustness of 
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stripe-formation to those perturbations.  We plan to use it to address larger-scale 

questions pertaining to the orientation of the MF, and retina-field edge effects, which 

were previously very difficult to address. 

The success of this model, and our theory describing its function, lies in its 

predictive power, which is general, and also in the understanding it gives us of this type 

of system. 
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Appendices 
 

Appendix A:  1D Parameter Scan Details 
 

 In this appendix I will discuss in greater detail the numerical processes involved 

in simulating and classifying the behavior of the large parameter scan of the 1D system 

presented in Chapter II. 

 Each of the 640,000 parameter sets for the 1D system described in Chapter II was 

subjected to several numerical and analytical tests.  First, as an undirected exploration of 

the system’s behavior, each was used to define a model of form equation (1) on an array 

of 1024 cells with periodic boundary conditions.  Initial conditions were set to be zero for 

all fields over all cells except for a on 100 adjacent cells, which was set to random 

uniform variants between 0 and 0.25.  The equations were then integrated forward in time 

using an explicit Euler integrator, but treating the linear interaction terms fully implicitly.  

Each model was integrated forward in time 5000 time steps with dt=.06.  All of the basic 

behaviors discussed in the paper (non-patterning front, stalled systems, patterning fronts, 

fronts producing complicated patterns and transient activation) were observed in this test.  

Patterns were analyzed by eye to get a sense for the scope of the problem, and 

algorithmically to systematically classify the results.  Another, similar test was conducted 

on a subset of stalled fronts using random uniform variants up to .35, which yielded the 

results that some of the stalled solutions became propagating solutions and demonstrating 

this simple predicted initial condition dependence. 
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 The first step in automatically classifying patterns was to apply a threshold to a 

corresponding to halfway between the zero-activation high steady state and the zero-

activation intermediate steady state (the “point of no return,” analogous to the separatrix 

in Chapter III).  For parameter sets where these steady states do not exist (Aa>.569) an 

arbitrary but functional threshold of 0.5 was used.  The easiest behavior to classify, in 

general, is transient activation, as it requires only to see a point that was once above 

threshold go below threshold.  It is easy to classify the non-patterning fronts next.  Due to 

the fact that the range of the inhibitor is, in general, pretty short, we decided to classify as 

non-patterning any front that showed at least 20 consecutive cells above threshold behind 

the first active cell at the end of integration.  If the front overran the entire field in a 

shorter amount of time, the front was additionally classified as “fast,” and the last saved 

time point where the periodic boundary conditions were considered trivial was used to 

evaluate the pattern.  The vast majority of “fast” fronts were unpatterned, but there were 

exceptions, and it became clear that for more careful comparison, a one-size-fits-all 

integration time-step would not work.  To be considered regularly patterning, the last five 

groups of adjacent active cells had to consist of single active cells, and 3 of the 4 

intervening gaps had to be equal in size.  The solutions producing complicated patterns 

were subdivided into those with multiple adjacent cells in one of the most recent 5 

groups, and those without.  The first group dominated this category.  To be considered 

stalled, a front had to produce no new active cells between time steps 2500 and 5000.  

Slipping through the cracks in this analysis are parameter sets that form very slowly 

propagating solutions.  Indeed, parameter sets not conforming to any of the descriptions 

above were provisionally labeled “unknown behavior,” but upon detailed examination 
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most proved to produce solutions that activated <5 cells, but did activate at least 1 in the 

interval 2500dt-5000dt, thus failing the test for stalled-ness. 

 To calculate propagating solutions based on the structure of our theory, we 

needed to calculate the amount of inhibitor at the points ahead of a patterned halfspace 

(which is simply a geometric series), and the time when hcrit is exceeded for each of these 

points.  Once that is calculated, the priority of the point representing continued patterning 

must be established by calculating h and hcrit at its neighbors.  hcrit is easily calculated by 

setting  to zero, finding g(h) as the root of the resulting polynomial, and then 

inverting that function if it is less than 1.  hx(t)  was constructed numerically, and a 

standard root-finding algorithm was used to solve the relationship hx(t) –hcrit=0 for t at all 

integer x up to either the maximum value of x where hx( ) –hcrit>0.  The numerical 

approximation for hx(t)  involved summing contributions from more and more distant 

active patterned sites according to equation #, using a Runge-Kutta integrator with 

adaptive step size (because of the presence of more than one time-scale in the integrand) 

for the time integral, until one of two truncation conditions was met.  The first truncation 

criterion was rarely used and involved a simple truncation if the contribution from the last 

patterned site was less than 10-11 of the running total.  The second truncation method 

involved evaluating the ratios of contributions of consecutive sites, and, in the event the 

relative change in these became less than .01, extrapolating the further contributions as 

the total of an infinite geometric series with the appropriate decay constant, which gives 

excellent results. 

