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HYBRID MODEL FOR DISCRETE
CrACKS IN CONCRETE

"By Daniel J. W. Wium,' A. M. ASCE, Oral Buyukozturk,” M. ASCE,
and Victor C. Li,> M. ASCE

ABSTRACT: A method is proposed for the analysis of mode I and mixed mode
crack propagation in concrete. It is based on a hybrid technique which uses
finite elements to represent the uncracked specimen, and distributed disloca-
tions to represent the crack. Consequently, no remeshing of the finite elements
is required after crack propagation. This method is improved and further de-
veloped to make it applicable to concrete by incorporating the nonlinear trac-
tion transfer characteristics in a crack in concrete. By incorporating expressions
obtained from previous studies to represent the aggregate interlock and im-
perfect debonding (i.e., tensile softening) in the crack, the major sources of
nonlinearity caused by cracking are accounted for. Crack propagation in a sin-
gle edge notched beam, subjected to four point bending, is modeled correctly,
while the predicted reduction in load corresponds satisfactorily with the ex-
perimentally obtained results.

INTRODUCTION

Cracking of concrete is known to play a significant role in the nonlin-
ear behavior of concrete structures. Two methods are typically used to
represent this behavior in finite element analyses. Originally, discrete
cracks were modeled as discontinuities in the finite element mesh. Later,
the smeared crack method was introduced to represent the development
of microcracks in the body more accurately. Both these methods have
certain disadvantages. In the first method, the geometry of the structure
changes when the crack propagates, and requires a new finite element
mesh, while in the latter case, discrete cracks cannot be modeled
accurately.

In this paper, the application of a surface integral, finite element hy-
brid method for the analysis of discrete cracks is proposed. Linear elastic
fracture mechanics concepts are used with the theory of dislocations and
the finite element method to represent the presence of a discontinuity
in a concrete specimen. The hybrid method was first proposed by An-
nigeri'and Cleary (2) in the context of the fracture of linear elastic bodies
and the formation of shear bands in granular materials. In the present
work this method is adopted to model discrete cracks in concrete and
further developed to incorporate traction transfer properties across a crack
in concrete.

The following section gives a brief review of previous studies on the
propagation of discrete cracks in concrete. The basic theory used in the

'Engr., Van Wyk and Louw Inc., P.O. Box 905, Pretoria, South Africa.

2Assoc. Prof., Civ. Engrg. Dept., Massachusetts Institute of Technology, Cam-
bridge, Mass.
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Note.—Discussion open until January 1, 1985. To extend the closing date one
month, a written request must be filed with the ASCE Manager of Technical and
Professional Publications. The manuscript for this paper was submitted for re-
view and possible publication on December 7, 1983. This paper is part of the
Journal of Engineering Mechanics, Vol. 110, No. 8, August, 1984. ©ASCE, ISSN
0733-9399/84/0008-1211/$01.00. Paper No. 19045.
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proposed hybrid method is summarized next, and in that context dif-
ferent shear transfer models are reviewed. One of these models is in-
corporated in the proposed hybrid model to represent the behavior of
cracked concrete more realistically. The developed method is applied to
a beam with a single edge notch under shear loading and the results are
reviewed. Finally, the advantages of the method over existing tech-
niques are reviewed, and practical applications and future extensions are
pointed out.

FRACTURE MECHANICS APPLIED TO CONCRETE

Many researchers have investigated the applicability of linear elastic
fracture mechanics to crack propagation in concrete, and many conflict-
ing results have been obtained. A comprehensive review of these in-
vestigations was given by Mindess (30).

Kaplan (27) was one of the pioneers in determining the critical strain
energy release rate in notched concrete beams. He found that the con-
cept of a critical strain energy release rate, proposed by Griffith (21), is
applicable to concrete, but the actual rate depended on the size, ge-
ometry and loading of the specimen. Several other workers found sim-
ilar results (refer to Ref. 30 for a summary of these tests). Kesler, Naus
and Lott (28), for example, also found that the stress intensity factor
varies with crack length. Subsequently, Saouma, Ingraffea and Catalano
(35) pointed out that these experimental results should be analyzed with
more recently obtained stress intensity factor calculations, in which case
constant values for the critical stress intensity factor, K -, were obtained
for different specimen geometries.

