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ABSTRACT

It has been well recognized that fiber/matrix interface properties
have significant effects on the performance of a fiber-reinforced
cement composite, including its fracture toughness, tensile and
flexural strength and ductility. Proper characterization of the
interface properties via micromechanics models can lead to
effective tools for designing high performance and cost-effective
cement-based materials. In this paper, a micromechanics model is
developed to characterize the interface properties at single fiber
pullout level. In the model, interfacial fracture toughness,
frictional bond strength and post-debonding slip-hardening
coefficient are explicitly accounted for. Fiber rupture and fiber
strength reduction due to inclined fiber pullout are also
considered. The complete composite bridging stress versus crack
opening curve (G - 4 relation) is derived analytically. Implications
of the present model on various composite properties, including
composite tensile strength, fracture energy and complementary
energy (a measure of ductility), are discussed along with an

example of PVA fiber reinforced cement composites.

1. INTRODUCTION

Introduction of fibers in a cement-based brittle matrix
can significantly increase the failure strain and fracture
toughness of the composite by orders of magnitude [1-4].
In order to achieve high performance and cost-effective-
ness of such composites, quantitative materials design
tools are needed. Micromechanics models have been
proven to be very effective in high performance and cost-
effective cement-based composites development [5-7]. A
generation of super-ductile short-fiber cement compos-
ites so-called Engineered Cementitious Composites
(ECC) have been developed and start to gain momentum
in real-world applications [8-10]. Presented in this paper
is a generic micromechanics model that can be used for
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almost all the fiber types, including steel fibers and syn-
thetic (polymeric) fibers with both hydrophobic and
hydrophilic nature. The current model extends the work
by Maalej et al. [3] to include chemical bonding and slip-
dependent interfacial properties. It provides not only a
more realistic representation of fiber-matrix interfacial
behaviors in many cases but also significantly broadens
the range of viable fiber types in achieving both high per-
formance and cost-effectiveness, especially for those
fibers with strong chemical bond to cement matrix such
as Poly-Vinyl-Alchohol (PVA) fiber, which will be investi-
gated in detail. Fig. 1 shows the scope of the present
work within the performance driven design approach
(PDDA) [11].

The remainder of this paper is organized as follows. A
theoretical single fiber debonding and pullout model is
first presented with three most important, physically
meaningful parameters: (1) Chemical bond strength
quantified by interfacial fracture toughness, (2) constant
frictional bond strength for small sliding and (3) slip-
hardening coefficient that characterizes the increasing
effective frictional bond during large sliding (pullout)
stage [7, 12]. Then, a composite bridging stress versus
crack opening (op - d) relation is derived in closed-form
based on the single fiber pullout model and random fiber
distribution assumption. As a fundamental material
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Fig. 1 — Scope of the present research within the Performance
Driven Design Approach.
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property, the op - 6 relation has been well recognized as
a crucial link between composite constituents and overall
composilte properties. Most direct and important impli-
cations of this model including tensile strength and duc-
tility are presented in the following section along with an
example of PVA fiber-cement composite. Conclusions
drawn from the current research are made in the end.

2. INTERFACE CHARACTERIZATION

A commonly-used technique (o investigate fiber-
matrix interfacial behaviors is single fiber pullout. Fig. 2
shows schematically the set-up for a typical single fiber
pullout test. The specimens are fabricated according to
the technique for microfibers described in [13] in order to
ensure accurate alignment. The tensile load on the fiber
is measured with a miniature load cell of 1-Newion
capacity. Fig. 3 is a typical pullout curve for a PVA fiber
of 14.8 pm diameter. The fiber embedment length L, is
chosen in such a way that fiber rupture is avoided during
the whole process and both debonding and frictional pull-
out behaviors can be completely captured.

As can be seen from Fig. 3, there are three stages
associated with the load-displacement curve: initial elas-
tic stretching of the fiber free length (the portion not
embedded), followed by debonding stage, which is simu-
lated in the present model by a mode-II tunneling crack
advance with non-zero crack-tip fracture toughness. The
debonding stage continues until reaching the maximum
load and a distinct load drop occurs. This load drop is an
indication of chemical bonding because it would not
appear if the interface is frictionally bonded only.
Physically, the load drop represents the transition from
both chemical bond and frictional bond controlled
debonding stage to the pullout stage with frictional bond
only. After complete debonding of the interface, chemical
bond does not exist but frictional bond could effectively
increase due to fabrillation of fiber surface sliding against
surrounding matrix. A concave upward portion of the
curve indicates this so-called slip-hardening behavior,
which has been investigated elsewhere [7, 12].

