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Abstract—Unlike other fiber types, carbon fibers tend to possess a distribution of fiber lengths
even before mixing into a cementitious matrix. During mixing, some amount of fiber rupture may
be expected. Along with other fiber parameters, fiber length distribution may be expected to play
an important role in governing the composite properties. This paper describes the results of an
experimental program which measures the length distribution of carbon fibers both before and
after mixing. A database of composite tensile stress-strain behavior is established for a number of
commercially available carbon fibers in a cementitious matrix. Special emphasis is placed on
pseudo strain-hardening behavior and the associated ultimate tensile strength beyond first crack-
ing. A theoretical model of this ultimate strength which explicitly account for fiber length distribu-
tion is developed and shown to account for the reduced tensile strength of experimentally observed
results reasonably well. Results of this research suggest that for the purpose of brittle cementitious
matrix reinforcement, carbon fibers with higher strain capacity may be more important than high
modulus typically demanded for polymer matrix composite reinforcement.

1. INTRODUCTION

Carbon fibers do not corrode, have superior fire resistance and possess long-term dur-
ability in an alkaline medium such as cement paste, thus making them superior to steel,
polymeric and glass fibers. With the development of pitch-based fibers and new process-
ing routes, the cost of carbon fibers has reduced to a level which makes it economically
viable as concrete reinforcement for civil engineering applications. However, the design of
carbon-cement composites provides some unique challenges.

Carbon fibers cover a wide range of properties with strengths ranging between 400
and 5000 MPa, modulus varying between 7 and 400 GPa, and various surface finishes that
can yield a wide range of bond-strength values (Akihama ef al., 1986; Ermolenko et al.,
1990; Park and Lee, 1993). Also, they can be made to have a range of diameters and can
be cut to different lengths. When different carbon fibers are used to make cement
composites they can be expected to yield different composite properties covering a wide
range (Akihama et al., 1984; Nishioka et al., 1986; Linton ef al., 1991; Banthia ef al.,
1994; Yang and Chung, 1992).

Carbon fibers are finer (6-20 um in diameter) than most other fibers used for con-
crete reinforcement. They are also very brittle. Due to these reasons they tend to break
when mixed with other concrete constituents in the mixer (Nishioka ef al., 1986; Linton
et al., 1991). The extent of fiber breakage during mixing depends upon the fiber
parameters (such as strength, diameter, strain capacity, length), mixer type, mixing speed,
mixing time and mix proportions (amount of aggregates etc.). Also, the carbon-fiber pro-
duction technique tends to impart a length distribution on the fiber. This is particularly
true for pitch fiber type. Due to the above reasons the actual fibers reinforcing the con-
crete composite tend to have a length distribution. Also, carbon fibers tend to break in the
matrix when the composite is subjected to tensile loading if the tensile stress in the fiber
exceeds its failure stress. This can happen if the fiber length is greater than the critical
fiber length (Kelly and Macmillan, 1986).

In this paper, uniaxial tensile properties of cementitious composites reinforced with
various commercially available carbon fibers are summarized. These tests are part of a
larger experimental program investigating the design of carbon-fiber-reinforced cementi-
tious composites at the University of Michigan. In the present work, focus is placed on
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the influence of fiber length distribution on composite tensile strength. Evidence for fiber
length variations before and after mixing is presented. Fiber length distribution is in-
corporated into a theoretical model of the composite bridging stress vs crack-opening
relationship (o-0). This model also accounts for fiber rupture during crack opening.
Model prediction of tensile strength is shown to agree reasonably well with experimental
measurements. In contrast, an existing model which does not account for fiber length
variation consistently overestimates the composite tensile strength. This result suggests
that for fiber types which are brittle and/or have variable fiber length, such as carbon,
composite properties are significantly influenced by tensile rupture and fiber length
variation. These effects must be taken into account in the design of such composites.

2. EXPERIMENTAL PROGRAM

The objective of this experimental work is three-fold: (1) To create a database of
uniaxial tensile behavior of cement composites using a variety of (five) commercially
available carbon fibers. Not all fibers are manufactured for use in a cementitious compo-
site. (2) To determine the fiber length variation before mixing and the extent of breakage
during mixing of the different carbon fiber types. (3) To relate fiber mechanical and geo-
metric properties to composite properties. In order to obtain a deeper level of understand-
ing for this last objective, a theoretical model of composite tensile strength is developed
which accounts for fiber rupture and fiber length variation. This model is described in
Section 3 of this paper. Uniaxial tensile testing and fiber length distribution studies were
conducted on all five sets of composites.