 With this new information, a second pass over the parameter sets was made, 

setting initial conditions and integration parameters according to the predicted patterning 
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behavior.  The initial conditions for all cells and all fields were zero, except for one cell 

at the end of the (no longer periodic) array which had a at the high steady state.  h was 

put into the system as a time-dependent boundary condition based on the solution to the 

unpatterned continuum problem with the appropriate constants, and corrected to account 

for the h produced by the initial 1-cell prepattern.  The time-step, dt, was set to be .02 

times the amount of time the front was expected to take to propagate 1 lattice unit, or .06, 

whichever was smaller, and the equations were integrated for twice as long as we 

anticipated it would take to produce 5 active cells.  This led to some very long 

integrations.  The time of each cell’s activation was recorded and used to calculate the 

front speed.  Pattern classification was conducted by methods similar to those described 

above.  The main differences in the classification between these parameter sets were that 

some parameter sets that yielded non-patterning fronts originally yielded patterning ones, 

and those that were too slow to classify in the previous test were shown to propagate and 

pattern as expected. 
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Appendix B:  1D Limit Cycle Amplitude 
 

 In this appendix I will discuss the change in shape of a propagating wavefront of 

the activator h due to periodic spatial structure in its source. 

We are interested in the behavior of the following equation as t . 

   h t
h = cos 2 x / n( ) x + vt( ) h + D

h x ,x
h  

(1) 

 

Making the substititution x-vt z and taking the Fourier transform with respect to and 

conjugate variable we get an easily solved ODE: 
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Taking the Fourier transform of the source term, applying arbitrary initial conditions, 

setting to zero terms which decay in time, and inverting the transform for the resulting 

solution for  to get h(z,t), we arrive at the general solution, which must be defined 

piecewise: 
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Using the fact that Re 1+ iy 1  for all real , it is clear that the terms where  is 

raised to a power of  all decay faster in space for finite  than do the spatially 

dependent terms for a homogeneous source density.  The terms describing the overall 
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scale of the solution (which is best thought of as a correction to the homogeneous-source 

solution) are complicated in detail, but the general parameter dependencies are notable.  

Most notably, we are interested in the limit where 
  
D

h h
v .  We see, in this case, that 

for very large , i.e. long wavelength, the amplitude of the correction terms approaches 

the amplitude of the average solution.  On the other hand, for very short wavelengths, the 

proportionate amplitude of the corrections goes to zero at least as quickly as .  We can 

estimate the scale that determines the dominant behavior by setting the magnitudes of the 

two final terms in  equal and solving for . 

 

 

(4) 

 

This tells us that diffusion really starts evening out the variability from the source when 

the characteristic scale is smaller than the amount of source traversed by the moving front 

in an amount of time characterized by the internal dynamics.  If the source pattern is a 

sum of harmonic terms with a largest spatial scale given by the pattern period, it is 

possible to calculate a bound on the maximum amplitude of the limit cycle.  It involves 

the Riemann Zeta Function and tends to be not-very-big: 
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Figure 53:  Average propagating h for reference parameters in the continuum with 

deviations produced by a periodic template.  The deviations are quite small compared 
to the overall h. 
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Appendix C:  Generality of the h-u Interaction 
 

 In this appendix I will discuss the interaction of the moving h gradient and the 

stationary u gradient.  The goal is to illustrate that the two limits characterized in Chapter 

II (piecewise linear h, and step-function h) are sufficient to characterize the dynamical 

interaction in this system. 

 We consider the interaction of a uniformly translating front of  interacting with 

an inhibitor template exponentially decaying in space, . 
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 There is a critical value of , , which is dependent on . 
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 Here, we have introduced  as the (easily approximated) bifurcation value of  

with no inhibitor.  Setting the equation equal to a particular reference value of  ( ) 

and solving for  yields: 
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Unsurprisingly, the self-similarity of exponential functions means that a change in 

the source strength of the inhibitor leads to an overall translation of the continuum 

version of  dependent only on the length scale of , .  Since the function is 

actually only defined for integer , we would generally expect the first point to exceed 

 as time goes forward to be one the integers flanking the continuum solution 

representing tangential contact between continuum  and continuum . 
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Small changes in  can only switch the first point between these two options, 

generically.  “Small changes” in this case means that all possible contributions to  from 

the pattern preceding the most recent patterned point will not shift  by more than one 

half.  For preceding patterns with period  and n+1 this means. 
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This condition is always met if nk0>ln[3] 1.009.  This suggests that for general 

