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Chapter I 

Introduction 

 

I. Overview 

Penetrating neural probe technologies provide researchers with the capability to 

stimulate and record chemical and electrical signals in the brain.  While present 

technology has yielded significant insight into the function of the brain, this 

technology is limited in a number of ways.  Although recent breakthroughs have 

enabled the fabrication of three dimensional probes with hundreds of recording 

sites, information processing strategies to utilize this new technology are 

currently unrealized.  Moreover, increasing channel numbers creates larger 

devices and concurrently highlights data processing and classification 

problems.  Analyzing more channels not only takes more time, but also 

precludes many of the user-directed sorting and analysis schemes that are 

commonly used. 

Optimizing the information extracted from neural recording electrodes is a key 

step in increasing the utility, reliability, and longevity of brain machine interfaces 



2 

(BMIs)  (Gage, Ludwig et al. 2005; Hochberg, Serruya et al. 2006; Lebedev and 

Nicolelis 2006).  A standard BMI can be divided into four separate stages 

(Figure I-1).  First, the neural activity from various sources in the brain is 

translated into a recorded electrical signal.  Next, the recordings are sent 

through a feature extraction algorithm to reduce the neural recordings into input 

parameters considered relevant to a BMI.  High-speed recordings are typically 

reduced to individual or multi-unit neuronal firing rates, whereas local field 

potentials, electrocorticogram (ECoG), and electroencephalogram (EEG) 

recordings are primarily translated into root mean square (RMS) voltage or 

segmented into power across specific frequency bands.  Third, the extracted 

neuronal features of interest are decoded into a neural output control signal, 

typically by obtaining an a priori map of the linear relationship between the 

extracted neural features and a movement parameter.   Finally, the neural 

output control signal is transformed into an electrical signal suitable for driving a 

neural prosthetic device.  Improvements to BMI systems are generally made by 

making modifications at one of these four stages.  The four specific aims 

outlined for this dissertation are focused on the first two stages: (1) improving 

the quantity of neural signals being extracted from the brain and (2) advancing 

the feature extraction techniques for optimizing the usage of the spike data that 

has been recorded. 
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Figure I-1: Taxonomy of a Standard Brain-Machine Interface (BMI) 

II. Historical Development of Probe Technologies 

One of the earliest experiments involving extracellular electrophysiological 

recording of the neural environment was performed in the 1950's (Strumwasser 

1958). Prior experiments had required the use of intracellular electrode types 

and penetrations that, while useful in tissue slices or on the surface of the brain, 

are too complicated to use for chronic evaluation of changes in the behavior of 

neurons.  Following this work, individual microwires were assembled into arrays 

so that multiple locations within a region of the brain could be sampled 

simultaneously.  The electrodes used in these studies were insulated hard 

metal wires with the tip exposed to create a metal interface to the brain (Olds, 

Disterhoft et al. 1972), or etched to a sharpened tip (Marg and Adams 1967; 

Burns, Stean et al. 1974).  Both of these processes yield inherent variability in 

electrode shape, size, and functionality.  Chronic evaluation of these devices 

also yields variable performance that can degrade to unusable levels within 

weeks of implantation (Williams, Rennaker et al. 1999). 
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The first generation of microfabricated neural probes were developed by 

Kensall Wise in the 1970's (Williams, Rennaker et al. 1999).  As compared to 

the variable designs and yields present in the cutting and etching of microwires, 

these devices were based on the processes similar to those used in integrated 

circuits.  The reproducibility and consistency of the fabrication process enabled 

many new structures that were previously not possible through the use of 

microwire technology (Kewley, Bower et al. 1997; Maynard, Hatsopoulos et al. 

1999; Bragin, Hetke et al. 2000; Vetter, Williams et al. 2004; Johnson, Otto et 

al. 2005; Selim Suner 2005).  

Some microfabricated probes are designed to mimic the previous generation of 

microwires, but yield increases in performance due to more consistent 

manufacturing strategies (Rousche and Normann 1998; Maynard, Hatsopoulos 

et al. 1999). While microfabricated probe processes enable a much larger 

design space for arrays to interface with the brain, they have been so far 

unsuccessful at exceeding the baseline performance of the microwires they 

were designed to replace (Williams, Rennaker et al. 1999; Schwartz 2004; 

Vetter, Williams et al. 2004; Polikov, Tresco et al. 2005; Otto, Johnson et al. 

2006).  Furthermore, the large cost associated with these devices has 

precluded wide scale adoption by many neuroscience researchers and 

clinicians. 

III. Neural Probe Technology Application 

Neural probe technology is typically used for extracting neuroelectrical 
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information from the brain (Ludwig, Uram et al. 2006).  This data provides vital 

information for the understanding of neurophysiology, characterization of 

pathology, and generating output signals that can be used to control external 

prosthetic devices (Chapin, Moxon et al. 1999; Williams, Rennaker et al. 1999; 

Kennedy, Bakay et al. 2000; Wolpaw, Birbaumer et al. 2002; Anderson, Burdick 

et al. 2004; Schwartz 2004; Kipke, Shain et al. 2008; Digiovanna, 

Rattanatamrong et al. 2010).  The structural characteristics of the brain, as 

studied anatomically or through imaging, yield valuable information about the 

expected function of the underlying neural system (Kotter and Wanke 2005).  

However, imaging and anatomical characterization lack the resolution and 

desired output metrics that are necessary to understand how the firing of 

individual neurons and ensembles combine to create sensory perception or 

even consciousness. 

To better understand and interpret the neural firing patterns within the brain, 

new technological advances are required that incorporate the use of high 

channel counts that can simultaneously sample from large populations of 

neurons to yield more information about the underlying cortical morphology and 

structure.  Many neural probe technologies exist that incorporate high numbers 

of electrode sites assembled from a large number of individual microwires 

(Ulbert, Halgren et al. 2001; Schwartz 2004).  While these technologies achieve 

the throughput of information necessary for controlling external devices and 

brain-computer interfaces, they lack the ability to sample from a three-

dimensional volume of neural tissue simultaneously (Rousche and Normann 
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1998; Lebedev and Nicolelis 2006; Ward, Rajdev et al. 2009).  Other 

microfabricated structures can sample high channel counts and have been 

used in cortical mapping experiments, but these devices are only capable of 

sampling from a planar representation of the cortex (Csicsvari, Henze et al. 

2003; Blanche, Spacek et al. 2005; Aarts, Neves et al. 2008; Du, Riedel-Kruse 

et al. 2009; Ludwig, Miriani et al. 2009; Ward, Rajdev et al. 2009).  The 

simultaneous sampling of neural tissue in 3D enables mapping neural 

connections within the brain and understanding how these networks create 

sensory perceptions from firing of individual neurons.  As the brain is not a two-

dimensional structure, it is reasonable to assume that sampling from neural 

networks in three dimensions will be necessary to fully understand all the 

relevant interactions within the brain. 

 

Figure I-2: Theoretical potential recorded as a microelectrode is driven past a pyramidal cell.  
(Right)   Theoretical potential as a microelectrode is driven past a stellate cell. (Schmidt and 
Humphrey 1990) 
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IV. Electrode Modifications 

A few groups have examined the use of conductive polymers, such as 

polypyrrole and Poly (3, 4-ethylenedioxythiophene polymer) (PEDOT), for the 

coating of neural recording probes (Cui, Lee et al. 2001; Cui, Wiler et al. 2003; 

Kim, Abidian et al. 2004).  The primary motivation behind the modification of 

standard neural recording probes is to optimize the ability to record neural 

activity by decreasing the site impedance, which is typically larger on small 

silicon probes.  By decreasing the impedance without greatly increasing the 

surface area, it may be possible to improve neural recording quality compared 

to that of standard iridium site probes (Ludwig, Uram et al. 2006).  Many of the 

results of the previous studies are directly related to the reduction of electrode 

site impedance, which can be used in future probe designs utilizing small 

electrode sites.  

V. Unit Detection and Spike Sorting 

In order to understand extracellular neural recordings, one must first have a 

basic grasp of the original source of the recorded signal.  As can be seen in 

Figure I-2, the recorded signal from a given neuron can be a function of the 

neural cell type, the orientation of the cell, and the location of the recording 

electrode relative to the fields generated by the neuron (Schmidt and Humphrey 

1990).  Given these variables, it may seem like a difficult problem to separate 

specific neurons from each other; however, a consistently positioned electrode 

should record a similar waveform shape each time a neuron fires (Strumwasser 
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1958; Burns, Stean et al. 1974; Liu, McCreery et al. 1999; Williams, Rennaker 

et al. 1999; Linderman, Gilja et al. 2006; Purcell, Seymour et al. 2009; Sharma, 

Rieth et al. 2010).  There will always be some variability due to random noise 

sources added into the recordings, but these are assumed to have a fairly 

Gaussian shape (Lewicki 1998; Ludwig, Uram et al. 2006).  Bursting neurons 

(neurons whose firing rate is substantially greater for brief periods) in response 

to a stimuli or as a part of neural circuit will in many cases have spike 

amplitudes that vary over successive action potentials.  If a recorded waveform 

from the same neuron differs in shape between firings, these neurons will fail to 

be properly identified as being from the same source, independent of the 

system or algorithm used to discriminate them (Lewicki 1998).  Using 

simultaneous intracellular recording of the same action potential, extracellular 

potentials have been correlated with individual spike responses (Henze, 

Borhegyi et al. 2000).  Simultaneous intracellular recording is prohibitively 

difficult, so for this work, it is assumed that waveforms of a similar shape on a 

given channel arise from the same source and waveforms that change 

temporally may be classified incorrectly. 

Detection of neural action potentials within a recording trace is typically 

accomplished through a threshold crossing process (Lewicki 1998).  With user-

directed techniques, a variable threshold line is ideally set such that the peaks 

of action potentials on a given channel cross the level, while background noise 

from neural as well as other sources do not.  This decreases the amount of data 

that must be analyzed in subsequent processing steps. For automated 
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techniques, a more objective method is used whereby the threshold is 

calculated as a function of some attribute of the full wideband data trace.  

Frequent parameters are normally either a whole multiplier of the standard 

deviation, variance, or root mean square (RMS) of the signal, otherwise a 

reverse process may also be used such as a fraction of the peak positive or 

negative amplitude of the recordings (Lewicki 1998).  While the latter is 

computationally simpler, motion artifact or large infrequent amplitude variation 

may prevent any signals from being selected out of the original trace.  After the 

threshold crossing event has been determined, a preset number of samples, 

equivalent to 0.8 – 3 ms of data is extracted from the original trace to be further 

analyzed to determine whether the event arose from a separable neural action 

potential or a random perturbation. 

For many manual sorting techniques, the processing could be complete at this 

point.  Given a cumulative display of the waveforms, it is possible to select the 

units based solely on the amplitude and waveform characteristics of the 

extracted samples as compared to know neural action potential shapes (Lewicki 

1998; Wood, Black et al. 2004).  However, in cases where multiple neurons are 

recorded from the same electrode site, separation by amplitude methods can 

be impractical, if not impossible.  To solve this problem, features of the 

waveform are calculated and used to help differentiate.  Examples of features 

include, peak amplitude (positive or negative), peak or trough width, waveform 

duration, or principal components. 
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Principal components can describe most of the waveform characteristics and 

are used by many automated sorting algorithms.  The idea behind principal 

component analysis (PCA) is to create a set of orthogonal vectors to capture 

the variability in a set of data, in this case, the shape of a recorded neural action 

potential.  The principal components are calculated by determining the 

eigenvectors of the covariance matrix of the dataset.  While it may take many 

orthogonal vectors to fully describe the dataset, much of the variability in the 

data is due to random fluctuations and competing noise sources.  If the noise-

dominated vectors are ignored, the first two or three principal components 

reconstruct a reasonable shape of the original action potential.  For this reason, 

sorting techniques based on principal components typically examine the data in 

only 2 or 3 dimensions, which also simplifies visualization of the data (Lewicki 

1998). 

When examining a graphical representation of the principal components, data 

points from a given neuron typically cluster together in PCA space.  The 

straightforward user-directed method for classifying these units as originating 

from a given neural source is referred to as cluster cutting.  In this technique, 

technicians will circle all the data points that are in close proximity and group 

them together into a single cluster.  While many experienced technicians 

employ this method, user-directed methods are frequently prone to 

classification errors (Wood, Black et al. 2004).  Even in the best case scenario, 

this process can be fairly time consuming. Increasing channel counts further 

exacerbates this issue – assuming it take approximately 1 minute to analyze 1 
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channel of data, a 64 channel array would take over an hour to sort the data 

into given units.  As the recorded waveforms may vary on a daily basis, this 

process becomes overly burdensome in any experiment that lasts more than a 

day. 

To automate the process of clustering of waveforms, algorithms such as K-

means or fuzzy c-means clustering are employed (Dunn 1974; Bezdek 1981).  

The basic process behind these techniques is to start with a given number of 

clusters of the data, generate random cluster centers, assign data points to the 

nearest cluster center, compute new cluster centers based on the member 

points, and iterate this process until a convergence criteria is met.  In the case 

of fuzzy c-means clustering, the expectation maximization algorithm used to 

iterate the process is more statistically valid in the case of neural data as it 

includes partial membership into various clusters (Lewicki 1998).  After 

clustering of the data is complete, the desired neural attributes can be selected 

from the processed data and used for either neurophysiological analysis or 

processing for another neuroprosthetic applications. 

Given increasing numbers of channels in new electrode technologies, issues 

with user-directed processing of neural data can become even more 

problematic (Buzsaki 2004).  For multidimensional neural probes to become 

commonplace, the techniques to analyze the data recorded in an automated 

and expedient way become even more important.  For these reasons, this 

proposal is focused on ways to automate analysis of neural data, extract more 



12 

information from the data already recorded with existing probe technologies, 

using multi-core processors and distributed computing techniques to expedite 

analysis, and applying these techniques to the auditory brain system in a 

validation experiment using state of the art three dimensional neural probes. 

VI. Dissertation Organization 

This dissertation includes four studies which are either in press or preparation 

for submission to peer-review journals.  The first chapter introduces the 

dissertation and provides relevant background information that is beyond the 

scope of the individual publications outlined in the middle chapters.  The final 

chapter summarizes what has been completed in this thesis, the contribution to 

the field as a whole, and future directions for studies utilizing the work started 

here.  All studies in this dissertation are focused on optimizing the information 

that can be extracted from cortical recordings using microelectrodes. 

In Chapter 2, we developed automated techniques for extracting and clustering 

neural spikes utilizing standard MATLAB functions for principal component 

analysis and fuzzy c-means clustering. Since the future goal is to increase 

adoption of this technique through open source channels, we compared the 

performance of the MATLAB toolbox using recorded neural data with respect to 

current alternatives such as Offline Sorter (Plexon, Inc.), a commercially 

available neural data analysis package. We also used simulated data with 

known neural sources and timing to evaluate our toolbox with respect to the 

number of detected units, cluster location, number of clusters, and variability 
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between repeated iterations. Using these metrics, we have demonstrated that 

our package performs comparably to more expensive alternatives and is 

adaptable to multiple neural recording platforms as well as pseudo real-time 

analysis of high-density electrode arrays using clustered computing techniques. 

Chapter 2 is in preparation for submission to the Journal of Neural Engineering. 

