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Abstract: Discontinuous Random Fiber Reinforced Composites (DRFRC) exhibit
different behaviors depending on their microstructural properties. Small fraction of
fiber rupture can have a beneficial effect on the tensile and fracture energy properties
of the composite. This paper briefly summarizes the results of an analytical model
that predicts the pre-peak and post-peak bridging stress-CQOD relationship which
accounts for fiber pull-out and rupture. The model can be used to optimize the design
of DRFRC in terms of composite tensile strength and fracture energy.

1. Introduction

After first cracking, a composite may still be able to resist higher levels of
loading if adequately reinforced. In this case the composite tensile strength is purely
controlled by the bridging fibers. After the peak-stress has been reached, the
composite behavior becomes dominated by fiber pull-out andfor rupture. The post-
peak stress-displacement relationship controls the composite fracture energy. Both
the composite tensile strength and fracture energy can be optimized if the composite
bridging stress-COD (G¢-8) relationship is known in terms of the composite
microstructural properties. These propenties dictate whether or not fiber rupture will
take place in the composite.

The o¢- relationship associated with fiber pull-out has been studied, (Fiber
Pull-Out Model) and a complete closed form analytic solution is available for
discontinuous random fiber reinforced brittle matrix composites [Li, 1991]. Fracture
energy associated with fiber bridging has also been studied taking into account the
effect of fiber rupture for the same type of composites [Li et al, 1991). This paper
extends the Fiber Pull-Out Model by explicitly accounting for potential fiber rupture.
The new model is then used to perform a parametric study which evaluates the effect
of each microstructural property on the composite tensile strength and fracture
energy. The results of the parametric study can be used to design composites for
optimum properties.

2. Fiber Pull-Out Model (FPM)

By using a simple fiber stress-displacement relationship, based on a purely
frictional matrix-fiber interface, Li et al [1991] predicted the composite ©.-8
relationship by integrating over the contributions of the individual fibers which
bridges a matrix crack plane:
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p(0) and p(z) are probability density functions of the orientation angle and centroidal
distance of fibers from the crack plane defined as follow:
p(¢) =sin(¢) forO<¢p<w/2 (for 3-D) randomness) (2)
p(z)=2/L¢ for 0 £z 5 (Lg/2) cos(d) (3)
Op(B,8,Z) defines the stress-displacernent relationship for a single fiber oriented at an
angle ¢ with respect to the normal direction of the crack plane and having a centroidal
distance z from the crack plane.
op(8,0,7) = Gg ef® for0<8<8, %)
ob(8,9,2) = op e fordp<8<¢ (5

where 6g =V 4(1+1)TES/df, N = VEHS(VmEm). op=41(£+8o-8)/ds, £=L.4/2-z/cosd,
and Bo=ATFZ/[Edi(1+M)]. The coefficient f is an interface material parameter called
the snubbing friction coefficient. Integration of eqn. (1) yields:
G¢ = G gl 2™ 2 - (w™)]  for use® ®
O =0p g(l-u)? for ¥ <u<l1 )
where Go= ViLg/(2dg), g=2(1+efT2)/(44£2), u=8/(L#/2), and u*=2tLy[Edg(1+m)].
In this model, all fibers were assumned to pull-out after complete debonding.
This model has provided a good prediction for the peak composite stress and the
post-peak tension-softening behavior for a number of composites where the fibers did
not Tupture [Li, 1991]. However, discrepancies were observed between the
predictions of this model and some experimental measurements which suggest the
occurrence of fiber rupture [Li and Wu, 1991]. Fiber rupture has also been
experimentally observed in carbon, glass, and SiC DRFRC.

3. Fiber Rupture Model (FRM)

In this model we make the same assumptions adopted by the FPM, except that
we allow the fiber axial stress op{(8,4,2) to reach the fiber strength ogy. In addition,
we assume that all fibers have a uniform tensile strength along their lengths, so that
rupture always occurs at the matrix crack plane. In this case, when a fiber breaks, it
no jonger contributes to the composite bridging stress.

The FRM assurmes that fibers having an embedment length £ less than Loe
are pulled-out subsequent to complete debonding, and those with an embedment
length £ greater than Lce-f rupture after incomplete debonding. The stress-
displacement relationship for the group of fibers that eventnally rupture is defined by
a step function as follow:

Op(5.4,2) = og U826 -5)efd (8)
where 8¢ = op2dg/[4Et(14m)], and Le =op,dgf(d1).