A theoretical single fiber debonding and pullout model
is derived, based on simple stress analysis and energy
balance principle (see Appendix -A). The main assump-
tions made in this model are:

(1) Fibers are of high aspect ratio (> 100) so that the
end effect on the total debonding load is negligible. This
assumption is generally satisfied for most available
fibers, and it greatly simplifies the analysis without losing
accuracy.
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Fig. 2 - Schematic of a single fiber pullout test set-up.
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Fig. 3 — Single fiber pullout curve of a PVA fiber: test result vs.
model prediction

(2) During the debonding stage, the slip-dependent
effect is negligible since relative slippage between the
fiber and the matrix in the debonded portion is small.
Hence, the frictional stress within the debonded zone
remains at a constant 1.

(3) Poisson’s effect is negligible. For flexible
fiber/cement systems, Poissons effect is usually dimin-
ished due to inevitable slight misalignment and surface
roughness of the fiber (no alignment at all in a random,
short fiber composite) [12].

(4) Elastic stretch of the fiber after complete debond-
ing is negligible, compared with slip magnitude.

Following the detailed derivation in Appendix A, we
have the theoretical pullout load P versus pullout dis-
placement & (P-8) relation:

2
for the debonding stage, and:

2 3 2 3
2ty Epdi(1+ G,Ed
P:\/ o ( “)6+“ dzf I oo<s<s, D

P =nd;ty(1+B(3-8y)/dy )L, ~8+8y), 8y<8<L, (2)

for the pullout stage, where L, is the fiber embedment
length and &, corresponds to the displacement at which
full-debonding is completed. It is given by:
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5, 210L§(1+n)+\/8—GdL§(1+n) (3)

where n = V,E/V,E,, Vrand V,, are the volume fractions of
fiber and matrix respectively. In terms of fiber debonding
length L, the debonding load P can be also expressed as:

P =ndstyL+7*GyEd} 12 (4)

At full-debonding, L = L hence, the maximum
debonding load is given by:

P, =P, +m°G,Ed} 12 (5)

where Py, = nd 1L, is the initial frictional pullout load.
Equation (5) can be conveniently used to calibrate the
chemical bond strength G, and frictional bond strength 1,
from the maximum debonding load P, and the initial fric-
tional pullout load Py,. The slip-hardening coefficient B is
obtained from (2) by best-fitting the frictional pullout por-
tion of the P-9 curve. The dashed curve in Fig. 3 is the model
result with three interfacial parameters: Gy = 6.0 J/m2,
7p= 3.0 MPa and B = 0.05.

To further verify the model, the maximum debonding
load P, as a function of fiber embedment length L, for the
same PVA fiber is predicted using (5) with the same set
of parameters. As can be seen from Fig. 4, good agree-
ment between model prediction and experimental result
is found.

The simple P-6 relations in equations (1) to (3) are the
building blocks in constructing the composite bridging
law. It is also important to study the fiber alignment effect
on the pullout load and fiber in-situ strength because in
an actual short fiber composite fibers are randomly ori-
ented. The effect of fiber alignment on the pullout load,
so-called “snubbing effect”, was investigated in [14, 15].
An empirical relation is given by:

P(¢)=P(0)e"® (6)
where fis the snubbing coefficient. Kanda and Li [16]
investigated the effect of fiber alignment on fiber in-situ
strength. Based on the experimental results for PVA
fibers, a similar exponential expression was found to
characterize this effect well:

S5u(0) =0 (0)e 7 (M)
where oy, is the in-situ fiber strength and f” is the fiber
strength reduction coefficient. Fig. 5 shows such a fiber
strength reduction effect on PVA fibers.

The parameters introduced in this section, such as the
slip-hardening coefficient 3, snubbing effect coefficient f,
and fiber strength reduction coefficient I’, are empirical,
curve-fitting parameters. They are determined by single
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Fig. 4 — Maximum fiber debonding stress as a function of fiber
embedment length for PVA (RMU) fiber: experiment vs. model
prediction.
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Fig. 5 — Effect of fiber inclination on in-situ fiber strength of PVA
(RMU) fibers (after Kanda and Li [16]).

fiber pullout (straight or inclined) tests as discussed
herein and in [7, 15 and 16]. The range of B for polymeric
fibers such as Polypropylene, Polyethylene and PVA fibers
is between 0.005 to 0.05. Snubbing coefficient [ ranges
from 0.5 to 0.9. The fiber strength reduction coefficient
is about 0.3 for the PVA fibers, and it has not been tested
for other fiber types.