In Chapter 3, we introduce a technique to identify dendritic contributions to the 

potential recorded on distant electrode sites, providing additional information 

about the morphology of a recorded neuron in space with respect to the 

electrode array. To evaluate this technique, we implanted silicon microelectrode 

arrays in the motor cortex of Sprague Dawley rats and auditory cortex of guinea 

pigs. The site locations of the implanted microelectrode arrays enabled 

recording from multiple locations at multiple cortical depths simultaneously. The 

results of this study indicate that the potential fall off of a neuronal action 

potential is not analogous to homogenous fall off from a point source, but is 

instead influenced by neuronal morphology. Moreover, we demonstrated that 

the contribution of neuronal morphology to the extracellular potential can be 

detected by recording at precise locations dorsal to the site putatively recording 

from the cell body. Consequently, the methodology introduced here may enable 

more precise spike sorting techniques. Chapter 3 is in preparation to be 

published in Journal of Neurophysiology or Journal of Neuroscience Methods.     

In Chapter 4, we investigated using poly(3,4-ethylenedioxythiophene) (PEDOT) 

to lower the impedance of small, gold recording electrodes with initial 
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impedances outside of the effective recording range. As expected, chronically 

implanted control electrodes were unable to record well-isolated unit activity, 

primarily as a result of a dramatically increased noise floor.  Conversely, 

electrodes coated with PEDOT consistently recorded high-quality neural 

activity, and exhibited a much lower noise floor than controls.  These results 

demonstrate that PEDOT coatings enable electrode designs of 15 microns in 

diameter. Chapter 4 has been recently accepted for publication in the Journal of 

Neural Engineering. 

In Chapter 5, we present a proof of concept validation of a 3D probe technology 

consisting of 16 silicon shanks in a 4x4 grid arrangement with four electrode 

sites per shank.  This 3D array has been implanted in guinea pig primary 

auditory cortex and electrophysiological data are presented showing the utility 

of electrode sites spanning multi-lateral cortical space as well as cortical depth. 

Using these devices, we were able to successfully map the tonotopic space 

with fewer insertions than would have been necessary with single wires or 2D 

probe architectures. Chapter 5 is in preparation for submission to IEEE 

Transactions on Neural Systems and Rehabilitation Engineering. 

This dissertation provides several novel improvements to the current 

neuroprosthetic device, which have been evaluated in long-term chronic 

conditions.  The results presented here not only impact the field of practical 

neuroprosthetic devices, but contributes to the fundamental understanding of 

microelectrode theory as a whole. 
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Chapter II 

Pseudo Real-Time Implementation of an 

Objective Method of Spike Extraction and 

Classification Package* 

I. Abstract 

High fidelity spike-based neural prostheses for brain computer interface 

applications require well isolated neural signals to be extracted from the brain 

using consistent and reliable automated methods. Commercially available 

solutions are capable of sophisticated analysis, but also carry a large financial 

cost. Data analysis technicians typically use principal components, waveform 

temporal characteristics, and amplitude features as metrics to represent signal 

characteristics.  These technicians then determine if a voltage perturbation was 

caused by an action potential (commonly known as a “spike”) or a noise source.  

Voltage perturbations deemed to be action potentials by the technician are then

                                            

* This article is in preparation.  Authors: Nicholas B. Langhals, Kip A. Ludwig, TK Kozai, and 
Daryl R. Kipke.  
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 assigned to an individual neuron or neural cluster. These techniques may be 

extremely variable due to the subjective sorting parameters leading to biases in

 the experimental analysis and the inability to compare data sets from different 

studies.  Moreover, manual sorting is time consuming, and is not scalable to 

sorting neuronal units from high channel count electrode arrays. 

There are a variety of commercially available software packages that provide 

many of the desired features for analysis of neural spike data.  However, these 

tools are typically restricted to one neural recording platform, are high cost, and 

are not designed to handle high channel count data sets in pseudo-real time 

through the use of clustered computing techniques.  Consequently, comparative 

studies between datasets from different subjects in different research groups 

using these tools are nearly impossible.   

To address these issues, we developed automated techniques for extracting 

and clustering neural spikes utilizing standard MATLAB functions for principal 

component analysis and fuzzy c-means clustering. Since the future goal is to 

increase adoption of this technique through open source channels, we 

compared the performance of the MATLAB toolbox using recorded neural data 

with respect to current alternatives such as Offline Sorter (Plexon, Inc.), a 

commercially available neural data analysis package. We also used simulated 

data with known neural sources and timing to evaluate our toolbox with respect 

to the number of detected units, cluster location, number of clusters, and 

variability between repeated iterations. Using these metrics, we have 
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demonstrated that our package performs comparably to more expensive 

alternatives and is adaptable to multiple neural recording platforms as well as 

pseudo real-time analysis of high-density electrode arrays using clustered 

computing techniques. 

II. INTRODUCTION 

For decades, neuroscientists have been recording from individual 

microelectrodes implanted into the brain.  These individual electrodes record, at 

most, a few action potentials (commonly called spikes, or units) from neurons 

surrounding the implanted electrode(Schmidt and Humphrey 1990).  However, 

newly developed microfabricated electrode arrays and high channel count 

microwire assemblies facilitate recording more action potentials simultaneously 

from larger and more diverse regions of the brain(Schwartz 2004; Blanche, 

Spacek et al. 2005; Kipke, Shain et al. 2008). Brain computer interface systems 

for external control of external devices theoretically can take advantage of this 

additional information, but techniques for isolating large numbers of neural 

sources in a highly noisy environment are still in developmental stages(Gage, 

Ludwig et al. 2005; Lebedev and Nicolelis 2006). 

The most common method of data analysis for neural spike information is 

through manual cluster cutting(Lewicki 1998). In this process, a user examines 

features of individual channels of neural data, such as the principal 

components, and circles a set of features to create units that most likely arise 

from an individual neural source.  While many experienced technicians 



22 

exclusively use this procedure, user-directed methods are frequently prone to 

classification errors (Wood, Black et al. 2004).  Even in the best-case scenario, 

this process can be time consuming and does not yield consistent metrics 

between data sets. Given the increasing numbers of channels available using 

newer electrode technologies, issues with user-directed processing of neural 

data can become even more problematic (Buzsaki 2004).   By increasing the 

number of channels to manually analyze, analysis time grows unreasonably. 

Assuming it takes approximately 1 minute to analyze 1 channel of data, a 64 

channel array would take over an hour to sort the data into individual units.  As 

the recorded waveforms may vary on a daily basis, this process must be 

repeated for each session for every subject.  Given that most researchers are 

working with multiple subjects over multiple days, the majority of their time can 

become consumed with just sorting the data. 

In addition to higher channel counts on an individual array, separate electrode 

arrays are often implanted into different cortical locations simultaneously to 

study connections between different regions of the brain (Buzsaki 2004; 

Blanche, Spacek et al. 2005).  This results in even more data that must be 

sorted and analyzed.  Consequently, it is desirable to automate the process of 

extracting information from the recordings to alleviate the need for a user-

directed analysis.  By automating sorting, channels of data may be analyzed in 

parallel and datasets may be divided across multiple computer cores or even 

different systems altogether(Wood, Black et al. 2004).   
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Two of the major neural hardware manufacturers offer their own offline sorting 

packages.  Tucker-Davis Technologies (TDT) offers "OpenSorter"; this package 

is designed to allow the user to classify individual spike snippets that have been 

recorded and saved to their tank format. While the package includes completely 

automated options for post-acquisition analysis of the data, the full sorting 

process cannot be completed post-hoc.  The program currently does not allow 

the user to threshold wideband data to extract potential spike waveforms, 

meaning that sections of neural data which fail to cross the threshold are not 

stored for future analysis. Plexon Inc. offers a more feature-rich software 

package named "Offline Sorter". This software package satisfies some of the 

limitations of its TDT counterpart such as built in waveform extraction as well as 

multiple user configurable options and methods to use for spike sorting.  

However, this package contains many ways for the user to manipulate the 

outputs to fit desired responses, making objective comparisons between 

datasets and users potentially problematic.  Moreover, “Opensorter” and 

“Offline Sorter” are not adaptable to other recording platforms, and cannot be 

easily implemented to handle large channel count datasets in pseudo real-time 

using clustered computer techniques, which limit their utility in comparing large 

data sets between labs using varying neural recording systems.  Overall, the 

largest limitation of these packages is that the purchase price per license can 

make its use prohibitively difficult for new investigators with limited startup 

funds.  The lack of a low-cost, open-source option makes data comparisons 

between research groups prohibitively difficult, slowing collaborative 
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advancement of neural probe technology. 

For performance comparisons of multidimensional neural probes to become 

commonplace, techniques to analyze the data recorded in an automated, 

expedient, cost-efficient, and open-source way becomes even more important.  

For these reasons, we developed an automated MATLAB toolbox for analysis 

of neural data that is easily adaptable to all common neural recording platforms.  

This package has been utilized in multiple projects within our research group 

(Ludwig, Uram et al. 2006; Abidian, Ludwig et al. 2009; Langhals and Kipke 

2009; Ludwig, Miriani et al. 2009; Purcell, Thompson et al. 2009; Rohatgi, 

Langhals et al. 2009). To validate the performance of our toolbox, we compared 

the performance of our toolbox to Plexon’s “Offline Sorter” in analyzing neural 

data recorded from animal subjects.  In addition, we tested the performance of 

our toolbox in analyzing simulated neural data, allowing us to quantify 

performance when the number of simulated neural sources and spike timings 

are known. This toolbox will be made available as an open source kit to assist 

with high-throughput data analysis for spike classification and quantification, 

and facilitate comparative performance analysis studies across research 

groups. 

III. METHODS 

A. Neural Recordings 

All data used in this study were taken from previous experiments within the 
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research group(Langhals and Kipke 2009; Ludwig, Miriani et al. 2009). Sprague 

Dawley rats were implanted with electrodes in primary motor cortex. Neural 

recordings were acquired using a TDT multi-channel acquisition systems (RX5, 

Tucker-Davis Technologies, Alachua, FL) in an electrically and acoustically 

shielded booth. Neural electrophysiological recordings for all channels were fed 

through an anti-aliasing filter (0.35 Hz – 7.5 kHz) amplified, and sampled at ~25 

kHz (RX5).   

B. Threshold Detection 

Neural recording segments were analyzed offline to determine the number of 

neurons recorded, noise levels, and signal amplitudes using this custom 

automated MATLAB (Mathworks Inc., MA) software.  A amplitude threshold 

window was set 3.5 standard deviations above and below the mean of the 

sample distribution.  For each peak exceeding the threshold window, a 2.4 ms 

candidate waveform snippet centered on the absolute minimum of the 

waveform was removed from the recorded segment and stored.  The amplitude 

of the noise voltage for every recording site in each recorded segment was 

calculated after all candidate waveforms had been removed.  Figure II-1 depicts 

a two second window of high speed neural data representative off the typical 

signal input into the sorting program. 
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Figure II-1: Example plot showing high speed neural data/recordings input into the algorithm.  
The algorithm determined that the SNR of the mean waveform of the largest neuronal unit was 
3.6 with a peak-peak amplitude of 106 µV.  A low frequency oscillation is present on this 
channel; however the algorithm still successfully differentiated the signal from the noise. 

C. Clustering 

After initial principal component analysis, the first three principal components 

were plotted and analyzed in 3D space. Individual clusters were grouped and 

identified using fuzzy c-means clustering (Dunn 1974; Bezdek 1981; Ludwig, 

Uram et al. 2006).  When compared to hard clustering, fuzzy clustering reduces 

classification errors resulting from the synchronous firing of multiple neurons 

(Zouridakis and Tam 2000).  In order to determine the optimum number of 

clusters, the number of clusters was iteratively increased until the value for the 
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objective function calculated for k + 1 number of clusters was at least 55 

percent of the value for the objective function calculated for k number of 

clusters (Karkkainen and Franti August 2002). 

After clustering, waveforms with a cluster membership index of greater than 0.8 

were used to determine a mean waveform for a cluster.  Contributions of white 

noise and waveforms created by the simultaneous firing of multiple neurons 

generally do not have a membership index of greater than 0.8 for a particular 

cluster, and therefore were limited using this procedure (Zouridakis and Tam 

2000).   The toolbox then displays the principal components of all sorted 

waveforms.  Unsorted waveforms can also be displayed if desired to visualize 

the separation of the units including ones that were excluded as arising from 

noise (Figure II-2). 
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Figure II-2: Example cluster plot after sorting of the neural data.  Blue and green symbols were 
separated by the algorithm as being more likely to arise from independent neural sources.  
Black symbols were insignificantly different and therefore were left unsorted by the algorithm. 

D. Sorted Waveform Characteristics 

Signal amplitude for a cluster was defined as the peak-to-peak amplitude of the 

mean waveform for each cluster.  The signal-to-noise ratio (SNR) for a given 

cluster was defined as the Signal Amplitude / (Peak-to-Peak Amplitude of the 

Noise Floor). 

The peak-to-peak amplitude of the noise on a given site was calculated as six 

times the standard deviation of the recording after  waveforms that exceeded 

threshold were removed, spanning approximately 99.7 percent of normally 
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distributed noise data (Blanche, Spacek et al. 2005).  By using this method, the 

calculated signal-to-noise ratio and peak-to-peak noise amplitude on a given 

site was more consistent with a visual inspection of the recorded voltage traces.  

For example, an SNR of 2 would indicate that the mean peak-to-peak amplitude 

of the signal was twice as large as the peak-to-peak amplitude of the noise 

floor.   As the peak-to-peak amplitude of the noise floor for neural recordings is 

typically between six and ten times larger than the root mean square (RMS) 

value of the noise floor (Blanche, Spacek et al. 2005), SNR calculations for 

neural recordings based on the RMS of the noise floor raise the SNR with 

respect to peak-to-peak values.   

Clusters with a mean SNR of 1.1 or greater were considered discriminable 

units, as the signal amplitude of these clusters was sufficient to be reliably 

differentiated from the noise floor (See Figure II-1).  Conversely, clusters 

generated by random outlying perturbations from sources of noise had mean 

SNR values of 0.9 or less.  Although normally distributed noise sources will 

occasionally exceed the 3.5 standard deviation threshold by random chance, 

the average waveform generated by these noise sources returns to zero after 

crossing threshold (instead of exhibiting an immediate opposing peak).  

Consequently, the mean waveform of a noise cluster spans less than six 

standard deviations of the noise floor, resulting in a calculated SNR of less than 

1.  When adjusted for the difference between calculating SNR using peak-to-

peak amplitude of the noise floor instead of RMS, an SNR of 1.1 or greater 

corresponded well with observations of ‘moderate or better’ unit quality based 
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on SNR values from similar recording studies (Henze, Borhegyi et al. 2000; 

Suner, Fellows et al. 2005; Ludwig, Uram et al. 2006).  Figure II-3 depicts 

example output from the toolbox, including sorted waveforms and mean 

waveform shapes.). 
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Figure II-3: Two distinct neural sources extracted from the data in previous figures.  The blue 
trace has an SNR of 3.6, while the SNR of the green channel is 1.3.  While the smaller channel 
is not as well isolated, the algorithm was still able to extract it from the noisy traces in Figure II-
1. 
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E. Autocorrelogram 

In order to verify that individual sorted units are likely to arise from an individual 

neuron, an autocorrelogram or an inter-spike interval histogram must be 

calculated.  To do this, all waveform time stamps were aggregated and the 

times between each of the firing of the unit are plotted(Lewicki 1998).  As 

neurons have an absolute refractory period wherein a neuron cannot generate 

an action potential immediately after firing due to sodium channel inactivation, a 

low number of spike counts should be evident near zero (Henze, Borhegyi et al. 