, the ideas involved in dealing with the map are sound as long as the characteristic decay 

length for the inhibitor is not longer than the period of the pattern. 
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The exception to this rule is when the shapes of  and  are very similar near 

their point of first contact, so that small changes in   could lead to large changes in their 

intersection at discrete points.  By definition, if we expand about  in Taylor series,  

and  are identical at the constant and first order terms.  The second order term is 

positive and potentially quite large for , as it is proportional to , whereas for , 

we expect it to be very small for two reasons.  First, it is proportional to the inverse 

square of the length scale of , which we have determined (through design and 

parametrization) will be much longer than that for .  Second, our knowledge of the 

physics of the system strongly implies that the pertinent value of will be very close to 

the inflection point in h(z).  The propagating solution for  has a finite discontinuity in 

the second derivative at z=0, but the average second derivative about this point is 

proportional to , which we expect to be very small, indeed.  Essentially, unless we 

invoke more exotic functional forms that lead to more near-contacts between  and  

distant to the contact which defines a certain pattern, the physics of the model will be 

such that a sharp, unique intersection is guaranteed, and the behavior of the map is as 

simple as for the step-function and piecewise-linear cases. 
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Appendix D:  Artificial Cellular Epithelia 
 

 In this appendix I discuss the generation of structured cellular lattices for running 

simulations on 7-cell and 192-cell systems. 

 Lattices for cellular systems representing disordered 2D epithelia are necessary 

for our 2 dimensional studies.  1-cell and 2-cell systems are trivial in this respect, so this 

discussion begins with 7 cell clusters.  To produce these clusters, we used an optimum 

arrangement of 7 cells in a rosette as a starting point, with unit distance between the 

centers of mass of adjacent cells.  We then perturbed the location of each cell in 2 

orthogonal directions by adding normally distributed random numbers with =.2.  We 

then rotated the overall locations of the cells by a random angle 0 6  drawn from 

a uniform distribution.  The symmetry of the system guarantees that this covers all 

distinct orientations versus in space compared to a fixed axis.  This fixed axis we take to 

be the x axis, along which the MF propagates in the positive direction.  The location of 

each cell projected on this axis, and divided by the time characterizes the delay, t. 

 Producing lattices with significant 2D structure is more involved.  In this case, the 

starting point is a hexagonal lattice that is periodic in the dorsal-ventral direction, which 

we also choose to be the direction of one of the (non-orthogonal) basic lattice vectors.  

Again, the cells are perturbed shifted by uniformly distributed random numbers with 

=.2.  In these systems, we have chosen to randomize the strengths of the interactions 

between adjacent cells (and which are adjacent!  We don’t want to preserve the perfect 

hexagonal structure, which is non-physical).  A Voronoi tessellation based on the points 

as located, so far, gives an overall appearance that quite resembles a cellular epithelium, 
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and gives the obvious benefit of defining adjacency in a systematic way.  The cells near 

the boundary we desire to be periodic can be treated by replicating the lattice in these 

directions before tessellating, and inferring the periodic links by mapping to the 

appropriate equivalent cells.  It remains to define the strength of diffusive coupling 

between adjacent cells.  The obvious metric, which relates the hopping rate to the inverse 

square of the distance between the points the tessellation was based on has a problem:  

The maximum strength of the coupling between adjacent cells is unbounded, which 

seems inappropriate.  For the studies in this thesis we make the coupling strength 

proportional to the length the edge separating two cells in the Voronoi tessellation.  We 

set the average strength of these interactions for a lattice to the parameter Du.  The 

location of each cell for purposes of interacting with the MF is defined by the center of 

mass of its Voronoi polygon. 



