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NOMENCLATURE

Symbol Meaning
A Cross-sectional area of pipe--ft
AO A real variable representing the combination of the known

quantities of PC, PS and QC, QS

B Isothermal wave speed - ft/sec
C The constant of a valve or a regulator
Cli,Cl2... Elements of a field transfer matrix

D Pipe diameter - ft
E A constant representing eiwk

{F} The forcing vector in a non-homogeneous equation
T Darcy-Weisbach friction factor
g Acceleration of gravity - ft/se02

G,H Collections of non-linear oscillatory terms used in the

second-order approximation

h Dimensionless parameter representing Ox/I
HP Horsepower of a compressor
I Index denoting the discrete variable of space
i Unit of complex number being*J:E
J Index denoting the discrete variable of time
K A constant representing 8%’?30 l:ﬁii
k Time increment in dimensionless form
kl’ke’k3 Constants of a compressor unit
L Length of pipe - ft
Ll,L2 Linear difference operators
M Mass flow rate - slugs/sec
m Dimensionless parameter representing E?Sg
AP,

ix



L]

Lo}

e Hii

ol

Qc
Qs

Meaning
Gas molecular weight - lb/mole
Number of reaches per pipe
Absolute pressure - psia
Point subscript, conditions unknown
Absolute pressure - lb/f‘t2
Oscillatory pressure, dimensionless
Mean or average pressure, dimensionless
The average of the mean pressure at Ith reach
The modulus of the complex variable &
The argument of the complex variable &
The base pressure - psia
Discharge pressure of a compressor - psia
Downstream pressure of a regulator - psia

Dimensionless parameter representing the steady state
outlet pressure

Suction pressure of a compressor - psia

Fixed pressure at the upstream end of a pipe - psia
Upstream pressure of a regulator - psia

Flow rate - mmefd

Oscillatory flow rate, dimensionless

Mean or average flow rate, dimensionless

The modulus of the complex variable 7

The argument of the complex variable g

The steepest slope of a flow demand curve - mmcfd/sec
The steady state flow rate - mmecfd

Gas constant being 1545 ft-1b/°R - mole



Symbol
R

R1,R2,R3

R11,R12...
S
S

s1,82,83

[sN]

T

ZP,7Q

{zt

ox

Meaning
Point subscript, conditions known

Complex variables. representing the combination of the
known quantities PC, PS and QC, QS

Elements of the over-all transfer matrix
Point subscript, conditions known
A constant representing 2g Ax sin G/B2

Complex variables representing the combination of the
known quantities PC, PS and QC, QS

The over-all transfer matrix

Gas temperature = OR

Time - seconds

The base temperature - R

The field transfer matrix

Mass transport velocity - f£t/sec
Distance - ft

Gas compressibility factor
Elements of the forcing vector {F}

State vector denoting the conditions of £ and 7 at a
section

The inertial multiplier

Control volume length

The amplitude of the flow variation - mmecfd
Dimensionless parameter representing A»Q/Q,O
Time increment - seconds

Reach length - ft

Complex variable representing the discrete space func-
tion of the oscillatory flow rate

Angle of the inclination of pipe measured upward from
the horizontal

xXi



Symbol

Meaning

Multiplier in the method of characteristics

Complex variable representing the discrete space func-
tion of the oscillatory pressure

Mass density =~ slugs/ft3

Dimensionless parameter representing fL/QD
2

Wall shear stress - lb/ft

Dimensionless parameter representing the error bound in
flow solution per steady state flow rate

Dimensionless parameter representing the error bound in
pressure solution per inlet pressure

Frequency of the flow variation - rad/sec

xii



I. INTRODUCTION

Transients in a natural gas system are initiated by the time
variational nature of demands at the distribution points and the reac-
tions taken by the system operator in order to meet these demands.

The study of transient flow in gas systems, therefore, considers the
following problems: (1) analysis of the system under given time vari-
ant loading conditions, and (2) control of the system to meet the time
variant gas deliveries and also satisfy the contract pressure specifi-
cations. The first problem concerns the analysis of transients that
took place in the past or evaluation of the system capability with
future forecasted loads. The second problem deals with the optimal
operation of the system which is of considerable practical value since
tremendous operating costs can be saved by following a good control
procedure.

The duration of transients in a normal operating gas system
is very long, perhaps one or several days. The computation of such a
slow transient in a complicated system will be very time-consuming
and uneconomical if no special treatment is given regarding the selec-
tion of a large time step for a solution method. The motivation for
the present study stems from the desirability of developing a method
suitable for solution of the above-mentioned problems under various
transient conditions in a simple and economical way even though the
transient is of long duration.

Although natural gas systems have been operating under
transient flow conditions, the design and the operation of a system

are primarily based upon the steady state calculations. It was not
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until recently that the desirability of transient investigations has
been brought to the attention of gas industry. In 1961, Batey ggngi.(g)
solved the natural gas transient flow equations by explicit finite
difference procedures. Their work was limited to the consideration of
simple pipeline sections. In 1965, Wilkinson gﬁ gl.(zh) studied vari-
ous techniques for the simulation of transient flow in natural gas
piping systems. The implicit finite difference technique and an
analytical solution by the use of a power series were developed.
Agreement of the calculated results with field data was observed. In
extending the technique for transient solution, they also proposed

the transfer function techniques to accomplish a solution from the
linearized equations. However, the solution revealed that the line-
arized system may not adequately describe the non-linear transient
behavior in a natural gas pipeline. Recently, the algorithm identi-
fied as PIPETRAN(15) was developed for the simulation of transient
flow in general pipeline systems. The algorithm employs the explicit
procedures combined with certain empirical restraints to aid in
achieving stability. The method of characteristics for transient
simulation(17’18) has also been developed and the results proved to

be excellent including experimental confirmation. The only disadvan-
tage with the method of characteristics is its costly computation for
slow transients. For stability reasons, the time increment cannot
exceed the reach length divided by the isothermal wave speed. Most
recently, an implicit finite difference procedure combined with the

sparse matrix algebra has also been used successfully in complex sys-

tems.<25)



From the above algorithms, it can be realized that the finite
difference approximation is the most effective means of simulating the
natural gas transient flow in complicated systems. However, the dis-
cretization error with such an approximation may be appreciable in
the solution. Although the investigations of the problems of stability
and convergence in the numerical approximation have been made in a
number of references (1, 5, 13, 16), no investigation has been set
forth so far to evaluate quantitatively the error bound in the finite
difference solution. A limitation on the allowable magnitude of the
reach length used in a specific problem is highly desirable. The
quantification of the discretization error in the numerical solution
by the method of characteristics is investigated in this study.

The mathematical model that simulates the natural gas tran-
sient flow is formed by considering the dynamic equilibrium and mass
conservation in the system. The parameters involved in this model
include frictional, inertial, gravitational and pressure forces and
system storage and compliance. It has been realized that the inertia
of gas is negligible compared with other parameters in the system.

By enlarging the inertial effect within certain limits, one may ob-
serve very little influence on the dynamic equilibrium or on the con-
servation of mass in the system., However, with this treatment, a
large time increment may be allowed in the numerical computation with
the characteristics method. In view of this fact, the concept of an
inertial multiplier is initiated in this study. The use of the iner-
tial multiplier in natural gas systems not only permits an optimum
time increment for numerical computation to be used under various

transient flow conditions, but also enables the direct calculation
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of a feasible control solution by use of the valve-stroking principles
applied to the characteristic equations. The selection of the magni-
tude of the inertial multiplier is dependent upon the parametérs in-
volved in the particular problem. The allowable magnitude of the
multiplier corresponding to a particular set of ,system parameters is
also investigated and the limits are defined.

This study has been divided into two major phases. The
first phase includes the formulation of the transient flow problem
including the inertial multiplier by following the characteristics-
method procedures. The second phase concerns the investigation of
errors in transient solutions due to the inertial multiplier and the
numerical approximation.

The basic gas dynamic equations including the inertial
multiplier are developed in Chapter II. The method~of-characteristics
solution of transient flow equations is examined in Chapter III. The
fundamental property of the characteristic equations is presented in
a broadened sense so that the computational procedures permit not
only the analysis of transients to be carried forward in time, but
also the control solution to be formulated by utilizing the techniques
of valve stroking. The concept of valve stroking was proposed by
Streeter(zl’zg) to calculate a desirable valve motion procedure in
liquid systems so that the surge pressure during the transient period
is maintained within the allowable maximum or minimum value and, fur-
thermore, the transient in the system ceases at the end of valve mo-
tion. The same concept of stroking computation is also useful in a
gas system,(17) particularly in scheduling the operation of the sys=-
tem in order to meet the customer load demand and the contract mini-

mum pressure specifications.
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Chapter IV proposes a new approach to obtain a semi-analyti-
cal solution to the non-linear finite difference equations for steady
oscillatory flow in natural gas systems., The solution to the non-
linear equations is obtained by a process of successive approximation.
The result of the second-order approximation is verified by the numeri-
cal solution of the method of characteristics. One of the most useful
aspects of the proposed solution is the capability of yielding ex-
plicitly an error bound due to the discretization, and to the employ-
ment of the inertial multiplier for a particular set of system parame-
ters. By pursuing the numerical experiments for a wide range of sys-
tem parameters, the correlation of the error bound with the system
parameters may be found. The results of the error investigations are
presented in diagrams included in Chapter V. The application of the
error diagrams to transient analysis and control computations are
illustrated in Chapter VI. The transient solution by using the com-
puted Ax and ¢ is checked by an accurate solution to justify the
reliability of the result in the error diagrams.

Along with this study, a field experiment was conducted in
a natural gas transmission line owned by the Consumers Power Company,
Jackson, Michigan. The result of the experiment is included in
Chapter VII to demonstrate the validity of the concept of the iner-
tial multiplier in the simulation of transient flow in natural gas

systems.



II. BASIC EQUATIONS INCLUDING THE INERTTAL MULTIPLIER

The partial differential equations describing transient flow
in a natural gas pipeline have been developed in a number of refer-
ences (2,17,18,23)., The derivation of these equations from the con-
siderations of mass conservation, equation of motion, and equation of
state is reviewed and presented herein. A discussion is also included
on the relative significance of the terms in the equation of motion
and the validity of introducing an inertial multiplier into the equa-
tion when the transient condition in the system is raﬁher mild or of
long duration.

In the development of the basic equations for natural gas
transient flows, the following assumptions are normally made:

1. The pipe is inelastic and the flow in the pipe is con-

sidered to be one-dimensional.
2. The slope and the cross-sectional area of the pipe
over any particular reach are constant.

3. The steady state friction factor may be used to des-
cribe the transient friction loss. In particular,
the Darcy-Weisbach friction factor is used in this
thesis.

b, The flow in natural gas pipelines is isothermal and

the gas temperature is assumed constant and maintained
at the average system temperature.

5. The compressibility fagtor in a specific system is

constant.

-6-



2.1 Equation of State

The equation of state for an isothermal system commonly

used in the natural gas industry is

b _ ZzgRT (2.1)
e L
where
p = absolute pressure in lb/ft2

o = gas mass density in slugs/ft3

z = compressibility factor

g = acceleration of gravity in ft/sec2

R = gas constant being 1545 £t-1b/°R - mole
T = absolute temperature in °R

My

gas molecular weight in 1b/mole

The compressibility factor =z is a correction factor for
the deviation of the real gas from the ideal gas law. It is dependent
upon temperature, pressure and the composition of gas. However, in
natural gas transmission systems, the change in 2z due to pressure
variation is only about one percent per 100 psi pressure fluctuation
at normal pressure level., The gas composition and temperature in
normal operating conditions are substantially constant. Thus the use
of a constant 2z in a particular system is sufficient for most trans-
ient analyses. The entire term on the right-hand side of Equation

(2.1) is therefore a constant and the equation of state becomes

1) = ?_g..B.T. =32 (2.2)
P M

where B is the isothermal wave speed in ft/sec.



2.2 Continuity Equation

The continuity equation describing the conservation of mass
in a control volume states that the net influx of mass must equal the
time rate of increase of mass in the control volume. With reference

to Figure 1, this statement expressed in terms of variables becomes

oM 3
M- [M+ 5 8x] = 5p(eAdx) (2.3)
in which
M = the mass flow rate in slugs/sec
A = cross-sectional area of the pipe in ££2
dx = 1length of control volume

and x, t are distance and time, respectively.