2000).  Neurons also have a relative refractory period after generating an action 

potential wherein some of the channels are still inactivated, resulting in a lower 

probability of generating an additional action potential for a few more 

milliseconds(Lewicki 1998).  The autocorrelogram of a well isolated neuron 

should therefore consist of a plus or minus 2 ms period centered at time 0 (the 

time of the first action potential) where there are no additional spike counts 

generated by the neuron due to the absolute refractory period.  Similarly, during 

the period plus or minus 2-10 ms from time 0, there should be fewer spike 

counts due to the relative refractory period.  Consequently, the negative space 

of an autocorrelogram from a well-isolated neuron resembles a “V”.  This 

toolbox also plots the autocorrelogram to verify this information visually (Figure 

II-4). 
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Figure II-4: Autocorrelogram of the blue waveform in previous figures.  Ideally, there should be 
no spike counts 0-2 ms before or following a spike (t=0 ms), indicative of the absolute refractory 
period as seen above.  Moreover, there should be fewer spike counts in the periods 2-10 ms 
before or after a spike, indicative of the relative refractory period. Jitter in the plot is due to 
variations in spike shape, false negative classifications, and noise sources within the neural 
recordings. 

F. Offline Sorter Comparison 

For performance comparisons between Offline Sorter and the MATLAB toolbox, 

consistent Offline Sorter settings were selected to as closely match the options 

in our toolbox as possible. Data recorded from rat cortical neurons in prior 

experiments was processed through both our MATLAB algorithm as well as 

Offline Sorter.  After data format conversion, the wide-band data was loaded 

into Offline Sorter.  A 300 Hz high-pass filter was applied to the neural data to 
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remove local field potentials from further analysis.  A threshold for spike 

detection was set at 3.5 standard deviations  and a 2.4 ms window was 

extracted from the data for each individual waveform.  The window was set 

such that 1/2 of the window duration was pre-threshold and the remainder was 

post-threshold.  All waveforms were then aligned in the program so that the 

negative peaks were at the same location to decrease variability in the principal 

components.  Both automated sorting options in the program, Valley Seeking & 

T Distribution E-M, were tested for comparison. Ultimately E-M sorting was 

used for all further analyses as it is most comparable to the sorting technique 

presented in this paper. 

G. Simulated Data 

For quantitative analysis of the functionality of our algorithm, simulated data 

was generated with known spike locations for analysis.  This data was 

developed with assistance from collaborators and used in their testing of 

onboard processing for neural spike sorting applications.  Simulated spikes 

were generated of various SNR's ranging from 0 dB to 18 dB.  The SNR of the 

simulated data was defined differently than that of the output of the algorithm.   

To create the data, an SNR was defined as 20 * log10 (SDsignal/SDnoise).  Noise 

data was selected from previous recording sessions in which no neural sources 

were visible and a random Gaussian noise was added to the input spike signal 

for variability.  The spike signal was composed of 3 out of 10 possible spike 

waveforms randomly placed throughout the data file (Figure II-5). Spike 
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waveforms were normalized such that the peak value (either positive or 

negative) was defined as 1.  Given this definition, not all waveforms on a given 

channel have the same peak-to-peak amplitude (Table II-2).  Noise on a given 

channel was varied to generate simulated neural sources with differing signal to 

noise ratios. Ten channels of data were tested per file so that all possible 

waveforms were examined.  The data files that resulted from this methodology 

included waveforms with variations around a defined SNR value.  For example, 

at 0 dB, all waveforms had a net spike SNR of at most 1.0.  At 5 dB, the mean 

SNR across channels increased to 1.4, and the largest value of 18 dB lead to 

easily detectable units with SNRs over 4.0 (Table II-2). 

Table II-1: Spike Amplitude and SNR levels for Simulated data files.  SNR for each channel is 
defined as the peak to peak amplitude of the spike template divided by the noise level in the 
recording session.  Noise level was calculated as 6 times the standard deviation to coincide with 
the SNR calculations by the algorithm. The channel on which each waveform spike is present is 
indicated in the header row.  For example, Channel 1 contains spike templates 1, 2, & 3. 

Spike 
Template 
(Channels)  

1 
(1,7,8) 

2 
(1,2,8) 

3 
(1,2,10) 

4 
(2,3,9) 

5 
(3,4,10) 

6 
(3,4,5) 

7 
(4,5,6) 

8 
(5,6,9) 

9 
(6,7,10) 

10 
(7,8,9) 

Spike Vpp  
 

1.7 1.1 1.4 1.6 1.8 1.5 1.9 1.1 1.6 1.2 

0 dB SNR 
(1.92 
Noise)  
 

0.9 0.6 0.7 0.8 0.9 0.8 1.0 0.55 0.8 0.6 

5 dB SNR 
(1.07 
Noise)  
 

1.6 1.0 1.3 1.5 1.6 1.4 1.8 1.0 1.4 1.1 

18 dB SNR 
(0.26 
Noise)  

6.6 4.1 5.3 6.2 6.8 5.6 7.4 4.1 6.0 4.6 
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Figure II-5: Spike waveforms used for each channel of simulated data.  Three waveforms were 
used in each channel of different shapes to examine the algorithm's ability to separate similar 
shaped waveforms of differing amplitudes.  

IV.  RESULTS/DISCUSSION 

A. Comparison to OFS 

Our MATLAB sorting toolbox was first compared to Offline Sorter using a single 

channel of neural data recorded in a prior experiment.  The same dataset as 

used above (Figure II-1, Figure II-2, Figure II-3, Figure II-4) was exported from 

the TDT software environment into a format that is compatible with Offline 

Sorter (.DDT file) using a modified version of OpenBrowser provided to the 

authors by TDT.  The data was filtered, waveforms snippets over the threshold 

were extracted and the principal components were clustered in 3D space as 

described in the methods.  Both Offline Sorter and our toolbox isolated two units 
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with almost identical mean waveforms (Figure II-6 and Figure II-3, respectively).   

However, Offline Sorter also created an additional waveform cluster from the 

remaining data that our MATLAB toolbox eliminated.  Note that this additional 

waveform resembles random noise that incidentally crossed the threshold (a 

singular low amplitude negative voltage deflection that immediately returns to 

zero), and is therefore either very low amplitude neural hash that is impossible 

to differentiate from noise, or simply noise. 

The number of detected waveforms and other cluster characteristics were then 

compared between the two software packages.  Offline Sorter detected a total 

of 7553 waveforms of which 772 were classified in the blue unit and 2120 were  

classified in the green unit.  In contrast, the MATLAB package detected 3329 

threshold crossings and classified 839 in the blue unit and 1575 in the green 

unit.  Note that both Offline Sorter and our toolbox detected a similar number of 

detected waveforms for the blue unit.    

The discrepancy in the number of waveforms results from multiple sources.  As 

noted above Offline Sorter’s unit "a" (yellow) is simply random noise that was of 

sufficient amplitude to cross the threshold level. Offline Sorter normally assigns 

any clustered points to an additional unit, even if they are low SNR, whereas 

our algorithm excludes them appropriately as noise. Small differences in the 

number of blue units detected are likely due to differing classification between 

the edges of the clusters as the blue and green units begin to overlap.  Our 

toolbox also detected considerably fewer green units than Offline Sorter.  Note 
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that many of the green units detected by Offline Sorter overlap in cluster space 

with yellow units generated by noise.  As the true number of underlying sources 

is not known in recorded neural data, it is impossible to tell if these are true 

units or noise perturbations. Offline Sorter's arbitrary sorting method  results in 

clusters where noise is occasionally classified as units.  In contrast, our toolbox 

has been designed conservatively, and is therefore unlikely to classify noise as 

a unit.  There is always a tradeoff between false positives and false negatives, 

so we have chosen to exclude some potentially useful information in neural 

hash / multi-unit activity at the expense of being able to exclude more of the 

noise.  For evaluating improvements in neural probe technology, one would 

prefer fewer false positives and will accept additional false negatives to be 

confident that all neural sources detected are real. 

Other quantitative comparisons of metrics were impossible as Offline Sorter 

does not have options to calculate noise level in the wideband data, peak-to-

peak signal level, spike rate, etc.  Furthermore, as a scale factor of 1 million 

was used in OpenBrowser to convert from floating point data to integer Offline 

Sorter data, all amplitudes listed in the Offline Sorter package are not indicative 

of the original recorded amplitude. In summary, both the MATLAB toolbox and 

Offline Sorter created similar mean waveforms for 2 units, with similar unit 

counts adjusting for slight differences in methodology such as stricter cluster 

criteria.  Our MATLAB toolbox excluded the 3rd unit created by Offline Sorter, 

which appears to be either entirely noise, or multi-unit hash that is not 

differentiable from noise. 
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Figure II-6: Sorting Summary for single channel data processed using Offline Sorter.  Blue and 
Green units are representative of similar data as in Figure II-3. 



40 

B. Simulated Data in MATLAB 

To better characterize the efficacy of the MATLAB package, we analyzed a set 

of simulated neural data with known neural sources.  The dataset had ten 

channels with three spike waveforms per channel for signal added to a 

combination of Gaussian noise and real neural noise.  We varied the SNR of 

the simulated data to analyze the efficacy of spike detection in emulated 

practical recording situations (Table II-2).  As can be seen in Table II-2, our 

algorithm successfully detected the majority of input waveforms correctly and 

performed with greater than 97% accuracy across all waveform shapes in the 

18 dB high SNR situations.  The few waveforms that were not correctly 

clustered were near the edges of the clusters as can be seen by the unsorted 

black units in the upper plot of Figure II-7.  These waveforms had membership 

indexes that were not quite high enough to be included in the cluster, likely due 

to the close proximity to neighboring clusters.   There was also increased jitter 

in waveform shape resulting from simulated noise. 

Waveforms were selected for each channel such that similar waveforms as well 

as individually distinct waveforms were combined on the same channels.  On 

channel 3, two waveforms with extremely similar waveform shapes were both 

selected to examine how well the algorithm performed with overly similar 

characteristics (See Figure II-5). These two waveforms did not have the 

sufficiently differentiable principal components to be separable as is evident in 

the upper cluster plot (Figure II-7).  Moreover, even experienced technicians 
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would likely group these clusters together under the assumption that the slight 

separation between them was due to random perturbations in the neural 

environment as opposed to arising from different neurons. 

Table II-2: Simulated spike data.  Total number of waveforms and accuracy for successful 
detection and sorting are displayed. 

Channel 
Total Waveforms 

Input to Algorithm 
Total Waveforms 
Detected at 18dB 

Algorithm 
Accuracy per 

Channel 

1 2088 2083 99.8% 

2 2007 2007 100% 

3 1702 1702 100% 

4 1487 1486 99.9% 

5 1553 1523 98.1% 

6 1710 1671 97.7% 

7 1780 1749 98.3% 

8 1974 1965 99.5% 

9 1677 1634 97.4% 

10 1560 1560 100% 
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Figure II-7: Waveforms detected from simulated data with the largest tested SNR of 18 dB.  
Upper plot is clusters of principal components.  Greater than 97% of waveforms in the input to 
the algorithm were successfully detected on every channel.  In one case on channel 3, 100% of 
the waveforms were detected and clustered, however two of the waveforms were similar 
enough to be classified as a single green unit.  Given this extremely similar shape of the 
waveforms as seen in Figure II-5, it was expected that these would likely be clustered together. 
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In the dataset for the channel used in the simulated data comparison, there 

were 840 presentations of unit 1(blue-1.6), 460 of unit 2 (green-1.3), and 788 of 

unit 3 (red-1.0). 

To examine the functionality of our algorithm when given recordings consisting 

of low amplitude signal and a high noise floor  we used an simulated SNR 

signal of 5 dB, which produced spike SNR recordings near the minimum 

classifiable level of 1.1.  When the simulated spike had an SNR of 1.0, 100% of 

the 788 waveforms were successfully detected and classified, though there 

were an additional 8% false positives due to high noise and waveforms 

similarities.  For the other  SNR levels of 1.3 and 1.6, an increase in the number 

of detected, but unsorted waveforms becomes visible (Figure II-8). For the 1.3 

SNR unit, 57% of the 460 were correctly classified, compared to 41% of the 840 

for the 1.6 SNR unit   This increase in detected, but unclassified waveforms is 

due to the variability in waveform shape from the addition of the noise into the 

input simulated data.  As the noise is added to the signal, random noise levels 

can substantially adjust waveform shape, as is typical in real cortical recordings.  

Even at this increased noise level, over two thirds of the total waveforms were 

successfully classified indicating that our algorithm performs in an acceptable 

and consistently objective manner, while providing a conservative estimate of 

number of units detected. 
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Figure II-8: Example higher noise data at a 5 dB simulated level.  Upper plot shows an example 
two second signal input to the algorithm with all 3 waveforms.  All three waveforms are correctly 
detected on the channel.  These three waveforms have SNRs of 1.6, 1.3, and 1.1.  Even at 
these lower SNR levels, 70% of the waveforms were correctly classified with 99% of the 1.6 
SNR being identified perfectly.  Black (+) clusters were detected however, the increased noise 
level made statistically significant differentiation less confident, resulting in an increase in 
unclassified waveforms. 

C. Comparison of Simulated Data Analyzed with Offline Sorter 

The same dataset described above was then converted and analyzed using 

Offline sorter for direct comparisons to be determined. For the high noise 
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dataset, Offline Sorter successfully detected an classified 54% of the 

waveforms overall (Figure II-9).  For the waveforms with a 1.3 SNR, 100% of 

the 460 waveforms were classified correctly, along with 9 additional false 

positives.  However, for the 1.6 and 1.0 SNR, Offline Sorter correctly classified 

50% and 32% of the waveforms correctly respectively. Comparing these results 

to the same data processed using the MATLAB toolbox, one unit was 

completely classified in both packages along with some false positives. In high 

noise recordings such as those used in this simulated data session, false 

positive waveforms are substantially more likely as noise waveforms begin to 

approximate noisy spike waveforms.  For the additional two waveforms, both 

detection and clustering efficiency are similar between the packages, however 

ours has a net higher performance of 67% over the 54% of Offline Sorter.  This 

performance increase is primarily due to our threshold technique, which allows 

setting of positive and negative thresholds whereas Offline Sorter includes only 

one direction - allowing some waveforms to be undetected. 

In low noise recording sessions, both packages perform similarly well.  Offline 

Sorter detected and clustered 100% of the 1.3 SNR unit correctly along with  

92% of the 840 waveforms in 1.6 SNR unit.  However, for the 1.0 SNR unit all 

waveforms were clustered of the 778 possible along with an additional 9% false 

positives.   All of these false positives should have been identified as the 1.6 

SNR unit but were incorrectly classified into 1.0 unit resulting in an overall 

performance of 100% units classified with 8% incorrectly and an additional 1% 

false positive noise included.  
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Figure II-9: Simulated Data processed using Offline Sorter.  Left plots represent high noise 
simulated data while right plots represent the low noise situation.  Upper plots are 2D cluster 
representations and lower plots are mean waveforms with waveform variability for each of the 
sorted units. 

