AN ADAPTIVE RANDOM SEARCH ALGORITHM
WITH LINEAR COMPLEXITY IN DIMENSION

Zelda B. Zabinsky
Industrial Engineering Program, FU-20
University of Washington
Seattle, Washington 98195

Robert L. Smith
Department of Industrial & Operations Engineering
The University of Michigan
Ann Arbor, MI 48109-2117

Technical Report 90-15
April 27, 1990

AN ADAPTIVE RANDOM SEARCH
ALGORITHM WITH LINEAR COMPLEXITY IN
DIMENSION

Zelda B. Zabinsky |
Industrial Engineering Program, FU-20
University of Washington
Seattle, Washington 98195

Robert L. Smith
Department of Industrial & Operations Engineering

The University of Michigan
Ann Arbor, Michigan 48109

April 27, 1990

Abstract

Random search algorithms have been developed to solve global optimization prob-
lems with many local minima. Such methods are only attractive if their computational
effort does not grow exponentially with dimension. In this paper, a sequential random
search algorithm is analyzed on a restricted subset of convex problems and shown to
have linear complexity in dimension.

Key Words: Random search, Monte Carlo optimization, algorithm complexity.

t The work of Zelda B. Zabinsky was partially supported by the Graduate School
Research Fund at the University of Washington.

1 Introduction

Random search techniques show promise as efficient optimization methods for a large class of
problems. Recent research [13,23] shows that it is theoretically possible for a random search
algorithm to achieve a complexity that is, on the average, linear in dimension. In this paper,
we define and implement a sequential random search algorithm named the Adaptive Mixing
Algorithm (AMA). We analyze the computational efficiency of the AMA for a restricted
subset of convex programs, and use theoretical and computational results to show that an
upper bound on the number of iterations is linear in dimension.

Sequential random search procedures are designed to address a standard optimization
problem,

(P) min f(2)
where z is an n-dimensional vector, S is a convex, compact subset of R", and f is a real-
valued continuous function defined over S. All sequential random search procedures generate
a sequence of random points {X}} which may depend on the previous point or several of the
previous points. The concept underlying sequential step size algorithms [14,15,12,19,17,9,18]
is to generate the next random point X, by taking a specified step in a random direction
from the previous point Xj. These algorithms are based on the iterative formula, for k =
L2,...
XYoo = { Xi+ skDy if f(Xk + seDk) < f(Xk)
k+1 =

Xk otherwise

where Dy is the direction vector, s is the step size, and X} is the point generated in the k'™
iteration. The direction vector is usually obtained by sampling from a uniform distribution
on a unit hypersphere. The method of choosing the step size is specific to each algorithm.

Several of the step size algorithms have been reported in the literature to have complexity
that increases linearly in dimension. Complexity is measured as the number of function
evaluations needed to reach a specified neighborhood of the solution. Three key references
are:

(a) Schumer and Steiglitz [19] prove that the average number of function evaluations for
an optimum relative step size random search restricted to an unconstrained hyperspherical
objective function is asymptotically linear in dimension. They also provide experimental
evidence that the number of function evaluations increases linearly with dimension for their
adaptive step size algorithm on the following three test functions;

n n n

2 4 2
Yoty asd
=1 i=1 i=1

(b) Schrack and Borowski [17] report experimental results that doubling the dimension
doubles the number of function evaluations required for another random search algorithm.
They also used a hyperspherical test function, Y%, z;2.

(c) Solis and Wets [21] experimentally verified a linear correlation between the number
of function evaluations and dimension for their own variation of the step size algorithm
on a hyperspherical test function. They provided a justification of this linearity condition
based on the tendency of these algorithms to maintain a constant probability of successful
improvement.

All of these findings empirically suggest that sequential random search procedures are
appropriate for large dimensional quadratic programs. An analysis of a random search pro-
cedure called pure adaptive search [13,23] substantiates these findings, and proves that it is
theoretically possible for a random search procedure to achieve linear complexity. In Zabin-
sky and Smith [23], the linear complexity, measured as the expected number of iterations to
get arbitrarily close to the solution, was generalized to global optimization problems. Pure
adaptive search constructs a sequence of points uniformly distributed within a correspond-
ing sequence of nested improving regions. As pointed out in [13,23], pure adaptive search is
difficult to implement directly due to the problem of efficiently generating a point according
to a uniform distribution in a general region. We seek an algorithm that can be implemented
directly, with a theoretical analysis that the number of iterations is again linear in dimension.

2 Adaptive Mixing Algorithm

The Adaptive Mixing Algorithm is intended to be easy to implement and to approximate the
efficiency of pure adaptive search. The question is: how can an improving point be easily
generated that randomly samples the improving level set? One answer to this question
is to use Hit-and-Run methods [20,1,2,7]. Hit-and-Run generates a sequence of random
points by providing a random direction and then providing a random point in that direction.
This sequence of points asymptotically approach a uniform distribution [20]. Thus, an
implementation of pure adaptive search is to use a sequence of Hit-and-Run points on each
iteration. Now a decision must be made regarding the best length of the Hit-and-Run
sequence per iteration. In fact, a class of algorithms can be parametrically defined by the
length of the Hit-and-Run sequences. In one extreme, we know that when the Hit-and-
Run sequences are very long and provide a close approximation to sampling from a uniform
distribution we have a good approximation to pure adaptive search and can expect the
number of iterations to be linear in dimension. In another extreme, consider an algorithm
where the Hit-and-Run sequences are very short - a length of one. Now what is the expected
number of iterations? We will call the algorithm with Hit-and-Run sequences of length one,
the Adaptive Mixing Algorithm. The analysis will express the number of iterations as a-

function of dimension.