3. COMPOSITE BRIDGING STRESS-
CRACK OPENING RELATION

Crack bridging law is a fundamental material property
of fiber reinforced composites. It is cast in terms of the
crack bridging stress vs. the crack opening relation (op-9
relation). Based on the P-8 relation of a single fiber pullout,
the composite op-6 curve can be obtained by averaging
over the contributions of only those individual fibers that
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cross the matrix crack plane as the crack opens up [17]:

a4y, JMLW O P(5)e p(0)p(z)dzdo  (g)

nd2

where p(¢) and p(z) are the probability density functions
of the orientation angle ¢ and the centroidal distance of a
fiber from the crack plane z, respectively. The relation
between decreasing fiber diameter and increasing num-
ber of fibers has been considered in the above equation.
For a 3-D random distribution, p(¢) = sing and p(z) = 2/L;.
It should be pointed out that in the crack bridging case,
the crack opening & results from two-sided fiber debond-
ing and one-sided pullout (shorter embedment side).
Therefore, P(8) in equation (8) should be modified from
the one-sided debonding result {equation (1)) as follows:

P = Epd}nd(1+ )/ 4+ 12 Erd}G, /2 ©)

By changing variable, equation (8) can be re-cast into
the following form[3]:

o

Ttd2

/2
j _[10 8,0, 1) sin(20)dodl  (10)

where ¢ is normalized individual fiber embedment length
(= €/(Lg/2) ). In order to consider the influence of fiber
rupture, when carrying out the integration (10), we need
to keep discounting the contribution of broken fibers as
the crack opening 6 increases. To illustrate, a typical inte-
gration domain at an arbitrary crack opening 6 is plotted
in Fig. 6. There are several important non-dimensional
variables associated with this integral domain, whose
physical meanings are explained in the following:

Debonding fibers
f H]]]]] Pullout fibers

D Broken fibers

B=Toe "™ —y12

7
20(6) /4 2

s

>

0 9 6.8) a2 @

Fig. 6 — Integration domain at an arbitrary crack opening & for
normal chemical bond strength case: L > 1.

* Critical fiber embedment length (normalized by L; /2)
for individual fibers:

i, = Le VIR g2 (1)

. o4,d

where [, = M s the normalized critical embedment
ZTOLf

length of an aligned fiber (¢ = 0) in absence of chemical

N . " TOL?‘ .
bond [3] and y=,/8G, /(1:080), with 85 =——+4——is
Esd;(1+)

a relative measure of chemical bond strength to the fric-
tional bond strength. Equation (11) is obtained from equa-
tions (4), (6) and (7) with P set to be the critical value P =

nd %o, () / 4. 1t defines the potential fiber rupture sub-
domain: fibers that locate above this curve will eventually
rupture as a matrix crack opens up. From (11), we can
define the critical fiber embedment length for aligned fiber
(¢ = 0) with both chemical bond and frictional bond:

Lo=Ly~v/2 (12)

Fibers at all orientation angles have the potential to
rupture if its hall-length L; /2 > L, (i.e. EC < 1). Clearly,
chemical bond tends to promote fiber rupture. Also, by
setting ¢ = w/2 in (11), another limiting fiber length can
be defined:

L, =20, 2 _ (13)

If L, > L; (i.e. L, > 2), no fiber rupture will occur
regardless of orientation angle. Also in Fig. 6, the vari-
able €(8) = € (¢ = ¢,) defines the critical embedment
length at which debonding of the fiber has completed at
crack opening 6 and just survived rupture.

* For fiber length between L, and 2L, some fibers will
rupture, depending on their orientation angles. The lim-
iting fiber rupture angle ¢,

1 1 b
Op = ln( e
f+f LCO 2LCO
defines the potential fiber rupture space in terms of ori-
entation angle: only those fibers orient at an angle higher
than ¢,, will eventually rupture.
* Current fiber rupture angle ¢ ,(0):

___ 1 8 .7
"5 ]”[1:%083 ! 4%] .
It defines the fiber orientation angle above which
fibers must have ruptured at a given crack opening (the
driving force for fiber rupture). This quantity is bounded
between ¢, and n/2. As crack opening & increases, ¢,
starts from n/2 and approaches ¢,. Note that within the
potential fiber rupture space, whether a specific fiber will
rupture or not still depends on its embeddment length.

J, 0<é,<m/2  (14)
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Equation (15) is generally not applicable to ductile metal
fibers due to the elasticity assumption in its derivation.
For ductile fibers, if not too far beyond vyielding is
expected, (15) could be a good estimation.