V. CONCLUSIONS 

Within this study, we have developed and reported an automated MATLAB 

toolbox for analysis of neural data that is easily manipulated based on the 

experimental paradigm.  This package has been utilized in multiple projects 

within our research group (Ludwig, Uram et al. 2006; Abidian, Ludwig et al. 
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2009; Langhals and Kipke 2009; Ludwig, Miriani et al. 2009; Purcell, Thompson 

et al. 2009; Rohatgi, Langhals et al. 2009).  The algorithm package analyzes 

large amounts data quickly, provides objective classification of neural data 

across multiple platforms, and is open-source and therefore available at 

substantially reduced cost when compared to commercially available products.  

Our algorithm outperformed Offline Sorter while using well-isolated simulated 

data in a low noise recording session by correctly identifying 99.8% of the 

simulated units, where Offline Sorter misclassified 8% of units into the wrong 

cluster and incorporated 1% false positive events from noise into the results. 

To expedite development and characterization of new neural probe designs and 

modifications, it is necessary for different researchers and developers to have a 

consistent standard for comparing device performance.  Given the purchase 

price and limited adaptability of commercial packages, the most efficient way to 

accomplish this is through a collaborative open source neural data analysis 

package.  We have successfully taken the first step towards this goal with the 

validation of this toolbox within our own research group.  Furthermore, we have 

recently recruited beta testers who utilize both TDT and Plexon neural recording 

platforms to verify the basic functionality of the toolbox.  After the currently 

running phase of beta testing, the toolbox will be available as an open source 

kit for use in research environments to assist with high throughput neural 

recording data analysis. 
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Chapter III 

Spike Triggered Averaging of Neural 

Recordings to Aid In-Vivo Visualization of 

Neuronal Morphology* 

In standard chronic single-unit neural recordings, one or more electrodes are 

used to record the extracellular potential generated by an individual neuron. 

Although spike sorting methods are sufficient to isolate individual specific 

neurons, they do not yield information about the underlying morphology of the 

recorded neuron. Because the potential field generated by a firing neuron falls 

off quickly with respect to distance from the neuron, it is difficult to isolate the 

contributions of dendritic depolarization from the noise floor on recording sites 

distant from the soma/axon hillock. Here, we introduce a technique to identify 

dendritic contributions to the potential recorded on distant electrode sites, 

providing additional information about the morphology of a recorded neuron in 

space with respect to the electrode array. 

                                            

* This article is in preparation.  Authors: Nicholas B. Langhals, Kip A. Ludwig, and Daryl R. 
Kipke.  
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To evaluate this technique, we implanted silicon microelectrode arrays 

(NeuroNexus Technologies) in the motor cortex of Sprague Dawley rats and 

auditory cortex of guinea pigs. The implanted microelectrode arrays had site 

locations enabling recording from multiple locations at multiple cortical depths 

simultaneously. To apply our technique, we first identified well-isolated unit 

activity on a specific site. Using the known firing times of the well-isolated unit, 

we were able to identify the contributions of the recorded neuron to the noise 

floor on distant recording sites. Electrode locations dorsal and ventral to the site 

with a well-isolated spike exhibited a contribution to recorded potentials, 

including the characteristic flipping of the recorded waveform at distant 

locations. Electrodes located at the same cortical depth as the isolated action 

potential from a vertically oriented neuron exhibited almost no contribution to 

recorded potentials. This finding is consistent with the theorized contributions to 

the recorded extracellular potential of axonal and dendritic projections, which 

can span multiple cortical layers. 

These results indicate that the potential fall off of a neuronal action potential is 

not analogous to homogenous fall off from a point source, but is instead 

influenced by neuronal morphology. Moreover, we demonstrate that the 

contribution of neuronal morphology to the extracellular potential can be 

detected by recording at precise locations dorsal to the site putatively recording 

from the cell body. Consequently, the methodology introduced here may enable 

more precise spike sorting techniques. 
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I. INTRODUCTION 

Detection of neural action potentials registered by a single recording electrode 

is typically accomplished through a threshold crossing process (Lewicki 1998)  

Ideally, a threshold line is set such that voltage perturbations generated by a 

neuron near a recording electrode during an action potential cross the threshold 

level, while background noise from other sources do not cross the threshold.  

As the largest focalized voltage perturbation generated by a neuron during an 

action potential occurs at the soma/axon hillock, standard thresholding 

techniques emphasize those contributions.  While emphasizing the largest 

signal, the smaller amplitude contributions along the axons and dendritic arbors 

also nearby an electrode may be minimized or ignored entirely. 

In many cases, it is desirable to also observe the voltage contribution of axons 

and dendritic arbors across multiple electrodes in order to: a) separate the 

action potential generated by a neuron from other action potentials with similar 

waveforms generated from other nearby neurons, b) identify the types of 

neurons being recorded from such as pyramidal cell or stellate cell and c) build 

a clearer picture of the in-vivo morphology of a neuron relative to multiple 

recording electrodes without performing histology.  To accomplish this, twisted 

wires – two microwires to form a stereotrode or four wires to form a tetrode  

[Gray 1995, McNaughton 1983, Harris] – are extensively used in neuroscience 

research to create a cluster of multiple, closely-spaced sites (usually 

approximately 50 micron spacing) at the end of a single multi-strand wire.  
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When an action potential that crosses threshold is observed on one of the four 

wires, a “snapshot” on the other three wires is simultaneously recorded, 

allowing an experienced user to detect sub-threshold contributions of the 

neuronal action potential on the other electrode sites that are still large enough 

to differentiate from noise.  Tetrode recording techniques have two obvious 

limitations, 1) the close spacing of the tetrodes make them ill-suited to detect 

the axonal and dendritic contributions of neurons such as pyramidal cells with 

processes that span multiple cortical layers or columns, and 2) when using an 

instantaneous “snapshot,” sub-threshold voltage contributions of neuronal 

processes on other sites can easily be obscured by sources of noise. 

In this study, we introduce a technique known as “spike triggered averaging” 

(STA)  that in combination with densely packed “Michigan” two-dimensional and 

three dimensional arrays addresses these known limitations to tetrode 

recordings.  Using STA, we can easily isolate very small voltage contributions of 

a neuronal process nearby distant electrode sites by removing noise sources 

not strongly correlated to the firing of a specific neuron almost entirely.  This, in 

conjunction with high-resolution 2-d and 3-d “Michigan” probes, allows us to 

develop a high resolution 2-d or 3-d morphological picture of the recorded 

neuron relative to the recording electrodes, capable of spanning multiple 

cortical layers and/or cortical columns in a chronically implanted setting.  This 

additional information can then be used to differentiate neuronal cell types, 

determine neuronal stability over time, identify neuronal connectivity, address 

issues of plasticity, and address basic neuroscience questions involving in-vivo 
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chronic neuronal morphology in an intact system.     

II. METHODS 

A. Microelectrodes 

All data used in this study was taken from either Sprague-Dawley rats or guinea 

pigs.  The subjects were implanted with  silicon ‘Michigan’ microelectrode 

arrays, using experimental procedures outlined previously (Vetter, Williams et 

al. 2004; Ludwig, Uram et al. 2006).   Arrays consisted of one, four, or sixteen 

shanks, each with 4-16 evenly spaced iridium electrodes (Figure III-1).  Site and 

shank separation distances were adequate to limit the probability of an 

individual neuron being directly recorded from multiple sites as they were 

spaced at least 100 microns from each other in all three dimensions (Henze, 

Borhegyi et al. 2000). Sites on four shank probes were spaced at 200 microns 

in both directions, while single shank device sites were spaced at 100 microns. 

The 3D arrays used in this study consisted of prototype 3D probes assembled 

by NeuroNexus Technologies (Ann Arbor, MI).  These were created by 

horizontally stacking four commercially available acute devices using a polymer 

interconnect to separate the individual probes for uniform spacing.  Sixteen 

electrode shanks of four sites each were arranged in a 4x4x4 grid for a total of 

64 electrode sites.  The individual shanks were three millimeters in length with 

177 µm2 sites spaced at 100 µm apart along a shank, with shank spacing of 

125 and 300 in each direction (Figure III-1). 
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Figure III-1: Examples of site layouts of silicon probes used in this study. All device were 
provided by NeuroNexus Technologies, Inc., (Ann Arbor, MI). Image of example 3D probe style 
as used in this study consists of 4 rows of 4 shanks spaced at 125 µm between shanks and 
each row of shanks spaced at 300 µm. 

B. Surgical Techniques 

All implants in this study were performed on 250 - 300g female guinea pigs 

targeting primary auditory cortex. Surgical procedures were similar to those 

used previously (Vetter, Williams et al. 2004; Ludwig, Miriani et al. 2009; Kim, 

Wiler et al. 2010). Initial anesthesia was administered via intraperitoneal 

injection of a mixture of 40 mg/kg ketamine and 5 mg/kg xylazine. Updates 

were given throughout the procedure every hour or as needed to maintain a 

consistent depth of anesthesia. To prepare the implant location, the surface of 

the head was first shaved and the skin and connective tissue on the surface of 
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the skull were cleared.   Next, three stainless steel bonescrews were secured in 

the skull anterior to bregma, and a bolt was then affixed to these screws using 

dental acrylic for the purpose of securing the head to a manipulator. 

After securing the animal, a craniotomy approximately 4 x 4 mm was made over 

primary auditory cortex.  The dura was resected in order to allow for probe 

insertion and the exact target was located using the well-defined vascular 

landmarks that have been reported previously. The 3D electrode array was then 

mounted to the stereotaxic manipulator and driven perpendicular to the cortical 

surface in to a target depth of about 1 mm so that the deepest electrode sites 

were located near layer IV.  Last, a stainless steel needle was inserted into the 

skin tissue of the upper back and used as a reference and ground for all 

recordings in the experiment.  All procedures complied with the U.S. 

Department of Agriculture guidelines for the care and use of laboratory animals 

and were approved by the University of Michigan Animal Care and Use 

Committee. 

C. Electrophysiology 

All recordings were acquired using a TDT multi-channel acquisition system 

(RX5, Tucker-Davis Technologies, Alachua, FL) in an electrically and 

acoustically shielded booth. Neural electrophysiological recordings for all 64 

channels were fed through an anti-aliasing filter (0.35 Hz – 7.5 kHz) amplified, 

and sampled at ~25 kHz.  Wideband data for post-processing unit 

characterization was left unfiltered. 
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D. Data Filtering and Analysis 

Wideband neural recording segments were analyzed off-line using custom 

automated MATLAB (Mathworks, Natick, MA) software, as described in detail 

elsewhere (Ludwig, Miriani et al. 2009; Rohatgi, Langhals et al. 2009). Briefly, 

an amplitude discrimination threshold was set at 3.5 standard deviations above 

and below the mean of the recording segments. For each peak exceeding the 

threshold, a 2.4-ms candidate waveform snippet centered on the absolute 

minimum of the waveform was removed from the recorded segment and stored. 

The peak-to-peak noise level was calculated as six times the standard deviation 

of the remaining data.  After initial principal component analysis, individual 

clusters were identified using fuzzy c-means clustering. After clustering, 

waveforms with a cluster membership index of greater than 0.8 were used to 

determine a mean waveform for a cluster.  The signal-to-noise ratio for these 

waveforms was calculated as the peak-to-peak amplitude of the mean 

waveform divided by the calculated noise value.  Values of greater than 1.1 

were considered quality units, easily discriminable from the underlying noise 

floor. 

E. Impedance Spectroscopy Measurements 

Impedance spectroscopy measurements were made using an Autolab 

potentiostat PGSTAT12 (Eco Chemie,   Utrecht, The Netherlands) with 

associated frequency response analyzer (Metrohm USA, Inc).  Impedance 

measurements were made by applying a 25 mV RMS sine wave with 1-kHz 
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frequency.  Prior to implantation, measurements were made by immersing the 

electrode recording sites in 0.1 M phosphate buffer saline (PBS) and a platinum 

foil was used as the reference electrode. 

F. Spike Triggered Averaging 

The basic concept behind using a spike triggered average (STA) has been used 

previously in other studies examining the relationships of local field potentials 

(LFPs) to activity from individual neurons (Donoghue, Sanes et al. 1998; Gail, 

Brinksmeyer et al. 2004; Magill, Sharott et al. 2004; Nelson, Pouget et al. 2008).  

The basic premise behind these and similar studies is to examine the changes 

in low frequency cortical activity as they relate to individual neural action 

potentials (spikes) recorded and sorted from the same electrode site, though at 

a substantially lower frequency.  While information in local field potentials can 

be difficult to decipher with a single repetition, repeated examination of 

correlations between spikes and LFPs through averaging results in a net 

averaging effect removing the uncorrelated signal and noise within the LFP, 

while leaving the desired information about related information between the two 

distinct neural signals. 

To apply our novel application of this technique, we first identified well-isolated 

unit activity on all sites on the electrode array, one at a time (See Methods).  As 

the largest voltage perturbation generated by a neuron during an action 

potential occurs at the soma/axon hillock, one can assume the electrode on 

which the well-isolated unit is observed is near the soma/axon hillock.  Next, a 5 
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ms window (or “snapshot”) of the voltage traces for all other channels on the 

array was obtained and stored, centered on each firing time from a well isolated 

unit.   For example, if a well isolated unit was recorded at time t=100ms into the 

recording session on channel 1, a window from 97.5-102.5 ms (100ms +/- 2.5 

ms) was stored from channels 2-16 (or 64).  Finally, all of the “snapshots” for a 

given channel were averaged to generate the mean voltage trace over time on 

that channel resulting from the firings of the well-isolated action potential.  By 

averaging over many firings, consistent low amplitude voltage perturbations 

resulting from dendritic contributions of the source neuron on nearby and 

distant channels remain, whereas random noise sources on these channels 

uncorrelated to the firing of the neuron average to nearly zero. After all steps, 

this process was then repeated for every well-isolated unit recorded on the 

array. 

III.  RESULTS/DISCUSSION 

A. STA from 2D Arrays 

In this study we utilized spike triggered averaging (STA) across multiple 

different electrode platforms to elucidate underlying neuronal morphology.  

Using STA, low amplitude voltage contributions of axons and dendrites to 

electrode sites distant from the soma/axon hillock, that were previously 

obscured by noise, become visible. Through STA, neural features that are 

correlated to the source channel remain,  while all uncorrelated signal and noise 

diminishes to nearly zero. This method enables projections from the neuron to 
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be detected, yielding information about neural cell type and morphology. 

The first dataset processed using STA was from two-dimensional planar arrays 

as shown in Figure III-1. Two different phenomena were observed using these 

arrays.  First, a recorded action potential from a neuron with a horizontal 

projection was detected (Figure III-2 A).  This signal from the projection of the 

neuron remains visible only at Depth 2 of the planar array and decreases in 

intensity further away from the assumed contribution of the soma.  Note that the 

average voltage contribution from the horizontal projection is lower amplitude 

than the green noise level.  Without application of our STA technique, this 

potential would not have been detectable.  Given the structure of this field we 

are not able to determine the type of cell that is generating this potential field, 

but we do have a better understanding of the cell structure in the environment 

surrounding the electrode array. 