The Adaptive Mixing Algorithm also fits into the framework of a sequential random
search procedure. Given an initial feasible point, Xo, AMA generates a random direction
vector that originates at Xo, and then generates an improving and feasible point X; uniformly
distributed along the line segment associated with that direction. Thus, the next point is in
a random direction and a random distance from the previous point. The procedure proceeds
iteratively to produce a sequence of improving points until satisfying a stopping criterion.

More formally,

Adaptive Mixing Algorithm (AMA)
Step 0. Initialize X, € S, Yo = f(Xp), and k = 0.
Step 1. Generate a direction vector Dy uniformly distributed over a unit hypersphere.

Step 2. Generate Xy, uniformly on Ly, the improving feasible line segments in direction
Dy, ie. Ly = {.’E cz=Xp+ADg, A €ER, f((l,‘) < f(Xk) and r € S} . Set Yk+1 =
f(Xkg1). If Ly = 0, go to Step 1.

Step 3. If the stopping criterion is met, stop. Otherwise increment k and return to Step 1.

Details of the implementation of the AMA are given in the appendix. Generating random
directions, as defined in Step 1, is straightforward. However, implementing Step 2 is more
involved, and we experimented with several approximating forms. Our implementation tries
to find a random point on the improving feasible line segment, L. If it fails after several
tries, it returns to Step 1 to generate another random direction. The computer program
stops if no improving point is found after a user-defined maximum number of tries.

3 Complexity Analysis

3.1 Definitions and Notation

Before proceeding with the analysis, we define a complexity measure for evaluating AMA.
For the optimization problem (P), let (z.,y.) denote the solution, where

z, = arg mip f(2)

and

y» = f(=.) = min f(z).

z€S

The value z, need not be unique; any point z, € S that attains the minimum, f(z,) = y.,
may be used for a solution point. It will also be convenient to define the maximum,

y" = max f(z).

Let P, denote the level set of the problem (P) at objective function value v,
Py ={z: f(z) <y,z € 5}

for y. <y < y*. Let {Xi}, Xx € S, k=10,1,2,... be the sequence of points generated by
the Adaptive Mixing Algorithm on (P), with the subscript k¥ denoting iteration count. Let
{Ye}, v« <Y <y*, k=0,1,2,... be the corresponding sequence of objective function values
generated by the algorithm on (P), Yi = f(Xj).

The sequences {X;} and {Y;} are random variables due to the stochastic nature of a
Monte Carlo algorithm. The distribution of improvement is defined to be the probability
that the k** objective function value Y} is at most y. This is the probability that the kth
point lies within the level set P,, so that

P(Ye<y)=P(X€P,)
for k =0,1,2,... and y. <y < y*. The conditional distribution of improvement, denoted,
P(Yip <ylYa = w)

for k =0,1,2... and y, <y < y* is defined to be the probability of obtaining an objective
function value of at most y in a single iteration, starting from objective function value w.
Let {Z¢},0 < Zx <1,k =0,1,2,... be the sequence of normalized improvements associated
with the points generated by the algorithm on (P), where

Ze =Y —0.)/(y" = v)-
The probability of achieving a normalized improvement of z by the k*® iteration is,
P(Zi<2)=P(Y<y)

for0 <z<1landz=(y—u.)/(y" =y
We say an algorithm has achieved m-fold improvement on (P) when the normalized
improvement is within 1/m of the optimal value, for m > 1:

OSZkS]./m

or equivalently, when

As a measure of computational complexity, an iteration count, K, ., is defined as the smallest
number of iterations needed to achieve m-fold improvement with 1 — « certainty,

Kom =klII]an {k:P(Zx<1/m)>1-a}

form>land0<a<l1.

This iteration count, K,,, will be used as a measure of computational complexity
throughout the paper. It is the same complexity measure used in [13]. Other measures
of complexity count the number of function evaluations, gradient evaluations, or arithmetic
operations, whereas K, », counts the number of iterations. The use of normalized improve-
ment in K, is similar to the error measure of an upper bound used in [3]. They also
scale a deviation from the optimum by a range on objective function values. A contrasting
complexity measure is the rate of convergence, which characterizes the tail of the sequence
converging to the solution [10]. Instead of measuring the tail, K4 measures the number of
iterations needed to get arbitrarily close to the solution.

3.2 Theoretical Analysis

We now turn to an analysis of the complexity of the Adaptive Mixing Algorithm. For the
analysis, we define Zy = 1 and Yy = y* as initial starting conditions.

To begin the analysis, we must specify the conditional distribution of improvement for the
Adaptive Mixing Algorithm. The conditional probability of making a specified improvement
on a single iteration depends on the position of the current point,

P(Yipr <ylYi=w) = E[P(Yir <y|Xi,Yi = w)]
= E[P (Xk+1 € Plek’ Y = w)]

This probability can be expressed in terms of the random direction generated from the point
z, and the ratio of the length of improving line segment(s) in that direction,

P(Xpsn € B = 2,Y = w) = [|La,(d,)|/ |Lr.(d,2)|dFp(d)

where || Lp,(d, z)|| is the combined length of the line segments formed by the intersection of
the level set P, with the direction vector d originating at z. Also, Fp(-) is the cumulative
distribution function for the random direction vector. In words, the probability of making
an improvement to y, starting at point z with f(z) = w, is the probability of landing within
P, given direction d, ie. |Lp,(d,z)||/||Lp,(d,x)||, integrated over all feasible improving
directions.

For general convex programs, the conditional probability of improvement depends on the
exact location of X, and makes it difficult to derive a general expression. However, for a

6

subset of convex programs with symmetrical level sets, we can continue the analysis. This
class of programs includes all the test functions for which linearity has been cited [19,17,21].