Based on Fig. 6, it is not difficult to evaluate the left-
hand side of (10) analytically by taking only the shaded
domains marked as debonding and pullout fibers in the
figure. Fibers that have broken or have been pulled-out
(embedment length less that crack opening) are elimi-
nated. Closed-form expressions for the crack bridging are
included in Appendix B, which form the theoretical basis
for discussions in the following sections. For more
detailed derivation, one may refer to the previous works
[3] and [16].

It is worth considering a special case of extremely
strong chemical bonding (y >>1). In this case, part or all
of fibers will rupture either during the debonding process
or even before debonding (recall that there is a threshold
for initiation of debonding governed by chemical bond
strength (ref. equation (1)). Fig. 7 shows such a case.
Fibers belonging to ¢, < ¢ < ©/2 and 0 < £ < 1 will rup-
ture during the debonding initiation process, where ¢, is
given by:

___1 b
o= f+r M(Zicoj

The maximum bridging stress is attained at the initial
stage (6 = 0), and it can be estimated by summing the
contributions from debonding and non-debonding (rup-
ture before debonding) fibers:

(16)

Ve po, #1 . -
Cp = Tf-"() J00d06f¢ sm2¢dld¢
Vf In/z 1 1% in20did (17)
+_
3 o, J.chue sin2¢d 1d¢

where csg,o=2{‘/0Y and 6, =1/2V;o(Ly /dy). Itresults in:
¥

Viog, 27 T2 47T (f’sin2¢, +2c052¢,)
- 2 4+f/2

Gp

(18)
2+e/*(fsin20, - 2cos20,)

4412

+04Y

Figs. 8 to 12 show graphically the non-dimensional
crack bridging stress - crack opening curves derived ana-
lytically. Figs. 8 and 9 are the pre-fully-debonding curves
for fiber/matrix systems with low tendency of fiber rup-
ture (L 4 = 2.0) and high tendency of fiber rupture (L 4 =
0.5). In both Figs. 8 and 9, the parameter y/ Zco (from
0.0 to 0.9) indicates the relative chemical bond strength,

Debonding fibers
£ M Putlout  fibers
D Broken fibers
=Ly
/
'
2y(8) . |
; , _
0 2@ a® ® 12 ¢

Fig. 7 — Integration domain at an arbitrary crack opening & for
extreme chemical bond strength case: L <1, L <O0.
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Fig. 8 — Pre-fully-debonding bridging stress - crack opening curves
for a system with low tendency of fiber rupture.
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Fig. 9 — Pre-fully-debonding bridging stress - crack opening curves
for a system with high tendency of fiber rupture.

given other fiber and interface characteristics such as
fiber length, diameter, strength and frictional bond
strength. It can be seen from these two figures, chemical
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Fig. 10 — Post-fully-debonding bridging stress - crack opening
curves for a system with low tendency of fiber rupture
(continuation of the curves in Fig. 8).
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Fig. 11 — Post-fully-debonding bridging stress - crack opening
curves for a system with high tendency of fiber rupture
(continuation of the curves in Fig. 9).
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Fig. 12 - Effect of slip-hardening interface on the post-fully-
debonding o8 relation.

bond tends to increase initial bridging stress and reduce
the complementary area to the left of the o-3 curve up to
the maximum bridging stress point (this area is referred
as the complementary energy [4]). When fiber rupture

tendency is low, chemical bond increases the maximum
bridging stress much more dramatically than the case
with high fiber rupture tendency (Eco =(0.9). Also, at the
end of debonding stage, because of less severe fiber rup-
ture, the bridging stress remains higher at a larger cor-
responding crack opening in L 4 = 2.0 case. This also
contributes to larger post-debonding fracture energy -
area under the descending part of the o5-6 curve (see
Figs. 10 and 11). In the case of slip-hardening (Fig. 12),
both bridging stress and fracture energy can be further
increased, depending on the slip-hardening coefficient.

4. MODEL IMPLICATIONS ON MATERIALS
DESIGN FOR DESIRED PROPERTIES

With the analytical tools developed, it is convenient to
predict the composite overall properties from its con-
stituents - fiber, matrix and interface. In this section,
some direct implications from the current micromecharn-
ics model are presented, including tensile strength, frac-
ture energy and complementary energy (a measure of
material ductility).