In Figure III-2 (B) a different neuronal morphology across the array is evident, 

consistent with a pyramidal cell.   Schmidt and Humphrey reported action 

potential shapes that would be theoretically recorded from pyramidal and 

stellate cells as an individual electrode was moved past the cell within the 

brain(Schmidt and Humphrey 1990).  The example potential field that was 

reported for a pyramidal cell closely matches our STA plot below (Figure III-2).  

The red source channel has a  waveform shape typically produced from the 

soma of a neuron.  This signal then decreases to zero as the field is sampled 

near to the axon hillock, at which point the waveform shape inverts – known as 
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flipping - and the field becomes detectable again on the lower channel on the 

array.  Note on the lowest site of the third shank this neuron’s  contribution to 

the potential field is actually higher amplitude than the noise floor on that 

channel, indicated in green.  Using typical sorting and data analysis techniques, 

this action potential would be detected and likely classified as an independent, 

well-isolated single unit.  However, the voltage deflection on this channel is 

actually generated by the same neuron seen from the second site on that 

shank.  Counting the contribution of one neuron on an array twice would have 

the net result of artificially inflating the yield of the implanted device, as the 

second observation of the same unit is only capable of providing redundant 

information. 

  



(A)

(B)

Figure III-2: Two plots of STA of four shank arrays. Red units indicate source of the STA, blue 
traces are averages on other channels, and green dashed lines indicate noise levels on the 
electrode sites.  (A) Upper
lower plot has a flipping and signal propagation structure consistent with a pyramidal cell type.

63 

 

 

Two plots of STA of four shank arrays. Red units indicate source of the STA, blue 
traces are averages on other channels, and green dashed lines indicate noise levels on the 

Upper plot displays a horizontal projection from the source c
has a flipping and signal propagation structure consistent with a pyramidal cell type.

Two plots of STA of four shank arrays. Red units indicate source of the STA, blue 
traces are averages on other channels, and green dashed lines indicate noise levels on the 

plot displays a horizontal projection from the source channel. (B) The 
has a flipping and signal propagation structure consistent with a pyramidal cell type. 
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Spike triggered averaging analysis was also applied to electrode arrays with 16 

linearly spaced sites in a single cortical column (Figure III-3).  In the left plot, the 

characteristic flipping occurs between the fourth and fifth site from the bottom.  

This indicates that the red source channel is likely recording from a pyramidal 

cell as well, though in this case the neuron is further from the electrode array 

than it was in the lower plot of Figure III-2, resulting in decreased amplitude at 

the soma and smaller contributions from distant neuronal processes.  The right 

plot displays a similar effect, though the original waveform shape has a less 

pronounced positive deflection.  However,  the characteristic flipping in the STA 

shape on the blue channels is still visible.  Inversion of the voltage waveform 

indicates that the signal is not simply the detection of the soma from further 

away, but is instead the observation of the potential field generated by neuronal 

processes other than the soma. 



Figure III-3: Two separate STA plots created from single shank arrays.  Red units indicate 
source of the STA, blue traces are averages on other channels, and green dashed lines indicate 
noise levels on the electrode sites.
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: Two separate STA plots created from single shank arrays.  Red units indicate 
source of the STA, blue traces are averages on other channels, and green dashed lines indicate 

electrode sites. 

: Two separate STA plots created from single shank arrays.  Red units indicate 
source of the STA, blue traces are averages on other channels, and green dashed lines indicate 
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B. 3D Probe Impedance 

For all 3D probes used in this study, electrode impedance was measured to 

verify that sites showing similar activity were not simply the result of shorting 

between electrodes on the array or within the connector assembly. Channels 

40, 55, and 60 had impedances significantly higher than the average of the 

remainder of the sites and were excluded from further analysis. Channels 45 

and 47 had extremely low impedances, likely the result of shorted sites and 

were also excluded. 

 

Figure III-4: 1 kHz Impedance magnitude of all 64 channels of electrodes sites used for the 3D 
data in this study. 
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C. 3D STA 

Using the sixteen shank 3D probes as outlined in the methods, we were able to 

replicate the 2D experimental data shown above (Figure III-2).  Our 3D probes 

electrode sites were spaced at a smaller distance within a plane, 100 microns 

along the shank and 125 microns between shanks.  Using this smaller spacing, 

we were able to detect a large pyramidal cell with an SNR of 1.7 as shown in 

the red starred plot of Figure III-5.  The characteristic flipping indicative of 

neural morphology of a pyramidal cell (Schmidt and Humphrey 1990) is visible 

from the blue starred plot.  In contrast to Figure III-2 (B), there are two sites 

between the evident flipping of the STA instead of one since the site spacing of 

the 3D probe is 100 microns as opposed to the 200 microns used for the 2D 

arrays. This result indicates that this neuron is likely of the same type and a 

similar distance in space from the implanted array. Horizontal and vertical 

propagation of the fields generated by the pyramidal cell are visible in plots 

labeled yellow. 

Due to the organizational structure of the brain, we initially speculated that STA 

waveforms would be present on multiple planes within the array.  From the 

lower plot of Figure III-5, we were unable to observe this effect.  Based on 

modeling experiments currently underway within our research group 

(manuscript in preparation), we have determined that the organization of the 

electrode sites on the surface of each planar array results in an effective 

attenuation for signals present behind the planar array. While a single shank or 
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plane of the array can run parallel to projections from a neuron, it is unlikely for 

a neuronal process to run directly by two electrodes on separate planes after 

implantation. Assuming this effect also applies to the 3D arrays used in this 

study, it is unlikely that we can detect these extremely small signals, even if 

present, due limitations of neural recording hardware.  Next generation 3D 

probe designs that incorporate planes of electrode sites that face each other 

would mitigate this problem and could allow us to examine fully three-

dimensional structure of neurons present in the environment surrounding the 

implanted probe without the use of fMRI, tissue slice microscopy, or other high 

resolution imaging techniques. 

Planned future applications for STA will explore synaptic connections between 

neurons by increasing the window size for the STA beyond the currently used 5 

milliseconds.  Theoretically, it may be possible to map out multiple connected 

neurons within the 3D space surrounding the electrode array using STA that 

were previously obscured by noise.   This electrophysiological data could then 

be used to create a map of neural structure surrounding the implanted probe.  

There are however limitations to this technique that must first be addressed.  

First, the process is highly dependent on consistent spike firing times, even 

within the same cell.  For example, while the mean time from the beginning of 

the dendritic potential to the initiation of a full action potential at the axon hillock 

may be 1 millisecond, any variation in this timing means that the voltage 

contribution of the dendrites can be inconsistently located in time, and therefore 

can be attenuated by the averaging process.  Even with small amounts of 
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variability in propagation time, the observed STA waveform may change 

resulting in an inability to correctly identify cellular type. 

With high resolution recording systems currently available, even extremely 

small contributions should be detectable using STA, but there is an inherent 

minimum detectable level using this technique.  As the spike waveforms 

become smaller or are at a further distance from the array, the potential falloff 

from the dipole field generated by the neuron becomes the limiting factor.  

While the limit of detection of any neural signal is definitely greater than the 50 

microns reported by (Henze, Borhegyi et al. 2000), the true limit still needs to be 

clarified.  Even in a zero noise environment, ionic currents have a limited range 

of propagation, so that if no signal is reaching the electrode site, there is no 

averaging technique that would allow us to map the neural source.  
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Figure III-5: STA plots from 3D probe implanted in guinea pig primary auditory cortex.  The 
upper plot is from the front-most plane of the array with the red star indicating the source 
channel for the STA.  The characteristic flipping is evident, particularly on the blue starred 
channel, with the yellow starred plots showing small contributions and propagations.  On the 
lower plot, which is 300 microns back from the upper plot, no signal is visible. 
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IV.  CONCLUSIONS 

Within this study, we have taken advantage of the consistent dimensions of  

microfabricated arrays to explore the morphology of neurons through 

electrophysiological analysis.  The ability of the ‘Michigan’ probe to record from 

multiple cortical depths simultaneously enables sampling from an individual 

neuron at multiple points.  Through this simultaneous sampling, the contribution 

of the neuronal potential at an electrode can be visualized within the noise 

using spike triggered averaging of the wideband neural signal over multiple 

spike repetitions. The STA waveform that results from this process depends 

heavily upon neuronal morphology with respect to the electrode; therefore, cell 

types may be identified and the neuronal processes can be localized in two 

dimensional space.  Through the application of STA, we have verified that 

neurons do not behave as point sources.  Instead, the fields generated at 

different locations along the cell have different shapes that can be detected at 

distances of greater than 1 millimeter from the soma.  This distance depends 

heavily on the orientation of the cell relative to the array, but can be much larger 

than the previously reported maximum detectable distance of 50 

microns(Henze, Borhegyi et al. 2000). 

The results of this study may heavily influence future neuroprosthesis designs.  

Through the use of this technique, we have a much greater understanding of 

how uniform site spacing and placement can be utilized to understand the 
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morphology of the brain providing new information compared to what is possible 

with current tetrode technologies. Furthermore, we have discovered that with 

sites spaced at distances around 100 microns that the same neuron may be 

detected on multiple electrodes.  For neuroprosthetic systems focused on 

independent information channels, such as brain-machine interfaces, it has 

typically been assumed that these separations were sufficient to prevent the 

same neuron from being recorded from multiple sites simultaneously; however, 

this is not the case.  For practical applications, either STA or cross correlations 

of firing times across all electrode sites must be employed to examine 

information content, or electrodes must be spaced even further away from each 

other to prevent simultaneous recordings of the same neural source. While 

small contributions may be detectable up to one millimeter away, these are 

insufficient to cross threshold with current noise levels.  However, if biological 

and other noise sources decrease in future devices, extremely small potentials 

may once again become detectable. Subsequently, in neurophysiological 

applications using tetrodes, examining simultaneous activity on other tetrode 

arrays at distances of greater than 100 microns could yield more information 

about cell types; this information could then be used to create a full 3D 

reconstruction of cell type and location relative to the array to be compared and 

validated with immunohistochemistry. 
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Chapter IV 

PEDOT polymer coatings facilitate smaller 

neural recording electrodes1 

I. Abstract 

We investigated using poly(3,4-ethylenedioxythiophene) (PEDOT) to lower the 

impedance of small, gold recording electrodes with initial impedances outside of 

the effective recording range.   Smaller electrode sites enable more densely 

packed arrays, increasing the number of input and output channels to and from 

the brain.  Moreover, smaller electrode sizes promote smaller probe designs; 

decreasing the dimensions of the implanted probe has been demonstrated to 

decrease the inherent immune response, a known contributor to the failure of 

long-term implants.  As expected, chronically implanted control electrodes were 

unable to record well-isolated unit activity, primarily as a result of a dramatically 

increased noise floor.  Conversely, electrodes coated with PEDOT consistently 

                                            

1 This article is in press in the Journal of Neural Engineering.  Authors: Kip A. Ludwig, Nicholas 
B. Langhals, Mike D. Joseph, Sarah M. Richardson-Burns, Jeffrey L. Hendricks and Daryl R. 
Kipke.  While I am not first author on this paper, I contributed substantially to its written content 
and analyzed the majority of the data using algorithms developed in Chapter II. 
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recorded high-quality neural activity, and exhibited a much lower noise floor 

than controls.  These results demonstrate that PEDOT coatings enable 

electrode designs 15 microns in diameter. 

II. INTRODUCTION 

The utility of implantable microelectrode arrays is currently limited by the size of 

the individual electrode sites for a number of reasons.  First, smaller electrode 

sites facilitate the development of more densely packed microelectrode arrays.  

At present, researchers are limited to sampling from a few neurons out of the 

billions of neurons which execute function in the brain(Kipke, Shain et al. 2008).  

As a result, the study of how large networks of neurons interact to produce 

biologically relevant behaviors is severely hampered.  Similarly, the efficacy of 

modern neuroprosthetic devices is greatly dependent upon the observable 

number of neural inputs/outputs.  Second, smaller electrode sites promote the 

design of smaller arrays, which in turn cause less damage upon implantation.  

Recent studies indicate that probe dimensions smaller than 12 microns 

minimize the reactive cell responses that negatively impact long-term neural 

recordings(Bernatchez, Parks et al. 1996; Sanders, Stiles et al. 2000; Seymour 

and Kipke 2007). 

Unfortunately, decreasing the size of an electrode site increases the impedance, 

which can degrade recordings.  Impedance impacts recordings primarily 

through two mechanisms: noise and shunt loss(Najafi, Ji et al. 1990).  Noise at 

the electrode/electrolyte interface can arise from random fluctuations of charged 
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carriers - either electrons in an electrical conductor (known as Johnson or 

thermal noise), or ions in an electrolytic medium(Robinson 1968; Schmidt and 

Humphrey 1990; Kovacs 1994; Shoham and Nagarajan 2003; Hassibi, Navid et 

al. 2004).  These fluctuations can be caused by Brownian motion of electrons, 

drift and diffusion of charged ions due to concentration gradients, 

oxidation/reduction reactions occurring at the electrode/electrolyte interface, 

etc(Hassibi, Navid et al. 2004).  As these random movements occur they create 

current perturbations, which increase the voltage noise in proportion to 

impedance(Hassibi, Navid et al. 2004).  Noise resulting from the fluctuation of 

charged particles (which we will refer to as fluctuation noise hereafter) 

represents only one source of noise out of many possible sources:  

instrumentation noise, shot noise, flicker noise, biological noise, etc.  Sources of 

noise sum in quadrature (a2 + b2 = c2), meaning that the single largest source of 

noise tends to dominate the noise floor.  Functionally, this means that the 

fluctuation noise for an electrode will only marginally contribute to the total noise 

floor until a nominal impedance magnitude is reached.  Beyond this impedance 

magnitude, fluctuation noise will tend to dominate the observed noise floor.  

Shunt loss is defined as the loss of signal from the electrode and measurement 

system to ground.  This can be separated into three distinct circuit elements.  

First, there is a capacitive loss from the metal traces on the microelectrode to 

the surrounding Cerebral Spinal Fluid (CSF)(Robinson 1968).  Second, a 

resistive element models the loss of signal from the inherent resistive nature of 

the metal wiring from the electrode to the measurement system(Robinson 1968).  
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Finally, there is a capacitor that models the capacitive signal loss in the 

measurement system(Robinson 1968).    Like fluctuation noise, shunt loss 

increases in proportion to impedance(Robinson 1968).  Typically, electrodes 

with impedances of 5 MΩ or greater have levels of fluctuation noise and shunt 

loss that make recording from individual neurons problematic(Robinson 1968; 

Najafi, Ji et al. 1990; Hetke, Lund et al. 1994).  

Conductive polymer coatings have been hypothesized to be an enabling 

technology for smaller electrode designs(Ludwig, Uram et al. 2006; Richardson-

Burns, Hendricks et al. 2007; Cogan 2008; Keefer, Botterman et al. 2008; Wilks, 

Richardson-Burns et al. 2009; Abidian, Corey et al. 2010).  Conductive 

polymers increase the electrochemical surface area of an electrode (ESA) 

without changing its geometric surface area (GSA - e.g. diameter, 

circumference), lowering impedance(Cui and Martin 2003; Richardson-Burns, 

Hendricks et al. 2007; Abidian and Martin 2008; Abidian, Ludwig et al. 2009).   