After combining Equation (2.3) with Equation (2.2),

dp , B _ 2
St A o (2.%)

2.3 FEquation of Motion

Newton's Second Law of Motion as written for the control

volume in Figure 2 yields
pA - [pA + 0 (pA)8x] - T 7D 8% - pgA Bx sin® = (pAdx) oy (2.5)
x 0 Dt

where V is the fluid transport velocity in ft/sec; © is the angle
of the inclination of pipe measured upward from the horizontal; T, ,
lb/ftg, is the wall shear stress, which is generally taken to be the
steady state shear stress for the same velocity and can be replaced
by the following relationship. (20)

Ty = pfv[v] (2.6)

© 8



Figure 1. Control Volume for Mass Conservation.

Figure 2. Control Volume for Equation of Motion.
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with f the Darcy-Weisbach friction factor. The absolute value of
V is introduced to maintain the correct shear stress direction for

negative velocities, The substantial derivative, g% , in Equation

(2.5) includes two parts: V%z and %% . If the mass flow rate
X
M= oAV = .13_*21 (2.7)
B

is differentiated with respect to x and rearranged, V%z can be
X

expressed as

v M fom M dp
VBX - AEPE(SE ) ax) (2.8)

Similarly, if Equation (2.7) is differentiated with respect to t and

Equation (2.4) is used to replace OJp/dot , then

(2.9)

or o,
ot Ap

% ot pA

After combining Equation (2.5) with Equations (2.6) to (2.9),

202 2 . 20
] . BM §g+fBMlM|+pgs1n@+;(§M_+EBM§M - 0 (2.10)

s B2 [ vl . X
In normal conditions, ==—— (= — | in the first term of
APp? | B°

Equation (2.10) is very small compared with unity and may be neglected.
The entire last term, which is formed mainly from inertia, is small
compared with other terms in the equation, and the second part of this
term, being on the order of %;.%% , 1s even smaller than the first
part. In this treatment, the term containing OM/Ox is dropped and
the term containing oM/Ot is not only retained but enlarged to some

extent through multiplication by a constant a? , where @ 1is the

inertial multiplier. Thus the equation of motion is simplified to

op , fB2M|M| . pesing , of M

, = 0 2.11)
dx  2DACp B2 A Ot (
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The concept of employing the inertial multiplier is quite
similar to that of neglecting the entire inertial term, provided a
judicious treatment regarding the limitation on the magnitude of the
multiplier can be achieved. The advantages of employing the inertial
multiplier can be visualized when the method of characteristics is
used for problem solution., The inertial multiplier not only enlarges
the time increment for standard characteristics-method analysis of
transient flows, but also provides the capability of obtaining a more
feasible control solution when the method of characteristics is used
to perform the valve stroking computations.(l7’18)

The selection of an appropriate magnitude of the inertial
multiplier is primarily based upon the severity of transient in the
particular system. For a long duration transient, a big o may be
used to permit a large time step for a stable numerical solution. On
the other hand, if the problem involves a rapid transient, a small «
should be used to produce an accurate result. The manner in which o
may be used to suit the particular problem provides a great deal of
flexibility in the application of the method of characteristics to
analyze general natural gas transient flows, The investigation of
the limitation on the allowable magnitude of ¢« will be deferred un-
til Chapter V where the errors in the solutions due to the inertial
multiplier and the numerical approximation are considered,

Equations (2.4) and (2.11) are the basic dynamic equations
governing the solution of natural gas transient flow problems. Con-
sistent units have been used in the derivation. The variables M
and p are expressed in terms of slugs/sec and lb/ftg, respectively.

However, in the natural gas industry, the mass flow rate is normally
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described in terms of millions of cubic feet per day (mmcfd) at the
base pressure (B,) and the base temperature (T,), and the pressure is
normally described by pounds per square inch (psi). For direct engi-
neering applications, the units of M and ©p wused by the gas industry

are incorporated into Equations (2.4) and (2.11). Thus

OP L KB= 3R . o (2.12)
ot A ox

OP ; Kof 3 , Pgsind , K2rBeQq
dx A ot B2 ODACP

= 0 (2.13)

where Q and P are, respectively, the mass flow rate in mmcfd and

the pressure in psi, and K 1is the constant

106 Wy

2,14
86400 gRTy, (2.14)

The units of other variables and the constant parameters in Equations

(2.12) and (2.13) remain as previously defined,



ITI. TRANSIENT SOLUTIONS BY THE METHOD O CHARACTERISTICS

Equations (2.12) and (2.13) in the previous chapter consti-
tute a set of hyperbolic partial differential equations with two depen-
dent variables P and @Q and two independent variables x and t.
Due to the nonlinearities occuring in Equation (2.13), an exact closed
form solution to these equations has not been available. Numerical
approximation must be applied for the solution. Without employing the
inertial multiplier in the system equations, the numerical solution to
these equations has been accomplished by one of the three most widely
accepted current numerical procedures, namely, the method of character-
istics and the implicit and other explicit finite difference methods.
The first method converts the partial differential equations into four
particular ordinary differential equations, which are integrated numeri-
cally.(l7’18’23) The last two methods involve the placement of the
partial differential equations into finite difference form, which
leads to a solution of a set of non-linear simultaneous equations,
<7’2h’25) or to an explicit solution.<2’6’l5) There are advantages
and disadvantages inherent in each method. The implicit procedure
offers the advantage of guaranteed stability for a large time incre-
ment, but has the disadvantage of requiring the solution of a set of
non-linear simultaneous equations at each time step. The computer
storage for a complicated network is therefore very large. The
explicit procedure requires relatively little storage requirement but
the time increment is limited by certain stability criteria so that
the computational time becomes excessive for long duration transients
in a complex system. The method of characteristics provides a stable

accurate solution of the equations as long as the time increment is

-13-
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restricted to the reach length divided by the wave speed. Consequently,
the computation of slow transients with this method is again very time-
consuming and uneconomical,

The inertial multiplier introduced in the previous chapter
provides the capability of relaxing the restriction on the time incre-
ment with the method-of-characteristics procedure., Herein the method
of characteristics is used to derive the naturalgas transient flow

solution.

3.1 Characteristic Equations

Let Equation (2.12) be denoted by J; and Equation (2.13)
by Jo. These two equations can be combined linearly by employing an
unknown multiplier A. Thus

Jo + M =0 (3.1)

Equation substitutions and rearrangement are made to yield

3P , 1 3P\, Ko/dq , 282 ), Pgsing _ K2rB2qlal _ o .2
5€+K&+T<35+¥_&+ B2 T oAl (3.2)

Any two real, distinct non-zero values of A in Equation (3.2) will

produce two independent equations whose solution satisfies the origi-
nal system of Equations (2.12) and (2.13). In particular, from the
theory of characteristics, Equation (3.2) may be transformed into the

total differential equation

ap KO? daq N Pgsind N K?fBngQl

‘TFETRA & TR oalp | T O (5:3)

provided the following relation exists

2
g:}_—t{-:%-:%— (3')4')

The two particular values of A to make this transformation are ob-

tained from the right part of Equations (3.4). Thus



T =t % (3.6)
As can be seen in Equation (3.6), the previous independent variable,
X, 1is now dependent upon t. Equation (3.6) represents two character-
istic lines, denoted by C¥ and C~, in the x-t plane. After
combining Equation (3.5) with Equation (3.3) and grouping the results

with the corresponding Equation (3.6), one obtains the following two

pairs of ordinary differential equations, identified as ¢t and ¢
s
o 3 oKk do  oPesing  KPrEAalal (3.7)
B d A dt B2 DAZ - *
C+< o
B ‘
% (3-5)
.
(0 dP2  2Ko? dq  2P%gsind  K°fBQlal 0 (3.9)
B dt A dt B® DA2
e
dx B
a-:E = - a (3‘10)
.

Equations (3.7) and (3.9) are the compatibility relations
which describe the variations in the dependent variables along the
respective characteristic lines. Equation (3.7) can only be applied
when Equation (3.8) is satisfied, likewise, Equation (3.9) is valid
only when Equation (3.10) is satisfied. Equations (3.7) to (3.10)
are of a particularly simple form, inasmuch as each equation contains
only total differentials of the variables with respect to time., It
must be emphasized that according to the derivation, every solution
of the original partial differential equations satisfies this set of

%)

total differential equations and the converse is also true.(
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Before proceeding further with the possible numerical
techniques that may be constructed to obtain a solution, we shall
discuss briefly the basic concept of the application of the charac-
teristic equations for the calculations of analysis and control of

transient flow problems.

3.2 Concept of Analysis and Control Computations

The characteristic equations, Equations (3.7) to (3.10),
are used as the working equations for the simulation of transient
flows in natural gas pipeline systems. The applicatim of these equa-
tions can easily be visualized by reference to Figure 3. Equations
(3.8) and (3.10) are represented by the Ct and C~ characteristic
lines in the x-t plane. At the intersection point, P, all four
equations are valid and a solution for the variables, x, t, P, Q 1is
possible., Thus if all conditions are known at the points R and S,
the conditions at point P can be obtained from Equations (3.7) to
(3.10). It can also be recognized that if conditions are known at
some point along the continuation of ot characteristic, say at R'
in place of R, an equally valid solution can be obtained for condi-
tions at P. Similarly, a solution at P may also be determined if
conditions at R and S' are known.

Along with this interpretation in the =x-t plane, it can
be observed that if the initial conditions along a pipe AB are com-
pletely known, a solution can be obtained at any point within ABC
in Figure 4. The area within ABC is therefore the domain of depen-
dence of initial conditions AB since the conditions within this area
are uniquely determined by the given conditions. By specifying bound-

ary conditions at x=0 and =x=L, a complete solution can be carried
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Figure 3. Characteristic Lines in the x-t Plane.
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forward in time. This is the gtandard procedure of analysis of a
transient flow problem when the method of characteristics is used.(gg)
The same concept of analysis of a transient may be extended
into an idea of controlling transient conditions in natural gas pipe-
lines, particularly in scheduling operations for gas distribution.
systems in order to fulfill the variable load demand and contract
pressure specifications. To demonstrate the capability of making
such a control calculation, it is assumed that the pressure and the
flow rate at the downstream end of the pipe are specified for a short
duration, A complete solution is possible in the region ABC of
Figure 5 because the region within ABC 1s the domain of dependence
of the given conditions at AB. By extending the duration of time
over which conditions are sgpecified at the downstream boundary, the
entire x-t plane can be made a domain of dependence except the por-
tions above the upper Ct and below the lower C~ characferistics
in Figure 6. Thus the conditions at the upstream boundary are com-
pletely determined over the duration CD, Figure 6. In order to ade-
quately define the operation of the control mechanisms at the upstream
boundary, it is necessary to complete the control computations over
the entire transient duration. The conditions below AC and above
BD can be calculated from the‘initial and final conditions, respec-
tively. It is not necessary to have steady initial or final condi-
tions in a natural gas pipeline, however, the initial data and the
desired final conditions must be defined for any specific problem.
The above concept of obtaining a transient control solution

(14,17,21,22)

has been referred to as valve stroking and has theoretical

Justification. However, it has been noted that without employing the
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inertial multiplier, it is possible to obtain a feasible control
solution in a natural gas system only when it is subjected to some
specially assigned boundary conditions, particularly when the pressure
specification is substantially smooth. In cases when severe change

in pressure specification at the downstream boundary is required, it
is physically necessary that a tremendous amount of flow rate be fed
into the system at the upstream boundary to afford this pressure |
change, inasmuch as the inertia in the gas system is negligible. Thus
the control solution so obtained may not be feasible in practical
operations, However, the inertial multiplier « incorporated into
the dynamic equation not only increases the inertial effect in the
system but also alters the characteristic directions as can be seen
in Equations (3.7) to (3.10). The change in the characteristic direc-
tiohs permits an earlier control action to be taken, which, consequently,
vields a more practical solution. An example illustrating the compu-
tation of the control solution in a compressor station will be shown

in Chapter VI,

3.3 Finite Difference Approximation

The characteristic equations, Equations (3.7) to (3.10),
must be placed in finite difference forms before they can be uged for
a problem solution. The second-order finite difference approximation

may be constructed by employing the trapezoidal rule formula

X1
[ etm w3 L) + £0) 101, - 3) (3.11)

%0

Equations (3.8) and (3.10) are used.to determine the mesh

size ratio in a grid system if the method of specified-time intervals(ll)



is employed. Thus the time increment At is related to the reach

length Ax by

At = & Ax (3.12)

1R

With reference to Figure 7, Equations (3.7) and (3.9) are now multi-
plied by dt and integrated along respective characteristic lines

utilizing the formula in Equation (3.11). The results are

ct P% - Pg + %9-‘ (Pp + P)(Qp- Q) + ==— gAxsme (P2 + PE)

—K-z—?-'ﬂ (3.13)

I
O

(aplapl+ag lag| )

cT By - B - 2 (7p+ By)(ap - &) “%@‘Q(P%‘LP@
2
i %%2’45 (plap Haglagl) = o (3.34)

in which BAt/a has been replaced by Ax from Equation (3.12) and
the subscripts are used to define the location of the variables in the
X~-t plane,

It can be observed from Equation (3.12) that with the use
of the inertial multiplier the time increment is proportional to this
multiplier . The value of o allowable in a given system is de-
pendent primarily upon the severity of transient. For a very slow
transient, an appreciable « may be used which allows a significant
increase in At for numerical computation. The determination of both

a and Ax for a given problem will be discussed in Chapter V.