Consider the class of quadratic programs with “spherical” level sets, that is, uncon-
strained quadratic programs with a constant diagonal Hessian (cI, where ¢ > 0 and [is
the identity matrix), which we will refer to as spherical quadratic programs. With spherical
quadratic programs, the symmetry of the level sets ensures that the conditional probability
of improvement is invariant for all points on a level set;

P(Xk+1 € PyIXk =x,}/k ='LU) =P(Xk+1 EPyIXk =$Ia}/k = U))

for any = and 2’ with f(z) = f(2') = w. The conditional probability of improvement for the
Adaptive Mixing Algorithm on spherical quadratic programs is:

P(Yepr SylYs=w) = E[P(Xpp € Py|Xp, Yi = w)]
= P(Xi1 €P Xy =2,V =w) for any z with f(z) = w,

= [ILr, @)/ ILr.(d,) |dFo(@).

Thus, the conditional probability of improvement depends on the ratio of the lengths of line
segments and the objective function value (w), but not on the specific point z.

Of course, this class of spherical quadratic programs may be trivial to solve with conven-
tional methods, but the Adaptive Mixing Algorithm is not meant to compete with quadratic
programming algorithms. However, if a spherical quadratic program was perturbed slightly,
due to noisy data for example, or perhaps a sinusoidal component, it may be very difficult to
solve with conventional approaches. On the other hand, we would expect the performance
of AMA to be insensitive to perturbations of this type.

Finally, to obtain an upper bound on AMA’s iteration count K, ,,, we define a worst
case problem. For any spherical quadratic program (P), define (@) to be its corresponding
conical program,

Q) min g(z)
where g(z) = inf{y : (z,y) € C}, and C = convex hull of (z.,y.) and (S,y*). This conical
program is a worst case problem, in the sense that K, on (Q) is greater than or equal to
Ky .m on (P). The proof is included in the appendix (see also [13]).
Now, let u be the ezpected ratio of normalized improvement on the conical program,

p=E [ZI?H/ZI?]-

For the AMA on the class of conical spherical quadratic programs, s does not depend on the
value of k. In fact, Z,?+1 / Z,? is independent and identically distributed for all £ = 0,1,2,...

7

(refer to Lemma 3.0 in the appendix). However, p is a function of the dimension of the
problem and may be written,

un) = E[22,/2¢].
We are now ready to state an analytical bound on complexity for the AMA.

Theorem 3.1 Given the Adaptive Mizing Algorithm and any spherical quadratic program
(P) with p(n) for its conical program (Q), then for anym > 1 and 0 < a < 1,

2ln (m(l + a‘l/z))
fom S i)

Proof: See Appendix. =

Theorem 3.1 provides an upper bound on the iteration count as a function of dimension
(n), the amount of improvement (m), and the degree of certainty (). To see how efficient
the Adaptive Mixing Algorithm is in terms of dimension, we need to hold m and « constant,
and express g in terms of dimension. Unfortunately, u(n) is difficult to express analytically.
However, we can experimentally approximate it as a function of dimension. '

3.3 Parameter Estimation

The parameter p(n) = E [Z,?+1 / Z,?] was estimated by collecting normalized improvements
Zy from 2 runs of 100 iterations each on a conical program. Thus, the estimates ji(n) were
based on 200 ratios at each dimension, n = 2,4, 6,8, 10,20, 30,40, and 50. The estimates are
presented in Table 1 (analytically (1) = 0.5). The experiments were run on the following
conical program,

(Q.1) minimize 10 (¥, (z; - 5)2)1/2
' subject to 0<z;<10 fori=1,2,...,n

Notice that the test function (@.1) is a conical program corresponding to a hyperspherical
test function, such as (P.1) defined later.

Now the estimates /i(n) will be used to establish the effect of dimension on the bound on
iteration count. As stated in Theorem 3.1,

————1 n{m o~ 1/?
Ko <2 (g o)

so the only term with dimension is 1/ In(1/p(n)). Figure 1 plots this function of the estimates,
1/1n(1/fs(n))

8

versus dimension. There is one point per run. A linear model was fit to the experimental
data, yielding

1/In(1/i(n)) = (3.5 £0.2)n + (3.2 £ 4.8).

Adding a quadratic term to the above regression did not significantly improve the fit. The
quadratic model fit to the experimental data was,

1/In(1/i(n)) = (=0.02 £ 0.02)n + (4.5 £ 0.8)n + (3.2 £ 6.7).

Using the coefficients from the linear model, we conclude that the bound on iteration
count can be well approximated by a linear function of dimension,

Kom <2(3.5n +3.2)In (m(l + a'1/2)) .

As an example, Table 2 provides this estimated bound on iteration count, K, ,,, for spherical
quadratic programs in various dimensions, with a million-fold improvement (m = 10%) and
99% certainty (o = 0.01). The numbers were calculated as the next greatest integer of
2(3.5n + 3.2) In(m(1 + ¢~*/?). Similar calculations were made to graph the bound on Ky m
in Figures 2 and 3.

Thus far, the analysis has concentrated on evaluating the effect of dimension on the
iteration count while keeping m and a constant. It is also interesting to note the effect
of the accuracy of solution (m and «) on the iteration count. The m-fold improvement
and 1 — o degree of certainty are both represented logarithmically in the upper bound on
iteration count. This might explain the experience for the AMA and other algorithms that
large improvements are made very efficiently, while refinements of the solution become costly.

4 Computational Results

4.1 Computational Experiments

We report two computational experiments to observe the effect of dimension on computation
and to give a rough comparison to previous algorithms {17,19,21].

