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ABSTRACT. Mode 1 crack propagation in fiber reinforced concrete is simulated by a fracture
mechanics approach. A superposition method is applied to calculate the crack tip stress intensity
Jfactor. The model relies on the fracture toughness of hardened cement paste (K,.) and the crack
bridging law, so called stress-crack width (o-6) relationship of the material as the fundamental
material parameters for model input. As two examples, experimental data from steel fiber
reinforced concrete beams under three point bending load are analyzed with the present fracture
mechanics model. A good agreement has been found between model predictions and experimental
results in terms of flexural stress versus crack mouth opening displacemen: (CMOD) diagrams.
These analyses and comparisons confirm that the structural performance of concrete and FRC
elements, such as beams in bending, can be predicted by the simple fracture mechanics model as
long as the related material properties, K,.and (o-6) relationship are known.
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1. Introduction

The field of fracture mechanics originated in the 1920's with A. A. Griffith's work
on fracture of brittle materials such as glass [GRI 21]. Its most significant applications,
however, have been for controlling brittle fracture and fatigue failure on metallic
structures such as pressure vessels, airplanes, ships etc. Considerable development has
taken place in the last thirty years to account for the ductility typical of metals.

Portland cement concrete is a relatively brittle material. As a result, mechanical
behavior of concrete, and fiber reinforced concrete is critically influenced by crack
propagation. Many attempts have been made to apply the fracture mechanics concept to
cement-based composites, such as mortar, concrete and fiber reinforced concrete
(FRC). Unlike metallic materials, cement-based materials do not exhibit significant
plastic deformations. It seems that linear elastic fracture mechanics might be readily
applicable. However, it has been recognized that because of the heterogeneity inherent
in the microstructure of concrete, strain softening, microcracking and larger scale
process zone, in the order of meter, the fracture parameters such as fracture toughness
(K, and fracture energy (G) determined in accordance with linear elastic fracture
mechanics (LEFM) are size dependent [KAP 61, STR 79]. A relative large microcracking
zone called the fracture process zone, where the material behaves nonlinearly, exits
adjacent to the crack front, while linear fracture mechanics requires this zone to be
small. Therefore, linear elastic fracture mechanics is only applicable to large-scale
initially cracked structures and ultrabrittle concrete in which the effect of the nonlinear
process zone can be neglected. In all other cases, i.e., for normal-sized concrete
structures, especially in fiber reinforced concrete structures, the influence of process
zero has to be taken consideration when using the classic linear elastic concepts of
fracture mechanics to predict crack propagation. Various models used to describe the
fracture process zone in front of a crack of unreinforced and reinforced concrete have
been developed, such as (1) the fictitious crack model (FCM) proposed by Hillerborg et
al. [HIL 76] and (2) the crack band theory proposed by Bazant et al. [BAZ 83). The
former approach models the process zone as a geometrically discontinuous crack with
characteristics after cracking which can be described by a stress-crack opening
relationship, so called crack bridging law. The latter imagines the process zone to exist
within a certain finite band width in which the microcracks are uniformly distributed
and the performance after cracking can be described by a stress-strain relationship.
These models are sometimes referred to as cohesive models, or fracture process models,
in the literature. In the present work, FCM will be applied to account for the behavior of
the process zone.

In the past, some researchers had attempted to use the classical LEFM and crack
bridging law to analyze the crack propagation in materials which exhibit crack bridging,
such as fiber reinforced ceramics and fiber reinforced concrete (FRC), see Cox et al.
[COX 91] and Li et al. [LI 86]. Since a sharp crack tip is still envisaged at the leading
edge of the process zone in concrete, reinforced ceramics, even reinforced metals, it is
often considered more realistic to assume the bridging force within the process zone
will reduce the net stress intensity factor at the crack tip, but not to zero [COX 89; COX
91; LI 86]. This means the crack propagating criteria of linear elastic fracture
mechanics remains applicable to above materials, as long as the contribution of the
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process zone to the crack tip stress intensity factor is explicitly incorporated. For FRC,
crack bridging is a combined aggregate bridging and fiber bridging effect. For concrete,
including FRCs, few direct comparisons between experimental results and model
predications based on above theory have been carried out. Direct experimental
verification is needed in order to utilize the theory in structural design and material
optimization with confidence.