3.4 Steady State Equations

Transient analysis calculations usually start from an initial

steady state condition. The development of an equation to calculate
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the steady state solution which confirms the one obtained from the
characteristic equations is of primary interest in modelling a tran-
sient flow analysis program.

If the term of time variation in the equation of motion,
Equation (2,11), is dropped, the differential steady state equation

becomes

. 2.mln2
dp + Pgsinb + K=fB-Q

= e At - 0 (3.15)

This equation is then multiplied by 2Pdx and integrated over the length

L from P; upstream to Pp downstream, The result is

2l 2 > .
P2 + K°fB*Q7/(2gDAs1n6) _2gTsing,/32 (3.16)
P2 + K°rB*Q?/(2gDAsind)
After rearranging,
2 o2 S
A R s (3.17)
DA s
in which s = 2gL sing/B® (3.18)

Equation (3.17) is applicable to obtain steady state solution in any
pipeline at uniform slope. For a horizontal pipeline, (eS-1)/s =1,

e® =1, and Equation (3.17) is reduced to

rBeL 2
%-% - Bt (3.19)

In the naturadl gas industry, empirical equations for horizontal steady

state flow in the form of

2 m .
P2 -F = c;l_nL (3.20)

are used., The constants C, m, n are dependent upon the pipeline
characteristics and fluid properties. Equation (3.17) may also be

used to calculate the steady vertical flow in the wells., In this
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application, 6 1is taken to be 90°, and P, 1s considered to be the
sand face pressurc at the depth I, Pr is the well head pressure.(lo)
In natural gas transmission systems, the pipelines are nor-
mally horizontal or of very small slope. Thus, if Equation (3.16)
is rearranged as
| e [ | el

and the substitution of

0 /R
elsing/B o + £Lsing /a2

is made, the following results

il
(@)

(3.21)

. 2
P2 . PE glisind P2 P2 K2fB L 2
oA EE (R e

This equation matches with Equations (3.13) and (3.14), when
Qp = Qg = Qg. Equation (3.21) will be used to set the initial steady
state condition for a transient calculation when slightly inclined

pipelines exist in the system.

3.5 Basgic Analysis Computational Procedures

The concept of transient analysis computation by the method
of characteristics has been explained briefly in Section 3.2. The
computational scheme using Equations (3.13) and (3.1k) can further be
illustrated by considering an example of a single pipeline. By refer-
ence to Figure 8, consider a pipe to be divided into N equal reaches.
The spacings of a mesh in the x-t plane are determined as Ax = L/N
and At = QL/BN in which N and @ are found a priori by the cri-
teria presented in Chapter V. It i1s assumed that the transient calcu-
lation starts at some time, +t;, when conditions P and Q are com-

pletely known for the sections O, 1, ...N-l, N. The initially known
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conditions may be the steady state solution or a transient solution
obtained from previous calculation. The conditions P and Q for
the internal sections 1, 2, ...N-1 at time +t5 + At may be found
one section at a time by solving Equations (3.13) and (3.14) simul-
taneously, The subscripts R and S in these two equations refer
to the appropriate points on the line of known information, to, and
the subscript P refers to the point on line tg + At where condi-
tions are to be determined. The solution of Equations (3.13) and
(3.14) requires an iterative procedure. The Newton-Raphson iterative
method is used for this work.

At the boundary section O or N, one condition at each
boundary must be specified. The unknown condition at each boundary
may be found by using an appropriate characteristic equation. Equa-
tion (3.14) is used with the upstream boundary condition and Equation
(3.13) is used with the downstream boundary condition. The solution
may be obtained directly or by an iterative scheme dependent upon
the complexity of the boundary condition. Now all the conditions along
the pipe at time tO + At are completely known., The solution may
then be advanced one time step to 1ty + 20t by the same procedures.

Although a single pipeline is congidered in the above pro-
cedures, the same computational scheme can also be applied to a com-
plicated network system, where only the conditions at the boundaries
need special treatment., The following section describes some of the

boundary conditions normally encountered in a natural gas system.

3.6 Boundary Conditions

Boundary conditions in a natural gas network may have various

configurations but in almost every case the mass conservation at the
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boundaries must be observed. Also, the inertial effects of the gas
at the boundaries are neglected.

The most frequently encountered boundary in a network is
the junction where more than two pipes interconnect. The boundary
conditions at a junction require that the net mass inflow to the junc-
tion be zero and the pressure be common to all pipes leaving or enter-
ing the junction. Equations describing the junction boundary conditions
can be easily formulated and incorporated into a transient analysis
model,

An orifice or a regulator installed in a line causes an
abrupt drop in pressure. The amount of pressure-drop is dependent
upon the area of the valve opening, the inlet pressure and the flow
rate., The regulator can be modelled by the following equations.(19)

When P, < 1.82 Py (Subsonic flow condition)

Q = CA(B, - Pg)Bq (3.22)

When B > 1.82 Py (Sonic flow condition)

Q=0.5CEy (3.23)
in which P, and Py are respectively the upstream and downstream
pressures in psia, Q is the flow through the valve in mmcfd, C
is the constant dependent upon the valve flow area and the loss coef-
ficient. The regulators are normally constrolled by discharge pres-
sure or flow rate. In either case, the valve opening is adjusted
automatically so that the control variable is maintained at its set-
point value.

A compressor also has a very small gas storage capacity.

It responds so rapidly that it affects the transient response by

changing the magnitude of pressure or flow rather than the timing or
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phase of these variables. The equation modelling a compressor is

given by<19’2h)

HP = Q[kl <—§-‘Sl>k3- kg} (3.24)

in which HP is the horsepower used by the compressor, Q is the
flow rate in mmefd, Py and Py are respectively the suction and
discharge pressures in psia. kl, k2 and k3 are constant for a
given compressor unit. Compressor operations are normally controlled
by discharge pressure, suction pressure or flow rate. In each case
the controlled variable is maintained at its set-point value until
the power calculated from Equation (3.24) exceeds the maximum power
limit at the station; then the unit operates at the maximum available
power,

In each of the above boundary conditions, the equation
describing the appropriate boundary condition combined with one charac-
teristic equation from each connecting pipe yields the solution of the

unknown conditions at the boundary.



IV. SEMI-ANALYTICAL SOLUTION OF NONLINEAR DIFFERENCE EQUATIONS

In the method of characteristics presented in Chapter III,
the characteristic equations in total differential form are replaced by
the corresponding finite difference equations from which the numerical
solution is carried forward in time. With the aid of high-speed compu~-
ting equipment, this method of solution is applicable for any complicated
system. In fact, due to the existence of non-linearities in the equa-
tions, the numerical procedure provides the most effective means of
accomplishing a solution to the transient flow problem.

However, as mentioned before, the numerical error produced
with the finite difference approach is appreciable in natural gas sys-
tems if too large a reach length is used in the computation. The error
bound in the numerical solution corresponding to the magnitude of reach
length must be determined before the method can be used with confidence
for problem solutions. In particular, with the model developed in this
thesis, the error bound due to both the numerical approximation and the
use of the inertial multiplier shall be investigated.

In order to pursue this investigation, a semi-analytical me-
thod to obtain a solution of the non-linear finite difference equations
including the inertial multiplier, Equations (3.13) and (3.14), is de-
veloped below. The term semi-analytical is used, singe the procedure to
obtain the solution involves the theory of impedance for the variables
with steady oscillations with a numerical technique employed to obtain
the transfer matrix extended over the entire length of pipe. The error
bound determined by the application of the semi-analytical solution is

studied in the next chapter.

_29_



-30-

The problem of steady oscillatory flow in a single pipeline is
considered herein. Steady oscillations occur in a system if a periodi-
cally changing boundary condition exists long enough to establish flow
conditions which are periodic at every point of the system. The prob-
lems of steady oscillatory flow in the liquid systems are generally
handled by the impedance method which yields an analytical solution to
the linearized partial differential Equations.(gg) In natural gas sys-
tems, the linearized equations are solved by the technique of transfer
functions.(eu) However, the results are not quite satisfactory for
high friction systems, because the linearized friction term does not ade-
quately represent the high friction effect in a natural gas pipeline.

In view of this fact, a second order representation of the friction must
be included to improve the result. Although the second order friction
term again constitutes the non-linearity in the system equations, the
order of magnitude of this non-linear term is much smaller than that of
the other ones. The solution of these non-linear equations may be ob-
tained by a process of successive approximations. This process of suc-
cessive approximation is performed as follows. The first approximation
to the solution is obtained from the linearized differential equations
by the impedance method. By employing the solution of first approxima-
tion to estimate the non-linear terms which form the non-homogeneous
part of the equations, the non-linear differential equations are trans-
formed into the non-homogeneous linear differential equations. The solu-
tion of the second approximation can be achieved by solving the non-homo-
geneous linear differential equations. Higher approximations may be éc-
complished by this process of repeated substitutions. However, the solu-

tion of the second approximation is sufficient for engineering purposes.
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Much of the theory developed for the solution of differential
equations may be applicable for the solution of difference equations.
(References 5, 8 and 9.) Although the above-mentioned procedure is
applied to the differential equations, the same approach is also suit-
able for a system of difference equations.<5’9’12). In the following
sections, the first and second approximations to the solution of finite
difference equations are developed,

L.l Steady Oscillatory Flow

The system to be considered is a single pipeline with fixed in-
let pressure P, and variable flow demand at the outlet end expressed as

AL,t) = Q, + AQ sinwt (k.1)
where Qo 1s the steady state flow rate in mmcfd, AQ is the amplitude
of the flow variation in mmefd, w is the frequency in radfsec, t is
time in seconds. Equations (3.13) and (3.14) in the previous chapter
together with these boundary condition specifications are used to obtain
a solution.

It is convenient to convert all the variables, P, Q, %, t,

into dimensionless form by using the following substitutions

* P g X tB
Fo 2 9 Q@ L’ L

where L and B are, respectively, the length of pipe and the wave

speed. The finite difference equations, Equations (3.13) and (3.14),

expressed in dimensionless form become
2 2 '
) )< + ma [P*(I,J)+P*(I-1,J-1)].

P*(1,J) -P*¥(1I-1,J-1

[Q*(I,J)-@*(I-1,3-1)] + onh [Q*(I,)2+q#(I-1,3-1)°] = 0
(
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B¥(1-1,3+1)°-P¥(1,3)2 - mr [PF(T-1, 0L +B¥(L,3)].
[Q¥(T-1,71)-¢%(T,3)] - ouh [QF(T-1,3+1)%4¢¥(1,3)2] = O
(k)
in which the slope of the pipe is omitted and the absolute value sign on
the flow rate in friction terms is removed assuming that no flow reversal
occurs in the system. The subscripts defining the locations in the x-t
plane are changed to the double indices according to the notations shown
in Figure 9, where the indices I, J are the discrete variables in space

and time respectively. The parameters m, g, and h are defined as

KBQo, L, Ox
"tE, o “Tm tTT (:5)

The boundary conditions are

P (0,7) = 1 (4.6a)
F(N,3) = 1+ 24 sin(dw'k) (4.6b)
in which 24gq = 29/q,, o =wL/B (%.7)

and k is the time increment in dimensionless form. According to Equa-
tion (3.12)

k = 0Oh
For simplicity, the superscript asterisk is dropped hereafter, yet the
quantity is understood to be dimensionless unless otherwise indicated.