 184 

Figure 54:  Illustration of the steps involved in making a simulated epithelium.  A) 
First we specify a regular hexagonal grid of the correct size, in this case 6 rows by 8 
columns (red dots), which we then perturb in the x and y directions with normally 
distributed random numbers (blue dots).  B)  We repeat the lattice in the periodic (y) 
direction (small red dots), and perform a Voronoi tessellation to define “cells.”  C)  The 
Voronoi tessellation defines the connectivity of the lattice (magenta lines), and the length 
of each interface scales the strength of specific diffusive couplings.  D)  The locations of 
the newly-characterized cells are taken to be their centers of mass (magenta dots).  The 
bottom row of cells communicates with the top row of cells with coefficients determined 
by the strength of interactions with the equivalent-but-translated cells from graph ‘C.’ 
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Appendix E:  Empirically characterizing the one- and two-cell 
systems 

 

In the course of events, we need to calculate 1) the separatrix in the a-s plane 

defining permanent R8 fate, 2) T1 as a function of uns , 3) Tu as a function of uns  and uns , 

and 4) the empirical transitional t that satisfies the equality conditions for the one-cell-

selected inequalities shown below without idealizing the dependence of T1 and Tu. 

 Tu < t + T1  
(1) 

 

For cell , alone, to be selected, and 

 Tu + t < T1  (2) 

 

For cell , alone to win.  Here, as elsewhere, t is positive when cell  is activated after 

cell . 

 Calculating the separatrix for a particular parameter set is simple.  We find the 

unstable fixed point of the a-s system, reverse the dynamics of that system, give it initial 

conditions slightly perturbed from the fixed point in opposite directions, and integrate 

until limiting values (0 or 1 for s, 0 or 1+G+B for a).  We then connect the two branches 

of the solution across the saddle, and interpolate with a cubic spline.  This function can 

then be used in other tests to determine whether a particular trajectory has been 

committed to R8 fate. 

 Calculating T1 and Tu requires integrating a single-cell system for many values of 

uns .  Since we are not simulating adjacent cells explicitly, we approximate the rate at 
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which u is lost to the surroundings by having it diffuse away at a rate proportional to 

inactive adjacent cells.  We use both singly-activated cells and cells activated in tandem 

as references.  In this approximation, there is no facility for u to come back to the original 

producing cell, and so it is lost to the environment at an artificially high rate.  In any case, 

T1 is found directly from these simulations by calculating the time at which the separatrix 

was crossed (if it was) by a trajectory.  If several lifetimes of the slowest-evolving factor 

pass without the separatrix being crossed, we consider a cell experiencing that inhibition 

to be fully, insurmountably inhibited.  Activation in calculations is full and immediate:  

the profile for h is effectively a step function. 

 To calculate Tu, which must be known as a function of external inhibition at both 

cells, we use the trajectory of a determined by the previous study, and use it to integrate 

an equation with an appropriate source of u using the same approximations as for T1. 

 tu = f a( ) u + Du n m( ) u u( )

tu = u + Dum u u( )
 (3) 

 

This is a linear inhomogeneous system of differential equations that is trivial to 

integrate.  We have introduced the constants m and n which, represent, respectively, the 

number of simultaneously activated cells, and the effective cluster size.  With time traces, 

now, for u at neighboring cells for various trajectories subject to different inhibition, we 

can simply invert these to get Tu as a function of both uns  and uns . 

 u Tu ,uns( ) + uns = ucritical

Tu uns ,uns( ) = u 1 ucritical u( )

 (4) 
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 Here, ucritical is simply the highest value of external u that still allows a cell to be 

activated.  T1 and Tu are obviously subject to approximations; these are discussed in the 

main text. 

 The approximation addressed in doing two-cell simulations is that these 

trajectories, perturbed by nearby cells activated at finite delays, are not changed in such a 

way as to substantially change T1 or Tu.  To test this, and map the outcomes of interacting 

cells, we conduct simulations of two cells over a range of uns  and uns .  The goal, here, is 

to determine the t for each pair of inhibitor values that satisfies equality for each of 

equation (1) and equation (2).  If there is exactly one transition (as seems likely), this can 

be accomplished using a simple 1D root finding algorithm at each step, if each outcome 

is encoded numerically.  We proceed thusly, using the method of bisection at each 

inhibition state.  The total space is related by symmetry as: 

 t uns ,uns( ) = t uns ,uns( )  (5) 

 

Where t  is the time delay required for cell  alone to become activated.  This as well as 

the fact of the typically weak dependence of t on either uns over most of their range 

(which facilitates the use of predictive algorithms) speed this empirical mapping up, 

considerably.  In deploying the root-finding algorithm, we allow a maximum range about 

zero delay that is five times the observed zero-inhibition critical delay, which is more 

than adequate to capture the important behavior. 
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Appendix F:  Range of behavior for a single cell 
 

 In this appendix I will discuss the behavior of cells at the transient, proneural 

cluster level of activation defined in the 4-variable model. 