During the fracture process of concrete, the nonlinearity and nonhom-
ogeneity of the material basically renders linear elastic fracture mechan-
ics inapplicable to concrete. This can especially be ascribed to the mi-
crocracking in the region of the crack, and the slow crack growth (creep
effects) prior to unstable crack propagation (7). In an early attempt to
represent this behavior, Kesler, Naus and Lott (28) suggested that mi-
crocracking at the crack tip can be modeled by a plastic cracked strip.
This approach was a variation of a model Dugdale (12) originally de-
veloped for yielding at crack tips in steel plates. It was assumed that
tractions act in the crack which attempts to prevent the crack from open-
ing. These tractions were assumed to be explicit functions of the distance
from the crack tip, with no regard for the crack opening (Fig. 1(a)). Hil-
lerborg, Modeer and Petersson (24) extended this formulation to incor-
porate the actual strain softening behavior in a crack, which had been
recorded in a number of uniaxial tensile tests (14,22). Rather than as-
suming a specific stress distribution in the crack, a representative stress-
displacement relation based on the experiments was used (Fig. 1(5)). The
concrete was treated as a linear elastic material prior to cracking, but
once it reached the tensile strength, the stress decreased with increasing
crack width at a constant (negative) modulus. The problem becomes a
nonlinear one and cannot be solved analytically. Petersson (33,34) and
Gylitoft (20) implemented this technique in a finite element program,
and satisfactorily predicted the behavior of various test specimens. Ca-
talano and Ingraffea (8) extended this fictitious crack model by using a

1212

ofx)

oStxr= oS, (xp

X
o“oc.mm: scos T2

ELASTIC MATERAL

QPEN CRACK
(PARTIALLY (RIGID
DEBONDED) PLAST

(a)

FIG. 1.—Numerical Models for Traction Transfer in Cracks: (a) Model Proposed
by Kesler, Naus and Lott (28); and (b) Model Proposed by Hillerborg, Modeer and
Petersson (24)

nonlinear unloading branch for the tensile stress-strain relation. This was
incorporated in a finite element program in which quarter point singu-
lar, linear strain, isoparametric finite elements represented the strain and
stress singularities at the crack tip. Link elements were used between
the two sides of the crack to incorporate the crack face constitutive law.
A similar method was used to include the effect of shear transfer across
the crack in cases where pure mode I conditions did not apply. These
methods have the disadvantage that a new finite element mesh has to
be defined once the crack propagates.

Bazant and Cedolin (4) developed the blunt crack band method for
linear elastic materials, and later Bazant and Oh (6) adapted it for con-
crete. It is assumed that the process zone at the crack is as wide as one
finite element. Once a crack forms, the compliance of the element is
modified to represent a softening, unloading branch. This stress-strain
relation depends on the width of the chosen finite element (or process
zone), the critical energy release rate and tensile strength of the material.
The method has only been used for pure mode I analysis, and extension
to mixed mode cases has not been touched upon. The method has the
advantage that a new finite element mesh is not required after propa-
gation, but certain limitation with regard to the crack size are implicitly
or explicitly assumed.

HysriD MeTHOD

A hybrid method, which combines the advantages of the finite ele-
ment and boundary integral methods, was recently vnomOmm@ m.oH the
analysis of cracks in finite bodies. This new approach utilizes finite ele-
ments to represent the features (particularly the m::m.mm@Bm.ﬁQv of Em
body in which the crack occurs, while a continuous distribution of dis-
locations are used to model the crack (10). The effects of the dislocations
are evaluated with a surface integral method. The crack can be treated
as a pseudo-substructure in the body by assuming that superposition
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holds for the specimen. A generalized stiffness matrix is assembled, and
the displacements and dislocation densities can be obtained explicitly.
A brief review of the derivation of the generalized stiffness matrix is
given in this section. .