In the present paper, mode I crack propagation in unreinforced FRC structure,
such as a beam under flexural load, is simulated by the fracture mechanics approach.
In this model, the contribution of the crack bridging force to the crack tip stress
intensity factor is incorporated in integral form. This approach is very flexible and
allows for bridging models for different kinds of FRC materials with different fiber
types, volume concentration and matrix properties. A multi-linear model representing
the experimental based stress-crack width relationship is adopted for two types of
concrete reinforced with straight and hooked steel fibers respectively. The complete
theoretical load-crack mouth opening displacement (CMOD) diagrams are obtained and
compared with the flexural test resuits. The results are discussed and conclusions are
drawn at the end of the paper.

2. Problem Formulation

In the present model, the fine and coarse aggregates in mortar or concrete are
viewed as bridging elements like fibers in concrete, so that the cement paste serves
as a fully brittle matrix in concrete and FRC composites. For reasonable size typical
of FRC laboratory specimens and structures, the cement paste toughness can be
considered a size-independent material property. By this processing, the condition of
mode I crack propagation described in the linear elastic fracture mechanics can still
be applied to concrete and FRCs as long as the contribution of the bridging force
within the process zone to the crack tip stress intensity is included, i.e:

K, =K, (1]

Where K, is the fracture toughness of cement paste. Thus, the problem reduces to
obtaining the crack tip stress intensity factor of the external force and crack bridging
respectively.

As an example, a beam under bending load will be considered. Figure 1 shows
a cracked beam section with crack length, a and external flexural moment, M. The
bridging stress acting on the crack surface along the cracking section is o,(5(x)).
Based on the superposition scheme shown in Figure 1, the crack tip stress intensity
factor can be obtained by summing the contributions K, of external load and K, of
the bridging force, i.e.

K, =K, +K, [2]
M

a
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Figure 1. Superposition procedure of solving K,

The contribution K|, to the stress intensity factor can be calculated through the stress
field o,(x) that would exit on the crack plane in the absence of the crack under
specific remote loading, see Figure 1. Under flexural load, o,(x)=¢,(0)({-2x/h) and

o;,(O)=6M/th. Where h and b are depth and width of the beam respectively. Then K,
is calculated by [cox 91]

K, =2 I:G(x,a,h)ca(x)dx (3]

Where G(x,a,h) is the weight function that represents the contribution of a unit force
on the crack surface to the crack tip stress intensity factor and is specific to body
geometry and crack configuration [TAD 85]. For beam under bending, it is given by

h(x/a,alh)

G(x,a,h) = (4]
( ) \/E(l_xz /a2)1/2
where
h,(x/a,a/h)zg(%/a%)/}ﬁ) (5]
—a

with g(x/a, a/h) is defined by
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g(r,s)=g,(s)+rg,(s)+r’g,(s) +7r'g,(s)

g,(5) = 0.46 + 3.065 + 0.84(1 — 5)° +0.665>(1 — 5)’

g,(s) =-3.52s"

g,(s)=6.17-28.22s + 34.545> —~14.39s° — (1 - 5)*"
-5.88(1-5)’ - 2.64s*(1 - s)’

g2,(8) =—6.63+25.165 —31.04s° +14.41s° + 2(1-5)*"*
+5.04(1—5)° +1.985%(1 - 5)’

Similar to the above case, the contribution K, of the bridging force to the crack
tip stress intensity factor can be given by

K, =-2[G(x,a,h)0, (5 (x))dx (6]

The fundamental material property of the crack bridging law 6,(5(x)) will be
given as an input. Thus, for a given body geometry, a loading model, a crack
configuration, and the crack bridging law, if the crack profile, &(x), xe (0,a) is
know, K, can be calculated by the above equations. And when K, achieves the K,
value, crack starts to propagate. Now the problem left is how to solving the crack
profile for a given crack length. Following the standard derivation outlined in Cox
and Marshall [cox 91], the crack opening profile 8(x) can be related to the applied

flexural stress o,(x) and bridging stress o,(8(x)) as
§(x) = 3 j"[ j G(x,a,h)o,(x)-0,(x)ldx \G(x,a ,h)da (7]
E- R i o ’ ’ a b ’ s

Thus, for a given crack length, a (a2a,, a, is the initial unbridged flaw size), solving
equations [1], [2] and [7] numerically, the critical external load capacity M in terms
of flexural stress o, and crack profile §(x) can be obtained. Then, the conventional
flexural strength, so called modulus of rupture (MOR) and load-deformation
diagram such as load-crack length and load-CMOD curves which might be more
interested to design engineer, can be obtained in above numerical procedure. The
detailed numerical scheme can be found in Cox et al. [cox 91].
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3. Two Examples - Crack Propagation of Steel FRC Beam under Bending
Load