Tensile Strength, Fracture Energy, Ductility

The tensile strength predicted by the model is essentially
the maximum bridging stress for a fiber/cement composite
which shows multiple cracking (ref. [18]). Fig. 13 shows the
dependency of tensile strength on fiber length in a non-
dimensional form. Given fiber volume fraction V;, diameter
d;, fiber strength o, and frictional bond strength 7, the com-
posite tensile strength c,, monotonically increases with
fiber length in zero chemical bonding case (the lowest curve
in Fig. 13). This is consistent with the result derived by

0.5 T
=0.5, £'=0.0

04 [ ]

0.3 |
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CFcu/(vfol fu)
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0.1 f

L 1 " 1 ]
0.0 20 4.0 6.0 8.0 10.0
L A2L =21 /0, d)

0.0

Fig. 13 — Normalized composite tensile strength as a function of
normalized fiber length and relative chemical bond strength.
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Fig. 14 — Normalized composite fracture energy as a function of
normalized fiber length and relative chemical bond strength.

Maalej et al [3]. As chemical bond increases, tensile
strength for short fiber length can be dramatically increased.
The plateaus at small fiber lengths indicate that composite
tensile strength is controlled by the initial debonding stress
which is in turn governed by chemical bond. As fiber
becomes longer, subsequent debonding after initial debond-
ing results in higher bridging stress and composite tensile
strength. From this figure, it is clear that when fiber is too
long or chemical bond is too strong, composite tensile
strength becomes almost independent of fiber length.
Physically, those two limiting cases lead to severe fiber rup-
ture and composite tensile strength should be mainly con-
trolled by fiber volume fraction and fiber strength.

Shown in Fig. 14 is composite fracture energy as a
function of fiber length and the relative chemical bond
strength. This fracture energy is the energy absorbed by
bridging fibers in the crack plane and it is evaluated by
integrating the area under the post-fully-debonding por-
tion of a bridging stress - crack opening curve (Figs. 10-
11). The peak shown in each curve in Fig. 14 indicates
that there exists an optimal fiber length to maximize the
fracture energy of a fiber composite. It is also clear that
chemical bond tends to reduce fracture energy because it
promotes more fiber rupture.

The concept of multiple cracking in fiber reinforced
brittle matrix composites has been extensively studied.
Marshall and Cox [18] proposed a simple means of deter-
mining the condition for steady state cracking, required
for multiple cracking. Based on a J-integral analysis, the
condition can be written in terms of the complementary
energy G, and the crack tip toughness Jy:

Ge2Jp (19)
where G, is defined in terms of fiber bridging property via
the oy-6 curve:

Gc = chscu - J‘Oam GB(S)d6 (20)

and 6, and 3, are the maximum bridging stress and the
corresponding crack opening. Graphically, G, is simply
the complementary area to the left of the og-6 curve up to
peak stress.

The above discussion suggests that high ductility of a
short fiber composite requires large complementary energy.
Equation (19) becomes a very important design criterion
for ductile fiber composites. Using the generic microme-
chanics model developed in this research, one can easily
compute this quantity with different combinations of fiber,
matrix and interface properties and choose the one that sat-
isfies condition (19) to guarantee the ductility of such engi-
neered fiber composites. Shown in Fig. 15 are the normal-
ized complementary energy as a function of fiber length and
relative chemical bond strength.
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Fig. 15 — Normalized composite complementary energy as a function
of normalized fiber length and relative chemical bond strength.

An Example - PVA fiber/cement composites

Recently, Polyvinyl Alcohol (PVA) fiber has been rec-
ognized for its high potential as reinforcement in high
performance cementitious composites due to its high
strength. This type of fiber can also form strong chemical
bond to the cement matrix. In order to maximize the
potential of PVA fibers as viable reinforcement for cement
based composites which have both high strength and high
ductility, analytical material design tools are certainly
needed. To demonstrate the usefulness of the present
micromechanics model, two types of cement composites
made from two types of PVA fibers (RMU and RK with 14
and 40 pm diameter respectively) are investigated.

Table 1 lists the fiber and interface parameters for
both PVA fibers. The interfacial properties were derived
from the simple fiber pullout tests discussed previously.
PVA-RMU composite contains 1.5% volume fraction of
RMU fibers while PVA-RK composite has 2% RK fibers.
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Table 1 - Fiber and interfacial parameters
for PVA-RMU and RK fibers
Fiber E L d; Ty Gy O, f, f
Type | (GPa) | (mm) | (um) | (MPa) | (Nm) | (MPa)
RMU 60 6 14 3.0 6.0 | 1660 | 0.5, 0.3
RK 22 12 40 2.0 6.0 | 80 | 0.5,0.3
Table 2 — Matrix mix proportion

Cement Sand Water Super Viscous

Plasticizer Agent

1.0 0.4 0.45 0.02 0.002

The matrix mix proportion for the two composites are
listed in Table 2. They were tested after seven days water
curing and one day air drying. Standard dog-bone shaped
specimens were used.