Assume that a linear elastic body, in which a crack exists, is subjected
to boundary tractions R (Fig. 2). Tractions of magnitude T act on the
crack. The actual stress and displacement fields in the body can then be
treated as the superposition of two problems, by using the general method
of substructuring. First, consider a crack with the same configuration as
the actual problem, but in an infinite domain. Represent this crack by
the superposition of mode I and mode II dislocations, distributed along
the crack. Assume that tractions T* act along this crack, which create
certain stress and displacement fields in the infinite body. When the
boundaries of the actual body are mapped onto the infinite body, the
normal and shear tractions along this path can be calculated from the
stress influence functions for dislocations. The corresponding equivalent
nodal forces, R¥, (which act on the finite body) can be calculated from
these tractions as

RE=GF oot )

in which G = the traction influence matrix, and F = the dislocation den-
sity amplitudes (derivatives of the dislocations with respect to the dis-
tance along the crack). The surface tractions along the crack can also be
written in terms of the dislocation density amplitudes as

in which C = the matrix representing the stress influence functions along
the crack.

The displacements (at the finite element nodes) due to the dislocations
are given by the displacement influence functions. Special care has to
be taken to represent the line of discontinuity of the crack correctly. These
influence functions are used to compile the matrix L, which expresses

* ﬁ # R R-RS - Ri® RS

’
T \\«.o + T-Te . 3
\\ 78

ACTUAL SPECIMEN. FINITE SPECIMEN FINITE SPECIMEN WITH
WITHOUT CRACK. CRACK CUT OUT FROM
AN INFINITE REGION.

it

REPRESENTED BY A
FINITE ELEMENT MODEL

REPRESENTED BY A
SURFACE INTEGRAL MODEL

FIG. 2.—Schematic Representation of Hybrid Finite Element and Surface Integral
Method for Analysis of Finite Specimens with Discrete Cracks
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the displacements at the nodes in terms of the dislocation density
amplitudes

U'=LF.,.coccvnnnnn.. e (3)

Consider also a finite body without a crack which is represented by finite
elements and subjected to applied boundary tractions R*. The displace-
ments can be found from the well-known expression, KU* = RF, in
which K = the stiffness matrix of the specimen. These displacements
will in turn create stresses along the line of the crack that can be written
as

U = T )

in which 8 = traction influence matrix. The total displacements (U) are
the sum of the displacements due to the dislocations and the load vector
R”. Thus

UsUF4+U = UF+LF o (5)
The total applied load vector, R is
R=RFARI=KUF+GF ..ot (6)
and from Eq. 5,
R=KWU-LFH)+GF=KU+(G-KL)F....©.................... )
Similarly, the tractions along the crack will be
T=TF+T¥
= SU* + CF
=QU+F(C—SL)F .. i ®
The global generalized stiffness matrix can be written as
TA (G- msﬁc_ = ﬁJ .................................... (9a)
S (C-SL)]|F T

o [ SJ[] [E] o

The different matrices for the dislocations are set up by using Gauss-
Chebychev integration along the crack. The influence functions for stress
(which are used to calculate the G and C matrices) are well-known Amm\wc.
Matrix S is calculated from the stress interpolation functions for the fi-
nite elements. Matrix K can be compiled in a number of ways, of which
the finite elements technique is most convenient. .

This set of linear equations has to be solved to obtain the displace-
ments and dislocation density amplitudes. It should be noted that this
stiffness matrix is not symmetric, and solving this particular form can
be tedious and costly. A slightly improved method is to solve for the
total displacements from the first expression in Eq. 9b, so that

U=K'R-G*F) =K 'R~ (K'G*)F .......eoiiiiiinn... (10)
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Sutaliuung tus evpression anto the second expression in Eq. 95, and
wbving foe F, one o Cuns .