2.1. Materials and processing

The matrix used is a typical low w/c ratio cement-paste matrix (see Table 1 for
details). An Omni mixer of 10 liter capacity was used for mixing the carbon-fiber cement
composite as it has shown to display good mixing (Banthia, 1992). The mixing time was
maintained at 4 min after fiber addition and the mixing speed was maintained at level 10.
The casting of the carbon-fiber cement composite material was carried out using high-
frequency vibration (120 Hz).

The specimens were covered with plastic sheets and stored for 24 hours. After 1 day
the specimens were demolded and placed into water curing tanks at room temperature for
4 weeks. The specimens were taken out of the water and tested after 2 days of drying
under normal laboratory conditions.

Five different fiber types were used (Table 2). The fiber length L;, diameter d,
tensile strength o;,, Young’s modulus E;, tensile strain capacity &;, and density p were
obtained from the manufacturer’s literature. The fiber/matrix interface bond strength 7
and mean fiber length before mixing I°™ and after mixing L¥™ are determined in this
experimental program and described in more detail later.

Table 1. Mix proportions

ASTM Type III cement Condensed silica fume Super-plasticizer (Melment) Water

1.00 0.10 0.0133 0.31

Table 2. Fiber parameters of the different fibers used in the CFRC tensile test

Fiber type L;(mm) d;(um) oy, (MPa) E(GPa) &y (%) p(gcm™) t(MPa) L™ (mm) Li™(mm) ¥, (%)

F-1 6 6.8 4600 268 1.70 1.77 — 6.08 2.51 3.0
F-2 6 12 690 48 1.44 1.57 - 1.95 1.81 2.5
F-3 12 12 690 48 1.44 1.57 - 4.08 2.58 2.5
F-4 3 24 800 38 2.1 1.62 3.10 2.80 2.40 4.0
F-5 10 20 800 38 2.1 1.62 1.57 9.91 6.67 4.0

L; = fiber length according to manufacturer’s specification.
I®™ = measured average fiber length before mixing.
LT = measured average fiber length after mixing.
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2.2. Uniaxial tension test

The size of the tensile coupon specimen used in this test series was 304.8 X
76.2 X 12.7mm. The coupon specimens were tested under displacement control in a
133.5 kN capacity MTS 810 material testing system with hydraulic wedge grips. The
displacement rate used was 0.005 mm s~!. Aluminum plates were glued onto the ends of
the tension specimens to facilitate gripping. The MTS machine has a fully digital control
panel and Teststar software to automatically run the tests and collect the data. In
addition, two LVDTs hooked to the Labtech Notebook data acquisition system were used
to measure displacements between two points on the specimen at a gage length of 205 mm.
The uniaxial tensile behavior of the composite can then be determined from these tests.
More details of the uniaxial tensile testing procedure are described in Li et al. (1994).

2.3. Results of uniaxial tension tests

The tensile stress—strain curves for the carbon cement composites are shown in Fig. 1.
Composites reinforced with F-2 and F-3 fibers show a brittle mode of failure with a linear
elastic ascending portion followed by a sudden drop in load-carrying capacity after the for-
mation of the first crack. The tensile strengths observed were 4.53 and 5 MPa for composites
reinforced with F-2 and F-3 fibers, respectively. In comparison, the plain cement matrix
(which also failed in a brittle manner, as expected) has a tensile strength of 2 MPa. The com-
posite reinforced with F-1 fibers shows a quasi-brittle mode of failure with a tensile strength
of about 8 MPa. Composites reinforced with F-4 and F-5 fibers show a ductile mode of
failure with tensile strengths of 7.10 and 8.20 MPa, respectively. In particular, the composite
reinforced with F-5 fibers shows a high strain capacity of 0.90% (as much as 90 times that
of the plain cement matrix). This material demonstrates that pseudo strain hardening (Liand
Leung, 1992; Marshall and Cox, 1988) can be achieved with carbon fibers.