Fig. 16 shows the uniaxial tension test results for both
composites. As can be seen from this figure, PVA-RMU
has higher tensile strength but much lower ductility than
the PVA-RK composite. This is because RMU fiber is much
thinner in diameter. Although it is a higher fiber strength
than the RK fiber, under similar interfacial conditions,
RMU fibers suffered more severe fiber rupture, which
leads to fower ductility. The contrast in ductility between
these two composites can be explained more clearly
using the complementary concept later on.

Fig. 17 shows the comparison between model predic-
tions and tensile test results in terms of tensile strength.
The model predicts higher tensile strength for PVA-RMU
than for PVA-RK, consistent with experimental observa-
tions. Note however, that the PVA-RMU does not satisfy the
multiple cracking condition (equation (19)) (see discussion
to follow) and the measured tensile strength cannot be
expected to be the same as the calculated maximum bridg-
ing stress. Also, the current tensile strengths for both com-
posites are very close to their limit values and reduction in
fiber length will not cause much loss in tensile strength.
From the fracture energy predictions (Fig. 18), the current
fiber lengths (12 mm for RK, 6 mm for RMU) are well over
the optimal values for maximum fracture energy. The dif-
ference in tensile strength as L approaches zero is due to
the fiber strength difference.

Fig. 19 illustrates the complementary energy as a
function of fiber length for both composites. Under cur-
rent composite design, PVA-RK has a G, value of 3.4 J/m?
while PVA-RMU has only 0.8 J/m2. Compared to the frac-
ture toughness of cement paste, which is about 2 J/m2,
the PVA-RK composite satisfies the multiple cracking con-
dition (19) and this is the reason behind the contrast in
tensile ductility of the two composites.
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Fig. 16 ~ Uniaxial tensile test results for PVA-RMU and PVA-RK
composites.
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Fig. 17 — Composite tensile strength as a function of fiber length
for both PVA-RMU and RK composites: experiments vs model
predictions.
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Fig. 18 — Predicted composite fracture energy as a function of
fiber length for both PVA-RMU and RK composites.

Fig. 20 shows the effect of chemical bond strength G4
on both fracture energy and tensile strength of the PVA-
RMU composite. Clearly, chemical bond decreases the
fracture energy dramatically while increases the tensile
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Fig. 14 — Normalized composite fracture energy as a function of
normalized fiber length and relative chemical bond strength.

Maalej et al. [3]. As chemical bond increases, tensile
strength for short fiber length can be dramatically increased.
The plateaus at small fiber lengths indicate that composite
tensile strength is controlled by the initial debonding stress
which is in turn governed by chemical bond. As fiber
becomes longer, subsequent debonding after initial debond-
ing results in higher bridging stress and composite tensile
strength. From this figure, it is clear that when fiber is too
long or chemical bond is too strong, composite tensile
strength becomes almost independent of fiber length.
Physically, those two limiting cases lead to severe fiber rup-
ture and composite tensile strength should be mainly con-
trolled by fiber volume fraction and fiber strength.

Shown in Fig. 14 is composite fracture energy as a
function of fiber length and the relative chemical bond
strength. This fracture energy is the energy absorbed by
bridging fibers in the crack plane and it is evaluated by
integrating the area under the post-fully-debonding por-
tion of a bridging stress - crack opening curve (Figs. 10-
11). The peak shown in each curve in Fig. 14 indicates
that there exists an optimal fiber length to maximize the
fracture energy of a fiber composite. It is also clear that
chemical bond tends to reduce fracture energy because it
promotes more fiber rupture.

The concept of multiple cracking in fiber reinforced
brittle matrix composites has been extensively studied.
Marshall and Cox [18] proposed a simple means of deter-
mining the condition for steady state cracking, required
for multiple cracking. Based on a J-integral analysis, the
condition can be written in terms of the complementary
energy G, and the crack tip toughness Jy:

G, 27y (19)
where G, is defined in terms of fiber bridging property via
the o5-0 curve:

G.= chscu - J'Osw GB(S)dS (20)

and 6, and 3., are the maximum bridging stress and the
corresponding crack opening. Graphically, G, is simply
the complementary area to the left of the 6p-0 curve up to
peak stress.