The instantaneous pressure P(I,J) is divided into two parts,
the mean or average pressure P(I) and oscillatory pressure p(I,J).
Thus

P(I,J) = B(I) + p(I,7) (k.9)
where P(I) is a discrete function of space only. Similarly, the flow
rate can be expressed

Q(I,J) = T+ q(I,J) = 1 + q(I,J) (%.10)
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Figure 9. The x-t Plane Used for the Semi-Analytical Solution.
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where Q is the mean or steady state flow rate in dimensionless form
and is unity. q(I,J) is the fluctuation from the mean. By substitubing
Equations (4.9) and (4.10) into Equations (4.3) and (k.4), and rearran-
ging
=12 2 2 = ~ 2
[P(1)"-P(1-1)"+20mh] + 2{ B(I)p(T, )+ [moP(I)+omnlq(T, )
-B(1-1)p(1-1,0-1) - [waB(1)-om"hlq(I-1,3-1)}
2
)

= - {p(1,7)%-p(1-1,3-1)% + mop(I,J)+p(I-1,3-1)].

[a(I,7)-q(I-1,3-1)] + onPhlq(T,)%+q(1-1,3-1)2T} (k.11)

[?(1-1)2-§(1)2-2om2h] + 2{-§(I)p(1,J)+[ma$(1)-cm?h]q(I,J)
+P(I-1)p(I-1,J+1) - [ma;(I)+om2h]Q(I—l,J+l)}
= - {p(1-1,541)%-p(1,)? - mop(I-1,3+1)+p(I,T)]-
la(T-1,0+L)~q(T,J)] - cm?h[q(I-l,J+1)2+q(I,J)EJ} (4.12)
in which
(1) = 3 [%(1) + B(1-1)]
The terms in the right-hand side of both Equations (4.11) and
(4.12) are non-linear oscillatory variables which may be neglected in
the first approximation, inasmuch as the magnitude of these terms is
much smaller than those on the left-hand side. The solution of the
first approximation is then used to estimate the non-linear terms for
the second approximation.
In the following derivations, the subscripts 1 and 2 to the
varigbles P, p, and g are used to indicate the solutions of the first
and second approximations, respectively. To simplify the writing, we

shall adopt two linear difference operators



-35-

Ly [y ) = Po(Dpy(1,9) + [0 (1)+onh] gy (T, )

- Eg(z-l)pn(l—l,J-l) - [ma%L(I) - cmehJ 3, (I-1,J-1)
(%.13)

Lolpy,a,] = - EE(I)pn(I,J) + [mQ%;(I)- cm?h] a(IL,J)

+ B (T-1)p_(1-1,3+1) - [wo® (1) + onh] qy(T-1,5+L)
(h.14)

to represent the sequences of linear oscillation in Equations (4.11)
and (4.12). The arguments Ppsq, in either operator represent the de-
pendent variables in the sequences. The subscript n ranges from 1 to
2, Tt is convenient to employ the mathematical short-hand of using the
complex variable to express a sinusoidal variation. For instance,
Cq coswt = Re[Cleiwt]

where "Re" stands for the "real part of". The letters Re are drop-
ped but are understood to exist. The real part of the final result re-

presents the solutions.

k.2 Pirst Approximation

By neglecting the non-linear orcillating terms, one may re-

duce Equations (4.11) and (4.12) to

['151(1)2 - ?1(1-1)2 + 2 gnh] + 2L, [py,07] = O (4.15)
[Tél(I-l)2 - §i(1)2 - 2 onfh] + 2L2[pl,ql] =0 (4.16)

In either of these two equations, the terms in the first square bracket
are independent of time while those denoted by the difference operator
are linear oscillations with respect to time. Each equation may be
transformed into uncoupled equations as follows

P, (1)° = 1 (1-1)° - 2 onh (4.17)
Iy [p,q9d=0 (4.18)

Lo [Pl’q:l_] =0 (1“19)
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where Equation (4.17) results from both Equations (4.15) and (4.16).

Equation (4.17) together with the given condition, §l (0) = 1,
may be used as a recursive relation to yield the solution of the mean
pressure. Equations (4.18) and (4.19) with the boundary conditions

p,(0,3) = 0 (4.20a)

a1 (N,3) = - 1 fg eTHE (4.20b)
are used to achieve the solution of the oscillatory variables.

In a steady oscillatory flow problem, the solution is oscilla-
ting with respect to time at any location of the pipe. Thus, by using
the separation-of-variable technique, one may assume

py(1,9) = £1(1) 25 (4.21)

0y (T,3) = n (1) ™ (k.22)
where i = J:E, and gl(I) and nl(I) are unknown complex variables and
are discrete functions of space only. After substituting Equations
(k.21) and (4.22) into Equations (4.18) and (%.19), and dropping the
common factor eika

B (1), (1) + [no (1) onn] (1) - BB (1-1)g, (1-1)

- E‘l[ma%&(z) - omgh] nl(I-l) =0 (4.23)

- By (1) &, (1) + [m0F (1) - oxPhln (1) + E B, (1-1) &, (I-1)
- B [mQ@E(I) + om-n] 1, (I-1) = 0 (k.2k)
in which
E = eiwk - oluCh (4.25)
The boundary conditions, Equations (4.20), become
gl(o) =0 (4.26a)
Ny (W) = - 1i4q (4.26D)
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Equations (4.23) and (4.24) are a set of homogeneous linear
difference equations with variable coefficients. The solution may be
obtained by the technique of transfer matrix.(3) First of all, Equa-

tions (4.23) and (4.24) are combined and rearranged to yield

g, (1) = C1L(T) &(I-1) + C12(T) n,(I-1) (k.27)
ny(I) = C2L(T) &,(I-1) + C22(I) n, (I-1) (k.28)
in which
c11(I) = f;ﬁl:il [cosagm + 0HHL SO (4.29a)
P (I) ar, (1)
C12(1) = - [in0 (I)sineoh + 2om°h cosudh
102m3hgsinaﬂh
R ] /Pl(1> (4.29b)
iP) (I-1)sinuOh
C2L(I) = - ~ (k.29¢c)
maPl(I)
C22(I) = cosuh + Louh singOh (4.294)

(4 Y]
ap(I)
and the following substitutions have been made

(B + E1) = coswoh

(E - E%) = i sina0h

Pl -

To facilitate the mathematical derivations, matrix notations
will be employed. Let the state vector {Zl(Ij} at Tth section be

defined
{z ()} = { ilgii } (4.30)
1

If the matrix

C11(I) c12(1) } (4.31)

[mw(1)] = [ C21(I) c22(1)

is also defined, then Equations (4.27) and (4.28) can be written as
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{z (@)} = [m(D)] {zy(z-1)} (4.32)

As can be seen in Figure 10, liquation (4.32) is applied to the Ith
reach of a pipeline. [TN(I)], which relates the state vectors at both
ends of the TIth reach, is the field transfer matrix of this reach.
Extension of Equation (h.32) over the entire N reaches of the pipe
may be made to yield

{z, ()} = [sw] {z,(0)} (+.33)
where

[sw] = [Tn(w)] [TN(N-1)] ... [TN(1)] (4.34)
[SN] is the over-all transfer matrix which relates the state vector at
one end of a pipe to that at the other end. Although the elements of
a field transfer matrix involve complex arithmetic, the multiplication
of matrices shown in Equation (4.34%) may be performed numerically by
the use of the computer.

In view of the relation in Equation (h.33) and the boundary
conditions in Equations (4.26), one may immediately obtain the solution
for the unknoWn variables gl(N) and nl(O) at the boundaries. The re-
cursive relationship in Equation (4.32) together with the initial value
{Zl(O)} may be used for the solution of the intermediate sections. The
solution is thus completely determined at the entire N+1 sections.
According to Equations (4.21) and (4.22), the oscillatory pressure
pl(I,J) and the flow rate ql(I,J) may also be determined by multiplying
e1JK +0 the solution of gl(I) and nl(I). By taking the real part of
the final result, one may express the solution as

p,(1,3) = PC(I) cos [Juk + PS(I)] (k.35)

ql(I)J) = QC(I) cos [Juwk + @s(I)] (4.36)
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Figure 10,

Portion of a Single Pipeline.
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where PC and PS are, respectively, the modulus and the argument of the
complex variable gl. QC and QS are the corresponding relations of nl.

4.3 Second Approximation

The solution of the second approximetion is to satisfy

- D = 2 2

[Po(I)° - Po(I-1)" + 2om n] + 2 Ll{pe,qg] = G(I,J) (%.37)

= 2 = o) 2

[Po(I-1)" - Po(I)° - 2om™n] + 2 Lg[pg,qg] = H(I,J) (4.38)
with the boundary conditions

po(0,3) = 0 (k.392)
4 (N,3) = -i ag & (1.390)
in which
6(1,9) = - {p(1,9)%p, (1-1,5-1) +ualpy (1, )4y (1-1,5-1)].
[o (T, 3)-03(1-1,3-1)] + oullay (T,3)5q, (1-1,3-1)°1}
(4.10)
B(1,3) = -{p, (1-1,541)-p, (1,3)-u0lp, (1-1, 341 J4py (1,3)].

[a (T-1,3+1)-a, (T, )] -onPhlay (I-1,3+1) g (,5)21}
(b.k1)

G and H represent the sequences of non-linear oscillating terms,
which are evaluated by the solution of the first approximation. If the
solution of the first approximation shown in Equations (4.35) and (%.36)
is substituted into Equations (4.40) and (4.41) and the complex variable
notation to express a sinusoidal function is employed, one obtains, after
simplification,
(1) = A0(T) + 2[RL(I)+E1R2(I)+E"2R3(T)] P29 (4 42)
H(I,J) = -AO(I) + 2[S1(I)+E S2(I)+E283(I)] eldul (4.43)
where E 1is evaluated as previously. AO is a real variable and
Rle.., Sl... etc, are complex variables. AO(I), R1L(I)... and SL(I)...

are terms representing the combinations of the known quantities of PC,
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PS and QC, QS at the sections I-1 and I. They are not shown herein
because of the tediousness, however, they may be seen in the computer
program listing in Appendix B.

In view of Equations (4.37) and (4.38), together with Equa-
tions (4.42) and (4.43), one may again uncouple each of Equations (4.37)
and (4.38) to yield

152(1)2 = 1"32(1-1)2- Sonh + AO(T) RS
and

Ly [pp,ap) = [RL(I) + E-lRQ(I) + E2R3(T)] &HEHE (4.45)

Lplpysapl = [SL(T) + E 82(T) + E253(1)] eleduk (4.46)
Equation (h.hﬁ) with the specified condition, f%(o) = 1, yields the
solution of the mean pressure recursively. The oscillatory solution
must satisfy a set of non-homogeneous linear difference equations, Equa-
tions (4.45) and (4.46), together with the boundary conditions

p2(0,J3) = 0 (.h7a)

ap(N,3) = - 1 Ag &I | (4.47b)

The system of Equations (4.45), (4.46) and (%.47) includes the
oscillation due to two different harmonic frequencies. The non-homo-
geneous parts of Equations (4.45) and (4.46) contain known terms of the
second harmonic oscillation, while the bounary condition, Equation
(4.47pb), is of fundamental excitation. In a linear system, the solu-
tion due to the excitation of two different harmonic frequencies may be
treated independently and the results superposed to yield a complete
oscillatory solution. Thus, Equations (4.45) and (4.46) together with
Equations (4.47) are reduced to the following two systems.