 The behavior of a cell near its intermediate steady state can be non-trivial.  Much 

depends, here, on whether the cell is experiencing inhibition, or not.  If it is, then the 

timescale of that inhibition can determine whether the “intermediate steady state,” which 

isn’t a steady state at all, but a temporary pause for s to build up, is approached as a 

spiral, or whether it is unstable and there is a limit cycle in the a-u system.  These are, of 

course, drastically different than the steady approach seen if u is effectively zero.  This is 

due to the relaxation-oscillator-like structure of the a-u system. 

If one increases u with s fixed significantly below the level where it strongly 

activates a, the steady state (which is the intermediate, proneural level of a expression) 

undergoes a supercritical Hopf bifurcation, becomes unstable, and spawns a limit cycle 

with a finite period.  The relevance of this quasi-periodic behavior is not clear.  In 

general, at when cells are at this intermediate state is when they are susceptible to the 

influence of external inhibitor in a continuous way, and the amount of time they spend 

here, as well as dynamic properties of the state are the major sources of non-ideality in 

generalizing about multiple-cell behavior from one-cell behavior.  This effect is not so 

large in what we consider “physiologic” parameter regimes, however, as the period of the 

oscillations (whether they be spiraling or cycling) is fairly large.  The parameter that most 

directly regulates the duration of this state, s, must be made quite large in order to see 

more than one or two oscillations.  We feel that this is not realistic, since the response of 

a local transcription factor can be quite rapid. 
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Figure 55:  Different behaviors of the intermediate-a state.  Each graph shows 
trajectories of a for several increasing values of s, and thus longer pauses at the 
proneural cluster a level.  A) shows the results for very fast u dynamics, where a is very 
overdamped at the intermediate level.  B) shows the same parameters with larger value of 

u.  Now a approaches the proneural state as an underdamped oscillator.  C) shows even 
slower u dynamics.  Now the proneural steady state, as defined with fixed s, has become 
Hopf-unstable, and the trajectory approaches a limit cycle.  To get the number of 
oscillations seen here, s dynamics must be made much slower than we feel is appropriate.  
One to three cycles is commonly observed, though. 
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Figure 56:  Trajectories of stable-spiral and limit-cycle proneural states in the a-u 

plane.  A) shows the slowest-s trajectory from Figure 55(B) projected in the a-u plane.  
The trajectory’s spiral approach to the quasi-static proneural state is clearly visible.  B) 
shows the slowest-s trajectory from Figure 55(C) projected into the a-u plane.  The 
approach to a limit cycle, and the subsequent destruction of this cycle is clearly shown. 
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Appendix G: Representative Data for Finite State Model 
 

The results of running 1000 simulations on a single parameter set for each of 9 

different template conditions representing a hexagonal patterning system, as described in 

Chapter IV, are shown in Table 2.  The parameter set used in summarized below.  All 

Hill exponents were 4, except for those involved in producing and sensing inhibitor, 

which were 12.   

 

Aa=.65 

Sa=.65 

B=1 

G=1 

Ua=.00065 

As=.5 

Au=1.2 

Du=.9 

s=.7 

u=1 
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 0  1  2  3  4  5  6  7  8  9  

0 0.798 0.038 0.074 0.257 0.383 0.684 0.006 0.549 0.036 0 

1 0.052 0.07 0.012 0.153 0.002 0.012 0 0.019 0.001 0 

2 0.059 0.002 0.138 0.009 0.119 0.12 0.074 0.121 0.142 0 

3 0.028 0.825 0 0.478 0.007 0.003 0 0.001 0 0 

4 0.021 0 0.482 0 0.308 0.109 0.634 0.218 0.461 0 

5 0.014 0.005 0 0.036 0.001 0.001 0 0.002 0 0 

6 0.009 0.001 0.004 0.003 0.007 0.019 0 0.013 0.001 0 

7 0 0 0 0.001 0 0 0 0 0 0 

8 0.002 0 0.001 0 0 0.005 0 0.003 0.001 0 

9 0.017 0.059 0.289 0.063 0.173 0.047 0.286 0.074 0.358 1 

Table 2:  Example transition matrix for finite state approximation.  Each column of 
the transition matrix contains summarizes the transition probabilities of a single origin 
state.  For instance, the number in row 2, column 0, which happens to be .059, is the 
probability that a perfectly templated pair of R8s will specify a new R8 in error position 
2, as illustrated in Figure 45.  Multiplying a vector of average state occupancy gives the 
expected average state occupancy of the next column, in an approximation involving rare 
errors in an otherwise well-patterned field. 
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