The curves shown in Fig. 1 are representative test results of three or more repeated
tests. However, variability (e.g. of 20-30% in tensile strength) does exist, as for most
uniaxial tensile tests of brittle-matrix composites.

2.4. Experimental study of fiber length distribution

The extent of fiber breakage during mixing depends upon the fiber parameters—fiber
strength, diameter, length and strain capacity. High fiber breakage during mixing can be
expected from a fiber of low strength, small diameter, long length and low strain capacity.
Fiber breakage may increase with the amount of aggregates in the matrix, although this
aspect is not studied here. Fiber breakage might also vary with the mixer type, mixing time
and mixing speed. The Omni mixer without any internal blades should lead to reduced
fiber breakage during mixing as compared to a mixer with blades.

10.0

8.0L -~

0 0.2 0.4 0.6 0.8 1
Strain, %

Fig. 1. Uniaxial tensile test results of various commercially available carbon-fiber cement
composites.
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The extent of fiber breakage has been observed for each fiber type after mixing. Since
only the fiber parameters are varied in this experiment, it is possible to compare the extent
of breakage during mixing of the different fiber types individually.

2.4.1. Measurement of fiber length distribution. Before mixing, a small sample of
fibers was separated for length distribution measurements. After mixing with the cement
paste a small sample of the fresh composite mix was placed on a 75 um sieve. Water was
passed through the sieve at a very slow speed for a period of approximately 10 min. At this
point all the cement paste would have been washed off and the fibers in the wet condition
were allowed to dry under normal laboratory conditions for a day.

The fiber samples were spread out on a white background. Digitized images of the fiber
samples were captured using a low-power microscope/camera of magnification about
20 x . Using image-analysis software, the individual fiber lengths were measured. Several
images were taken and the lengths of at least 300 fibers were included for each fiber type
in order to get an accurate estimate of fiber length of a statistically significant population.

2.4.2. Resulls of fiber length measurement. Figures 2 and 3 show computerized images
of fiber length distributions of F-1 fibers before and after mixing, and F-2 fibers before
mixing, respectively. Fiber length distributions for all fibers are shown in Figs 4-8 as fiber
counts. The average fiber lengths before mixing I5™ and after mixing I3™ are reported in
Table 2. Specific observations from examination of these figures are given below:

(1) According to the manufacturer’s specifications, F-1 and F-2 fibers are of 6 mm
length. This can be readily confirmed from Fig. 2a for F-1 fibers. However,
Fig. 3 shows that the fibers of F-2 vary between 0.38 and 9 mm with an average
length of 1.95 mm. Therefore it can be said that some fibers (F-1, F-4, F-5—refer
to Figs 2a, 4a, 7a, 8a) have an almost uniform fiber length (small variation) before
mixing, whereas other fibers (F-2, F-3—refer to Figs 3, 5a, 6a) have fiber lengths
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Fig. 4. Measured fiber length distribution of F-1 fibers (a) before mixing, and (b) after mixing.
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(@
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Fig. 2. Computerized image of fiber length distribution of F-1 fibers (a) before mixing, and (b)
after mixing. The field of view is approx. 10 mm by 10 mm.
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Fig. 3. Computerized image of fiber length distribution of F-2 fibers before mixing. The field of
view is approx. 10 mm by 10 mm.
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Fig. 5. Measured fiber length distribution of F-2 fibers (a) before mixing, and (b) after mixing.
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with high variations even before mixing. However, note that a constant fiber
length before mixing is not a requirement to obtain good composite properties.

(2) F-1 fibers, which started with an average original length of 6.08 mm, broke
down during mixing to give an average length of 2.51 mm, a reduction of nearly
60% (Figs 2, 4). This could be due to their higher aspect ratio (1000 compared
to less than 500 for the other fibers, see Table 2 for more details of fiber
properties) inspite of their high strength. This suggests that fiber aspect ratio
plays a much more crucial role in determining the extent of fiber breakage
during mixing.

(3) F-4 fibers have a manufacturer-specified length of 3 mm. During mixing the
fiber broke down from an average fiber pre-mix length of 2.80 mm to about
2.40 mm (15% reduction—Fig. 7). F-5 fibers have a manufacturer-specified
length of 10 mm. During mixing the fiber broke down from an average length
of 9.91 mm to about 6.67 mm (30% reduction—Fig. 8). The increased breakage
of F-5 fibers could be due to two factors—a longer pre-mix length of 9.91 mm,
and a slightly smaller diameter (20 vs 24 um).