The first system due to the fundamental frequency excitation

1s to satisfy
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Ly[p};all = 0 (4.148)

Lylpj,al]l = 0 | (k.49)
with the boundary conditions

py(0,3) = 0 (4.508)

. idwk
Q}(W,3) = -1 Ag e (+.500)
The second one corresponding to the second harmonic frequency

must satisfy

Iy[p,a3] = [RL(I) + B7'R2(1) + E2R3(1)] eX®0K (k.51

[SL(I) + E s2(1) + E°s3(1)] e12uk () 52)

Ly[pg,a5]
with the boundary conditions

P5(0,J) = 0 (%.53a)

a5(N,J) = 0 (4.53Db)
The single and double primes on the variables p, and go are used to
denote the solution of each system.

The procedures to obtain a solution to the system of Equations
(4.48), (4.49) and (4.50) are identical to those of the first approxima-
tion in the previous section except now the mean pressures which appear
as the variable coefficients in the difference operators are calculated
from Equation (4.4h). The details will not be repeated herein.

We shall consider the solution of Equations (k.51), (4.52) and
(4.53) in which the forcing functions appear in the non-homogeneous
parts of the equations rather than at the boundary. We may again as-
sume

py(1,7) = g, (1) HOE (k54)

a8(I,3) = np(1) el2Juk (5.55)
where £,(I) and n,(I) are complex variables to be determined. After

substituting Equations (4.54%) and (4.55) into Equations (4.51) and
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(4.52), and dropping the factor o T2Juk
- ~ o
Bo(1)y(1) + [n0By(1)tom"E] (1) - E Ep(I-1) (I-1)

_E'e[ma%E(I)—cm?h]ne(I—l) = RL(I)+E 'R2(I)+E-2R3(I)

(k.56)
“B,(1) (1) + (I )-om bln, (1) + EB,(1-1)g,(1-1)
-Eg[ma%E(I)+om2h]n2(I—l) - SL(I)+E S2(I)+E°83(I)
(+.57)
These two equations may be combined and rearranged to yield
Eo(I) = C1L(I) £,(1-1) + €12(1) ny(I-1) + 2B(T) (+.58)
n2(I) = C2L(I) £,(I-1) + C22(I) ny(I-1) + 2Q(I) (%.59)

in which
ZP(I) = [RL(I)+E"1R2(I)+E"2R3(I)-S1(I)-E S2(T)-ES3(I)]
/ 125,(1)]
-cmh[Rl(I)+E'lR2(1)+E'2R3(I)+31(I)+E s2(1)

+E°53(1)] / [20B(1) B (1)) (4.602.)

7Q(I) = [Rl(I)+E-1R2(I)+E—2R3(I)+Sl(I)+E s2(1)

+E283(I)] / [EmQEE(I)] (4.60p)
and Po(I-1) : .
CIL(T) = — cosuoh + 220 _sinouah (4.61a)
PQ(I) P, (I)
€12(1) = -[in0F,(I) sinuoln + 2om°h cos2uoh
. 232 .
10 m2h™ sin2wlh =
P 4.61b
iPo(I-1) sin2uOh
c21(1) = - 2 — ) (4.61c)
m0P5 (1)
(22(1) = costuoh + LOMIL sin2woh (4.614)

O.’%Jg(]:)
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According to Equations (4.54) and (4.55), the boundary conditions

become

£5(0) =0 (k.62a)

n2(N) =0 (4.62p)
Equations (4.58) and (4.59) may also be expressed in matrix notation as

{zo(D} = (D)) {z,(1-1)} + {r(1)} (4.63)
where the state vector {Z,(I)} and the transfer matrix [TN(I)] are

defined as previously. The forcing vector {F(I)} at the Ith reach is

defined
e} - {Z3) (+.60)

Equation (4.63) subjected to the boundary conditions, Equations (k.62),
is a non-homogeneous linear equation. From the theory of corresponding
linear differential equations, the general solution of Equation (4.63)
is obtalned by summing the particular and the complementary solu-
tions. (9:8,9) If the initial value of {ZQ(O)} is assumed, say

{z 00} ={ .} )
where a and b are any arbitrary constants, the particular solution
may be obtained numerically by the recursive relationship of Equation
(4.63). The particular solution of n at I =N so obtained may not
satisfy the boundary condition shown in Equation (#.62b). Let us denocte
the result of nz(N) by, say, c. The complementary solution must there-

fore satisfy the corresponding homogeneous equation

{z,(0)} = (1)1 {zp(1-2)} (166)
subjected to the boundary conditions

£,(0) = -a (k.67a)

Np(N) = -c (k.67)

The procedures to obtain the solution of Equations (4.66) and (4.67) by
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the technique of transfer matrix have already been shown in the pre-

vious section, thus the particular and the complementary solutions to

the system of Equations (4.62) and (4.63) are completely determined.
After summing these particular and complementary solutions and

multiplying the result by o12JuK

, according to Equations (4.54) and
(4.55), one obtains a general solution of the oscillatory variables,

pg and qg, corresponding to the excitation of second harmonic fre-
quency. Superimposing this result to that of the fundamental frequency,

pé and qé, one obtains the complete oscillatory solution with second-

order approximation.

L.4 Verification by Numerical Solution

The semi-analytical solution of the non-linear finite differ-
ence equations with second-order approximation developed previously is
compared with the numerical solution by the method of characteristics.
There are two reasons for meking this comparison: (1) the accuracy of
the method-of-characteristics solution has been verified experimentally,
(References 17 and 18.) A good comparison ensures the accuracy of the
second-order solution, too. (2) The solution of the second-order approx-
imation will be used in the next chapter to investigate the error bound
in the numerical solution with the method of characteristics. Thus, it
1s necessary to verify that the second-order solution is able to repre-
sent the numerical one for any magnitudes of reach length and the iner-
tial multiplier,

The example considered is a single horizontal pipe of 12 miles,
1.1 ft diameter with a fixed inlet pressure of 446 psia and a variable
flow demand at outlet end of [100 + 25 sin(%%%)] in mmefd, where t 1is

in minutes,
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The solution for the pressure at the outlet end of the pipeline
determined both numerically and semi-analytically by using various
reach lengths are presented. Figurell shows an accurate solution both
with numerical method and second-order approximation by using &x = 1
mile, @ = 1 and correspondingly &t = 4.} seconds. The solution of the
first-order approximation is also shown in this figure to illustrate the
fact that the linearized solution is not sufficient to describe transient
phenomena in natural gas systems. The numerical and the second-order
solutions of the same problem by using only two reaches &x = 6 miles
and one reach Ax = 12 miles are shown in Figures 12 and 13, respec-
tively. An appropriate time increment and & = 1 are used for each
case. It can be seen from these Figures that the second-order solution
is in good agreement with the numerical one when the same 2Ax and @
are used. The results in Figures 12 and 13 are incorrect due to large
Ax. However, they are presented to illustrate the fact that the second-
order solution is able to represent the numerical one even though the

length of reach used 1s unreasonably large.
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V. ERRORS DUE TO THE DISCRETTZATION AND THE INERTIAL MULTIPLIER

The existence of crror in the solution of natural gus trans-
ient problems with the method of characteristics has been well recog-
nized.(23) This error being a result of finite difference approximation
is commonly referred to as the discretization or truncation error.
Users of this method for transient solutions may eliminate this error
by limiting the reach to a small length Ax . Although the solution
so obtained is accurate, the computational time for the analysis of a
moderately slow transient in a complicated system is very lengthy and
uneconomical.,

The theory developed in Chapter II has employed an inertial
multiplier ¢ in the dynamic equation, This multiplier in the model
of the characteristics method significantly increases the magnitude
of time increment for numerical computation. However, the question
arises as to how large an inertial multiplier may be used for a system
without introducing appreciable error. Consequently, it is most de-
sirable to investigate the error existing in the characteristics-
method solution thereby imposing limitations on the allowable Ax
and ¢ in a given problem. The work in this chapter is devoted to

such an investigation.

5.1 Investigating Errors by Numerical Experiments

The second-order solution developed in the previous chapter
is used specifically as an alternative to the numerical result when
the steady oscillatory problem is concerned. The reliability of the
second-order solution has also been demonstrated by the comparison

with the numerical solution (see Figures 11 to 13). The advantage of

-50-
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adopbing this solution to represent the numerical one is obvious as it
expresses the result by a transfer matrix in terms of the system parame-
ters such as Ax, a and the pipeline characteristics, Once the system
Parameters are given, the calculated transfer matrix combined with the
given boundary conditions will express the solution at any location
along the pipe explicitly as a function of time. The most useful as-
pect of this feature is to provide a direct means of evaluating the
System error. The error in the solution may be obtained when the solu-
tion of a problem with Ax -0 and o —» 1 is compared to the one with
certain Ax and ¢ . Although the solution involves complex arithme-
tic, the numerical experiments can be pursued by the use of the computer
which permits the error to be investigated for a wide spectrum of sys-
tem parameters.

It must be realized that the above procedures can determine
only the numerical value of the error for a given set of parameters.
For a different set of parameters, a different value of error will be
obtained. Consequently, the problem of correlating the error with the
Corresponding system parameters arises.

From the similarity analysis, the relevant system parameters

can be found as

v, ¢ = F(my o, wy, A4, h, O‘) (501)

in which ¢ and ¢ are, respectively, the error bounds of pressure
and flow rate in dimensionless forms. m, o, w, etc. are dimensionless
quantities defined as in the previous chapter. It has been shown from
the experience during this investigation that each parameter in the

argument of F in Equation (5.1) influences the errors at approximately



-50-

the same degree so that the number of the governing parameters may not
be reduced., Thus it is extremely difficult to present the experimental
results for such a wide scope of governing parameters.

However, by examining the solution of the first-order approxi-
mation in the previous chapter and neglecting terms of small effect,
one may derive the solution in algebraic form from which the error
functions may also be determined algebraically (see Appendix A). The
algebraic equations of the error functions so obtained may be used
effectively to determine the controlling parameters that govern the
error bounds from the model of the second-order approximation. The

results are shown in functionals as follows

y APa(1 + oPmPe?) _ £, (o, S (5.2)
Mede AQ J-ITd.‘

4/3 220 1/3
¢ Pg (12L * o) | f(a, omh ’m_.._d,.__P ) (5.3)
w= A w

where Py is the steady state outlet pressure in dimensionless nota-

tion. Equations (5.2) and (5.3) are of the form which was conjectured
by Equation (5.1). Furthermore, the grouping of the parameters in
these two equations demonstrates the feasibility of presenting the ex-
perimental results,

Although Bquations (5.2) and (5.3) are derived on the basis
of the first-order approximation, the functional relations f; and
fr in these two equations will be obtained by pursuing the numerical
experiments with the use of the computer on the model of the second-
order approximation. The results from the numerical experiments are
shovn in Figures 14 and 15, It can be observed from these two dia-

grams that in the case of ¢ = 1, where only the discretization error
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dominates, the error appears as a straight line with the slope of two.
This confirms most of the mathematical derivations that the discreti-
zation error in the trapezoidal rule approximation is of second order

of the grid size,(5’8) i.e.

\lf;¢ = O(hg) (5.4)

In the cases of « other than one, the results of a wide range of
System parameters may well be represented by curves, which justify
further that the grouping of the parameters in Equations (5.2) and

(5.3) is valid.

5.2 Use of the Error Diagrams

The diagrams shown in Figures 14 and 15 can be used to se-
lect the optimal h and o so that the largest time increment in the
transient analysis program may be used. It is recognized that in the
natural gas industry, the measurement of flow rate is rather inaccurate,
The requirement of an accurate solution in flow rate is of less signifi-
cance. It is therefore suggested that the values of h and «a be
determined from the specification of the allowable pressure error with
the use of Figure 14, while Figure 15 is used only for the purpose of
checking the accuracy in the flow solution.

It must be remembered that these two diagrams are constructed
on the basis of a single line system where the existence of steady
oscillation in the solution is assumed, With slight modification in
interpreting the parameters, they may also be applied to the analysis
of a network transient with non-sinusoidal boundary condition specifi-

cations. In the application to the network transient analysis, the
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parameters used in these two diagrams are determined as follows. o

of each line is found from the pipeline characteristics (f, I, D),
while m (= E%@Q) and Py (::J?TTTZS;;FT) are calculated directly
from the init121 steady state condition. The determination of Aq

and ® of each line needs some approximations., For the transient
analysis of a distribution or transmission system, the flow demand

at each distributing node is normally given as a function of time.

