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SUMMARY

New fundamental solutions which automatically satisfy boundary conditions at the interfaces of an elastic
plate perfectly bonded to two elastic halfspaces are implemented in a 3-D boundary element method (BEM)
for crack problems. The BEM features a new integration scheme for highly singular kernels. The capability is
achieved tl{r ugh a part analytic and part numerical integration procedure, such that the analytic part of the
integration 4s Similar for all slipfopening variations. ‘Part-through’ elliptic cracks in an elastic plate with
traction-free siirfaces are analysed and the stress intensity factor (STF) values along the crack front are found
to compare favourably with widely )?cceptcd numerically obtained SIF results by Raju and Newman.!

5 A2
4 . .
-,

W

;“.&&II:I)TRODUCTION

Numerical methods based on integtdl equations are often used in 3-D linear elastic fracture

mechanics as an alternative to the more popular finite element method.?~® Different integral

eqefation formulations use a variety of kernels or fundamental solutions such as point force and

ighclci of strain elastic fields. In addition, numerical implementations of the same formulation may

~¥'make different assumptions concerning the unknown displacements or displacement discontinui-
ties and tractions over the crack surface. In some cases the unknown field variables along the
boundary may be assumed to be continuous and differentiable, while in other cases they may be
assumed to be piecewise continuous and differentiable with lines along which discontinuities may
occur. Examples of integral equation based numerical methods are the boundary element method,
boundary integral equations method and body force method.

In some integral equation formulations, special kernels (or fundamental solutions) are used
which automatically satisfy boundary conditions onexternal boundaries. In such formulations,
discretization is required only on the crack surfaces. Elliptic and semi-elliptic cracks in a halfspace
with a traction-free surface or in a region consisting of two bonded halfspaces have been
extensively studied using such specialized fundamental solutions.® = !!

A common difficulty of integral equation formulations dealing with crack problems is the
accurate evaluation of singular integrals. The singular integrals encountered in 3-D crack
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formulations vary with the fundamental solutions used. In classical boundary element formula-
tions, the singular integrals involved are of the principal value kind. Principal value integration
techniques have been dealt with by a variety of methods including semi-analytic evaluations,'?
mapping techniques® and quadrature formulae.!* '# In the body force method, the evaluation of
singular integrals which are more singular than principal value integrals is needed. The highly
singular integrals are known as finite part integrals.'>~!” Murakami and Nemat-Nasser®
described a part analytic and part numerical method to evaluate these highly singular integrals,
while Kutt'® developed Gaussian-type quadrature formulas for one dimensional {useful in 2-D
problems) finite part integration.

This paper will present a numerical implementation of an integral equation formulation to solve
cracks in a plane layered region (Figure 1). The integral equation formulation and discretization
will first be presented. The presentation will emphasize a new finite part integration scheme. Next,
some numerical studies on circular and elliptic cracks in infinite space will highlight the
discretization requirements for accurate results. The studies will focus on the region adjacent to
the crack front. Finally, computed stress, intensity factors for ‘part-through’ semi-elliptic cracks in
an elastic plate (upper and lower surface$ traction free) will be used as an example of the capability
of the method. The resulting ‘part-through’ crack results are found to compare favourably with the
widely accepted finite element solutions by Raju and Newman! of the same problem.

DESCRIPTION OF THE METHOD

The present numerical method can be formally classified as either an indirect boundary element
method'® or a 3-D displacement discontinuity method.2® The required fundamental splutions
correspond to nuclei of strain elastic fields in a layered medium with two interfaces. Thenuclei of
strain elastic fields in such media were recently deri%ed by Fares.?! The advantage of using the
specialized nuclei of strain solutions is that the boundary conditions on the interfaces (shown in
Figure 1) are automatically satisfied. Hence, only the ,qféck surface needs to be discretized. The

method relies on the following integral representation’of the stress o, due to an applied stress
T

Figure 1. A layered elastic region with two interfaces containing a crack. Tractions and displacement jumps A are defined
over the surface S,
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o35?"*¢ and a distribution of opening and sliding (A;) on a crack surface S_:
0 pa(X) = 5571 %(x) -f Gi(x, x') nf (x')-A(x')-dS (1

where the fundamental solution G%/(x, x') is the stress at a point x due to a nucleus of strain in a
layered medium at point x’, and u+ (x) is the vector normal to the upper crack surface. The integral
in (1) is carried out over the crack surface S,.