Fo[C'=S(K'G") '[T-SKTR)......c.oovienniinann... (11)

Since K Is a’'symmetric;’ banded ‘matrix,’ the very efficient numerical
methods that are available for the inversion of finite element stiffness
matrices can be used to find the two products (K™ G*) and (K 'R). The
matrix [C* — §(K™'G*)] will generally be of much lower order than the
original full stiffness matrix, and can be solved as usual. The total dis-
placements can then easily be obtained from Eq. 10, since both large
matrix multiplications have already been performed to solve Eq. 11.

The stress intensity factors at the crack tips can be calculated from the
dislocation density amplitudes (11). If the critical stress intensity factor
of the material (Kic) is known, and it is assumed that crack extension
will take place in a direction normal to the direction of maximum tensile
stress (13), the load level required to propagate the crack can be calcu-
lated. The general approach to this problem is to extend the crack by a
certain increment, and then calculate the loads corresponding to this
extension. Since this is an incremental method, two different approaches
can be followed to calculate the direction of crack extension. In the first
method it is assumed that the stress field around the current crack tip
(point A in Fig. 3) can be modeled with the normal expression for stresses
at a crack tip. The new direction of a short crack increment will be in
the direction where Ky, is zero. Erdogan and Sih (13) pointed out that
the relation between K, and Ky is given by K; sin 6 + Ky(3 cos 8 ~ 1)
= 0 where 6 is the direction with respect to the previous crack direction
in which Ky will be zero (Fig. 3). The value of § can be calculated from
this expression when K; and Ky are known.

The second alternative is to find the direction in which the crack must
extend so that the value of Ky is zero at the new tip (point B). In a body
in which the direction of the principal stresses change from point to

INFINITE BODY

FIG. 3.—Crack Extension from Present Configuration
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point, this direction will depend upon the incremental length (3. ) o the
crack. These two methods will converge to the same crack path when
shorter crack increments are used. Both methods have been used, but
it was found that the explicit nature of the first technique required sig-

H. ' nificantly less computer time than the second iterative method.

CracK FAace TRACTIONS

In the previous derivation, it was assumed that the tractions acting on
the crack faces (T) are independent of the relative n_mﬁ_mnmgm:nm in the
crack. This is usually the case for externally applied pressures in the
crack. In many materials, though, the two faces of the crack still remain
in partial contact and some material ligaments even remain unbroken
and span the crack. In that case the crack fact tractions are functions of
the relative displacement in the crack and n.o:mme..umsmw the set of gov-
erning equations becomes nonlinear. This is vmnanc_w:% true for con-
crete where aggregate interlock and tension softening in a crack depend
on the crack opening [Petersson (33)].

Although the constitutive relations of the two phenomena of aggre-
gate interlock and tension softening are vastly different, it will be as-
sumed that the influence functions for tractions along the crack will be
independent of the source of these tractions. The particular constitutive
relations, which express the stresses along the crack in terms of the rel-
ative crack displacements, are discussed in the following section. In this
section, a procedure is proposed for the solution of the general set of
nonlinear equations. Generally, these crack face tractions are load path
dependent. Due to the lack of sufficient experimental data to formulate
the overly complex model that will be needed to incorporate all the sig-
nificant features, it will be assumed that the stresses are path indepen-
dent. In that case, the stresses across the crack (T;) are functions of the
relative displacement of the crack faces (U) or

T = Tar(Uia) «ev v e e e e e e e e e e e e (12)

The relative crack displacements (U,,) are in turn linear functions of the
dislocation densities along the crack, or

in which D represents the displacement influence furctions along the
crack. The crack surface tractions can then be written in terms of the
dislocation density amplitudes

To=TaDF) = T(F) .ot (14)

Let the total tractions on the crack surface be the sum of the externally
applied tractions, T,, and those tractions T, that exist due to the par-
ticles spanning the crack. The traction vector in Eq. 11 can then be ex-
pressed as

A s (15)

Eq. 11 can be rewritten as

[C*—SK™G*)]F=T, + Ta) ~SE T R)....coocevrenann.. (16a)
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o s abbreviated form as