In 2006, the Kipke lab demonstrated that surfactant-templated poly(3,4-

ethylenedioxythiophene) (PEDOT) could be used to improve chronic neural 

recordings from standard-sized  electrodes(Ludwig, Uram et al. 2006).   

Building on this earlier work, in this study we demonstrate that PEDOT coatings 

effectively lower the impedance of small, gold recording electrodes (15 microns 

in diameter) with initial impedances outside of the effective range.  Chronically 

implanted unmodified electrodes were unable to record well-isolated unit activity, 

primarily because of an increased noise floor arising from large site impedances.  
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Conversely, sites coated with PEDOT were able to consistently record high-

quality neural activity, and exhibited a markedly lower noise floor than controls.   

III. METHODS 

A. Microelectrodes 

Three male Sprague-Dawley rats were implanted with three 16-channel chronic 

silicon ‘Michigan’ microelectrode arrays, using experimental procedures 

outlined previously(Vetter, Williams et al. 2004; Ludwig, Uram et al. 2006).   

Arrays consisted of four shanks, each with four evenly spaced gold electrodes.  

Site and shank separations were sufficient (100 µm or greater) to limit the 

probability of an individual neuron being recorded from multiple sites(Henze, 

Borhegyi et al. 2000).  All electrodes used in this study were 15 microns in 

diameter, or a GSA of 177 µm2.     

B. Electrochemical Deposition & Initial Evaluation 

Electrochemical deposition of PEDOT in this study was accomplished using an 

electrochemical potentiostat/ galvanostat (Autolab PGSTAT12, Eco Chemie, 

Urtecht, The Netherlands) with associated General Purpose Electrochemical 

System (GPES) software.  PEDOT doped with tetraethylammonium perchlorate 

and dissolved in 20 wt% surfactant poly(oxythylene)10-oleyl ether was 

galvanostatically deposited onto the gold sites of the neural probes(Yang, Kim 

et al. 2005).   Based on results from our prior paper, PEDOT films generated 

with a deposition charge of 260 mC/cm2 were chosen for in vivo testing.  
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Scanning electron microscopy (SEM) demonstrated that the PEDOT film 

deposited using a charge of 260 mC/cm2 did not increase the diameter of the 

recording site (Figure IV.1).   Consequently, at 260 mC/cm2 the PEDOT film 

increased the electrochemical surface area of the electrode (ESA) without 

increasing the geometric surface area (GSA).  Eight sites on each probe were 

deposited with surfactant-templated ordered PEDOT film.  The deposited sites 

were staggered in relative location to prevent bias due to specific shank location 

or cortical depth (Figure IV.3).  The remaining eight sites on each probe were 

left uncoated as controls for comparison.   
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Figure IV-1:  Scanning Electron Microscopy, PEDOT coatings. A) Depicts a PEDOT film 
generated using a deposition charge of approximately 260 mC/cm2, and  B) depicts a 
PEDOT film generated using a deposition charge of approximately 1600 mC/cm2.  Note that 
the PEDOT film generated using 260 mC/cm2 does not increase the geometric diameter of 
the underlying gold site, whereas the film generated using a deposition charge of 1600 
mC/cm2 increases the effective diameter of the gold site by approximately 20 percent.  For 
this study, PEDOT films were generated using a deposition charge of 260 mC/cm2.  
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C. Surgical Techniques 

All of the arrays in this study were implanted in motor cortex, targeting cortical 

layer V, as outlined in previous work(Vetter, Williams et al. 2004; Ludwig, Uram 

et al. 2006; Ludwig, Miriani et al. 2009) .  Initial anesthesia was administered via 

intra-peritoneal injections of a mixture of 50 mg/ml ketamine, 5 mg/ml xylazine, 

and 1 mg/ml acepromazine at an injection volume of 0.125 ml/100g body weight.  

Updates of 0.1 ml ketamine (50 mg/ml) were delivered as needed to maintain 

anesthesia during the surgery.  Animals were secured to a standard stereotaxic 

frame, and three stainless steel bone-screws were inserted into the skull.  The 

electrode connector was grounded to a bone-screw over parietal cortex using a 

stainless steel wire.   

A craniotomy approximately 3 mm by 2 mm was made over the target area 

(target location 3.0 mm anterior to bregma, 2.5 mm lateral from bregma, and 

1.4 mm deep from the surface of the brain).  Two incisions were made in the 

dura mater to create four flaps, which were subsequently folded back over the 

edge of the craniotomy.  The electrodes were then hand inserted using 

microforceps into the approximate target cortical area.  Cortical depth was 

estimated using the known location of the electrode sites on the individual 

shanks in conjunction with the known length of the individual shanks.  Next, the 

surface of the brain was covered with GelFoam® (Henry Schein, Inc., Miami, FL) 

for protection. The silicon cable connector was covered with either remaining 

Gelfoam or Kwik-Sil silicone polymer (World Precision Instruments, Inc).  The 
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entire assembly excluding the connector was then enclosed using dental acrylic 

(Co-Oral-Ite, Dental Mfg. Co., Santa Monica, Ca).  Finally, sutures were used to 

close the skin around the acrylic and triple-antibiotic ointment was applied.  All 

procedures complied with the United States Department of Agriculture 

guidelines for the care and use of laboratory animals and were approved by the 

University of Michigan Animal Care and Use Committee. 

D. Neural Recordings & Data Analysis 

Recorded neural signals were acquired using a Plexon Multi-channel Neural 

Acquisition Processor (MNAP; Plexon Inc, Dallas, TX).  Neural 

electrophysiological recordings for all sixteen channels were amplified and 

bandpass filtered; single and multi-unit recordings were sampled at 40 kHz 

(Plexon), and bandpass filtered from 450-5000 Hz.  All recordings were taken in 

reference to a distant stainless steel (316-SS grade) bone screw inserted 

through the skull during surgery.  During recording sessions, animals were 

placed in an electrically shielded recording booth and multiple 30-second 

segments of continuous neural recordings were taken.  Animals were lightly 

anesthetized with ketamine/xylazine throughout the data collection sessions.    

Neural recording segments were analyzed offline to determine number of 

neurons recorded, noise levels, and signal amplitudes using custom automated 

MATLAB (Mathworks Inc., MA) software, as described in detail(Ludwig, Uram et 

al. 2006) and utilized elsewhere(Ludwig, Uram et al. 2006; Abidian, Ludwig et al. 

2009; Langhals and Kipke 2009; Ludwig, Miriani et al. 2009; Purcell, Thompson 
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et al. 2009; Rohatgi, Langhals et al. 2009).  In summary, an amplitude threshold 

window was set 3.5 standard deviations above and below the mean of the 

sample distribution.  For each peak exceeding the threshold window, a 2.4 ms 

candidate waveform snippet centered on the absolute minimum of the 

waveform was removed from the recorded segment and stored.  The amplitude 

of the noise voltage for every recording site in each recorded segment was 

calculated after all candidate waveforms had been removed. 

After initial principal component analysis and fuzzy C-means clustering(Ludwig, 

Uram et al. 2006), waveforms with a cluster membership index of greater than 

0.8 were used to determine a mean waveform for a cluster.  An interspike 

interval histogram for each cluster was generated and visually inspected for an 

obvious absolute refractory period as an additional measure of noise rejection.  

Signal amplitude for a cluster was defined as the peak-to-peak amplitude of the 

mean waveform for each cluster.   

The signal-to-noise ratio (SNR) for a given cluster was defined as follows:     

SNR = Signal Amplitude / (2 * Calculated RMS Noise Voltage for Recording 

Site) 

Clusters were then separated into one of four categories based on calculated 

SNR.  Clusters with an SNR of greater than 4 were categorized as quality units.  

Clusters with an SNR between 3 and 4 were categorized as moderate units.  

Clusters with an SNR between 2 and 3 were categorized as poor units, while 

clusters with an SNR of less than 2 were not considered units.  These four 
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categories correspond well with observations of unit quality based on signal-to-

noise ratio made in similar recording studies (Henze, Borhegyi et al. 2000; 

Ludwig, Uram et al. 2006; Ludwig, Miriani et al. 2009). 

Isolating action potentials from an individual neuron using an individual 

recording site is inherently prone to classification errors (Lewicki 1998; Harris, 

Henze et al. 2000).  The methodology employed in this study is intended to 

minimize these errors, and should accurately parallel the true number of 

underlying neural sources.  The sorting routine produces similar results to 

manual sorting performed by experienced researchers over the same data sets, 

but with the advantage of being objective and automated (Ludwig, Uram et al. 

2006). 

E. Impedance Spectroscopy Measurements 

Impedance spectroscopy measurements were made using an Autolab 

potentiostat PGSTAT12 (Eco Chemie,   Utrecht, The Netherlands) with 

associated frequency response analyzer (Metrohm USA, Inc).  Impedance 

measurements were made by applying a 25 mV RMS sine wave with 

frequencies varied logarithmically from 10 Hz to 10 kHz.  Prior to implantation, 

measurements were made by immersing the electrode recording sites in 0.1 M 

phosphate buffer saline (PBS) and a platinum foil was used as the reference 

electrode.  After implantation, a distant stainless steel (316-SS grade) bone 

screw was used as the reference electrode.  
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F. Statistical Analysis 

For this study, comparative statistical significance between groups was 

determined using standard analysis of variance techniques (ANOVA).  There 

were 24 PEDOT modified sites and 24 control sites on any specific day in the 

experiment.  The factors used in initial comparative ANOVA calculations for any 

given metric were: coated vs. control, animal, and day number.  The associated 

calculated standard deviation has been included in the text with all average 

measurements.      

IV. . RESULTS/DISCUSSION 

G. Impedances 

The impedances of the electrodes at 1 kHz were used for comparison purposes 

as action potentials have a characteristic frequency band centered at 1 kHz.   

Prior to implantation, the 1 kHz impedance of the unmodified gold sites ranged 

between 6-11 MΩ, with a mean impedance of 9.1±1.4 MΩ (See Table 1).  After 

electrochemical deposition with PEDOT, in vitro site impedances ranged 

between 0.3 -0.6 MΩ, with a mean impedance of 0.37 MΩ±0.05.   

Over the seven days following implantation, impedance increases were noted in 

both PEDOT and control sites that were consistent with trends observed in 

other microelectrode recording studies performed in the rat model(Vetter, 

Williams et al. 2004; Ludwig, Uram et al. 2006; Abidian, Ludwig et al. 2009; 

Ludwig, Miriani et al. 2009).  Figure IV.2 depicts Bode plots of the average 
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impedance magnitude for PEDOT and control sites at Day 0, Day 4, and Day 7 

post surgery.   Over the first two days following implantation, the average 

impedance of the PEDOT sites at 1 kHz slightly increased to 0.45±0.1MΩ, while 

the average impedance of the control sites also slightly increased to 9.2±1.7 

MΩ (p<0.001,  See Table 1).  Between days three and five post-implantation, a 

more marked impedance increase at 1kHz was observed on both PEDOT and 

control sites, to 1.31±0.4 MΩ and 10.3±1.9 MΩ respectively (p<0.001, See 

Table 1).  During the peak of the early reactive response, spanning from days 6 

to 8, the mean impedance of PEDOT sites further increased to 2.21±0.7 MΩ 

while the mean impedance of the unmodified sites also increased to 11.4±2.2 

MΩ (p<0.001,  See Table 1).  
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Figure IV-2.  Bode plot of average measured impedance versus frequency. The dotted lines 
denote standard error of the data set on the given day (n=24). (a) Day 0 post-implantation. 
(b) Day 4 post-implantation. (c) Day 7 post-implantation.  As the immune response to the 
implant progresses the first seven days from surgery, impedances at the critical 1 kHz 
frequency increase for both PEDOT and control sites. 
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H. Noise 

As anticipated, the average peak-to-peak noise levels over the timeframe of this 

experiment were dramatically larger on control sites (Control Mean: 106.2±8.2 

µV, PEDOT Mean: 35.3±5.3 µV).  Over the seven days following implantation, 

the trend in average peak-to-peak noise levels on both PEDOT and control 

sites paralleled their impedance trends (See Table 1).  In the period spanning 

days three and five post-surgery, the average peak-to-peak noise level on 

PEDOT sites increased to 46.2±8.1 µV, while control sites increased to 

111.3±10.1 µV.  During days six to eight post-surgery, the average peak-to-

peak noise levels on PEDOT and control sites yet again increased, to 51.3±9.3 

µV and 116.8±9.5 µV respectively.  
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Figure IV-3: Representative High Speed Data Across One 4-shank Array. Black traces are 
PEDOT sites, while Blue traces denote Controls.  The noise floor on control sites is 
dramatically larger than the noise floor on PEDOT sites, presumably obscuring unit activity.   
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I. Unit Recordings 

Quality unit activity was evident on at least some PEDOT treated sites on all 

three arrays at every time point in this study (See Table 1).   The average 

number of recorded units for PEDOT sites was highest in the days immediately 

following surgery (0.8±0.1 average units per site; total number of quality 

units/total number of sites), and then diminished over the week following 

surgery (0.4±0.2 average units per site between days 6 and 8 following surgery).  

A decreasing trend in unit activity in the week following surgery has been noted 

elsewhere (Ludwig, Uram et al. 2006; Santhanam, Linderman et al. 2007; 

Ludwig, Miriani et al. 2009; Purcell, Thompson et al. 2009) and is hypothesized 

to be caused by edema/swelling coupled with the initial immune response. 

In contrast to the PEDOT sites on the three implanted arrays, no quality unit 

activity was evident on the control sites at any point during this study (see Table 

1).  Recordings on control sites were dominated by a large noise floor, which 

was sufficient to obscure all unit activity on these sites (see Figure IV.3).  The 

high initial impedance of the untreated sites resulted in a large fluctuation noise 

contribution, dramatically reducing the likelihood of observing neural activity 

sufficient in amplitude to be differentiated from the noise floor.    
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Table IV-1: Summary of Results for Groups of Days after Surgery. PEDOT site averages 
are listed in black, while control site averages are listed in blue. 

 

 

Average Impedance  

(in MΩ) 

Pk-Pk Noise  

(in µV) 

Signal Amplitude  

(in µV) 

Units per Site 

 PEDOT Control  PEDOT Control  PEDOT Control  PEDOT Control  

Days 

0-2 
0.45±0.1 9.2±1.7 35.3±5.3 106.2±8.2 55.2±20.2 N.A. 0.8±0.1 0 

Days 

3-5 
1.31±0.4 10.3±1.9 46.2±8.1 111.3±10.1 84±14.4 N.A. 0.5±0.2 0 

Days 

6-8 
2.21±0.7 11.4±2.2 51.3±9.3 116.8±9.5 95.3±17.1 N.A. 0.4±0.2 0 

 

J. Contribution of Encapsulation 

Inserting a microelectrode into brain tissue elicits a reactive foreign body 

response, which produces a fibrous encapsulation of the array, effectively 

creating a high impedance barrier between the microelectrode and the neuron 

population (Liu, McCreery et al. 1999; Turner, Shain et al. 1999; Szarowski, 

Andersen et al. 2003).  A well-described theoretical circuit model of this 

phenomenon has been widely accepted (Grill and Mortimer 1994; Buitenweg, 

Rutten et al. 1998; Otto, Johnson et al. 2006; Williams, Hippensteel et al. 2007).  