The integral in (1) is well defined for any field point x in space not lymg on the crack surface.
When a point x lies on §, the integral in (1) must be interpreted as an integral with the limit of a
point x* not lying on S, approaching x. Moving the limit operator inside the integral leads to a
‘finite part’ integral in the Hadamard sense. The discretization and numerical solution of the
singular integral equations obtained from (1) when boundary conditions (involving 6,oand A;on
S.) are given will be described next.

The opening and sliding A(x) along a crack surface (assumed planar) are parametrized with
respect to local co-ordinates in subregions of the crack surface. The subregions are defined by one
or several straight edged triangles. Therefore the discretization assumption allow discontinuities
in A{x) to occur along some line segments on S,.

The piecewise definition of unknown field variables is common in boundary (and finite) element
methods. However, the present implementation has two characteristics. First, the unknown
parameters discretizing A(x) are not associated with nodal values. Second, the shape functions
that locally define A(x) are defined with respect to real space (possibly rotated and translated) co-
ordinates instead of parametrized eo-ordinates. These characteristics allow the implementation of
crack front subregions (or elements} in the following way. Assume a crack lies in the plane z=0.
The orientation of the local y-co-ordinate system at triangles containing a segment of the crack
front is chosen to be perpendicular to the crack front. A(x) at the border regions is then

parameterized as a polynomial expressnon of (local) x and y multiplied by \/; to obtain
theoretically acceptable crack front opening or sliding variations.

Once the variation of A{x) is specified, boundary conditions are satisfied at a discrete number of
points (called collocation points). The number of collocation points should equal the total number
of parameters characterizing A (x). If the boundary conditions are linear, an algebraic system of
equations is obtained whose solution yields the parameters used to discretize A Ax). Once A(x) is
known on §,, displacements and stresses can be obtained at any point in space and stress intensity
factors can be obtained at any point on the crack front. The stress intensity factors K,, K,; and K
are obtained using the classical asymptotic relations between crack opening near a crack tip and
the value of stress intensity factors for plane strain (in the case of K, and K,;) and antiplane (in the
case of Ky,) deformations. In setting up the system of equations discussed above, a discretized
version of the integrals in (1) has to be evaluated, and will be discussed next.

The kernels G%(x, x’) in (1) can be derived (or computer generated) using the method outlined
by Fares and Li.?2 The full expressions are given in Fares.! The singular part of the kernels used
in the case of tensile cracks is the same as the infinite space tensile cracks kernels used in the body
force method by Murakami and Nemat-Nasser.” An example of the method of integrating the
infinite space crack kernels will be discussed in this paper. Formulas of the integration scheme for
the required singular integrals (both for the tensile and shear cracks) are given in the Appendix.
Further details are discussed in Fares.2!

The integrals in the case of the infinite space tensile cracks are of the form

lim J'j fix, y) [——3 z? 1] dxdy )
z—0

S e e
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where f(x, y) is a smooth function, S, is a planar surface with z=0and r? =x2+ y? +z2. The above
form can be applied to an arbitrary planar surface by defining conveniently translated and rotated
local x, y, z co-ordinates.

If the origin does not lie on S, then the integral (2) is not singular and an integration scheme
similar to that described by Murakami and Nemat-Nasser® is used. If the origin lies on S then
integral (2)is a finite part integral and is treated in the following manner. First f(x, y) is represented
as the sum of the Taylor expansion of f(x, y) around the origin up to parabolic terms plus a residue
(say f *(x, y)). The residue f *(x, y) multiplied by the kernel is non-singular and can be treated using
regular quadrature methods. The constant, linear and parabolic terms of the Taylor expansion of
fix, y) multiplied by the kernel in (2) are each transformed into the sum of two non-singular line
integrals which are evaluated numerically and a one dimensional finite part integral which is
evaluated analytically. For example, the constant term (taken to be unity) is transformed by the
following steps:

1 1 x—R x+R
i ——3-z22-—|-d = ——d ——d
Zl—t»r(lw jLIr’ £ '5] xdy .[c* y’R y+L_ ¥*R Y