CH-ToF) v T, oo, e (16b)

This is & nonlinear equation which, in general, cannot be solved explic-
itly. The Newton-Raphson méthod will be used to solve this expression.
If a new function is defined as

Q) =CF=TaB) =T 17)
the solution of Eq. 16a corresponds to the solution of the expression

DOF) = 0ttt (18)
The first two terms of the Taylor series expansion for this function are
d
dF

An improved estimate F'*! for the solution of the equation ¢(F'*!) = 0
can be calculated from the previous estimate F'

F'*' = F + AF

G(F + AF) = ¢(F) + — AF' + ...

By ignoring any higher order terms

b vi 4
75 AF = —o(F)

Here, d$/dF can be treated as an effective tangent stiffness matrix. For
this formulation

dé
dF dF

Let E be a matrix expressing the incremental crack tractions, AT, , in
terms of the incremental crack displacements, AU, such that

AT =EAUG=EDAF........ ... i, (21)
Eq. 19 then becomes

[C* - S(K'G*) - ED] AF = —[C* - S(K"!G*)] F/

+ T (F) + To= SOKTIR) oo (22)

from which the incremental dislocation density amplitudes can be ob-
tained. This method can be used iteratively to determine the tractions
along the crack face, and finally to calculate the stress intensity factors
at the crack tips which correspond to the total loads.

TRACTION TRANSFER AcROSS CRACKS IN CONCRETE

The behavior of concrete changes significantly once cracks form. A
wide range of experiments have been performed to study the stresses
and relative displacements in the crack and the ultimate strength of the
material in the vicinity thereof. The majority of these experimental re-
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sults were aimed at shear transfer in cracks in both reinforced and plain
concrete. Comprehensive summaries of these studies are available in the
work by Jimenez-Perez, Gergely and White (26) Walraven (37), and ASCE
(1). Limited experimental results are available on pure tension in cracks,
which can exist immediately after cracking (14,22). After reviewing the
basic phenomena of traction transfer in cracks, a few numerical models
are referred to, which can be used to represent the constitutive behavior
of cracks.

Tractions Due to Aggregate Interlock.—The formation of cracks in
concrete has a major influence on the behavior of the material. The con-
ventional approach to accommodate this new stiffness is to reduce the
shear and axial stiffness of the material at the points where cracks have
formed. A constant reduction factor is typically applied (36) to the un-
cracked shear stiffness of the material. For cases where the shear resis-
tance is critical, Cedolin and Dei Poli (9) suggested a varying reduction
factor as a function of the strain normal to the crack. Other empirical
equations for the shear stiffness (which also takes into account the con-
crete strength) are summarized by Jimenez-Perez, Gergely and White
(26). Fenwick (17), Houde (25) and Paulay and Loeber (32) proposed
methods of calculating the shear stiffness of concrete as a function of
the crack width. Experimental results indicate though that the normal
stiffness and shear displacement along the crack plane has an effect on
shear transfer in a crack. More recent models by Jimenez-Perez, Gergely
and White (26), Fardis and Buyukozturk (15,16), Walraven and Rein-
hardt, (19) and Bazant and Gambarova (5,18,19) incorporate the addi-
tional effects of these models. The latter (5,18,19) provides the most de-
scriptive representation of aggregate interlock and shear transfer in cracked
concrete.
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FIG. 4.—Tensile Stresses in Cracks (14)
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This formulation can readily be implemented in a nonlinear finite ele-
ment program. An incremental constitutive relation is assumed for the
crack, such that

&Q.Mm = w:&m~ where ~\.~ =nt....... L Ava

do;, = normal stress in the crack; doj, = tangential stress in the crack;
d3, = normal relative displacement; d5, = tangential relative displace-
ment; and B;; = empirical stiffness along the crack. This relation should
‘be path-dependent, but due to the lack of sufficient experimental data,
it is assumed that

O = fa(3,; 8,) and o5, =f®ns ) o (24)
The constants for the constitutive relation are then
af
B,,= ; etc........ . T 2
2. (25)

Explicit expressions for the stresses in terms of the relative displace-
ments (Eq. 24) were obtained by Bazant and Gambarova (5,18,19) from
the experimental results of Paulay and Loeber (32).