The first experiment was on the “conical” convex program (Q.1). This function was
chosen because it is a worst case problem for AMA, as previously discussed. The Adaptive
Mixing Algorithm was run using ten random seeds at each dimension, from n =2 to n = 50,
to compute an average number of iterations. The experiment used a stopping criterion of
100-fold improvement, and a starting position on a side of the feasible region, (5,5, ...,5,10).
The results are shown in Figure 2, where the average number of iterations are graphed as
a function of dimension. The theoretical upper bound on complexity (as derived in the
Section 3) is indicated by the heavy line. This bound is for 50% certainty of 100-fold

9

improvement (K, with m = 100 and o = 0.5), while the data shows 100% certainty of
100-fold improvement. All of the observed points satisfy the bound. It is clear from this
experiment that the upper bound is not tight. The light line on the graph represents a linear
regression on the mean number of iterations. The regression coefficients were 27n — 83 with
r? of 0.994.

The second experiment was on a hyperspherical problem. This function was chosen
because it was the only test function common to [17,19,21] that had been varied by dimension.
The Adaptive Mixing Algorithm was run on the following hyperspherical problem,

(P1) minimize n(x)?
' subject to —10<z; <10 for:=1,2,...,n
with a starting point on a side of the feasible region, (10,0,...,0). Five random seeds were

used at each dimension, from n = 2 to n = 40. The experiment used a stopping criterion of
1,000-fold improvement. The graph in Figure 3 provides the average number of iterations
as a function of dimension. The upper bound on complexity is for 50% certainty of 1,000-
fold improvement (K, with m = 10%® and a = 0.5) and is indicated by the heavy line
in the figure. The data of 1,000-fold improvement with 100% certainty again satisfies the
bound. Again, the light line on the graph is the linear regression line on the mean number of
iterations, estimated as 11n — 15 with 2 of 0.993. To summarize, the experiments indicate
that the complexity of the AMA is well approximated by a linear function in dimension.

4.2 Comparisons Between Algorithms

A direct comparison between the AMA and other algorithms is difficult for a number of
reasons. The first difficulty in comparing these algorithms is that they were tested on
different problems. Although the conical program gives a worst case and hence upper bound
on complexity, we also tested the hyperspherical test function to be consistent with [17,19,21].

A second difficulty in comparing the performance of these algorithms is due to the de-
pendency on the accuracy of solution. Qur complexity analysis shows an exact dependency
on number of iterations to achieve an m-fold improvement. Because of this predicted depen-
dency, the AMA used 10%-fold improvement as a stopping criterion on the hyperspherical
test function to be consistent with Solis and Wets [21]. Schumer and Steiglitz [19] used
an € = 1078 as a stopping criterion. This is only approximately 108-fold improvement due
to the various starting positions used. Schrack and Borowski [17] used the rate of average
convergence as a comparison, instead of a specified level of improvement.

A third difficulty in comparing algorithms across dimension is that they were all tested
for varying dimensions. The AMA and Schumer and Steiglitz’s algorithm were tested on
dimensions up to 40 on the hyperspherical function, while Solis and Wets’ algorithm was
tested up to 10 dimensions. Schrack and Borowski only compared n = 5 with n = 10.

10

The fourth difficulty in comparing performance was that [19,21] both reported average
number of function evaluations, while the analysis on the AMA focused on the number of
iterations. For comparison purposes, the average number of function evaluations for the
AMA on the hyperspherical test function, to achieve 10%-fold improvement for dimensions
up to 40 was approximately 137n. Schumer and Steiglitz [19] reported the average number of
function evaluations of their Adaptive Step Size Algorithm on a hyperspherical problem to
get within € = 1078 of the solution for dimensions up to 40 as approximated by 80n. Solis and
Wets [21] tested their version of an adaptive step size algorithm on the same hyperspherical
problem up to 10 dimensions, and reported that the average number of function evaluations
to achieve 103-fold improvement as roughly 33n. Schrack and Borowski [17] did not attempt
to quantify the effect of dimension, but reported “for a given reduction of the function
evaluations, a doubling of dimension doubles the number of function evaluations”.

The attraction to the AMA is that it is relatively simple to implement, and has potential
for more efficient implementations. The focus in this paper and in the development of the
algorithm was aimed at iterations, rather than function evaluations. This gives some support
as to the value of short Hit-and-Run sequences within an optimizing framework. Also, to
compare with the linearity results reported, AMA has a linear bound on complexity in terms
of iterations for a broader class of functions than just the hyperspherical function.

5 Summary

The Adaptive Mixing Algorithm has been shown to have a search effort that is nearly linear in
dimension for the class of spherical quadratic programs. The functional bound on complexity
also includes the accuracy of solution as a parameter, with a specified degree of certainty.
The class of spherical quadratic programs includes test functions for which other adaptive
random search algorithms have reported linear complexity in dimension. Thus the theoretical
and computational results describing the near linear search effort of the AMA may provide
some intuitive explanation for the performance of similar algorithms. When viewing AMA
as an optimizing version of Hit-and-Run, the complexity results give some insight to the
value of short sequences while maintaining an iteration count that is linear in dimension.
Intuitively, why might the AMA be linear in dimension? The key to the AMA’s perfor-
mance, from the complexity analysis, is the proportional reduction in volume of the region
to be searched for the optimum. This is consistent with the intuition behind the volume
reduction of a pure adaptive search, which achieves linear complexity on global optimization
problems [23]. Thus the AMA can be expected to exhibit the same agreeable performance
on a nonlinear, possibly global, optimization problem with level sets that are approximately
spherical in shape. While conventional approaches that rely on the objective function’s
derivative will most likely be very sensitive to a starting position, and get easily trapped in a-

11

local minimum that may be far from the global minimum. The real usefulness of the AMA is
for this type of large dimensional perturbed quadratic program. An example might include
a function that is basically convex with minor local minima, such as a function with a sine
wave component or an estimation of noisy data, and hence a global optimization problem.
This research provides support for the hope that there exists a random search algorithm for
global optimization that is linear in dimension.