(4) The mean values of length distribution for F-2 fibers (1.95 mm) and F-3 fibers
(4.08 mm) before mixing are substantially lower than the manufacturer’s
specified length of 6 and 12 mm, respectively.

The measured L, distribution after mixing of the different fiber types has been
approximated by mathematical equations which are used as the probability density func-
tions of fiber lengths p(L;) for the different fiber types (Fig. 9). The average fiber length
for each p(L,) is made consistent with the average fiber length after mixing. These p(L¢)
expressions are used in the analytical model (Section 3) to predict the tensile strengths of
composites made with those fiber types. The predicted composite tensile strengths are
compared with experimental results from uniaxial tensile tests.
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Fig. 6. Measured fiber length distribution of F-3 fibers (a) before mixing, and (b) after mixing,
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Fig. 7. Measured fiber length distribution of F-4 fibers (a) before mixing, and (b) after mixing.
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F-5 Fibers Before mixing
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Fig. 8. Measured fiber length distribution of F-5 fibers (a) before mixing, and (b) after mixing.
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Fig. 9. Probability density functions of measured fiber length distributions after mixing of fibers:
(a) F-1, (b) F-2, (c) F-3, (d) F-4, (e) F-5.
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3. THEORETICAL INVESTIGATION OF COMPOSITE STRESS-CRACK-OPENING RELATION

The composite stress-crack-opening relation represents the stress transferred across a
matrix crack due to fiber bridging. This is a macroscopic description of the smeared-out
cohesive stress binding the crack faces together and is naturally a function of the
magnitude of crack opening. The pre-peak part of such a stress-crack-opening relation is
mainly associated with fiber-debonding processes (Li, 1992) and is closely associated with
composite pseudo strain-hardening behavior (Li and Leung, 1992; Marshall and Cox,
1988). The post-peak part of the stress-crack-opening relation is closely related to fiber
pull-out processes (Li, 1992) and is well known to govern composite fracture energy
(Hillerborg, 1980). The micro-mechanics of stress-crack-opening relations for various
composites have been under intense studies in recent years (Cox and Marshall, 1991; Li,
1992: Marshall et al., 1985) because they offer opportunities for designing composite
properties via micro-structure tailoring.

In the following the composite stress-crack-opening relation for uniform fiber length
is briefly reviewed. Extension to the case of composites with fiber length distribution is
then presented. This new model is then applied to study the composite ultimate tensile
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strength of some of the carbon-fiber cement systems described above. The ultimate tensile
strength is identical to the maximum bridging stress in the stress-crack-opening relation
when the composite shows pseudo strain-hardening behavior.

3.1.1. Single fiber load-displacement relation. Consider a single fiber with an
embedded length of ¢. When the fiber is pulled out, it will initially undergo debonding.
Assuming that the fiber-matrix interface is purely frictional in nature (Li and Chan,
1993), the relationship between the fiber bridging load P vs crack opening § may be
obtained from a shear-lag analysis (Li and Leung, 1992):

P©), = g\/(l + MEditoe’  for  5< 1)

where
O = @P0/[(1 + MEd]), 1 = (GE)/ (VEw).

E;, d;, Vi, £, T are the fiber modulus, diameter, volume fraction, embedment length, and
fiber-matrix interface bond; E,,, V,, are the matrix modulus and volume fraction; and f
is the snubbing coefficient. The snubbing coefficient (Li ef al., 1990) can be interpreted as
a scale-up factor of the bridging force across a matrix crack when a fiber is pulled out at
an inclined angle, analogous to a flexible rope passing over a friction pulley. Specific
values of f (typically between 0 and 1) for given fiber/matrix systems can be determined
from inclined-fiber pull-out tests.

Subsequent to full fiber debonding, the load-point displacement is mainly due to that
of the fiber end slippage. Neglecting the elastic stretching of the fiber, the fiber pull-out
load vs displacement relation is given by

o
P(@d), = nrfdf(l - ?) e for £2d = 9,. (2)
The fiber bridging force P(d) = 0 when the fiber completely slides out at § = £.