Normal Tractions.—Reported investigations on the tensile cracking and
post failure behavior of concrete are limited. Evans and Marathe (14)
constructed a very stiff testing frame and was able to control the test
specimens after cracks formed under tensile loading. The uniaxial stress-
strain relations were recorded with strain gages and the width of the

24)
(10)
22
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MEASURED STRAINS
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)

APPLIED STRESS
()

MEASURED STRAINS

Strain gauges

FIG. 5.—Experimental Results of Tractions in Cracks under Tenslle (22)
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cracks were measured with optical microscopes. The stresses as mea-
sured at different crack widths are presented in Fig. 4. Specific details
regarding the depth of the cracks, their distribution, the presence of other
microcracks and the aggregates used are not available. It is also not clear
whether the reduction in stress can solely be ascribed to the increase in
crack width, or whether the crack growth (through the specimen thick-
ness) could be the reason for this softening.

Heilmann, Hilsdorf and Finsterwalter (22) subjected long prisms to
both concentric and eccentric tensile loads. By attaching several strain
gages to each face of a specimen, it was possible to measure the strain
at several points along its length, and also around its circumference. In
most cases a crack formed within a region covered by a strain gage, and
it was possible to record the strain over the crack. The measured stress-
strain relations for two of the tests are given in Fig. 5 (the numbers in
parentheses in the stress-strain relation refer to the strain gages on the
specimen). Notice for example that the slope of the unloading branch
for gages 4, 7 and 10 are approximately the same as the loading branch
(the specific stress levels, and the implied residual strains for these po-
sitions can possibly be ascribed to the dynamic behavior of the specimen
during the abrupt failure and unloading). It can then be assumed that
the material remained essentially linear in those areas where a crack did
not form. From the available information it seems as though only one
single crack formed. No mention is made of any microcracks or residual
secondary cracks. However, Mindess and Diamond (29) found that, should
a region of microcracks form prior to crack propagation, some of these
cracks coalesce to form the main crack, while others close again. If that
was the case for this crack, the material adjacent to the crack can also
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be regarded as linearly elastic (or nearly so), and would have unloaded
similarly. In that case, the large increase in strain across the crack was
caused by the increase in crack width, as measured by the strain gage.
After the necessary adjustments have been made for the elastic material
adjacent to the crack, these stress-strain relations can be used to find
the relation between stress and crack opening. The resulting “crack strain”
should then be multiplied by the strain gage length to obtain the crack
opening. By studying the results of these experiments, it also becomes
clear that, even under pure tensile loads, the material does not debond
instantaneously through the full thickness of the specimen, but propa-
gates through the thickness. Certain ligaments tend to remain unbroken
{29) and aggregates span the crack (8), which ensure that the stress does
not instantaneously drop to zero. These aspects seem to support the
experimental results previously reviewed. Due to the lack of reliable data,
it will be assumed that a linear law will be sufficient to represent the
basic properties. It can be assumed that the average aggregate size in
the concrete will influence this softening law, but no experimental data
is available to verify this. The proposed relation between stress and crack
width is given by the straight line in Fig. 4.

Constitutive Relations Along Crack.—The expressions proposed by
Bazant and Gambarova (5,18,19) are based on tests performed on pre-
cracked concrete specimens (32). No attempt has been made to represent
the transition from the originally uncracked material to the cracked con-
dition. No test data is available from which any numerical model can be
derived. The two aforementioned models have been combined in one
general constitutive law which describes the basic characteristics of a
crack under pure mode I (opening) or mixed mode crack displacements.
The basic concepts are briefly reviewed later.