12

References

(1] H.C.P. Berbee, C.G.E. Boender, A.H.G. Rinnooy Kan, C.L. Scheffer, R.L. Smith, and
J. Telgen, “Hit-and-Run Algorithms for the Identification of Nonredundant Linear In-
equalities,” Mathematical Programming 37 (1987) 184-207.

[2] A.Boneh, “A Probabilistic Algorithm for Identifying Redundancy by a Random Feasible
Point Generator (RFPG),” in: M.H. Karwan, V. Lotfi, J. Telgen and S. Zionts, eds.,
Redundancy in Mathematical Programming (Springer-Verlag, Berlin, 1983)

[3] G. Cornuejols, M.L. Fisher, and G.L. Nemhauser, “Location of bank accounts to op-

timize float: an analytic study of exact and approximate algorithms,” Management
Science 23 (1977) 789-810.

[4] L.C.W. Dixon and G.P. Szego, eds., Towards Global Optimization (North-Holland, Am-
sterdam, 1975).

[5] L.C.W. Dixon and G.P. Szegd, eds., Towards Global Optimization 2 (North-Holland,
Amsterdam, 1978).

[6] W. Feller, An Introduction To Probability Theory And Its Applications, Volume 2, 2nd
Edition (John Wiley and Sons, New York, 1971).

[7] M.H. Karwan, V. Lotfi, J. Telgen, and S. Zionts, eds., Redundancy in Mathematical
Programming (Springer-Verlag, Berlin, 1983) 108-134.

[8] D.E. Knuth, The Art of Computer Programming, Vol. 2 (Addison-Wesley, Reading,
Massachusetts, 1969) 116.

[9] J.P. Lawrence III and K. Steiglitz, “Randomized pattern search,” IEEE Transactions
On Computers C-21 (1972) 382-385.

[10] D.G. Luenberger, Introduction To Linear And Nonlinear Programming, 2nd Edition
(Addison-Wesley, Reading, Massachusetts, 1984).

[11] K.G. Murty, Linear Programming (John Wiley and Sons, New York, 1983).

[12] V.A. Mutseniyeks and L. Rastrigin, “Extremal control of continuous multi-parameter
systems by the method of random search,” Engineering Cybernetics 1 (1964) 82-90.

[13] N.R. Patel, R.L. Smith, and Z.B. Zabinsky, “Pure adaptive search in Monte Carlo
optimization,” Mathematical Programming 43 (1988) 317-328.

13

[14] L.A. Rastrigin, “Extremal control by the method of random scanning,” Automation and
Remote Control 21 (1960) 891-896.

[15] L.A. Rastrigin, “The convergence of the random method in the extremal control of a
many-parameter system,” Automation and Remote Control 24 (1963) 1337-1342.

[16] S.M. Ross, Stochastic Processes (John Wiley and Sons, New York, 1983).

[17] G. Schrack and N. Borowski, “An experimental comparison of three random searches,”
in: F. Lootsma, ed., Numerical Methods For Nonlinear Optimization (Academic Press,
London, 1972) pp. 137-147.

[18] G. Schrack and M. Choit, “Optimized Relative Step Size Random Searches,” Mathe-
matical Programming 10 (1976) 270-276.

[19] M.A. Schumer and K. Steiglitz, “Adaptive step size random search,” IEEFE Transactions
On Automatic Control AC-13 (1968) 270-276.

[20] R.L. Smith, “Efficient Monte Carlo procedures for generating points uniformly dis-
tributed over bounded regions,” Operations Research 32 (1984) 1296-1308.

[21] F.J. Solis and R.J.-B. Wets, “Minimization by random search techniques,” Mathematics
Of Operations Research 6 (1981) 19-30.

[22] Z.B. Zabinsky, Computational Complezity Of Adaptive Algorithms In Monte Carlo Op-
timization (Dissertation from The University of Michigan, Ann Arbor MI, 1985).

[23] Z.B. Zabinsky and R.L. Smith, “Pure adaptive search in global optimization,” Mathe-
matical Programming (forthcoming).

[24] W.I. Zangwill, Nonlinear Programming: A Unified Approach (Prentice-Hall, New Jersey,
1969).

[25] G. Zoutendijk, Methods of Feasible Directions (Elsevier Publishing Company, Amster-
dam, 1960).

[26] G. Zoutendijk, “Nonlinear Programming: A Numerical Survey,” SIAM Journal On
Control Theory And Applications 4 (1966) 194-210.

14

Appendix

A Implementation Details

The implementation of the first step of the Adaptive Mixing Algorithm is straightforward.
The direction vector Dy is of unit length sampled from a uniform distribution over an n-
dimensional hypersphere as follows,

" -1/2
Dk = (dlad2) cee ,dn) (Z 123,‘]2)

1=1

where d;,¢ = 1,2,...,n are sampled independently from a standard normal distribution,
N(0,1) [8].

The implementation of Step 2 is more involved. The implementation used in our com-
putational experiments assumed the original problem had linear constraints, as follows:

minimize f(z)
subject to Az <b

where f(z) is a continuous function, A is an m X n matrix, z is an n-dimensional vector,
and b is an m-dimensional vector. Step 2 generates X;,; uniformly over L; using a line
search. Line search methods are themselves an important area of research [10], but will be
kept simple here. It proceeds as follows.