3.1 Experiments

In order to verify the above model, deformation controlled three point bending
tests on two types of steel fiber concrete beams, straight fiber and hooked fiber
concrete, are carried out. The straight and hooked fibers have circular cross-section, 0.4
mm, 0.5 mm in diameter and 25 mm, 30 mm in length. The beam size is 420x100x100
mm and the bending span is 400 mm. The concrete mixes are listed in Table 1. Here the
straight and hooked steel fiber concrete are abbreviated to SSFRC and HSFRC
respectively. Some material parameters, such as Young's modulus E and tensile strength
o, determined directly from uniaxial tensile test with dog-bone shaped specimen [STA
93] with the same mixes as used for beams, are given in Table 1.

TABLE 1. Mix Propositions of Steel Fiber Concrete

Cement 500 kg/m’
Sand (maximum particle size 4 mm) 810 kg/m’
Gravel (maximum particle size 8 mm) 810 kg/m’
Superplasticizer (66% water content) 3.25 kg/m’
Water 237.5 kg/m’
Straight or hooked steel fibers 78.4 kg/m’

The CMOD is measured by an extensometer with 50 mm gauge length mounted
on the middle section of tensile side. Then, CMOD is equal to the measured
deformation Al minus the elastic deformation inside the gauge length. By assuming that

stress in the gauge length is equal to the stress transferred by the crack, the CMOD, §, is
determined from:

_Al-aAl,

= 8
T 1+ BAL o

where a and B are given by the stress-crack width model shown in Eqn.[9], which
reflect the elastic deformation within the gauge length. ! is the gauge length and
Al=c l/E. The experimental setup used for FRC beams in three point bending is shown
in Figure 2. The bending test is conducted at a prescribed deformation rate of 0.1 mm
per minute using the average signal from the two extensometers used for deflection
measurement as feedback. All tests are carried out in a 250-KN capacity, 8500 Instron
dynamic testing machine equipped for closed-loop testing.
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Figure 2. Experimental setup used for FRC beams in three point bending

3.2 Material parameters for model input

The parameters used in the model include fracture toughness of cement paste K,
initial unbridged flaw size a, and crack bridging law, so called stress crack opening
relationship.

(1) Initial unbridged flaw size

According to the model, the initial flaw is an equivalent crack to the initial defects
at the tensile face of specimen in the case of bending. These defects might result from
air voids, aggregate/cement paste interfacial cracks and other possible damage in the
material (e.g. shrinkage cracks). Generally the size of this initial flaw is a function of
water/cement ratio, air content and the size distribution of pores in the material. In the
present study, a set of initial flaw size a, within 0.5 to 4 mm is investigated to find the
proper values for unnotched FRC beams. For notched beam, a, is equal to the dept of
the notch.

(2) Fracture toughness of cement paste

As described in the model, the toughness of cement paste serves as a critical
material property in simulating the crack propagation. In the past, few studies had been
carried out to determine the fracture toughness of cement paste as well as mortar and
concrete [HIG 76; NAU 69; WU 93]. In these studies, the contributions of the process
zone is included in calculating the fracture toughness, i.e. the peak load in the load-
CMOD curves is used as the critical load for K. calculation. Therefore the measured
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values of K, is strongly influenced by the content of aggregates and is size dependent.
However, if the contribution of the process zone is considered in the crack bridging law,
then the fracture toughness of cement paste will be a constant, independent of the
content of aggregates and is size independent. In both cases, with and without
aggregates, the critical load at which crack starts to propagate, i.e. the starting point of
the nonlinearity at the load-CMOD curve, should be equal or be quite similar.
According to the conventional test method and data processing procedure, the range of
the fracture toughness of cement paste is between 0.25 to 0.50 MPa-m" (water/cement
ratio=0.30-0.50), that is significantly influenced by the water/cement. The K, used in
present model should be lower than the values mentioned above due to the described
reason. For the SFRCs used in the present study (water/cement ratio = 0.475), it is
acceptable that K. is equal to 0.2 MPa-m".