3.1.2. Composite bridging stress-displacement relation with uniform fiber length. Li
et al. (1991) showed that the composite bridging stress-displacement relation ¢(J) can be
predicted by summing the contributions of the individual fibers bridging the matrix-crack
plane:

P(0)p(z)p(¢) dz do (3)

V. ‘w2 [ (L/2)cos
a(d) 4 j j

= 7d*/4

where p(¢) and p(z) are the probability density functions of the orientation angle and
centroidal distance of fibers from the crack plane. For uniform three-dimensional (3-D)
random distributions, p(¢) = sin ¢, and p(z) = 2/L;.

At small crack opening, some fibers will undergo debonding [P(J) = P,(d), eqn (1)],
while other fibers with short embedment length will undergo slippage [P(d) = P(d), eqn
(2)]. Thus using (1) and (2) in (3), the composite bridging stress may be expressed in
normalized form (with higher-order terms neglected):

N 172 ¢
&) = g[Z(%) - 6%] for &< & 4)

1]

) _ - 27 L
= = = = \a nE d;
& 0./0-0 s ay K.T(Lf/df)/z, o 1‘5/(Lf/2)’ o ((1 + ff)Ef) (d{) ’

and the snubbing factor

2
_ xf/2
g ) e (1 + e¥).
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At crack openings exceeding J* all fibers would have fully debonded and would be
in the complete slippage stage. The composite bridging stress may be derived from (3),
and together with (2) can be expressed in normalized form:

G@) = g(l — 8 for 1>6>0* )

The &(5) is ascending in the region é < 6* and descending in the region 1 > é > 6%
and the value of &* is typically about 0.001 (much less than unity), for typical fiber,
matrix and interface parameters in cementitious composites.

The composite o(d) relations summarized above assume that the fiber strength will
never be exceeded. For the case of fiber rupturing in the composite, the corresponding
a(d) relations have been developed in Maalej et al. (1994) by modifying (1) and (3) to
eliminate bridging contributions from ruptured fibers. This is referred to as the Fiber
Pull-out and Rupture Model (FPRM) in this paper.

3.2. Composite bridging stress-displacement relation with variable fiber length

Due to the observed length variation in carbon fibers, as described in Section 2.4.2
of this paper, the () relations are extended to explicitly account for p(L¢) in eqn (3).
Hence

Vf L, ['=/2 (Lf/2)cos¢

a(d) = "'z—g [ i P(O)p(2)p(#)p(Ls) dz d dLg (6)
ndi /4 i, Jo Jo

where L, and L, represent the shortest and longest fiber length, respectively.

A typical ¢(d) resulting from the present analysis is shown in Fig. 10. The whole
curve can be divided into six sectors with different events occurring in each of these
sectors. The physical explanation of the events occurring in the different sectors is given
here and the detailed governing equations are summarized in the Appendix.

As an overview of the six sectors of the a(d) curve, it is useful to keep in mind the
four mechanisms of fiber bridging: (1) fiber debonding occurs as a result of activation of
an extending friction slip zone on the interface; bridging stress contribution continues to
increase with further debonding; (2) fiber rupture occurs when the maximum tensile stress
on the fiber exceeds the fiber tensile strength; bridging stress terminates at fiber rupture;
(3) fiber sliding occurs when the frictional slip zone extends over the full embedded length
of the fiber; bridging stress decreases with further sliding; and (4) at complete slide-out,
all further contributions cease.

Thus it is seen that groups of fibers, with different embedment length ¢, transit from
one mechanism to another in the composite, as a result of the matrix crack opening, J. It
is further seen that the cessation of the bridging contribution can be either through fiber
rupture or complete slide-out.