First, the direction Dy is checked to be improving and feasible a distance e away by
evaluating the following equations:

(1) f(Xk +€Dy) < f(Xk), and
(2) Xi+eDip€S,

where € represents a small step (the value of € is a parameter in the computer program,
e = 107° was used in most experiments). If both equations are satisfied, then a step of length
¢ in direction Dy is possible. Equation (1) determines if direction Dy is improving. If it is not
satisfied, then —Dj is checked. In the general case, for regions that are differentiable at Xj,
the probability that both directions +D, are not improving approaches zero as € approaches
zero. There is a positive probability that both directions are not improving if the region is
not differentiable at X, or € is large relative to the curvature of the improving region at Xj.
If no improving direction is found after a maximum number of tries, the computer program
terminates with a message to the user. Equation (2) determines if an € step in direction Dy
is feasible. In particular, if it is not satisfied, the algorithm returns to Step 1 to generate
another direction. Because the points are chosen randomly, the probability of landing on’

15

a constraint is zero; however, the point may be within € of the edge in direction Dj. This
problem of “jamming” seemed especially evident in solving linear programs. Zangwill [24]
(see also [25,26]) discusses jamming, where the points cluster in a corner of the feasible
region, in the context of feasible direction methods. These authors also discuss antijamming
procedures such as a perturbation method. Such an antijamming technique has not been
incorporated into this version of the Adaptive Mixing Algorithm, although it is intended for
future research.

Given an improving feasible direction Dy, the line search next generates an improving
feasible point X, uniformly within L, satisfying:

() f(Xk41) < f(Xk), and
(4) Xk41 € S.

To ensure feasibility (equation (4)) for the problem with linear constraints, a minimum
ratio test is used to determine the maximum feasible distance,), in direction Dy such that
Xi + 0Dy is feasible for all 0 < § < X [11]. Then, a random distance § is generated
according to a uniform distribution on (0,)) until equation (3) is satisfied. Thus the new
point X + 6Dy is improving, and is accepted as X;4;. One way to increase the efficiency
of the line search for problems with convex objective functions is to retain the value of é as
A = 6, and then generate another distance until an improving point is found. This modified
line search will still produce uniformly distributed improving points due to the nesting of the
convex level sets. This modification was used in the two computational experiments reported
earlier. There are many possible line searches that may be more efficient than this simple
line search, but our analysis in terms of number of iterations is valid for any line search that
implements Step 2 of the algorithm.

B Lemma 3.0

Lemma 3.0 Given the Adaptive Mizing Algorithm and any conical spherical quadratic pro-
gram (Q), the ratios of normalized improvements are independent and identically distributed,

Ziy1] Zp~ i1 d. for k=0,1,2,...
Let the mean and variance of the ratios of normalized improvement be written as,
EZvn1)Z)=p, and Var[Ze/Zi) = 0%,
then the mean and variance of the normalized improvement is,

E(Z] =

16

Var[Zy] = (o +p?)F — p*
k 1— y2 k
o? +ﬂ2 '

Proof: First we reiterate that this proof applies to any conical spherical quadratic program

(Q). Then, for k=10,1,2,...and 0< 2 < 1

Il
—~
)

N
—+
=
)
~—

P(Zkn1/2x <2) = Eg, [P(Ziey < 2Zk|20)]
1
= /(; P (Z41 < 22|2) = z) f7,(2)dx,
where fz, () is the density function of Z, and since Z; = (Yi — v.)/(y* — .)

= [P(s <)% = () fala)ds,

where (z)' = z(y* — y«) + y« and (22) = z2(y* — ¥u) + Yu-
As discussed in Section 3, the conditional probability of improvement on (Q) is invariant
and depends on the ratio of the lengths of line segments,

P (Yinr < (20)¥ = (2)) = [1Lqquy (@ I/ ILay,,(d:) |dFol(d)

for any point p with f(p) = (z)’. Now, since the ratio of lengths is preserved by a linear
tranformation, this ratio is constant for all 0 < z < 1, and depends only on the scaling
factor z. Thus the conditional probability P (Yi41 < (22)'|Yx = (z)') is constant for all z
and depends only on z. We write

P (Yiyy < (22) [Ye = (2)) = L(2)
Using this notation in the expression above,
1
P(Zun/2:<2) = [P(fiws < (s2) i = (0))far(e)da
1
= [Le)fale)is

= 16) [ale)is
0

for 0 < z < 1. Thus the random variables Z;,,/Z; for k = 0,1,2,... are identically |
distributed. |

17

To establish independence of Zy,,/Z, we need to show that
P(Zi1| 2 < 2|24 Zioyy ..., 22] 24, 21| Zo) = P (Zky1] 2 < 2)

for all k = 0,1,2,... and 0 < z < 1. Now, since Zy = 1 we have, for 0 < z < 1 and
0<z<1,¢:=1,2,...,kand forall k =0,1,2,...,

P(Zys1/Zk < 2|2k 2k = 2y .., 21| 20 = 1)

= P(Zyp1 S 2Zk|Zk = zk2e1 21y ., D1 = 71)
= P(Zipr L 2zk2k-1 - 2|2 = 2k2p-1 - 21)
since Zi41 is conditionally independent of Z;_y,..., Z; given Zj
= P(Zk41 < 22| =17)
where ¢ = zx24_1 - 21
= P (Y < (2z)|Ve = (2)')
= L(z)
- P(ZH.I/Zk S Z).
Thus the random variables Z;y,/Z; for k = 0,1,2,... are independent.
Now that Zi;/Z) have been shown to be independent and identically distributed, let p
and o2 be the mean and variance, respectively for the distribution. Notice the mean and

variance do not depend on the value of k. We now derive the mean and variance for the
random variable Z, as a function of k, x, and 2. Since Z; =1,

Zk = (Zk)Zk<1)(Zk-1]Zk=2) - - (Z1] Z0)
and by independence,

E(ZY = E|Z4/Zi-1AlE|Zk1/Z4s) -+ E|Z:]2Z0)

= p,k,

Similarly, the second moment can be written,
E (23] = E [(24)Z4-1)') E [(Zi-r/ Zica)'] - E (1) Z0)7].

Also, the
Var (Zu /2 = 0 = E [(Zin | 2)'] - i°

18

implies that, for £ =0,1,2,...