The tissue encapsulation of the array can be characterized by a sealing 

resistance, describing protein adsorption and in some cases a layer of 

connective tissue.  In addition, the model incorporates adjacent cellular layers 

of glia and macrophages given by a membrane capacitance, a membrane 

resistance, and a membrane area scaling term, m, related to encapsulation 
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thickness and cell-to-cell adhesion within the cellular layer (See Figure IV.4).  

The extracellular pathway between cells is defined as a resistance.  

 

Figure IV-4: One Individual Element of the Lumped Circuit Model for Encapsulation. 

 

Based on this model, the chronic foreign body response can dramatically 

increase the effective overall impedance of a chronically implanted electrode.  

In previous studies describing the changes in electrode impedance of typically-

sized cortical microelectrodes following implant, the contribution of the 

encapsulation response to total electrode impedance became dominant after a 

few weeks (Vetter, Williams et al. 2004; Ludwig, Uram et al. 2006; Abidian, 

Ludwig et al. 2009; Purcell, Thompson et al. 2009).  Consequently, increasing 

the pre-implant surface area using a conductive polymer coating provided 

limited chronic benefit to neural recordings (Ludwig, Uram et al. 2006).    



94 

In this study of small electrode sites 15 microns in diameter, the obvious benefit 

of PEDOT coatings to neural recordings was still evident at eight days post 

implant.  This time point is important, as the contribution of encapsulation to 

electrode impedance typically reaches a maximum one to two weeks post 

surgery (Vetter, Williams et al. 2004; Ludwig, Uram et al. 2006; Abidian, Ludwig 

et al. 2009; Purcell, Thompson et al. 2009), demonstrating that PEDOT 

coatings enable neural recordings from small electrode sites even when the 

impedance contribution of encapsulation is at a maximum.  These results 

indicate that as the size of the electrode decreases and total impedance 

approaches 5 MΩ and beyond, coatings to increase the surface area of the 

electrode become critical to minimize fluctuation noise and shunt loss.  

 Although the PEDOT films enabled recordings through 15 micron diameter 

sites, by day 8 the average number of quality units per PEDOT site had 

diminished to 0.4 units per site, presumably due to the inherent foreign body 

response to the electrode.   Consequently, future work will focus on utilizing 

PEDOT coatings to enable smaller multi-electrode arrays that cause less 

damage upon implantation.  Recent studies have indicated that by reducing the 

size of the implanted electrode, the foreign-body response to the electrode can 

be minimized, decreasing the contribution of encapsulation to impedance (Chen, 

Mrksich et al. 1997; Sanders, Stiles et al. 2000; Turner, Dowell et al. 2000; 

Seymour and Kipke 2007) and possibly limiting neuronal death in the vicinity of 

the electrode array (Biran, Martin et al. 2005).  Although PEDOT is one 

enabling component of manufacturing smaller multi-electrode arrays, a number 
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of technical problems need to be addressed - e.g. insulation requirements, 

interconnect reliability, crosstalk between adjacent traces, etc. - before these 

arrays become a practical reality.  

V.  CONCLUSIONS 

The next generation of neural electrodes needs to facilitate more channels of 

communication to and from the brain over a smaller tissue area. Moreover, 

these electrodes need to be smaller in order to limit neural damage upon 

implantation and long-term insult to the surrounding tissue. Current probe 

designs are limited to larger sizes to accommodate larger electrodes necessary 

to maintain lower electrode impedance and sustainable recordings. 

Furthermore, polymer device fabrication can be further optimized with fewer 

fabrication steps necessary by using a single gold metalization layer. However, 

recording from small gold electrode sites yields high noise levels and signal loss 

through shunt pathways, primarily due to the large associated impedances.  In 

this study, PEDOT successfully decreased the impedance of previously 

unusable small gold electrode sites to within viable neural recordings range.  

PEDOT coatings help to alleviate this major electrode design constraint, 

enabling the fabrication of ultra-small, high-channel count, next-generation 

polymer arrays to interface chronically with the brain. 
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Chapter V 

Validation of a Novel Three-Dimensional 

Electrode Array within Auditory Cortex* 

Two-dimensional electrode arrays have been used in a variety of basic 

research studies characterizing and examining the neurophysiology of the 

brain.  Single channel and 2D probes have been used to successfully map the 

sensory and motor organization of many different regions of the brain. However, 

thorough mapping involves multiple electrode penetrations and multiple 

experimental sessions to accumulate enough data to understand the underlying 

function.  Furthermore, mapping of connectivity across brain regions and within 

layers simultaneously is only possible through the use of multiple devices, and 

therefore could be more easily performed through the use of high-channel count 

3D electrode arrays. These higher channel counts are also beneficial in brain-

machine interface applications as they increase the number of information 

channels available given a single surgical implantation, while minimizing risk to

                                            

* This article is in preparation.  Authors: Nicholas B. Langhals, James Wiler, Kip A. Ludwig, and 
Daryl R. Kipke.  
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 the patient. Here we present a proof of concept validation of a 3D probe 

technology consisting of 16 silicon shanks in a 4x4 grid arrangement with four 

electrode sites per shank.  This 3D array has been implanted in guinea pig 

primary auditory cortex and electrophysiological data are presented showing 

the utility of electrode sites spanning multi-lateral cortical space as well as 

cortical depth. Using these devices, we were able to successfully map the 

tonotopic space with fewer insertions than would have been necessary with 

single wires or 2D probe architectures. 

I. INTRODUCTION 

Neural probe technology enables many different clinical and research 

applications, from disease characterization to studies of  underlying 

neurophysiology.  The structural characteristics of the brain, as studied 

anatomically or through imaging, yield valuable information about the expected 

function of the underlying neural system (Kotter and Wanke 2005).  However, 

imaging and anatomical characterizations lack the resolution and desired output 

metrics that are desirable to understand how the firing of individual neurons and 

ensembles combine to create sensory perception or even consciousness. 

Through the use of three-dimensional (3D) electrode arrays, it is hoped that 

more information can be extracted from neural recordings about connectivity, 

plasticity, and the underlying neural networks. 

To better understand and interpret the neural firing patterns within the brain, 

new technological advances are required that incorporate the use of high 
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channel counts that can simultaneously sample from large populations of 

neurons to yield more information about the underlying cortical morphology and 

structure.  Many neural probe technologies exist that incorporate high numbers 

of electrode sites assembled from a large number of individual microwires 

(Ulbert, Halgren et al. 2001; Schwartz 2004).  While these technologies achieve 

the throughput of information necessary for controlling external devices and 

brain-computer interfaces, they lack the ability to sample from a three-

dimensional volume of neural tissue simultaneously (Lebedev and Nicolelis 

2006).  Other microfabricated structures can sample high channel counts and 

have been used in cortical mapping experiments (Figure V-1 Top), but these 

devices are only capable of sampling from a planar representation of the cortex 

(Csicsvari, Henze et al. 2003; Blanche, Spacek et al. 2005; Aarts, Neves et al. 

2008; Du, Riedel-Kruse et al. 2009; Ludwig, Miriani et al. 2009). Through 

experiments utilizing these planar devices, we have developed a greater 

understanding of the neurophysiology.  However, the brain is obviously a three 

dimensional structure composed of connections and projections over several 

millimeters. The simultaneous sampling of neural tissue in 3D enables more 

thorough mapping of neural connections within the brain which in turn facilitates  

understanding of how these networks can create sensory perceptions from the 

firing of individual neurons. 

In order to move towards 3D electrode sampling, we have tested a new 64-

channel electrode array implanted into the auditory cortex of a guinea pig.  The 

electrode array was validated in three different capacities within this study to 
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verify device utility and functionality following insertion.  First, gross recording 

quality was examined immediately following insertion to verify that the trauma 

during insertion does not preclude recording neural activity, and therefore is 

consistent with similar probe technologies. Second, auditory-driven activity was 

used to verify that the device was implanted into an auditory cortical region of 

the brain and localized neural circuits remained intact.  Finally, frequency 

response maps of the primary auditory cortex were constructed to verify a 

typical and unaltered tonotopic architecture.  Tonotopic maps demonstrated 

consistent structure within each plane due to the small site and shank spacing, 

however substantial differences between planes were observed where spacing 

was greater. 

II. Methods 

A. Electrode Array 

The electrode arrays used in this study consisted of prototype 3D probes 

assembled by NeuroNexus Technologies (Ann Arbor, MI).  These were created 

by horizontally stacking four commercially available acute devices using a 

polymer interconnect to separate the individual probes for uniform spacing.  

Sixteen electrode shanks of four sites each were arranged in a 4x4x4 grid for a 

total of 64 electrode sites.  The individual shanks were three millimeters in 

length with 177 µm2 sites spaced at 100 µm apart along a shank, with shank 

spacing of 125 and 300 in each direction (Figure V-1). 
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Figure V-1: Images of microfabricated silicon probes.  (Top) Typical 2D Probe Design.  These 
devices are then stacked together to create a three dimensional probe structure.  (Bottom) 
Image of example 3D probe style as used in this study.  The 4 rows of 4 shanks are spaced at 
125 µm between shanks and each row of shanks is spaced at 300 µm. 
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B. Surgery 

All implants in this study were performed on 250 - 300g female guinea pigs 

targeting primary auditory cortex. Surgical procedures were similar to those 

used previously (Vetter, Williams et al. 2004; Langhals and Kipke 2009; Ludwig, 

Miriani et al. 2009; Kim, Wiler et al. 2010). Initial anesthesia was administered 

via intraperitoneal injection of a mixture of 40 mg/kg ketamine and 5 mg/kg 

xylazine. Updates were given throughout the procedure every hour or as 

needed to maintain a consistent depth of anesthesia. To prepare the implant 

location, the surface of the head was first shaved and the skin and connective 

tissue on the surface of the skull were cleared.   Next, three stainless steel 

bonescrews were secured in the skull anterior to bregma, and a bolt was then 

affixed to these screws using dental acrylic for the purpose of securing the head 

to a manipulator. 

After securing the animal, a craniotomy approximately 4 x 4 mm was made over 

primary auditory cortex.  The dura was resected in order to allow for probe 

insertion and the exact target was located using the well-defined vascular 

landmarks that have been reported previously(Hellweg, Koch et al. 1977; 

Langhals and Kipke 2009; Kim, Wiler et al. 2010). The 3D electrode array was 

then mounted to the stereotaxic manipulator and driven perpendicular to the 

cortical surface to a target depth of about 1 mm, so that the deepest electrode 

sites were located near layer IV.  Last, a stainless steel needle was inserted 

into the skin tissue of the upper back and used as a reference and ground for all 
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recordings in the experiment.  All procedures complied with the U.S. 

Department of Agriculture guidelines for the care and use of laboratory animals 

and were approved by the University of Michigan Animal Care and Use 

Committee. 

C. Electrophysiology 

All recordings were acquired using a TDT multi-channel acquisition system 

(RX5, Tucker-Davis Technologies, Alachua, FL) in an electrically and 

acoustically shielded booth. Neural electrophysiological recordings for all 64 

channels were fed through an anti-aliasing filter (0.35 Hz – 7.5 kHz) amplified, 

and sampled at ~25 kHz.  Wideband data for post-processing unit 

characterization was left unfiltered. 

During all recording sessions, white-noise bursts, clicks, or individual tones 

generated by the TDT hardware were played through a closed-field speaker 

connected to the animal's ear in the sound-isolation booth.  The amplitudes of 

all tones and clicks were adjusted based on a known calibration curve using the 

TDT PA5.  White noise bursts were created by taking flat spectrum random 

noise and low-pass filtering the signal.  These bursts were presented for 200 

ms at two times per second to the subject.  Clicks were generated of various 

amplitudes from 0 - 90 dB SPL and were presented to the subject 2-4 times per 

second.  Each single frequency tone was presented for 100-200 ms at one to 

four presentations per second.  Each tone was cosine gated on and off to avoid 

transient speaker clicks from step amplitude changes (Arenberg, Furukawa et 
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al. 2000; Kim, Wiler et al. 2010).  Tone amplitudes ranged from 0 - 90 dB SPL 

and frequencies ranged from 500 Hz - 25 kHz.  Tones were repeated multiple 

times to allow for signal averaging in the histograms.  Spontaneous trials were 

randomly interspersed throughout the recording session where the attenuator 

was set to maximum resulting in 0 dB clicks or tones. 

D. Data Filtering and Analysis 

Wideband neural recording segments were analyzed off-line using custom 

automated MATLAB (Mathworks, Natick, MA) software, as described in detail 

elsewhere (Ludwig, Miriani et al. 2009; Rohatgi, Langhals et al. 2009). Briefly, 

an amplitude discrimination threshold was set at 3.5 standard deviations above 

and below the mean of the recording segments. For each peak exceeding the 

threshold, a 2.4-ms candidate waveform snippet centered on the absolute 

minimum of the waveform was removed from the recorded segment and stored. 

The peak-to-peak noise level was calculated as six times the standard deviation 

of the remaining data.  After initial principal component analysis, individual 

clusters were identified using fuzzy c-means clustering. After clustering, 

waveforms with a cluster membership index of greater than 0.8 were used to 

determine a mean waveform for a cluster.  The signal-to-noise ratio for these 

waveforms was calculated as the peak-to-peak amplitude of the mean 

waveform divided by the calculated noise value.  Values of greater than 1.1 

were considered quality units that were easily discriminable from the underlying 

noise floor. 
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E. Frequency Response Analysis 

Peri-stimulus time histograms (PSTHs) are plots used to examine the 

occurrence of spikes surrounding a given event.  In this study, PSTHs were 

created surrounding either click or tone onset.  To generate a PSTH, the 

number of spikes occurring during 5 millisecond bins of time surrounding each 

tone onset was tabulated.  For example, with tone onset at t=0, bins include 0-5 

ms, 5-10 ms, 10-15 ms, etc.  Given multiple presentations of each click or tone, 

neurons that are tuned to the click or tone frequency or amplitude will show an 

increase in firing following the onset of the stimulus. 

Frequency response maps were generated by creating histograms of the action 

potential times surrounding each tone frequency and amplitude presentation. 

The total number of spikes in the first 20 bins following onset were averaged 

(100 ms of data). The spontaneous trials were used to calculate baseline data 

and the same 100 ms following a 0 dB onset were used to calculate the 

spontaneous rate of firing for that neural channel.  The mean value of the 

response window was then normalized to the cumulative mean and standard 

deviation of the channel in the baseline period to calculate a z-score indicating 

significance of response.  Finally, the response map was smoothed using a 5-

point normalized 2D Gaussian convolution on all images. 

III. Results and Discussion 

High quality neural spike waveforms (see methods D) were recorded in all 
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sessions using the wide-band recording data.  Quality neural action potentials 

were recorded on 43 of 64 sites immediately following device insertion, 

suggesting that if increased damage had occurred during insertion due to the 

larger footprint of the 3-D array, it was not substantial enough to prevent  

recordings.  Mean waveforms output from the clustering algorithm are shown in 

Figure V-2.  Signal-to-noise ratios shown ranged from ~1 for multi-unit activity 

up to 3.5 for well-isolated single units, indicating that signal quality was also 

comparable with typical unit activity recorded from 2D arrays(Ludwig, Miriani et 

al. 2009). Channels 40, 55, & 60 are representative of noise artifacts that were 

of sufficient amplitude to be sorted by the algorithm. These can be distinguished 

from normal action potentials through the shape of the waveform and were 

excluded from any calculations of channel activity or responses. 
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Figure V-2: Example mean spike waveforms of units recorded from the 3D array in GP3D-03 
(Block-018).  Different colored waveforms show that a number of channels have multiple unit  
waveforms present.  The numbers above the plots indicate the signal-to-noise ratio of the 
presented mean waveform. 