(3) Crack bridging law

As a fundamental material property, crack bridging laws of cementitious
composites, such as mortar, concrete and FRCs had been investigated both
experimentally and theoretically during recent years. The experimental results show
that the shape of stress-crack width curve of concrete, especially FRC materials is
complex and greatly influenced by the type and amount of fiber used [STA 92; AAR
92; ZHA 98]. A micrmechanics-based model for stress-crack width relationship of
FRC materials has be developed by Li et al. [L1 93] which makes it is possible to
predict the bridging law of FRC materials with single or hybrid fiber system. The
micromechanics-based model provides a basic understanding of the influence of the
micro-parameters on the shape of the stress-crack width curve and especially useful for
material design. For structural application, a more simplified model is desirable. In this
work, a four liner model based on the directly measured stress-crack width {o-8) data
using both-side notched specimen with the same concrete mixes as used in the beams is
used as the crack bridging law, that is

o(8)_

O

atBo (i=1.4) 9

The coefficients a, and B, are listed in Table 2. Because the (6-8) model in [9] is based
on direct experimental measurements, all contributions of aggregates, fibers as well as
hydrated cement particles [HIG 76] to the bridging force in the processing zone are
included by it. The comparisons between predictions of the simple model and the
experimental data for these two types of FRC are shown in Figure 3. The details of test
method for determining stress crack width relationship can be found elsewhere [STA 92;
AAR 92; ZHA 98]. Due to the slightly uneven distribution of stress in the cracked section,
induced by the notches in the specimen, the measured stress corresponding to a certain
crack width is expected to be lower than the real value. Here a (o-6) model based on the
upper bond of the test data is adopted.
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TABLE 2. Material Parameters Used in Four Linear Model for Stress-Crack Width

Relationship
Material parameters SSFRC 8(mm) HSFRC &(mm)
E(GPa) 35 - 32 -
o (MPa) 5.42 - 5.30 -
o (MPa) 55.2 - 55.0 -
a li (1/mm) 1,-9.96 0.00-0.03 1,-8.73 0.00-0.04
[k
a,,B,(1/mm) 0.685,0.526 | 0.03-0.10 | 0.632,0.472 | 0.04-0.18
o3, (1/mm) 0.883,-1.45 | 0.10-0.38 | 0.800,-0.463 | 0.18-0.75
B, (1/mm) 0.374,-0.110 | 0.38-2.00 | 0.532,-0.106 | 0.75-2.00
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| l ) i
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Crack width(mm) Crack width (mm)
(a) (b)

Figure 3. Measured stress-crack width data and four linear model predictions,
(a) SSFRC (b) HSFRC

4. Results and Discussion

In this section, the crack propagation of beams made of SSFRC and HSFRC
respectively, under bending load is simulated with the current model. The influence of
initial flaw size a, and the fracture toughness K. on the flexural performance of FRC
beams are presented and discussed first. Later, model predictions are compared with the
experimental results and appropriate parameters of a, corresponding to K,.is proposed.
Finally, some discussions on the flexure performance steel fiber concrete are given.

4.1 Effect of initial flaw size and fracture toughness

Figure 4 shows the results of the effect of initial unbridged flaw size on the
flexural behavior in terms of flexural stress versus crack length diagrams. From these
curves, it can be seen that for a given K|, the larger the a,, the lower the first crack
strength and the flexural strength (MOR). Due to the dependence of the initial flaw size
a, on various material parameters, the value of a, can only be estimated according the
experimental results for a given K.
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Figures 5 shows the results of the effect of K. on the flexural behavior in terms of
flexural stress versus crack length curves. From this figure, it can be found that the first
crack strength is increased with higher cement paste fracture toughness. With the
increase of crack length, the behavior is more controlled by the crack bridging, while
the influence of K. is gradually reduced. Even so, the conclusion can be made that the
fracture toughness of cement paste can significantly influence the flexural performance
of cementitious composite beams. For example, the fracture behavior of the beam under
bending load can vary from ductile to brittle with the change of the fracture toughness
of the cement paste, as shown in Figure 5. Here it is assumed that the crack bridging
stress is not influenced by the fracture toughness of cement paste.
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Figure 4. Effect of initial flaw size a, on the bending performance, in terms of flexural
stress versus crack length curves
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Figure 5. Effect of K. on the bending performance, in terms of flexural stress versus
crack length curves
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4.2 Comparison with experimental data and discussions