If it is assumed that the amount of the amplitude in the demand curve
of each node is distributed to each adjoining line during the trans-
ient condition according to the proportion of the initial steady state
flow rate through the line, then, Ag of each line may be determined
as the ratio of the amplitude of the flow demand curve with respect

to the mean flow rate at the downstream node of the line. « of this
line may also be determined from the frequency of the same curve.
Whenever the flow demand specification is not a sine function, w may
be obtained by assuming that the frequency of the demand curve is
equivalent to that of a fictitious sine curve whose steepest slope
matches with that of the real demand curve. Thus

Qt L
N B

(5.5)

w =

in which Q is the steepest slope in the flow demand curve in
mncfd/sec. AQ is the amplitude of the demand curve in mmefd, L and
B are, respectively, the length in feet and the wave speed. in ft/sec.
The idea for this assumption is based upon the realization that it is
the rate of change of the flow demand that governs the severity of a
transient rather than the duration of the transient itself. In case

the demand is altered instantaneously by a substantial amount, such
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as in the occasion when a valve is suddenly shut off, this assumption
cannot yield a realistic frequency value., However, in that case, one
understands that o =1 and a small Ax should be used for an accurate
solution.

Although the assumptions set forth to determine Ag and o
in a network transient are rather conjectural, its applicability can
be illustrated by practical examples, It is apparent that more work
could be done to determine with justification the parameters in the
error diagrams for the examples of complex network systems with general
boundary condition specifications. The examples that illustrate the
use of the error diagrams described previously together with the com-
parison of the solution so obtained with an accurate solution are

presented in the next chapter.



VI. TRANSIENT ANALYSIS AND CONTROL APPLICATIONS

In the preceding chapters, the development of a model for
the solution of natural gas transient flow problems with the method
of characteristics including the inertial multiplier has been pre-
sented., The error existing in the solution due to the numerical
approximation and the use of the inertial multiplier has also been
investigated and the results have been presented in diagrams so that
the users of the model may properly select the magnitudes of Ax and
0 for an optimum time increment in the numerical computations. In
this chapter, the application of the transient analysis model is illus-
trated by examples. An example is also included to demonstrate the
capability of the use of a valve-stroking computation to obtain a
feasible control solution taken in a compressor station when an un-
expected swing of load demand occurs in the system and the minimum

delivery pressure must be maintained.

6.1 Applications to Transient Analysis Computation

Two examples are presented herein. The first is a single
Pipeline with sinusoidal boundary condition specification. The second
is a simple network system subjected to arbitrarily specified boundary
conditions. In both examples, the procedure to determine Ax and «
is 1llustrated and the solution obtained by using the computed Ax
and ¢ with the standard characteristics-method analysis procedure
is compared to the accurate solution.
Example 1 - Consider a single pipeline with a fixed inlet pressure of
500 psia, and a variable flow at the demand end of [80+20sin(%%£)]

in mmefd, where t is in minutes. The parameters in the problem are
L = 12 miles, D = 1.2 ft, £ = 0,012, B = 1190 ft/sec.

~58-
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According to the definitions set forth in the previous
chapters, the dimensionless parameters are calculated as

o =316.8, m = 0.019, Aq = 0.25, w = 0.092, Pg = 0.87k

If the allowable error in pressure solution is five psi, which corres-
ponds to one percent of the inlet pressure, one calculates the values

of the grouped parameters

v Jéa(l + 0“1’
mmnAg

25

11

gm 6,54

JFa

With these numbers and the use of the diagram in Figure 14 and also

bearing in mind that the value of h (being Ax/L) must be the inverse
of an integer number of reaches, one may determine the most desirable
values of h and @ for the maximum time increment through a trial-
and-error procedure. In this example, h =1 and «a =3 are deter-
mined for the maximum time increment. The corresponding Ax and At
are respectively 12 miles and 160 seconds. Now, by reference to
Figure 15, the error of inlet flow rate, ¢, with the values of h and
o determined is found to be 0.77 percent of the inlet flow which
corresponds to a discrepancy of 0.6 mmcfd.

The transient analysis solution using the computed Ax and
At is shown in Figure 16. An accurate solution by using a small Ax
of one mile, o = 1 and correspondingly At of 4.4 seconds is also
shown in Figure 16. It can be seen that the maximum discrepancy in
pressure solution is about five psi and the discrepancy in flow solu-

tion is less than one nmefd,
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If it were assumed one can tolerate an error of three per-
cent (15 psi discrepancy) in the pressure solution of the same prob-
lem, the values of h and o determined by following the same pro-
cedures of calculations are h = 0.5 and o = 8. The corresponding
Ax  and At are six miles and 213 seconds, respectively. The error
in the flow solution determined by using the computed h and ¢ and
with reference to Figure 15 is 8.25 percent of the initial flow which
corresponds to a discrepancy of 6.6 mmefd, The transient solution by
using the computed Ax and At is also shown in Figure 16. The
maximum deviation of the solution from the accurate one falls within
the range being specified or determined by the use of the error dia-

grams as can be noted in this figure.

Example 2 - Figure 17 shows the geometric configuration of a network
with initial steady state flows and nodal pressures indicated. The
pressure at Node 1 is held at 350 psig while the flow demands at the
other nodes are specified as shown in Figure 18. The error in pfessure
solution of 3.5 psi (i.e. ¥ = 1 percent) is allowable,

If the Ax of 2.5 miles is used throughout the entire sys-
tem, the pipeline characteristics and the calculated dimensionless
parameters are listed in Table I. By using the data in the last two
columns of Table I and with reference to Figure 1lh, one can see that
the pipeline from Node 1 to Node 4 is most critical to yield the
smallest value of « based upon the same degree of error. One should
use the data from this line to determine the time increment At for
the whole system. The value of « obtained from this line is 10.>
and the corresponding At is two minutes. The values of ¢ at the

other lines shall be calculated on the basis of this At. It can be
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Q3 = 30
. P3 = 276.19

The Sequences of the Line Data are L(mi)-D-f

Figure 17.

Schematic Diagram of the Network of Example 2.
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observed that by the use of the inertial multiplier in a transient
analysis program, it does not require any interpolation or adjustment
of the length or wave speed for some odd lengths of the pipeline in
a network in order to have the same At for each line in the system
and also satisfy the characteristic equations.

The solutions by using Ax of 2.5 miles aﬁd the calculated
At of two minutes are presented in Figure 18. The execution time for
this three-hour transient in the IBM 360/67 system is 1l seconds. The
accurate results by using o = 1, Ax = 2,5 miles and correspondingly
At = 11 seconds are also shown in Figure 18. The computer execution
time is now 52.7 seconds. And, it can be noted that the approximate
results deviate from the accurate ones by less than one percent as
being desired.

These two examples have demonstrated the validity and the
usefulness of the error diagrams presented in the previous chapter,
The allowable error in the solution of transient simulation may be
specified a priori and the desirable length of reach and the inertial

multiplier can be determined by the use of these error diagrams,

6.2 Application to Transient Control Computation

The concept of control computation by use of the valve strok-
ing principles applied to the characteristic equations for natural gas
systems has been described briefly in Chapter III. An illustrative
example is presented below to demonstrate the capability of obtaining
a feasible stroking solution when the inertial multiplier is employed

into the model.
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Figure 18. Example 2 -- Transient Pressure and Flow Variation

in a Network System.
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Example 3 - A single pipeline with a compressor station at the inlet

end and the delivery point to the customer at the outlet end is
hypothesized. The compressor station is assumed to be located at a
Storage field so that the suction pressure of the compressor is sub-
stantially constant. The compressor is assumed to be operating nor=-
mally at the discharge pressure control with the set-point value of
500 psia. The system is initially in steady state condition with flow
rate being 30 mmecfd until at time +t = O; then the customer load de-
mand is specified as shown in Figure 20. It is desired that the com=-
pressor be kept operating at the same discharge pressure unless the
delivery pressure at downstream cannot be maintained at the contract
minimum value of 450 psia.

The computational scheme can be visualized by reference to
an x-t plane shown in Figure 19. In the first phase of the computa-
tions, the analysis procedures are carried forward in time by specify-
ing the fixed compressor discharge pressure of 500 psia at the inlet
end and the variable load demand at the outlet end until at time tq
when the delivery pressure drops below the contract minimum value.

The second phase of the computations is to determine the controlling
variables in the compressor station so that the pressure at downstream
is maintained at the contract value while the customer load demand is
also satisfied. The solution for this phase of operation is obtained
by performing the valve-stroking computations. By specifying the de-
sired boundary conditions at the downstream end over the duration DH,
Figure 19, one obtains a particular solution for the corresponding
boundary variations at the upstream end over the period CG. The com-

putational procedures may be carried out by re-calculating the
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conditions on the Ct characteristic CD with the specified condi-
tions at D and the known information below CD. The computations
advance in time by obtaining the solution on the diagonal lines
parallel to CD wuntil at GH when the pressure at the upstream end
G falls back again to the compressor discharge pressure setting of
500 psia. In the last stage of the computations, the analysis proce-
dures proceed by specifying the upstream pressure fixed at 500 psia
and the prescribed load demand at the downstream boundary. The solu-
tion within GHK is obtained first, then the computation is advanced
in time until the transient is over,

According to the criteria in the previous chapter, the com-
putation can be handled by dividing the pipe into five equal reaches
and using «o of 3.5 in order to achieve an accuracy of 0.5 percent
error in pressure solution. The specified and calculated conditions
at both upstream and downstream boundaries are shown in Figure 20.

The actual operation of the control mechanisms in the com-
pressor station versus time can be computed according to the preceding
analysis if the calibration of the horsepower versus the driving speed
of the compressor unit is known, because the horsepower requirement
may be found by using Equation (3.24).

As a check on the accuracy of the results shown in Figure 20,
the computed upstream pressure and the prescribed load demand at the
dovnstream end are placed as boundary conditions on a standard charac-
teristic method analysis. The same initial conditions are also used.
The objective is to see if the action of the control devices actually
Permits the delivery pressure to be maintained at the specified mini-

mum value even when the load demand keeps increasing. This analysis
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confirms with the control computations within 0.5 percent as can be
seen in Figure 20. Also, the unsteady flow conditions are identical

during the transient period.



VII. NATURAL GAS FIEID EXPERIMENT

In order to verify the theory developed in the previous
chapters, a field experiment in a natural gas transmission line was
planned along with this investigation. The experiment was originally
designed to show the validity of the solution of the control compu-
tation as illustrated by example 3 in Chapter VI except that the
Pressure, flow rate and the pipeline characteristics in the experi-
ment were of different values. The system was initially maintained
at steady state condition. The valves at both ends of the line were
operated in such a way as to produce the calculated flow rate at the
upstream end and the specified flow demand at the downstream end.

The pressures at both ends were measured to compare with the calcu-
lated solutions. It is apparent that if the measured pressures at
both ends of the line confirm the computed ones, one can be convinced
that the theory of the valve stroking is applicable as well to the
controlled operation of a natural gas system.

Unfortunately, the friction factor of the test line during
the experiment was much higher than what had been used in maeking the
computation. The pressure-drop across the line was so substantial
as to cause the objective of this experiment to be unfulfillable.
However, the result of the experiment is still valuable for the veri-
fication of the transient flow analysis solution, particularly, for
the illustration of the validity of the concept of the inertial
multiplier in the simulation of natural gas transient flows. The
result of the experiment will be shown below following the descrip-

tion of the experiment.

-T1-
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7.1 Description of the Experiment

The experiment was conducted on a section of the gas trans-
mission system belonging to the Consumers Power Company, Jackson,
Michigan. The line chosen is a 12 inch pipe carrying gas from ﬁhe
St. Clair Compressor Station to the town of Mt. Clemens. Figure 21
shows the schematic of the test line,

One Sanborn strip chart recorder was used at each end of
the line for measuring pressures. Statham strain gage type pressure
transducers were used as the pressure sensing device., Each unit of
the recorder and the transducer was calibrated befoie the test by
the use of the Heise Pressure gage in the G. G. Brown Laboratory,
The University of Michigan, and was checked during the test in the
field by the use of a dead weight gage. During the test the amount
of gas to feed into the line at St., Clair end was controlled by a
computerized device located at the control room in the compressor
station. A flow recording station at the St. Clair end of the line
was used to check the actual flow into the line., A control valve at
the Mt., Clemens end of the line was operated manually to produce the
desired flow rate., A flow recording station located upstream of the
control valve was used to monitor the valve operation versus time,
The measurement of gas temperature was available at Mt. Clemens,

The set-up of the measuring instruments at each end of the line 1is
shown in Plates I through III.