“Pre-Peak” Bridging Stress-Displacement Curve: This refers to initial
portion of the 6¢-8 curve (5 < 5*) that ends when all intact fibers are pulling-out of
the matrix. Using equations (2)-(5) and (8) in (1), we obtain:
O¢ =0, g[2(u/u™)172 - (u/u™)] for u< uem )
Tc =Go[g(¢c)[(u/ u*y2-0.50u/ U*)]'i'a(q’c,"f)LZ] for ueemzugu* (10
where us=8c/Lif2)=L2u", L=Lo/(Lg2), g00=2[(f sin(2x)-2 cos(2x) }ef* + 21/(4+2),
ax,y)=[{2 cos(2x) - y sin(Zx))e¥* + 2e¥7/2 |f(4+yD), and de= -In(ufu)/(2D).
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Post-Peak Bridging Stress-Displacernent Curve:
G = GoL2[0.5g(4n} 1/L-(u/L)J+a(du,£) - 2a(dp0Hw/L)+a(0sDu/L)2]

for n*<u<Lefn2 (1D
0c=00oL2[ 0.58 (@0 1/L-(W/L)] 24+ b($0bs-£)- 252, 06, )WL) +5(Da, 00, D) (W/L)2 |
for Lefi2cug (12)

where b(x,y,2) = [(z sin(2x)-2 cos(2x)}]e?* -{z sin(2y)-2 cos(2y)}e&]/(4+22),

Gg= ~In{u/LY/f, and ¢p=In(L)}/f. Figures 1 and 2 show the pre-peak and post-peak
Ge-8 curves for composites with different fiber lengths. Figure 3 shows a
comparison between the prediction of the FPM and that of the FRM for the pre-peak

G¢-0 curve. Thus, the FPM overestimates the peak bridging stress when fiber rupture
OCCUES.
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Composite Fracture Energy: The composite fracture energy G can be computed
by integrating the area under the o~ curve. The contribution of the pre-peak portion
is negligibly small. Therefore, G was computed by using the post-peak G -8
relationship. Due to the complexity of the integration, no exact analytic solution was
obtained. Numerically, however, G was in perfect agreement with the fracture
energy computed earlier by Li et al (1991). G computed by Li et al was given by an
expression which can be reduced to the following form:

G = Gol(1/6) gl¢v) L-2+(1/3) a(@p.-2f) L] (13)
where Go = VTL2/dp. This expression was then used in the parametric study. It
should be noted that equations (9)-(13) are only valid for values of ¢p, between zero
and wt/2. For ¢y, greater than /2, the fiber pull-out model is valid and can be used,
For ¢p, less than zero (i.e. Lyz 2L,), o and G can be computed by taking the limits
of equations (9)-(13) at ¢=0. In this case, the pre-peak portion of the G-8 curve
ends at § = &, and the pull-out process ends at & = Lg.

4, Parametric Study

The purpose of the parametric study is to evaluate the effect of each
microstructural property (Lf,df,Gfy,T,f) on the composite tensile strength and fracture
energy. Figure 4 shows the effect of the fiber length on peak bridging stress and
fracture energy. It can be deduced from this figure that there is an optimum fiber
length that falls slightly below the critical fiber length 2L and beyond which an
increase in the fiber length slightly increases the peak stress but significantly reduces
the fracture energy. Table 1 shows the results of the parametric study, In this table
Ocu and G refer to the peak bridging stress and fracture energy corresponding to the
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optimum fiber tength. This table shows, in particular, that the composite tensile
strength at the optimum fiber length is unaffected when the fiber diameter or the bond
strength are changed. Figure 4 and Table 1 can be used to design composites for
optimum performance.
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[Fiber swength: G g T Ceu T GT
Snubbing friction: £ T Gen 4 Gl

5, Conclusion

The FRM has produced a tool for designing DRFRC for optimum
performance, Using this model, the behavior of the composite can be controlled
through the microstructural properties. Therefore, the composite can be designed to
achieve (1) the highest fracture energy, (2) the highest tensile strength, (3) the highest
flexural strength/tensile strength ratio, (4) a compromise between the preceding three
properties that fits a particular engineering application. However, there are practical
and theoretical limitations to this model. First, fibers are generally supplied at
discrete sizes. Second, the processing technique might restrict the fiber length to a
certain maximum [imit so that fibers with optimum length become difficult if not
impossible to handle. Third, this mode! is more applicable to fibers having a high
Weibull modulus (i.e. steel fibers m=100). Fibers with low Weibull modulus (i.e.
carbon fibers m=10) will not necessarily rupture at the matrix crack plane. For these
fibers, therefore, the strength distribution should be accounted for in the model. The
experimental validation of this model, the relationship between the flexural strength
and tensile strength, and the effect of fiber swength distribution on the ¢.-8
relationship are the subject of future research.
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