By comparing the model results with experimental data, for present SFRCs, it
is found that with a, equal to 0.5mm and K, is equal to 0.2 MPa-m"’, very good fit
can be obtained. The comparisons are given by Figures 6 to 9.
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Figure 6 Comparison between model prediction and the experimental results in
terms of flexural stress-CMOD curves of SSFRC beams
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Figure 7. Comparison between modepw%t%nahd the experimental results in
terms of flexural stress-CMOD curves of HSFRC beams

In Figures 6 and 7 comparisons are shown between model predictions and
experimental data in terms of load-CMOD curves in the range of 0 to 1.0 mm for both
kinds of steel FRCs. From these figures, first it follows that very good agreement can be
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obtained between present model predicted and experimental measured load-CMOD
diagrams. Second, the load-deformation curve can be divided into three sections:

(1) elastic stage up to first crack stress oy, which is a function of K¢ and
ay, with a constant stiffness (do/dé).

(2) crack developing stage one, load increases with a slow reduction on the
stiffness of beam until the crack length reaches about 40% of the beam
depth, see Figures 8 and 9.

(3) crack developing stage two, load increases with significantly reduced
stiffness until peak load at which the stiffness become zero, then load
capacity starts to reduce with a negative stiffness.

In stages (1) and (2), the structural performance of SSFRC and HSFRC beams are
almost identical, as shown in Figures 8 and 9. The load capacity reaches about 90% of
its ultimate load with a limited deformation level, 0.025 mm for CMOD at the end of
stage (2). In the stage (3), load increases a little (10% of its uitimate load) with
significant increase in deformation. At this point, the difference on load-deformation
behavior of SSFRC and HSFRC beams becomes pronounced. HSFRC beam can absorb
more energy than SSFRC beam. In other word, the toughness of materials can be
increased by hooks. From these results, the CMOD and crack length at peak load of
SSFRC and HSFRC beams are 0.15 mm, 0.75h and 0.35 mm, 0.80h respectively. This
also indicates that the shape of load-CMOD curves depends strongly on the shape of the
stress-crack width curve. This shows us that in order to improve bending performance,
the bridging behavior of materials has to be improved first. As a fundamental material
property of FRC, the bridging law is of notable significance in optimizing the structural
properties of FRC structures, including the static performance such as tension and
bending, as well as cyclic performance such as impact and fatigue. It also can be found
from the figures that the first crack stress o, is much lower than ultimate stress (MOR)
in these two FRC beams. This is because a stable process zone grows after cracking
which leads to the flexure strength higher than the first crack strength of the materials.
The flexure strength is size dependent as unstable growth of the process zone depends
on the ligament dimension ahead in the beam. Detailed study of this size-dependency is
presented in [LI 98].

5. Conclusions

A fracture mechanics approach for modeling the mode I crack propagation in
FRCs and further to obtain the flexure behavior of FRC beams has been presented. The
model relies on the stress-crack width relation as the fundamental relationship in
calculating the crack tip stress intensity factor (K, ) with the superposition method. Very
good agreement has been found between model predictions and experimental results in
terms of load-CMOD diagrams. The important structural parameters for designer such
as bending toughness, ultimate load as well as the corresponding deformation response
can easily be obtained through the present model.
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Figure 9. Relationship between flexural stress and crack length of both FRC beam
under three point bending, model results

From this model it can be deduced that the flexural performance is strongly
dependent on the stress-crack width relation of materials. The optimal bending behavior
of FRC structures can be achieved through optimizing the bridging behavior of
aggregates and fibers.

This modet can be extended to other types of specimens and load configurations,
such as uniaxial tension and compact tension.
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Figure Captions

Figure 1. Superposition procedure of solving K,

Figure 2. Experimental setup used for FRC beams in three point bending

Figure 3. Measured stress-crack width data and four linear model predictions,

(a) SSFRC (b) HSFRC

Figure 4. Effect of initial flaw size a, on the bending performance, in terms of flexural
stress versus crack length curves

Figure 5. Effect of K. on the bending performance, in terms of flexural stress versus
crack length curves

Figure 6 Comparison between model prediction and the experimental results in terms
of flexural stress-CMOD curves of SSFRC beams

Figure 7. Comparison between model prediction and the experimental results in terms
of flexural stress-CMOD curves of HSFRC beams

Figure 8. Model predicted flexural stress versus CMOD curve, shown both kinds of
FRC beams together

Figure 9. Relationship between flexural stress and crack length of both FRC beam
under three point bending, model results
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