Before the test, the flow in the line was supposed to be
in steady state condition. The line was originally in such a condi-
tion with a pressure-drop of 22 psi at a flow rate of 15 mmcfd.

However, there existed a slight transient in the line when the test
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The Strip Chart Recorder and the Pressure Transducer at

Plate 1.

the St. Clair End of the Line.



The Measuring Instruments at the Mt. Clemens

End of the Line,

Plate 2.
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The Pressure Transducer and the Dead Weight Gage

Used at the Mt. Clemens End.

Plate 3.
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started. Radio communication was used to synchronize the valve opera-
tions and the strip chart recorders at both ends of the line., Gas

was fed into the line at the upstream end and was taken out of the
line by the operation of the control valve at the downstream end
according to the curves shown in Figure 22, The adjustment of the
operations was made at two-minute intervals., Unfortunately, owing to
the excessive pressure-drop across the line during the test, the con-
trol valve at Mt. Clemens was fully open at approximately ten minutes
after the test started, yet the maximum flow rate had not been reached,
The valve at Mt., Clemens was then left wide open and the actual flow
through the valve was measured until the peak of the downstream flow
demand was over so that the control valve could be closed gradually
to yield the specified flow rate., The flow rate at the upstream end
of the line was still controlled as plamned. The entire period of

the measurements in transient flow conditions lasted eighty minutes.

T.2 Result of the Experiment

Since the original iﬁtention of the experiment could not be
fulfilled due to the unexpected high friction in the test line which
caused the control valve at Mt., Clemens to be unworkable during the
test, the result measured could only be used to check the solution of
the ordinary transient analysis computations. The measured pressures
at both ends of the line were placed as the specified boundary condi-
tions in a transient analysis program, and the computed solutions of
the flow rate at both ends from this analysis program were compared

with measured flows.
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The isothermal wave speed in a natural gas system may be
calculated by Equation (2.2), i.e.

2 gzRT
B e
My

The molecular weight of the gas was 17.37 lb/mole. The compressibility
factor was 0.96. The system temperature was determined to be 500°R.
Thus, the wave speed was obtained as 1170 ft/sec. A friction factor
was determined from the pre-transient steady flow condition by the use
of Equation (3.19). The friction factor so obtained was 0.026 which
was about 2.5 times larger than the value of the friction factor pre-
viously available. Nevertheless, this high friction factor is used
during the transient analysis calculations,

The method-of~characteristics solution by using o =1 and
ten reaches Ax = 1,37 miles is shown in Figure 22, The time incre-
ment used is 6.18 seconds. The execution time in the computer system
of IBM 360/67 is 16.0 seconds. The result, in general, is agreeable
with the experimental data, although slight discrepancy in the solu-
tion existed as the sensitivity of the flow measuring device used in
this experiment is doubtful. Another computer solution by using
Q=4 and five reaches Mx = 2,75 miles and correspondingly
At = 49,5 seconds is also shown in Figure 22. The result confirms
the previously computed solution yet the computer execution time is
now only 5.0 seconds.

The natural gas transient flow solution with the method of
characteristics has been verified experimentally by a previous in-
vestigator.(l7’18> The above comparison demonstrates the usefulness

of the concept of the inertial multiplier incorporated into the
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method-of-characteristics procedures. The use of the inertial multi-
plier improves the effectiveness of this method of solution so far as

the computational cost and the accuracy of solution are concerned.



VIII, SUMMARY AND CONCLUSIONS

In the foregoing chapters, the concept of the inertial multi-
plier incorporated with the characteristics procedures as a method of
solution for natural gas transient flow problems was developed. The
use of the inertial multiplier permits not only an optimum time incre-
ment for numerical computation to be used under various transient flow
conditions, but also a feasible control solution to be calculated
directly by using the valve-stroking principles applied to the charac-
teristic equations for natural gas systems.

A solution with the second-order approximation to the non-
linear finite difference characteristic equations was developed in a
steady oscillatory flow system. By employing the solution of the
first approximation to estimate the non-linear terms which form the
non-homogeneous part of the linearized equations, the solution of the
second-order approximation was achieved. This was accomplished by
solving the non-homogeneous linear difference equations. Although a
higher approximation may be accomplisghed by the same process of re-
DPeated substitutions, the solution of the second approximation is
sufficiently accurate for engineering purposes. The results of the
second-order approximation were shown to confirm the numerical solu-
tion with the method of characteristics.

By the application of the second-order solution, the vali-
dity and the range of usefulness of the inertial multiplier and the
criterion on the allowable length of reach for a specific transient
flow analysis problem have been investigated. With the use of the

computer, the error bound in the solution corresponding to the

-81~
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discretization and the use of the inertial multiplier was obtained
quantitatively by pursuing the numerical experiments for a wide spec-
trum of system parameters. The results were presented in diagrams
for engineering uses. Examples illustrating the application of the
error diagrams to specific problems were included. The transient
solution by using the computed Ax and ¢ was checked with the
accurate solution, which showed the reliability of the error diagrams.
Although the diagrams were constructed on the basis of a steady
oscillatory flow model, the applicability of the results to general
transient flow conditions was demonstrated by practical examples.
However, it is recommended that further study in this area be con-
ducted to ensure that the error diegrams are applicable to any com-
plex network systems with arbitrary boundary condition specifications.

The computations in connection with the field experiment
which was performed in a natural gas transmission line demonstrated
the usefulness of the concept of the inertial multiplier. By per=-
mitting a large value of the inertial multiplier to be used in a slow
transient condition, the simulation of such a transient flow problem
in natural gas systems can be accomplished with significant reduction
in the computational time, while the accuracy of solution is still

maintained.,



APPENDIX A

ALGEBRAIC SOLUTION OF THE FIRST-ORDER APPROXIMATION
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The solution of the first-order approximation in algebraic
form is derived herein to reveal the controlling parameters that
govern the error functions. The first-order solution by the use of

the transfer-matrix technique can be expressed as

(NJt) (O,t)
{%(N,t)} = 5] :opﬁ(o,t) (A.1)

where [SN] is the over-all transfer matrix of the pipeline and is
determined by Equation (4.34) which is reproduced below.

[sw] = [ow(w)] [Tn(m-1)] ... [TN(1)] (A.2)
The key factor that dominates the difficulty in obtaining the solu-
tion expressed in the algebraic equations lies in the manipulation of
the matrix multiplication shown in Equation (A.2). It is most effec-
tive to perform this multiplication by the use of the computer as has
been done in pursuing the error investigations. However, in order to
determine the controlling parameters of error functions, a slight
approximation can be made to permit the manipulation of the process
of Equation (A.2).

By using the following substitutions

3313
sinwoh = woh - Q—%—E-

coswoh ® 1 - %-a?o?hg
one may approximate the elements of the field transfer matrix [TN(I)],
which were shown in Equations (4.29a) to (4.294).

i_@_‘_l_}_[ _ ofoPp? iomwhﬂ

c(r) = B, (1) 2 T E(T)

(A.32)

~8h-
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C12(I) = ager [2om2h + imeoPnP) (1) + loo"mInd

(D B (1)
3o+n3P
- oweePhd - b OAZ Pl(I)} (A.3b)
1P (1-1) 30303
c21(1) = M {: -z :l (A.3c)
c22(1) = 1 - woPn® | iomud (A.34)

2 B (1)
in which, and in the following derivations as well, the terms con-
taining hl+ or higher order are neglected. With these expressions
and the following approximation
B - J1 - 2orfin #1 - vl
the multiplication of the field transfer metrix shown in Equation

(A.2) can be accomplished by performing a simple algebraic manipula-

tion. The result is

- o20f  onfeo? oy .
R1l = §i(N) [l - z (L -1%) + iomw
;i P aé?+h2)} (1)
5 2
e Pl(N) [m“f ( - Pl(N)2 + 2om
- % mewtol (2 + h2) + 3“02m3(21é2)] (A.kb)
3B, (W)°
2
S LX)
vl (A.be)

3P, (W)
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RE2 = 1 - -aﬁoF[: .__2_%“35)_] ¥ icm[l - 9323 (b - hg)}

(A.kd)
where RIl, R12 et al are the elements of the over-all transfer matrix,
[SN]. That is

R1l RI12
[s] = (4.5)
R21 R22
By combining Equation (A.1) with Equation (A.5) and using the following

boundary conditions

pl(o)t> =0
ot (A.6)
ql(N:t> = -iAge™®
one obtains the unkonwn conditions at the boundaries asg
py(N,t) = - iAqel®WtR12/R22 (A7)
q;(0,t) = - iage @t /Ro2 (A.8)

where R12 and R22 are determined from Equations (A.4b) and (A.L4d),
respectively.

Equations (A.7) and (A.8) express the solution of the first
approximation in algebraic equations, in which the factors of thé dis-
cretization h and the inertial multiplier ¢ are ihcluded. These
two equations may be used to determine the error functions explicitly.
The error functions are determined by subtracting the solution with
h 50 and o -1 from the one with certain h and o«. The error

functions so obtained are, after neglecting the terms of small effect

1wt 2
R L (@ - 1) + 312_7 fh)} (4.9)
BL(M2(1 + 1omo) 1
1
~ -1 it i 2 3}12.}-_3- §
j - g [(o? S1) - = () } (A.10)

28, (M)3(1 + 1omw)?
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in which $' and ¢ are error functions in the solution of the outlet
Pressure and inlet flow, respectively. The absolube values of these

functions determine the error bounds. Thus

¥ o= ¥ = ——2eag [(cxg - 1) + i<“2m2h2> } (A.11)
\hai(l + demga?) 3 fa
2.31,2 %‘2 5
G- (3] = s [(a2-1)2+ S—m—%ﬁ— ]
2Pd§(l + Ogmng)

(A.12)
where ¢ and ¢ are, respectively, the error bounds in pressure and
flow, and Py is used to replace ﬁi(N), the steady state outlet
Pressure.

Equations (A.11) and (A.12) are derived from the solution
of the first-order approximation. The grouped parameters which
appear in these two equations may be valid as well in the model of
the second-order approximation, since the difference in the magnitudes
of the solution of these two approximations is small., Thus, for the

model of the second-order approximation, the following functionals

are used.
2
1 Jfa(l + 0207 ) -t (o omh (A.13)
A LA A
L I
Pg2(1 + o“m ) P.3
P P . - £h(a, ani |l (A.14)
W Agq

In view of these two equations, it is possible to present
the results of the error investigations pursued by numerical experi-
ments., The functional relationships fl and. f2 are shown graphi-

cally in Figures 1k and 15, respectively.