8, 10%inch

FIG. 7.—Normal Stress in Crack
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The concrete in the cracked condition can be represented by the Ba-
zant-Gambarova model. Specific attention has to be given to the initial
condition when the crack starts to open. Aggregate interlock prevents
any shear displacement in a crack of zero width, so that only opening
displacements can occur initially. The Bazant-Gambarova model exhibits
this trend, but becomes singular at zero normal displacements. For that
reason it is assumed that, for all displacements less than a certain open-
ing, the shear stiffness will be constant, and the normal stiffness will
have two constant components from the shear transfer model and the
normal traction model. Beyond this minimum opening the two models
are superimposed. Graphical representations of the material model are
given in Figs. 6 and 7, in which the shear stresses and normal stresses
are plotted against the relative shear and normal crack displacements.

SIMULATION OF EXPERIMENTAL RESULTS

The hybrid method described before was incorporated in a finite ele-
ment program which has 8 node isoparametric elements for plane stress
and plane strain analyses. This program was used to analyze a notched
beam specimen tested at Cornell University (3) (refer to Fig. 8). Two sets
of analyses were performed for the same plain concrete beam (beam type
C in the tests). The first series of results were obtained from a linear
elastic analysis in which it was assumed that no shear transfer occurred
across the crack. In the second series the nonlinear shear transfer model
was used to obtain a few data points.

The crack path was determined by initially specifying the saw cut notch
as part of the crack. A short additional crack length (probe) was added
to the notch, and its direction with respect to the notch varied so that
the value of K was zero at the crack tip. From that point on, the pro-
gram was allowed to calculate the direction of any crack extension from
the values of K; and Kj at the crack tip. The path obtained from this
procedure is given in Fig. 9, as well as the limits within which the ex-
perimental results lay. It can be expected that any further extensions will
also fall within the range of the tests, since the shear stresses have (in
the vicinity of the current tip) been reduced substantially, and Ky can
be expected to remain small along the path.
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FIG. 8.—Layout of Test Beam
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The loads corresponding to each crack length were obtained by cal-
culating the magnitude of the load which would make K, equal to
Kic. Experimentally obtained values for K. of 726 psi Vinch (25.2
MPa Vmm) and the initial modulus of elasticity of 3,600 ksi (24.8 GPa)
were used in the numerical calculations. Note that the loads are consid-
erably below the experimentally obtained loads. This can largely be at-
tributed to the lack of any traction transfer model for the crack. Shear
transfer would tend to resist the sliding of the two crack faces over each
other, while any residual tensile strength would tend to prevent it from
opening. This will have the effect of reducing the value of K, so that
the load that the specimen can carry with any particular crack length
would increase. A few points were calculated with the traction transfer
model, and the results are given in Fig. 10. The critical stress intensity
factor method was also used for these analyses. It was found that the
area in which the asymptotic stresses exceeded the tensile strength of
the material was small, so that the assumed linear elastic crack tip field
did not significantly effect the fracture analysis. An alternative method
would be to enforce a zero stress intensity factor (K1) at the tip, and to
use energy considerations (e.g. J-integral) as a propagation criteria. It is
anticipated that the traction transfer model will not change the crack
path significantly.

In the linear elastic analyses (without any crack tractions), the system
of equations (Eq. 92) was solved directly without taking advantage of
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any bandedness or symmetry of the finite element stiffness matrix (K).
For the model with 85 finite element nodes and 19 integration points
along the crack, the total CPU processing time on a VAX 11-782 com-
puter was approximately 55 sec. With the decoupled method, the initial
K matrix decomposition and backsubstitution (K ™' R) need not be done
for subsequent steps, so that the time per step can be reduced by ap-
proximately 25% per load step (it was found that the VAX 11-782 com-
puter is approximately 2-3 times slower than an IBM 370-158).

CONCLUSION

A method is proposed for the analysis of discrete cracks in concrete
which accounts for aggregate interlock in the crack. The body around
the crack is treated as a linearly elastic, isotropic material, and repre-
sented by finite elements. The crack is modeled by dislocations distrib-
uted along the length of the crack. A numerical model, which was de-
rived from experimental data, represents the properties of the material
along the crack. This method was used to analyze a beam subjected to
mixed mode fracture. The calculated crack path was within the experi-
mentally obtained range. Although the load history was slightly below
the experimental values, the general trend was satisfactory and matched
the reduction in load with increasing crack length. The difference in load
is attributed to the approximations inherent in the adopted aggregate
interlock behavior.