Q
(=]

Bridging Stress, 0

B
A

81 See™f & L2 Lr Le
Crack Opening, §

Fig. 10. Schematic o(d) relation for composites with variable fiber length.
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At any given crack opening, which mechanism a given fiber is undergoing depends on
the embedment length of the fiber. Because the fiber stress is raised by the snubbing effect
which in turn depends on the inclination angle, ¢, fiber rupture (or not) will also depend
on ¢. Thus conceptually, it is possible to express

Controlling mechanism = f(4, ¢, ¢). )]

This concept is best illustrated by the Fiber Rupture Space Plot (Maalej ef al., 1994)
shown in Fig. 11. For a fiber with embedment length ¢ and inclination angle ¢, fiber
rupture occurs in the space above the curve defined by

b =L.e7*

where L_ is the conventionally defined critical embedment length given by

di0gy

L= a7 ®
Otherwise the fiber will slide out. It is seen that fibers with an embedment length below
L, = L.e™? can never rupture, no matter what inclination angle they have. Further,
fibers with an embedment length above L, will always rupture, even if the inclination
angle is zero. It is natural to expect that the embedment length ranges between zero and
half the fiber length, so that £is a function of L;. The present problem is complicated by
the fact that L, < Ly < L,.

The present model assumes L, < 2L, < 2L, < L,. This implies that short fibers (L;
close to L,) can pull out, whereas some long fibers (L; close to L,) can rupture. If the
inequalities are not observed, the model predictions will not be valid. However, it is
observed that carbon fibers typically satisfy these assumptions. In the present model, it
has further been assumed that carbon fibers suffer no bending rupture in the composite
and that they have a uniform strength and diameter. This assumption is likely to be
violated by the more brittle fibers with low strain capacity.

3.2.1. Pre-peak bridging stress-crack-opening relation.
Sector A (0 < J < Jy): In this sector most of the fibers are in the debonding stage. Some
fibers with extremely short embedment lengths are in the slipping stage. At d = &, all
fibers of length L, start slipping completely and the equations for a(d) or 6(J) governing
sector A (see the Appendix) are no longer valid. d, is defined in terms of L, by

__ i
Edd+n)

9, ©)

La/2
Le
Maximum Fiber Rupture
Embedment Space
Length, £
fy=Le-f0
Ly
Ly/2

'

Inclination Angle, ¢

Fig. 11. Fiber rupture space in ~¢ plot.
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Sector B (5; < J < 6.e7™: Once J > &y, all fibers of length L, regardless of their
embedment lengths would be completely slipping. With increasing crack opening more
and more fibers pass into the complete slipping (no further debonding) stage. Until
6 = 6. ¢™/™, no fiber ruptures. J, is defined by

o%u df

T ET+ (0

e
(Note: J and the debond length have a square-root relationship, which explains the factor
of this difference in the exponentials of J, e~ and L_e™~™?).

Sector C (6, e /™ < & < J,): In this sector fiber rupture begins, starting with those at high
inclined angle and with embedment length greater than L, e /™2, At larger &, fibers with
lower angles will rupture. At ., even fibers normal to the crack plane will rupture.

3.2.2. Post-peak bridging stress-crack-opening relation.
Sector D (6, < § < L,/2): Beyond & > d,, there is no more fiber debonding and rupture.
Only those fibers with short embedment length (which therefore cannot rupture) will pull
out and hence only their contribution is considered in the bridging load contribution. All
fibers of L; < 2L, e would be in the complete slipping stage. Among fibers of
L; > 2L_e™/%, the pull-out contributions of only those fibers for which ¢ < L. e™* should
be counted.

Sector E (L,/2 < 6 < L,): Beyond 6 > L,/2, fibers of length L, would have completely
pulled out and will no longer contribute to the crack bridging load. As J continues to
increase more and more, fibers of longer length would have completely pulled out and
hence their contributions would cease. In this sector the bridging stress contribution
comes from two groups: (1) fibers that can never rupture, i.e. L, < Ly < 2L, and (2)
fibers that could rupture, i.e. 2L, < L¢ < L, (but do not rupture as £ < L, /).

Sector F (L, < 6 < LJ): As é > L,, the bridging stress contributions come from only
those fibers with long enough lengths that would cause rupture but did not due to their
short embedment length. This corresponds to the second group of fibers mentioned in
sector E. The bridging stress o becomes zero beyond d = L. since long fibers with
embedment length less than L. would have pulled out, and those with embedment length
longer than L, (even if they are aligned normal to the crack plane) must have ruptured.