E [(Zk+1/Zk)2] =’ 44,

hence \
E[Z}) = (02 + u2) .
Thus,

Var(Zi) = E|[Z} - E|[Z)
= (02 + ﬂ2)k — u*

and factoring out the (o2 + ,u"’)lc term, we conclude with

= (?+) (1- (azlf,ﬂ)k)' .

C Theorem 3.1

Theorem 3.1 Given the Adaptive Mizing Algorithm and any spherical quadratic program
(P) with p(n) for its conical program (Q), then for anym > 1 and 0 < a < 1,

21n (m(l + a‘1/2))
In(1/p(n))

Ka,m S

Proof: The proof is separated into four parts that establish that (Q) is a more difficult
problem than (P), and uses (@) to provide an upper bound on K, . The superscripts P
and @ are used in the notation to specify the problem. The first part shows conditional
dominance,

P (Z,?Jrl < 2|22 = w) <P (Z,ﬁ_l <z|ZF = w)

forall k =0,1,2,... and 0 < z,w < 1. This is used in part 2 to show stochastic dominance,

{ZI?H}Z”{ZEH}

for all £ =1,2,... which is used in part 3 to show that (Q) is stochastically more complex -
than (P),

Q > K7f,

am <

19

for any m > 1 and 0 < @ < 1. Part 4 establishes an upper bound on the iteration count for
(@), and combining with part 3 yields

21n (m(l + a"l/2))
In(1/p(n))

Kom <K3p <

which completes the proof of the theorem.
Part 1 of proof: Show conditional dominance, i.e., show that
P(o1 < z|Z,c = w) <P (Zk+1 <z|ZFP = w)

for all k =0,1,2,... and 0 < z,w < 1. First consider the case when 0 < w < z < 1. Then,
by the definition of the Adaptive Mixing Algorithm,

P (23, <22] =w) =1=P (2, < 212f = w)

for k = 0,1,2,.... Second consider the more interesting case when 0 < z < w < 1. Now,
using the definition of Zj, clearly for either problem (P) or (Q), and for k = 0,1, 2,.

P (Zk+1 S Z|Zk = 'LU) =P (Yk+1 S lei/kp = w')
where 2’ = z(y* — y.) + ¥ and v’ = w(y* — y.) + ¥.. [t then remains to show that
P(Y3, <2Ve =w) =1=P (Y, <2|¥F = w)

for k=0,1,2,...and y. <z <w < y*
In order to prove this equivalent statement, we need to introduce a similarity transfor-
mation and additional notation. Let), , : R® — R™ be an affine function defined by

Mua(z) = 20+ (2 = 9)[(w = 3.)) (z - 2.)

fory, <z<w <y
Let P, . be the level set P, shrunken by a factor of (z — y.)/(w — y«) and rerooted at z.
so that all P, , is contained in P,, i.e.,

Py,={&:%=My.(z) forz € P,}.

Similarly, let 3
Quz={Z:Z=X,.(z) for z € Qu}.

20

Notice that P, is contained in P,, and Q,,, = Q, (the proofs are in [13]). Using this, we
have

P (YkQ+1 S ZIYkQ = w) =P (XkQ+l € @w,z‘YkQ = w) (1)
and

P (Vi <2l = w) 2 P (X[€ Pusl¥E = w). @

Now,
P(XF € Pul¥f =w) = [Lz, (& PI/ILr.(d p)dFb(d),

for any point p with g(p) = w, and similarly,

P (X2 € Gualt? =) = [ILg, (4. 0)I/|IL.(d o) |4Fo(d),

for any point q with g(g) = w. Due to the linear similarity transformation A, ., for every d
that intersects Pw'z, the corresponding d also intersects @w’z. Also, for any feasible improving
direction d, the linear similarity transformation preserves the ratio of the lengths of these
corresponding line segments,

I3, P)I/ILe.(d, Pl = 115, ,(d, DI/ 1 Lqu(d, 9]l

Therefore,

P (XI?H € Qu:lYy = w) =P (Xf+1 € P Y} = w),

and using equations (1) and (2) above, we have the desired result

P (Y3, <2¥2 = w) < P (Y&, < 2|VF = w)
for k=0,1,2,...and y, <z <w < y*.
Part 2 of proof: Show stochastic dominance, i.e., show that

(28)2u{ 700}

for all k =1,2,..., or equivalently,
P(2¢>2) > P (2] >2)

forall k=1,2,...and 0 <2< 1.

21

The proof uses induction on k. To show the first iteration, recall that the initial values
are defined to be equal to 1, 79 = Zép = 1. Thus for any 2,0 < 2 <1,

P(22>2) = P(28> 228 =1)
> P(2F> 228 =1)

by conditional dominance (part 1)

Il

P(zF>2).

Therefore, { Q} st{ZP }

To continue the induction argument, we assume that Z%>,,ZF for some integer & > 1,
and show that Zk+1 stZi,,. For any fixed z, 0 < z <1, let

qglw) = P (Z o1 > 2|28 = w) and
pw) = P (20> 212 = w)

for 0 < w < 1. Then, g(w) > p(w) for 0 < w <1 by conditional dominance (part 1). Also,
¢(w) is a non-decreasing function because the conditional distribution of improvement is non-
increasing in w. (This is a technical point but can be readily proved using properties of a
cumulative distribution function and the fact that Z; o1/ Zx 2 are independent and identically

distributed as shown in Lemma 1.) Thus, because g(w) is non-decreasing and Zg >, ZF, we
have [16]

Elg(z?)] > E[a(2f)
> E[p(2f)
by ¢(w) > p(w) for 0 < w <1, and thus
Elg2?)] > E[p(zD)].

Now,
Elg(2?)| =E[P (28, > 2120)] = P (23, > 2)
and similarly,

E[p(2])| = E [P (2L, > 212F)| = P (2,1 > 2).