The above discussion suggests that high ductility of a
short fiber composite requires large complementary energy.
Equation (19) becomes a very important design criterion
for ductile fiber composites. Using the generic microme-
chanics model developed in this research, one can easily
compute this quantity with different combinations of fiber,
matrix and interface properties and choose the one that sat-
isfies condition (19) to guarantee the ductility of such engi-
neered fiber composites. Shown in Fig. 15 are the normal-
ized complementary energy as a function of fiber length and
relative chemical bond strength.
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Fig. 15 — Normalized composite complementary energy as a function
of normailized fiber length and relative chemical bond strength.

An Example - PVA fiber/cement composites

Recently, Polyvinyl Alcohol (PVA) fiber has been rec-
ognized for its high potential as reinforcement in high
performance cementitious composites due to its high
strength. This type of fiber can also form strong chemical
bond to the cement matrix. In order to maximize the
potential of PVA fibers as viable reinforcement for cement
based composites which have both high strength and high
ductility, analytical material design tools are certainly
needed. To demonstrate the usefulness of the present
micromechanics model, two types of cement composites
made from two types of PVA fibers (RMU and RK with 14
and 40 pm diameter respectively) are investigated.

Table 1 lists the fiber and interface parameters for
both PVA fibers. The interfacial properties were derived
from the simple fiber pullout tests discussed previously.
PVA-RMU composite contains 1.5% volume fraction of
RMU fibers while PVA-RK composite has 2% RK fibers.
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composite.

strength to the limit set by fiber strength and voiume frac-
tion. The kink in the tensile strength curve is due to the
transition from normal chemical bonding to extreme
chemical bonding case as discussed previously (Ref.
equation (18)). It is important to tailor the interfacial
properties including chemical bond to achieve both high
strength and high ductility.

4. CONCLUSIONS AND DISCUSSIONS

(1) Several important interfacial behaviors character-
ized: chemical bond, frictional bond, and slip-hardening.
These interfacial parameters can be determined from a
single fiber pullout test.

(2) An analytical bridging stress-crack opening relation
is derived, which can be used as a materials design tool for
desired properties and cost-effectiveness via intelligent
fiber selection (type, strength, length, content,...), matrix
modification and fiber/matrix interface tailoring.

(3) Via parametric study presented in this paper, it is
found that in fiber rupture cases, interfacial fracture
toughness (chemical bond) tend to increase composite
tensile strength but decreases composite fracture energy
and complementary energy as well as ductility.

Single fiber pullout problem is a complicated solid
mechanics problem. The derivation included in the present
study is only an approximate solution to this complicated
problem, based on simplified force and energy balance. The
attempt has been made to capture the physical essence of
the interfacial parameters in a simple, easy-to-use formula-
tion without getting into complex mathematics. In the cur-
rent micromechanics model, the fiber dispersion effect and
the statistical distribution of fiber strength are not inciuded.
The comparison between the two fiber/cement composites
PVA-RMU and PVA-RK is meant to demonstrate the useful-
ness of the model in fiber section for desired properties
(say, ductility) rather than just a comparision, which has
been the central theme of this work.
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APPENDIX

Appendix A

Derivation of P-6 relation with combined chemical
bond and frictional bond

Consider a fiber with length L, embedded in a matrix
(Fig. Al). A portion of the fiber/matrix interface is
debonded. The debonded zone length is L, within which a
constant frictional stress 7 is assumed to exist. Chemical
bond strength for the bonded region is G4. The task here
is to derive the relation between fiber pullout load P or
stress ¢ and fiber pullout displacement o.

From equilibrium requirements, the one-dimensional

r
fa
Y

debonded zone

Fig. Al.

stress distribution in the debonded region is given by:

z(c - cfo)

Gf(Z):Gf0+ L (A-l)

cm(z) =(1-2z/L)oy (A-2)

where oy and o, are the normel stresses in the fiber
and the matrix respectively at z = 0, and they are given by:

_ _4rL
Oy =0 (A-3)

Clf

41,LV;
= oe— A'4
m0 g v (A-4)

where Vy and V are the volume fractions of fiber and
matrix respectively.

Define the relative displacement between fiber and
malrix in the debonded region as:

A(z) = uf(z)—um(z) (A-5)

Then,

dA(z) _ duf(z) B dum(z) B Gf(z) B Gm(z) (A-6)
dz ~ dz dz  E; E.