3.3. Comparison between model predicted tensile strengths and experimental tensile tests

The composite tensile strength o, predicted by the analytical model is a function of
the fiber and interfacial parameters (Table 2). The fiber length distributions p(L;) used are
those measured after mixing (Fig. 9; see also Section 2.4). The interfacial bond strength
7 has been estimated by an indirect measurement technique (Obla and Li, 1994). This tech-
nique utilizes the measured length of protruding fibers from the fractured composite
surface. The resulting 7 is reported in Table 2 also. It is found that the bond strength of
F-4 fibers is 3.10 MPa as compared to 2.06 MPa for F-5 fibers. Although all the other
fiber and matrix parameters are the same, the F-4 fibers have a larger diameter (24 vs
20 um) and a shorter length (3 vs 10 mm) as compared to F-5 fibers. The larger diameter
leads to a smaller number of F-4 fibers (about 30% reduction). This, together with the
shorter length, provided better workability. This might have led to a much better matrix
packing around the F-4 fibers, thus contributing to the higher bond strength. The
snubbing friction coefficient, f, has been assumed to be equal to 0.5.

It was explained in Section 3.2 that the peak of the o(d) curve would be equal to the
composite tensile strength only when the composite undergoes pseudo strain hardening.
Only composites reinforced with F-5 fibers showed pseudo strain hardening (Fig. 1), with
those using F-4 showing marginal strain-hardening behavior, and so the tensile strengths
for those two composites only are used.
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Table 3. Comparisons of tensile strength predictions from analytical models with experimental results

Bond strength ~ FPRM, model =~ FRPM, model  Present model  Experimental

Fiber  L;(mm) 7 (MPa) ., (MPa) a., (MPa) a., (MPa) a., (MPa)
F-4 3 3.10 8.40 7.73 7.19 7.10

2.78 8.09 7.37 6.80 5.40
F-5 10 2.06 9.98 9.51 8.80 8.20

1.76 9.82 9.26 8.14 6.20

FPRM,—L; based on manufacturer’s specifications.
FPRM,—L, based on mean value of measured distribution after mixing, i.e. 3™,

Table 3 shows a comparison of model predictions with experimentally determined
ultimate tensile strengths. Composite strength and fracture surfaces from two specimens
were used for each fiber type. The composite tensile strengths were predicted by the
original FPRM model in which all fiber lengths were assumed to be equal to that provided
in the manufacturers specifications (FPRM,). Then the composite tensile strengths were
predicted using the newly developed analytical model described above. It can be easily
seen that the newly developed analytical model which assumes the correct fiber length
distribution gives more accurate tensile strength predictions. An additional calculation
was done by using the original FPRM model but using the mean value of the measured
fiber length variation. The result (FPRM,, Table 3) suggests that, at least in those cases,
the FPRM model is not unreasonable as a rough estimation tool in predicting the
composite tensile strength when the mean fiber length is used.

4. MODEL IMPLICATIONS

The accuracy of the FPRM model using a mean fiber length depends on a number of
factors. As expected, it becomes more accurate when the fiber length distribution is
limited. Another interesting factor relates to the interfacial bond strength. This is
illustrated in Fig. 12, which shows the predicted tensile strength as a function of bond
strength using the FPRM model with mean fiber length and the present model accounting
for the actual fiber length distribution. The fiber parameters used in this calculation
correspond to those for F-3 fibers. It can be seen that the difference in tensile strength
predictions is about 10% at a bond strength of 1.5 MPa and rises to about 15% at a bond
strength of 2 MPa. As the bond strength is further increased the difference in tensile
strength predictions reduces and is about 7% at a bond strength of 5 MPa. The snubbing
friction coefficient, f, was assumed to be O for these calculations. If f were assumed to be
0.5 (expected of carbon-fibers), then the difference in tensile strength predictions is lower,
remaining within 10% at the range of v shown. The improvement in accuracy of the
FPRM model at the high and low end range of t appears to be a result of a more uniform

8.0 - T T T T T ' j
-] . <
& " _——
= 7.0:
= [
Eﬂ 6.0 -
£ [
“s0F :
g . — — mean-fiber length 1
S 4.0 variable fiber length 7
]

1, MPa

Fig. 12. Composite tensile strength computed for different bond strengths by the FPRM model
(dashed line) assuming a mean fiber length, and by the present model (solid line) assuming the
actual fiber length distribution.
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mode of fiber contribution to composite bridging stress. When 7 is small, most fibers are
expected to slide out. When 7 is large, most fibers are expected to rupture. In the latter
case, fiber length becomes immaterial. It is also found that for intermediate bond
strengths and high L,/L, ratios [practically possible fiber parameters and p(Ly)s] the
difference in the composite tensile strength prediction could be as high as 25%.