Nonlinear response of concrete structures can be ascribed to the non-
linear stress-strain behavior of the material, effects of crack formation
and propagation on the overall response, and the nonlinearities in-
volved in traction transfer across the cracks. The proposed method can
accommodate the latter two sources of nonlinearities associated with
cracks. Under tensile stresses concrete behaves in a brittle manner and

1225



fails before any significant plastic yielding takes place. When cracks form,
the gradual softening of the material introduces additional nonlinear be-
havior, which can satisfactorily be modeled by the constitutive relations
of the material in the cracks. )

The current method is only valid for specimens in which the material
(other than that in the crack region) remains linearly elastic. This ap-
proximation would be acceptable in many cases when the compressive
stress levels remain low. An example is an unreinforced beam in bend-
ing (with point or distributed loads) which cracks in a pure mode I man-
ner. In cases where the material does not remain linear, the method, as
described here would predict stiff behavioral response. The present model
can be modified to accommodate material nonlinearities. For cases where
the material immediately adjacent to the crack remains linear, the crack
and a certain amount of material around it can be modeled as an elastic
substructure of the complete body where only material outside this re-
gion has nonlinear properties. Alternatively, all the material can be as-
signed nonlinear properties, in which case the presently adopted stress
and displacement influence functions will introduce inaccuracies. Never-
theless, preliminary investigations have shown that the latter generali-
zation provides satisfactory results for practical purposes.

A major advantage of the hybrid method is that no remeshing of the
finite elements is required upon crack propagation, since the finite ele-
ments represent the intact body, while the distribution of dislocations
represent the crack. Apart from removing the necessity of any user in-
tervention during an analysis, the nonlinear stress histories at finite ele-
ment integration points can be used directly, and no interpolation schemes
would have to be devised to transfer these histories from one finite ele-
ment configuration to the next (3,8) when nonlinear material properties
are used.

It is envisaged that the present method can be used in the analysis of
local details of large structures to investigate the stability and resistance
against failure. Specific examples are the tensile failure of concrete at
embedded brackets and bolts, and the crack propagation at local stress
concentrations in prestressed members.

Further extensions to the current model would be to include the dowel
effects of reinforcing bars in the constitutive model for the crack, and
also to incorporate the cyclic behavior of the shear transfer model in a
crack. The reinforcement can be represented by single bar elements, while
the crack interface properties have to be modified at the bar to represent
any dowel and tension stiffening effects.
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APPENDIX |l.~—~NoOTATION

The following symbols are used in this paper:

C

= stiffness of material in the crack;
crack traction influence functions due to unit dislocation ‘den-
sity amplitudes;
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relative crack displacement influence functions due to unit dis-
location density amplitudes; )

constitutive tangent matrix at integration points along crack;
tractions along the crack;

dislocation density amplitudes; ‘
traction influence functions at finite element nodes due to unit
dislocation density amplitudes;

stiffness matrix of uncracked specimen;

Mode I stress-intensity factor;

critical mode I stress-intensity factor;

Mode II stress-intensity factor; . .
displacement influence functions due to unit dislocation den-
sity a amplitudes;

applied load vector; o

crack traction influence function due to unit displacement at
finite elements nodes;

tractions along the crack;

applied tractions along the crack; . .
tractions along crack due to aggregate interlock and imperfect
debonding;

finite element nodes displacements;

relative displacements between crack faces;

relative displacements between crack faces;

angle at which the crack propagates;

function; and .
tractions along crack due to aggregate interlock and imperfect
debonding.

Subscripts

e
n
t

I

I

effective;
normal; and
tangential.

Superscripts

fe

St

it

finite element; and
surface integral.
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