Thus, P (Zk+1 > z) >P (Z,c+1 > z) for all 0 < z <1, and therefore {Zk+1} ,,{Z,fﬂ}.
By induction, we have {Zk }2,,{Z,f} forallk=1,2,....

22

Part 3 of proof: Show that (@) is stochastically more complex than (P), i.e., show that
K3, >KF.

am =

for any m > 1 and 0 < a < 1. By stochastic dominance (part 2 of the proof), we have that
P(Z2 <z) < P(2F <2
for k=1,2,... and 0 < 2z <1, and letting z = 1/m implies
P (22 <1/m) <P (2} <1/m)

for k=1,2,...and m > 1. Let M = Kgm = Milk= 2., {k : P(Z,? < 1/m) >1 —a} for
m>1and 0 < a < 1. Then

P(2f <1/m) > P(2% <1/m) >1-a

hence,

P — : P
K[, = min {k:P(2F <1/m) 21-a} <M.
Therefore, K3, > KT, foranym >1and 0 < a < L.

Part 4 of proof: For any m > 1 and 0 < a < 1, establish an upper bound on the complexity
measure on (@) as follows,

2In (m(l + a‘l/z))
In(1/4(n))

To establish this upper bound, let y; = E [Z,?], and o2 = Var [Z,?] From Chebyshev’s
inequality (6],

Kf,{m <

P(122 - ml <t) 2 1= a}/t*
for any ¢ > 0. Letting t2 = 0?/a for 0 < a < 1, implies

P (IZ,? — | < Uka_1/2)
P (pk —oa 1?2 < Z,? < pr+ oka'm) > 1-a.

\Y%
—

|
R

or

Now, using the definition of complexity,

K? = min {k:P(Z,?Sl/m)?_l—a}

Om k=12,

23

to bound complexity we seek k such that P (Z,? < 1/m) >1—a. Since0 <z<1,

P(z2 <i/m) > P(0< 22 <1/m)
and letting 1/m > pi + opa™/?,
> P(0< 27 <putoa™?)
> P (uk —oa V2 <72 < + aka‘m).

Combining this with the expression from Chebyshev’s inequality yields, if k is such that
1/m > ux + ora~'/?, then P (Z,? < l/m) >1—a, and hence K3, <k.
Now, using Lemma 3.0, and the expressions given for x; and 0%,

me = E[Z) = 4
op = Var[Z] = (o*+p?)F —p*

= (o2 +p2) (1 - (%)Ij :

we next perform a series of substitutions to find some k that satisfies

—~

1/m > p + opa™/?

or equivalently, we seek k that satisfies

1/m > pk + J (0 + u2)* (1 - (ﬁ;)k) o

Because 0 < p <1 and ¢ > 0, we have

o’ +u>u® > 0, which implies
u/ (02 + u2)k > 0, which implies
k
) <

Therefore, if k' satisfies

Im 2 p¥ 4+ (0> +u?) Ja, then

lfm > pk'+J(02+u2)’°' (b(;%;)kl) [a,

24

then k' > KQ,..
Because 0 < g <1, we have for k =0,1,2,...

ut <t

Therefore, if k" satisfies

m > g+ \(0 +)" [,
then k" > K9, .

Now, 0% + p? < p,which implies for £ = 0,1,2,..., we have
k/2 k/2
()" > ()
Therefore, if k" satisfies

]_/m Z p,k”,/2 + uk”l/2 /1/0, or
m > @ (147
Letting & = k" (for convenience in notation), and manipulating the last equation gives,
1> mu"”(l + a‘m),
which implies
0=1In(1) > (k/2)ln (1) + ln (m(1 + a7¥2)),
which implies
~(5/2)In () 2 (m(1 4 a))
which implies
~21n (m(1 4 a~1/2 2In (m(1 + 12
e P)
In () In (1/7)
Therefore, if xk = 21n (m (1 + a'1/2))/1n (1/p), then

1/m > pe+oa 2

thus P (Z,f2 <1 /m) > 1 — a. Hence, & provides an upper bound for K gm and, combining
this bound with the bound on KZ, from part 3, we have

2In (m(1 +o71/7))

P <K9 <
fom & Hom = 0170
for any m > 1 and 0 < a < 1, which completes the proof.]

25

@)
0.910
0.945
0.956

8 1 0.965
10 | 0.969
20 | 0.986
30 { 0.991
40 | 0.994
50 | 0.994

D > oS

Table 1: Estimates For Expected Ratio Of Normalized Improvements (i(n)) As A Function
Of Dimension (n)

n| Koo

1 218

2 331

5 672

10 1,239

50 5,779
100 11,454
500 56,851
1,000 | 113,598
5,000 | 567,573
10,000 | 1,135,043

Table 2: Bound On Complexity For The Adaptive Mixing Algorithm (Ko 01,10¢) As A Func-
tion Of The Number Of Dimensions (n) |

26

£2007

D

£

0 x
01501 *
Q

E

2100

© .

m L

= 507

© : x Estimates

S 1 ——Linear Regression
5]

c 0 ——— ——— —
L 0O 10 20 30 40 50 60

Number of Dimensions

Figure 1: Estimates Of Average Normalized Improvement Versus Dimension

27

3000
= Upper Bound
=@~ Data and Linear Regression

2000 -

1000 1

Number of Iterations

Dimension

Figure 2: Average Number of Iterations for AMA On The Conical Program (Q.1).

28

SITY OF MICHIGAN

e

|

M

3000
== Upper Bound
2 —®— Data and Linear Regression
Q J
§ 2000
2
©
g 1000 -
=
=
Z .
0 r‘#‘—"f/./‘
0 10 20 30 40

Dimension

Figure 3: Average Number of Iterations for AMA On The Hyperspherical Problem (P.1).

29