Figure 13 shows the pre-peak a(d) relation for a composite prepared with F-3 fiber
parameters using the two different models. The pre-peak part of the o(d) relation provides
valuable information for the design of pseudo strain-hardening behavior in brittle-matrix
composites (Li and Leung, 1992; Marshall and Cox, 1988). An error in accurately
predicting this part of the (d) relation would result in an inaccurate prediction of first
crack strength and pseudo strain-hardening parameters. This would result in improper
design of carbon-fiber cement composites.

6_ ™ T =

SO .

o, MPa
L]

SRR R B SR |

2L
r / — — mean fiber length
f variable fiber length 2

0 2 4 6 8 10 2 14
§(*10%), mm

Fig. 13. Pre-peak o(d) computed by the FPRM model (dashed line) assuming a mean fiber length,
and by the present model (solid line) assuming the actual fiber length distribution.

5. CONCLUSIONS

(1) A database of uniaxial tensile stress-strain relations has been created using a
variety of commercially available carbon fibers. It is found that these carbon fibers, with
a wide range of properties, produce cement composites with significantly different
properties. It is demonstrated that composites with tensile strengths four times higher
than plain cement paste (8 vs 2MPa) and a ductile failure mode with a failure strain
capacity 90 times higher (0.90 vs 0.01%) can be achieved.

(2) Carbon fibers with high modulus and strength, often regarded as high-
performance fibers in fiber-reinforced polymeric composites, may not necessarily produce
the best properties in cementitious composites, particularly when improved composite
ductility is desired. Larger fiber diameter and higher fiber-strain capacity, despite lower
strength and modulus, appear to prevent fiber-length breakdown during mixing and lead
to improved composite properties.

(3) Some carbon fibers show a uniform fiber length before mixing. Others show
variable fiber lengths even before mixing. A constant fiber length before mixing is not a
requirement for achieving good composite properties. However, to achieve desirable
composite properties, the average fiber length after mixing should be maintained at a
sufficient level. Fibers with a lower diameter, lower strain capacity, higher modulus and
longer length tend to suffer more breakage during mixing. The fiber length distribution
after mixing of different fibers is found to be different, even though the mixing process
is kept the same.

(4) An analytical model has been developed that can predict the composite a(d)
curve based on the experimentally measured L; distribution and accounting for tensile
rupture. The model-predicted tensile strengths of carbon-cement composites which
undergo strain hardening have been found to agree well with limited experimental results.
It is also found that the FPRM model can produce reasonably accurate results provided
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the average fiber length measured after mixing is utilized. However, for intermediate
bond-strength values and high L, /L, ratios the present model should be used in predicting
composite strengths accurately.
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APPENDIX. COMPLETE o(d) RELATION

Based on egn (6), and the consideration of fiber groups contributing to composite bridging in various
sectors (Sections 3.2.1 and 3.2.2), the complete a(d) relation can be derived:

Sector a(d) Range

A k0, 7/2,L,,L,,0,20) + k0, /2, L, L,, %, h) 0<d<4)

B ky(0, /2, Ly, L;, 0, k) + ky(0, m/2, L, Ly, 0, Z5) 5, <d<d e’
+ ky(0,m/2, LY, Ly, Zy, h)

C ky(¢y, m/2,L,,2L4,0, h) + ky(0, ¢y, L,, L, 0, k) + k{0, ¢,, Lt, Ly, 0, 2p) s.e " <d<d,
+ ky(0, ¢y, Li, Ly, 2oy B) + Ky(dy, 1/2,2L4, Ly, 2y, h)

D ky(0, n/2,L,,2L4,0,h) + ky(0, m/2,2L,,L,,2,, h) . <4< L)/2

E k30, m/2,28,2L4,0, H) + ky(0, m/2,2L4,L,,2,, h) L/2€<d<L,

F k30, ¢y, 268, 2L 4,0, B) + kp(0, m/2,2L4, Ly, 21, ) L g£d<L,

COE 4:9-E
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where
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