. Ymax 2.72 1

where R? = x2 + y? and Y, and ., are depicted in Figure 2. Note that (x + R)/ y2R are the limits
as z— >0 of indefinite integrals with respect to x of 1 /r® such that the line integrands in (3) are non-
singular. However, both line integrals in (3) have removable singularities (the integrands tend to a
finite limit) when they cross the y=0 axis. The last integral in (3) contains the terms that were
subtracted or added to the first two line integrals to make them non-singular. This last integral can
be evaluated analytically as a non-singular integral if the limit operation is performed after
integration or as a finite part integral if the limit operation is performed before integration. In any
case the evaluation of the last integral gives

-z-[ ! ] (@
Ymax  Ymin

Other finite part integration formulas required with this integration scheme are given in the
Appendix. It is to be emphasized that no truncation of the Taylor expansion of f(x, y) is assumed

Figure 2. An integration region used to illustrate the finite part integration scheme
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since f*(x, y) is also to be evaluated. The decomposition outlined above is simply a means of
isolating the singular integrals in order to effectively treat them.

NUMERICAL STUDIES

In this section, the discretization requirements for accurate stress intensity factor (SIF) results will
be investigated, after which a few example problems will be solved. For the discretization
requirement studies, the crack considered is circular and lies in infinite space under mode [
loading. The analytic solution of this problem is known.?* Two aspects of discretization near the
crack front region will be investigated. These aspects are the choice of the orientation of lines along
which A;(x) may be discontinuous and the effect of approximating a non-straight crack line with
straight line segments.

Consider a penny-shaped crack discretized into identical angular sectors. Two different
subdivisions of a representative sector into triangles are shown in Figures 3(a) and (b). In Figure
3(a), triangles 1-6 have \/_IZ and y, - \/y—L opening variations (with two parameters specifying the
magnitudes) such that triangles 1-2, 3-4 and 5-6 have local axes 1, 2 and 3 respectively. Triangles
7,8 and 9 and triangle 10 have a parabolic variation in ¥ (local axis 4) which implies a total of
eight parameters used in the discretization corresponding to Figure 3(a). Figure 3(b) is similarly

discretized with 8 parameters. \/}: and yL-\/:vT_ opening variations are specified over triangles
1-5 such that triangles 1-2, 3 and 4-5 have local axis 1, 2 and 3 respectively. Triangles 6, 7 and 8
and triangle 9 have a parabolic variation in yu (local axis 4) in Figure 3(b). The number of line
segments used to discretize the crack boundary is the same (24 segments) in both Figures 3(a) and
(b). The only difference between the discretization of Figures 3(a) and (b) is that the lines along
which A (x) can be discontinuous lie perpendicular to the crack boundary in Figure 3(a), whereas
they lie at an angle to the boundary in Figure 3(b). The errors in the SIF obtained are 61 per cent
and 9-8 per cent for Figures 3(a) and (b) respectively. By increasing the number of line segments
used to discretize the crack front (with the same number of parameters), the error in a
discretization similar to Figure 3(a) can be reduced to less than 1-5 per cent, while that error
remains above S per cent in a discretization scheme similar to Figure 3(b). Therefore, in order to
obtain accurate results using the present scheme, near the crack front it is necessary to orient lines
along which Aj(x) can be discontinuous to lie perpendicular to the crack boundary. The
importance of this condition is that in satisfying it, the assumed A (x) field is continuous when no
variation of the SIF occurs along the crack front.

Figures 3(a) and (b). Two different types of discretization of a representative sector of a penny-shaped crack. See text for
details
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The errors in STF as the number of line segments discretizing the crack front increases (using the
subdivision method of Figure 3(a) with a total of only eight parameters) is as follows.
Corresponding to 24, 36 48, 72 and 96 line segments the errors in SIF’s are 6°1, 4-8,2-5, 1-8 and 1-2
per cent respectively. Using Gao and Rice’s?4 results to estimate the average first order variation
in SIF due to the straight line segments’ discretization of the crack boundary we obtain

2

00r
8n )

% errorx

Using (5), the per cent errors in SIF for 24, 36, 48, 72 and 96 line segments are 5-1, 3-4, 2-6, 1-7 and
1-3 per cent respectively. The numerical results are consistent with the theoretical estimates. This
study shows that the convergence rate of the average SIF at a straight line segments’ discretization
of a curved boundary to the SIF at the curved boundary is very slow. However, preliminary
studies show that, if the discretization allows the SIF to vary along the straight line segments, the
STF at the midpoint of the segments converges faster to the SIF at the corresponding points on the
curved boundary than do the corresponding average values. Hence, in the examples to be
presented next, the parameters used to represent A ;(x) allow the SIF’s to vary at least piecewise
linearly along the crack front, and only midpoint SIF values are reported.