APPENDIX B

A FORTRAN IV LANGUAGE PROGRAM FOR THE
SOLUTION OF SECOND-ORDER APPROXIMATION
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TRANSIENT ANALYSIS OF A NATURAL GAS PIPELINE :
SECOND-ORDER SOLUTION OF THE CHARACTERISTIC FINITE DIFFERENCE
EQUATIONS

FMOLWT = GAS MOLECULAR WEIGHT ==~ LR/MOLE

TEMP = AVERAGE SYSTEM TEMPERATURE -- DEGREES RANKINE

RHO = MASS DENSTTY AT THE BASE CONDITIONS =~ SLUGS/CU. FOOT
Cz COMPRESSIRILITY FACTOR

XL LENGTH OF THE PIPE =~ MILES

D = DIAMETER -- FEET

AL = THE INERTIA MULTIPLIER

F = DARCY-WEISBACH FRICTION FACTOR

PER = PERIOD -- SECONDS

PO = INLET PRESSURE -~ PSIA
00 = STEADY-STATE FLOW RATE -= MMCFD
DO = AMPLITUDE OF FLOW VARIATION == MMCFD

TMAX = DURATION OF TRANSIENT -~ SECONDS
GIV = AN ARBITRARY CONSTANT
B = WAVE SPEED -- FEET/SECOND
B2 = B¥%2
N = NUMRER OF REACHES
= LENGTH OF A REACH =-- FEET
DT = TIME INCREMENT -- SECONDS
= FREQUENCY -~ RADIAN/SECOND
PBAR = MEAN PRESSURE =-- PSIA
DI¥T = TIME STEP FOR PRINT-QUT -~ SECONDS

IMPLICIT COMPLEX(Z)
COMMON/FDE/ZR114ZR124ZR21+ZR2242111(20)4712(20)4221(20)4+222(20)4N,
1CA,F2,D1,PRAR(20) )

DIMENSTON ZPP(20)4Z0Q0(20)+sPC(20)4PS(20)40C(20),0S(20)
NAMELIST/DIN/NGFMOLWT 4y TEMP 4CZoXL 4yDoAL¢F9PERGPD+Q04DQTMAX 4 DTT,,GIV
1/0UT/RHN4B2¢BoyCKyCAgAyDXoyDTyFFeOMyPNyDQO,PHQO,DOO0L1yPHROL1yDPN,
2PHPN, DPN1 4, PHPN1Y

READ(5,DINy END=999)

WRITE(6,DIN)

RHO=FMOLWT*14,73%144,/(520.%1545,%32,2)
B2=C73%1545,%TEMP%32,2/FMOLWT

B=SORT(R2)

CK=RHD*%1,E6/(B86400,%144,)

XL=XL*5280,

A=,7854%D%D

DX=XL/FLOAT(N)

DI=AL%DX/R

FF=F%R2%DX*CK*CK/(D*A%A)*Q0*Q0

CA=CK%R*AL /A

OM=6,2R32/PER

OM2=2 , %M

F1=FF/(00%0Q0)

F2=2,5%FF/0Q0

NS=N+1

DO 5 T=1,NS

PBAR(I)=SORT(POXPO-FLOAT{I~1)%FF)
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PN=PBAR(NS)

THE FIRST-0ORDER APPROXIMATION
THE FIRST-ORDER SOLUTION IS EXPRESSED AS

PLI)=PC{I)%COS(OMRTI+PS{T)I®SIN(OM*T)
Q{IN=RC(T)%COS{OMET)I+QS (T *SIN(OM*T)
CALL FDETM(AL,OM)
ZQN=DO%CMPLX(0sy=1s)
ZQ0=Z0ON/1R22
QC{1)Y=REAL(Z00)
QS{1)=—-AIMAG(2Q0)
PC(1)=0.
PS{1)=0,
ZPP(1)=CMPLX(PC(1),~PS(1))
ZOO(1)=CMPLX(OC(1)+=~0S(1))
DO & J=1,N
I=J+1
ZPP(I)=211{(J)*ZPP(J}+Z12(J)*20Q0(J)
200(1)=Z221( ) *ZPP{J)+222(J)1%*200(J)
PC(I)=REAL(ZPP(I})
PSII)=-ATMAG(ZPP(T))
OC(I)=REAL(ZQO(I))
QOS(I)=-ATMAG(Z0O0Q(1I))
CONTINUE

THE SECOND-DORDER APPROXIMATION
CALCULATE THE MEAN PRESSURE

PN & T=2.NS
J=1-1
AQ=,.5%(PC{T)%%24+PS( ) %%2=PC(J)%%2~-PS{J)%%2+,5%F1*(QC(I)*%2+QS{1I)

1#%2+0C(JV%%2+0S(J)%%x2)+CA% (PC(I)*QC(II+PS(I)1*QS(I)=-PS{JI*QS(J)=
2PC(J)*QC{ I +COS(OMENTI*(QC( I *PC(J)+0S(T)*PS{J)-PC(T)I*QC(J)-PS(I)*
30S(J))+SIN(OMDT)* (PCLII*OS(T)+PCIII*QS(J)I~PS(1)*QC(J)=PS(J)*QC(I1)
4)))

PBAR{I)=SQRT(PRAR(J)**x2-FF=AD)

PN=PBAR(NS)

WRITE(64110) (PBAR(I),I=1,NS)

FORMAT(//'OMEAN PRESSURE = ',13FB.2/(17Xs13FR.2))
ZE1=CMPLX(COS(OM%DT) 4 SIN(OM=DT) }

ZE2=7F1=*7E1

THE SOLUTION CORRESPONDING TO THE SECOND HARMONIC FREQUENCY

CALL FDETM(AL,0M2)
ZPP({1)=GIVXCMPLX(1lav=14)

700(1)=7PP{1)

DO 10 I=1,N

J=1+1
R1C=¢5%(PC(J)1#%2-PS{ J)*#24CA% (PC(JI*QC(J)=PS(JI%0S(J}I+45%F1%(QC(J
1)%%2-0S (J)%%2)) - !
R1S=PC(JI¥PS{J)+,5%CA%(PC({JI*QOS{JI+PS(JI*0C(J) )+ 5*%F1*QC(J)*QS(J)
ZR1==,5%CMPLX{R1Cy=R1S) ‘
R2C=,5%CA%(QC(JI*PC(T)=PCIJI%QCIII+PS(JI%*NS(I)I=0S(JI*PS(T))
R2S2,5%CAR(PS(I)%*QC(J)=PCLII*QOS(TII+PC(I)I*QS(J)=PS{II*QC(T})

IR2==, 5% CMPLX(R2C,=R2S) o

R3C=, S%(PS{T)%%2=PC{T)k%24CA%{PS(T)*0S{T)=PC{II*QC (1) )+,5%F1%(QC(!
1)%%2-0S (1) %%2 J)
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R3S==PCIII*PS{I) =, 5%CA%(PC(I)*QS(I)+PS(I)*QC(I))+.5%F1*QC(I)*QS(1)
IR3==, 5%CMPLX(R3C,y=R3S)

SIC== 5% (PLLU) %% 2=PS(J)*%2+CAX(PS(J)*QS(II=PC{II*QC(JI) ) +5%F1%*(QC(
1J)1%%2=-0S(J)%%2) )
S1S==PC{J)%PS{J)+.5%CAR(PC{JI*¥QS{IV+PS{II®QCII) )= 5*F1*QC{J)I*QS(J)
IS1l==y S*CMPLX(S1Cs=S1S)
S2C==5%CA%X(PC{JI*QCIT)+PS{I)*0S{J)=PC{II*QC(JI=-PS(II*QS(T)
S2S== 5XCA*{(QCIII*PS(JI+0S(IV#PC(JII=PC{I)%QS{JII=PS(I)*QC(J)
1S2==,5%CMPLX{S2C4-525%)

S3C= 5% (PCAT)%x2=PS(I)*%2=CAX{PC(I)*QC(I)=PS{TI)%NS(I))=e5%F1%(0QC(]I
1)%%2-0S(1)*%2))
S3S=PCI)%PS(I)=a5*CA%X(PC(II*QS{TII+QC{II%*PS{I) )= 5%F1*QC(I)*QS(1)
253==,5%CMPLX{S3C,-53S)
IP=(ZR1+4ZR2/Z2E1+7IR3/2E2~1S1-152*7E1=71S3%2E2)/(2.%PBAR{J))~(ZR1+ZR2
1/ZE1+7R3/72E2+2S1+2S2%72E1+ZS3%2E2)%F1/(2.*%CA*PBAR{J)*(PRAR(I)+PBAR
2(3)))
20=(ZR1+ZR2/2E1+ZR3/ZE2+7S1+21S2*%7E1+2S3%72E2)/(CA%(PBAR(I)+PBAR(J))
1)

IPPJY=Z11(1)*ZPP(I1)+212(T1)*Z20Q(T1)+ZP

ZO0(JIY=22 (1) *ZPP(1)+222(11%Z200(1)+20

CONTINUE

7Q20=ZPP{1)%ZR21/2ZR22-10N{NS)/ZR22

IP2N==ZR11%*ZPP(1)+ZR12%20Q020

)
)

THE SOLUTION CORRESPONDING TO THE FUNDAMENTAL FREQUENCY

CALL FDETM{AL,0OM)

WRITE(G,101)

FORMAT('1 FIELD TRANSFER MATRICES'/18X,'C11',24X4'C1l2',24X,'C21"
1,24X%X,'C22")

D0 15 J=1.N

WRITE(6,102) JoZ11(J)+212(J)4221(J)e222(J)

FORMAT('O J=%,13,4(2E12.4,3X))

WRITE(6,103) ZR11,ZR1242R214ZR22

FORMAT(//1'0 THE OVER-ALL TRANSFER MATRIXY/BXs4(2E12.443X)//177)
1Q0=2QN/ZR22

ZPN=ZR12%*Z00

DQO=CARS(Z0Q0)

PHOO=ATAN2 (AIMAG(Z00),REAL(ZQ0))

DPN=CARS(ZPN)

PHPN=ATAN2 (ATMAG(ZPN) REAL{ZPN))

DQ01=CARS(Z0O(1)+72020)

PHOOL=ATAN2{AIMAG(ZOQ(1)+Z020) REAL(ZOO(1)+7020))
DPN1=CARS(ZPP{NS)I+ZP2N)

PHPNL=ATANZ2 (ATMAG{ZPP(NS)+ZP2N)REAL(ZPP(NS)+ZP2N))

WRITE(6,0UT)

WRITE(6,104)

FORMAT( 1 TRANSIE T SOLUTION BRY THE SECOND-0ORNDER APPROXIMATION'/
117X " TIME' 4 10X PPUY 13X ' QUYL 18X, 'PD' 13X, '0D")

T=00

AU=z00+DOO*COS(OMET+PHAO ) +DOOL*COS (24 *¥OMET+PHOO01 )
QAN=00+DOXSIN(OM*T)

PU=PO
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PD=PN+NPNACOS{ OMRT+PHPN)+DPN1%COS( 2, *0OM%T+PHPN1)
WRITE(6,105) T,PU,0Qt,PD,0D
FORMAT(1HOy5X43F15.345X42F15.3)

T=T+D17T

IF(T.G1,TMAX) GO TO 1

GO 7O 20

S0P

END

SURBROUTINE FNETM({AL.OM)
FINITE DIFFERENCF EQUATION TRANSFER MATRIX SUBROUTINE
CALCULATE THE FIELD TRANSFER MATRICES AND THE OVER-ALL TRANSFER
MAIRTX
211, 212 ETC. ARE THE ELEMENTS OF A FIELD TRANSFER MATRIX
ZR11, ZR12 ETC. ARE THE ELEMENTS OF THE OVER=-ALL TRANSFER MATRIX

IMPLICTIT COMPLEX(Z)
COMMON/FDE/ZR114ZR12,2R2142R224211(20)4212(20)+221(20)+222(20)4N,
1CA,F2,DT,PRAR(20)

IN=CMPLX (0,4 NM%DT)

ZE=CEXP(ZIN)

DO 10 J=14N

I=N-J+1

PO=4 5% (PRAR(T)}+PRAR(I+1})

IDEL=2,%CA%POXZEXPRAR( [+1)
Z11(I)=PRAR(I)/ZNEL*(CA%PO* (1, +ZE*ZE)-F2%(1.~ZE*ZE))
Z12(1)=((CA%PO-F2)*%2-(ZE*(CA%PO+F2) )*%2)/2DEL
Z21(1)=PRBAR(I)*PRAR(I+1)*{1.,-ZE*ZE)/ZIDEL
Z22(1)=PRAR(I+1)/ZDEL*(CA*PO*(1,+ZEXZE)-F2%(1.~ZE*ZE))
IF(J.EQ.1) GO TO 8

IMLI=ZR11%Z11(1)+ZR12%721(1)
IM12=7R11*Z12(1)+ZR12%Z722( 1)
IM21=7ZR21*%711(1)+ZR22%721(1)
IM22=7R21%7Z12(1)+2ZR22%722(1)

IR11=IM11

IR12=ZM12

IR21=7IM21

IR22=1M22

GO 10 10

ZR11=7111(1)

ZR12=712(1)

IR21=221(1)

IR22=722(1)

CONTINUE

RETURN

END
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