 

Individual channel activity was analyzed to examine the auditory-driven 

response characteristics of the implanted electrode arrays.  White noise bursts 

trigger a delayed onset increase in neural firing rates recorded by electrodes 

implanted in the primary auditory cortex.  Peri-stimulus time histograms of spike 

counts around the onset of the presented white noise burst are shown in Figure 
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V-3.  All functional channels showed significantly large driven activity with an 

onset response that occurred 8-12 ms following the start of the presentation of 

the white noise, which is the expected delay arising from the number of 

synapses to the primary auditory cortex (Sally and Kelly 1988; Arenberg, 

Furukawa et al. 2000; Langhals and Kipke 2009; Kim, Wiler et al. 2010). 

 

Figure V-3: PSTH's in response to 90 dB SPL Clicks.  All 64 channels of activity, including MUA 
are shown. Tone onset is at t=0.  Data for each channel ranges from 50 ms prior to tone onset 
up to 100 ms after.  Some channels display a second firing peak approximately 20 ms following 
the initial onset response.  At this high click intensity, the neuron fires a second action potential 
as soon as possible following the first response; the delay is due to the refractory period of the 
neuron. 

 

In order to verify graded neural responses as is expected of primary auditory 
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cortical neurons, click thresholds were examined.  In a given session, clicks of 

varying random amplitudes from 0 to 90 dB were presented to the subject and 

repeated up to 100 times(Kim, Wiler et al. 2010).  A PSTH of each amplitude 

was then created for the total number of responses on each individual channel.  

The 50 ms period following tone onset was then summed for each channel to 

display the overall threshold response for the channel (Figure V-4).  As can be 

seen in the upper panel of the figure, the example neural channel has an 

increased probability of firing at 45 dB, and the channel's peak response is 

nearly 1 at 90 dB, indicating that it fires a spike in that bin every time the click is 

presented.  This is the typical result expected from a neuron / channel that is in 

auditory cortex; as higher intensity clicks are presented to a subject, the 

neuron’s firing rate increases until a plateau value is reach where it can no 

longer fire any faster. 
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Figure V-4: (top) PSTH of a given responsive channel to clicks of increasing amplitudes from 10 
- 90 dB. (bottom) aggregated responses of all 64 channels of the array to all click amplitudes in 
a given session. 
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We created frequency response maps to measure the tonotopic organization of 

the recorded units to evaluate the consistency of the tonotopic structure 

following device insertion. Figure V-5 shows example response maps covering 

two planes of electrode sites of the implanted 3D array.  The best frequency for 

each of these maps was defined as the frequency that elicited a significant 

response of p<0.01 at the lowest threshold amplitude.  The best frequencies for 

these electrodes ranged from about 0.9 kHz to 6 kHz. 

All tonotopic maps suggest that 3D device insertion does not create 

substantially more damage from insertion than maps typically observed with the 

insertion of 2D arrays into the auditory cortex.  Each functional electrode site 

recorded frequency-driven activity.  Using the 3D electrode array in this study, 

we were able to successfully map a much larger region of the cortex than would 

have otherwise been possible through the use of a singular electrode or planar 

arrays. 

Sites on an individual electrode 4x4 plane were similarly tuned to a specific 

frequency due to small site and shank spacing.  However, electrodes on 

separate planes were tuned to different frequencies.  Consequently, the use of 

a three dimensional probe with separate planes enables visualizing the 

tonotopic map of auditory cortex with 1 insertion, whereas the use of a 2-d 

probe would have required reinsertion and additional damage to orient the 

probe across the tonotopic gradient.  In a chronic setting, this additional implant 
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damage could significantly impact long-term performance.  Moreover, as 

electrodes have been demonstrated to move slightly with respect to the brain 

during chronic healing, a 3-d probe implant would have a higher likelihood of 

maintaining at least some of the electrodes on the array in the desired cortical 

location. 
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Figure V-5: Frequency response maps of the 2 end planes of 16 sites on the array.  The x-axis 
is the frequency of the presented tone, the y-axis is the amplitude in dB SPL and color axis is 
indicative of the z-score for the individual frequency / amplitude combination.  All data has been 
smoothed with a normalized 5x5 Gaussian window.  All sites are organized by their spatial 
location.  The best frequency of channels in the upper plane was between 3-6 kHz, while the 
lower plane of channels were tuned between 900 - 1200 Hz. 
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IV. Conclusions 

In this study, we have provided proof of concept validation of a novel 3D 

architecture neural probe. The array was successfully inserted into the guinea 

pig cortex with neural recordings obtained soon following insertion, which 

suggests that the insertion trauma is comparable to conventional single or multi-

shank microelectrode arrays.  We recorded auditory-driven activity indicating 

that the neural circuits in the cortex remained intact.  Finally, we measured 

frequency response maps showing that the tonotopic organization of auditory 

cortex is of the expected architecture.  While we were able to record and 

characterize a large region of brain simultaneously, many of the maps showed 

little variability.  Individual frequency response maps did not differ significantly 

between depths and in planes oriented perpendicular to the tonotopic map.  

However, the use of a multiple plane neural probe allows the brain to be 

mapped with a singular insertion, where a 2D probe would have required 

multiple insertions to orient the probe within the tonotopic space.  These results 

combine to provide a solid, proof of concept validation of this 3D probe 

architecture.  This work also promotes future studies directed at utilizing this 

technology to its fullest potential for exploring interconnectivity of neurons within 

the brain and mapping the neurophysiology of neural systems. 

As one of the first 3D mapping probes utilized to date, this probe design can 

influence many features of next generation devices.  Neuroprosthesis designs 
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are heavily dependent on the exact application for the device. Based on the 

results of this study, closely spaced electrode sites show primarily redundant 

information about the frequency response maps of the cortex.  However, having 

two electrodes per shank may provide redundancy against device failure and 

elucidate features of non-perpendicular insertions.  Overall, frequency response 

mapping of primary auditory cortex could be optimized through the use of 

electrodes spaced at least 300 microns with two electrodes per shank.  This 

new device design could more efficiently acquire information about frequency 

borders through less electrode sites while still preventing device failure from 

yield issues. However, this is only one potential application of a 3D mapping 

array.  While employing techniques such as spike-triggered averaging, 

electrodes spaced at 300 microns are less likely to provide the redundant 

information about neural morphology necessary for analysis.  For that 

application, a more ideal probe design would include two facing planes of 

multiple shanks of electrode sites spaced as closely as possible.  For any 

foreseeable application, three dimensional arrays have the potential to provide 

substantially more information about the underlying neurophysiology than 

possible with individual microelectrodes or their planar counterparts. Given that 

many applications have unique and specialized requirements, the best solution 

is a highly customizable and modifiable neuroprosthesis that can be adaptable 

to the specific neural interface environment to be mapped. 
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Chapter VI 

Conclusions and Future Directions 

I. Conclusions 

The work presented in this dissertation was focused on strategies for optimizing 

information extraction from cortical recordings.  Optimizing the information 

extracted from neural recording electrodes is a key step in increasing the utility, 

reliability, and longevity of brain machine interfaces.  The 4 studies comprising 

this dissertation demonstrate a framework that has been developed and utilized 

for developing and characterizing the next generation of neural interfaces.  

Through the use of objective classification algorithms, advanced information 

processing techniques, electrode site modifications, and multidimensional 

neural probes, we have taken the first step towards defining the requirements 

and metrics necessary to compare new interface technologies, and in turn 

develop a stronger understanding of the underlying structure and function of the 

brain. 

Chapter 2 describes an automated, objective neural sorting and 

characterization toolbox that has been developed for the purposes of analyzing 
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neural data.  While some commercial packages are capable of analyzing neural 

data similar to that presented in this chapter, our toolbox provides all of these 

features at no cost. Additionally, our toolbox includes additional features and is 

more accurate in spike classification due to objectively identified sorting 

parameter choices. We demonstrate specific instances where Offline Sorter 

classifies obvious noise as a neural spike cluster, whereas our algorithm 

correctly leaves the noise cluster unclassified.  Our package is also capable of 

analyzing advanced waveform characteristics, signal levels, SNRs, and 

waveform changes over time, whereas commercial packages do not include 

these features. We have demonstrated, using simulated data, that our package 

correctly identifies spikes in both low and high noise environments.   Since our 

package is an open-source solution, collaborative researchers can adapt it to 

their neural recording hardware or experimental apparatus for further 

customization.  Our collaborators have already begun using this package in 

their experiments and have reported back with feedback that is influencing 

future designs. 

In Chapter 3, we report on a novel data processing application for extracting 

information about neural morphology through the use of simultaneous 

recordings from spatially distinct electrodes.  Within this study, we have 

recorded voltage perturbations from neurons at distances greater than 100 

microns away from the site; this distance has been previously reported as the 

maximum distance a neuron can be recorded.  By using this spike-triggered 

averaging technique, we have verified that neurons within the brain do not 
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behave as point sources, but instead have distributed voltage profiles arising 

from axonal and dendritic currents away from the cell body.  Small voltage 

perturbations generated by axons/dendrites on electrodes distant from the 

soma are typically obscured by noise, but by using our technique we are able to 

average out the noise to reveal these signals.  Through the use of known 

electrode locations in three dimensions, we have been able to image neural 

shapes and morphologies on a scale orders of magnitude smaller than 

functional magnetic resonance imaging, without the need for tissue slice or post 

implant histological techniques. 

While the first two chapters are focused on neural signal processing for 

clustering and extracting useful features from the brain, Chapter 4 is instead 

focused on device modifications.  We investigated using poly(3,4-

ethylenedioxythiophene) (PEDOT) to lower the impedance of small, gold 

recording electrodes with initial impedances outside of the effective recording 

range.   Smaller electrode sites enable more densely packed arrays, increasing 

the number of input and output channels to and from the brain.  Moreover, 

smaller electrode sizes promote smaller probe designs; decreasing the 

dimensions of the implanted probe has been demonstrated to decrease the 

inherent immune response, a known contributor to the failure of long-term 

implants.  As expected, chronically implanted control electrodes were unable to 

record well-isolated unit activity, primarily as a result of a dramatically increased 

noise floor.  Conversely, electrodes coated with PEDOT consistently recorded 

high-quality neural activity, and exhibited a much lower noise floor than 
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controls.  These results demonstrate that PEDOT coatings enable electrode 

designs 15 microns in diameter. 

In Chapter 5, we validated a novel three-dimensional neural probe design by 

mapping guinea pig auditory cortex simultaneously in three dimensions.  In this 

study, we also report auditory mapping experiments that include frequency 

response characteristics as a function of both cortical depth, as well as cortical 

location.  While previous experiments required long sessions with multiple 

probe penetrations and separate recording files, this new probe design allows 

cortical mapping to be completed in a fraction of the time.  Furthermore, the use 

of 3D probes such as the ones utilized here opens the doorway to future 

experiments examining neural connectivity and neurophysiological analysis 

which would otherwise have been extremely time consuming, if not impossible 

without high channel count, parallel-processed neural data. 

II. Future Directions 

While the four studies reported in this dissertation create a substantial step 

forward toward next generation neural interface systems, there are still many 

experiments that need to be completed before this technology is widely 

adopted.  For an open-source automated spike classification algorithm to have 

the impact necessary to advance collaborative neural probe projects, more 

thorough beta testing must be completed.  Currently, the software package has 

only been successfully tested using Tucker Davis Technologies and Plexon 

hardware-acquired data, but plans are currently underway to incorporate data 
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files recorded with Blackrock and Neuralynx systems. Once these have been 

completed, the software will be posted and distributed to provide a high-

throughput neural data analysis solution through an open-source distribution 

platform. 

Within the spike triggered averaging study, we demonstrated that information 

about neural morphology can be easily obtained using known firing times of 

action potentials from cortical neurons.  Next generation analysis is currently 

underway to examine connections between neurons within the brain.  Spike 

triggered averaging may also unearth neuronal connections that are typically 

obscured by noise.  However, the variability in the exact timing between  

associated firing of first order connections will require large data sets and high 

voltage resolution recording systems. 

In Chapter 4, we demonstrate that PEDOT can be used to create functional 

electrodes with diameters of less than 20 microns.  We have recently utilized 

this technique to manufacture and test new devices within our research group. 

The initial development of our first generation neural probe design for 

decreased tissue encapsulation is below(Seymour and Kipke 2007). This first 

generation probe with small edge features lacked recording electrodes due to 

processing and impedance limitations. After completion of our study using small 

electrode sites functionalized with PEDOT, we utilized this technique on the 

development of even smaller gold electrode sites created on the face and 

edges of microfabricated polymer probes. This new electrode design publication 
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will be submitted in the near future and highlights a novel electrode design 

made possible by the work reported in this dissertation. 

 

Figure VI-1: Figure 1 from (Seymour and Kipke 2007). 

Also based on the foundation of our study employing PEDOT deposition onto 

small electrode sites to decrease impedance into a more acceptable range, we 

have recently developed a next generation microwire probe design using a 

carbon fiber backbone.  These new electrodes were constructed from a 7 

micron diameter carbon fiber, coated with parylene, and PEDOT was deposited 

on the tip to create the recording site. The first generation of these devices only 

used a carbon tip electrode site.  While those probes were able to successfully 

record local field potentials, they were unable to differentiate single unit activity. 

It was only through the deposition of PEDOT that we were able to decrease site 

impedance of these devices to a level sufficient to minimize shunt loss and 

noise related to the impedance.  This impedance decrease prevented neural 

signal attenuation that occurred with the carbon site devices so that high 
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quality, large SNR spikes could be recorded from the devices.  A patent was 

submitted for this idea and it will be submitted to Nature Materials in the near 

future. 

Future electrode designs will probably look nothing like current generation 

devices.  Microwire arrays and silicon probes typically meet bare functionality 

requirements for most neural recording, electrophysiology, and brain machine 

interface applications.  However, the yield on these devices tends to be too low 

to warrant wide-spread adoption of any one design.  Further, human 

implantation of the "Utah" silicon array yielded insufficient success rates for 

brain machine interface applications.  As mentioned above, ultra 

microelectrodes such as the carbon fiber probe may yield insight into the future 

designs, but these devices are still based on the fundamental concept of wire 

implanted from the surface of the brain.  We are currently exploring the 

application of functionalized chemical coatings on the surfaces of the devices to 

increase biocompatibility.  Ultimately for widespread adoption of the next 

generation neural probe, it will need to have a near 100% yield in useful signal, 

which will mean it will have to be an invisible stealth device that the brain 

doesn't even see. It is unclear how this can be achieved, but the more we 

understand how to create next generation probes and quantify their 

functionality, the more likely we will be able to develop some sort of tuned 

nanotechnology or manipulated biological machine that will solve all these 

neural recording issues. 
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