The first example problem is an elliptic crack in infinite space with an aspect ratio of 2 to 1 under
tension. The discretization of a quarter of the crack is shown in Figure 4 (with symmetry assumed).
The lines along which A(x) can be discontinuous have been carefully chosen to lie perpendicular
to the boundary (ie. the common segments between triangles 2-3, 4-5, 6-7, etc.). Fifty four
parameters (degrees of freedom) were used to obtain the results of Figure 5. The analytic results are
from Tada et al.2* Note that good accuracy has been obtained in spite of the coarse discretization
used in the inner region of the crack.

Finally, using this BEM, SIF’s of ‘part-through’ semi-clliptic cracks in a plate will be presented.
These examples show the BEM implementation of nuclei of strain elastic fields in a layered region
with two interfaces. The rigidity of the upper and lower halfspaces is set to zero to obtain traction-
free surfaces. For conciseness, one penetration depth and three aspect ratios of semi-elliptic cracks
will be considered. Referring to the insets in Figures 6, 7 and 8, the penetration depth a/H =0-2 and
the aspect ratios a/c=04, 1-0 and 2:0 respectively. Figure 9 is an example of the geometric
discretization used and corresponds to aspect ratio a/c=2-0. The number of line segments
discretizing the crack fronts are 9, 13 and 13 line segments per quadrant corresponding to the
results shown in Figures 6, 7 and 8 respectively with a total of 46, 67 and 67 parameters (degrees of
freedom) respectively. No effort has been made to resolve the singularities near the intersection of

Figure 4. The discretization of a representative quadrant of an ellipse with aspect ratio of 2:1
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Figure 5. Comparison of numerically obtained stress intensity factors (SIF) of elliptic crack in infinite space problem with
exact analytic solutions (c.g. Tada et al.2%). a/c=05 and 0 is as shown in inset. The SIF values are normalized by a\/a
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Figures 6, 7 and 8. Comparisons of numericaily obtained stress intensity factors (SIF) of *part-through’ cracks in a plate

using the present boundary element method scheme with widely accepted finite element results by Raju and Newman.” The

agreement is good in all three cases with a/H=02 and a/c=04, 10 and 2:0 corresponding to Figures 6, 7 and 8

respectively (0 is as shown in insct). Following Raju and Newman,' the SIF values are normalized by a\/; /E(k) where
E(k) is the complete elliptic integral of the second kind, and k*=1—c*/a* if a/c<1 and 1 —a?/c? if afc> 1
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Figure 9. The discretization of a semi-elliptic crack with aspect ratios of 2:1

the crack surface with the traction-free interface. The results show reasonable agreement with the
widely accepted finite element solutions by Raju and Newman.!

CONCLUSION

An indirect BEM implementing recently derived nuclei of strain elastic fields was used to solve
crack problems in infinite space and in a plane layered media. The formulation presented a new
finite part integration scheme. Numerical studies on circular cracks were used to determine the
discretization requirements. ‘Part-through’ elliptic crack problems in an elastic plate were solved
to show the capability of the method. Comparison with available 3-D finite element solutions
provide confidence in the accuracy of the present BEM.
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APPENDIX

In this Appendix, finite part integration formulas needed in the implementation of the BEM are
given. All integrands on the right hand side are to be interpreted as finite part integrals (in the
Hadamard sense). The contours C*, C~, the surface S, and y,,,, and y,;, are defined in the text.

1 x—R x+R 1 1
dxdy= d +f 2 —z[ - ]
J:L.:'J Y J‘C*‘ yzR Y Cc- yzR Y Ymax  Ymin
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