Substituting (A-1) through (A-4) and applying the
boundary condition A(z = 0) = 0, we have:

Az—£—4T°LZ(1+n)+M(1+n)

“E; B Ed (A7)
V(E; ! . .
where n:V_E—' The fiber pullout distance is then
m—m
given by
21,L3(1+m
8=A(L)=&—L(——) (A-8)

E¢ Ed;
Now, we need to find 6 = o(L, Gy, 7. ...). An energy
based debonding criterion is employed in establishing
such a relation [19].
For any infinitesimal advance of the debonded Zone,
dA, the energy conservalion requires
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Pdu; =dU+dW; + G4dA (A-9)
where u; is the axial displacement at the pulled fiber end
(work conjugate of applied load P = nd%o / 4), dU is the
change in strain energy in the system, dW; is the change in
energy dissipated by friction at the interface, and GydA is
the energy consumed in the advance of debonded zone. On
the other hand, if the debonded zone is considered as a
stress boundary of the system, it can be shown that [19]:

dU:%(Pduf —dwW;) (A-10)
From (A-9) and (A-10), we have:
GydA =2 (Pduf dW) (A-11)
where u; and W; can be obtained from:
LO¢lZ
U = ﬁdz Vic’(L -L) (A-12)
Ef Ec
and
L
Wi = | md oA (2)dz (A-13)
In equation (A-12),
E.=ViE; +V,E, (A-14)

By using relevant equations already derived, (A-11)
becomes:

8r0L(1 + n) 1610L2 (1 + n) 8GdEf(1 + n) ~

2
6 —_—
d; d2 dy

(A-1D)

It follows that

_410L(1+n) 8G4E(1+1)
=3 + a (A-16)
or:
2 3p
P:nd%o/4=ndf10L(1+n)+\/w (A-17)

In a single fiber pullout specimen, n can be neglected
without losing accuracy. Therefore, equation (b) in the
main text results from (A-17). Also, when L = L, maxi-
mum debonding load is reached. The corresponding dis-
placement is given by (A-16) and (A-8):

2t0L(1+m)  |8G,Li(1+m) (A18)
0 = -
Eydy Eydy
Combining (A-17) and (A-8), we have:
2 3 2 3
n 1t Erd7 (1+m G, E.d

Ifn =0, (A-19) reduces to equation (2) in the main
text.

After debonding, the interface is controlled by fric-
tional bond only. By taking S = 3-8, in equation (1) in the
main text and from force balance, it is readily shown that
for fiber pullout stage,

P = nido(1+B(8 - 8p)/d¢ )(Le —5+8) (A-20)

Appendix B Analytical crack bridging relation

For L, < Ly < 2L,

g

A1 +y)§* v? —(1+y)§*}

G(0c.1)

~LooYA(0.. 1)+

2A(0c.f)

{s%}l(%,f) (1+c3)

l\)l<

jz B(0p.0,.f) {{1+5)

{s

(
op {G(¢b,f)(1 - 3)2 +L2) A0y, ~f-2f)- 2ico(8 +%) Al6y,—F)

+L30A(0g,~f -2f)

{G(q)b,f)(l—f})z+I:%0B(¢b,¢a,—f—2f) ch0(5+ J(q;b,q)a, f)
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For L; > 2L,
g4 1+Y§ (1)< } osSsSu(q):g)
{ 41+ ;’*w ~(1+v Eﬂ oA(0ef -2f")
L1011 Ao ) su(q):gjgsgsu(q):o)
o
=
0 }ms 3,(0=0)s5ske
{ oG(q»a ~f -2f")-2L ( j (¢a:—F)
+(S + %T G0, f)}(l +cd) L? <§<L,
where
S0 =5 Vyto(Ly /d) C—%j‘
Y=8Gq/(13), 83:%, 8" =8)(1+7). & =8/(L;/2)
Ly =%‘;%, Le=Lo/(Ly/2)=Lo~%, L=L,/(L/2)= 2L e I
Ny aeea]
¢c=—2(f1+f,)ln£8 oL J §o0 = L2081 +7)

For 3-D distribution: For 2-D distribution:

G(0.f)= 4+1f2 [ef¢(fsin2¢—2cosz¢)+2] G(o.f)= n(l ifz)[ef¢(fcos¢+sin¢)-f]

g=G(rn/2,f) g=G(n/2f)

A(0,f)= 4+1f2 (200520~ fsin29)+ 26| Alo.f)= [~ (f coso +sin)

n(1
i) L[l -2 ) .
1:02, a1/ —ef¢1(fsin2q)1 —20052(1)1) B(¢1,¢2,f)=% e (fcos(bz +s1n¢2)
n(l +f ) —/® (fcosq)l +sin¢1)
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