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Abstract

Pure adaptive search iteratively constructs a sequence of interior points uniformly
distributed within the corresponding sequence of nested improving regions of the fea-
sible space. That is, at any iteration, the next point in the sequence is uniformly
distributed over the region of feasible space containing all points that are equal or su-
perior in value to the previous points in the sequence. The complexity of this algorithm
is measured by the expected number of iterations required to achieve a given accuracy
of solution. We show that for global mathematical programs satisfying the Lipschitz
condition, its complexity increases at most linearly in the dimension of the problem.
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1 Introduction

In this paper, we provide a theoretical analysis of pure adaptive search for general global
optimization (see [18,19,20] for a survey of the field). The algorithm proceeds by generating a
sequence of points uniformly distributed in a sequence of nested regions of the feasible space.
At any iteration, the next point in the sequence is uniformly distributed over the region of
feasible space containing all points that are equal or better in value to the previous points
in the sequence. It has been shown [16] that for convex programs, the number of iterations
required to achieve a given accuracy of solution increases at most linearly in the dimension
of the problem. In this paper, we extend this linear complexity result for non-convex or
global optimization problems satisfying the Lipschitz condition. We do this by modeling
the sequence of values for points obtained by pure adaptive search as a nonhomogeneous
Poisson process. A bound on the rate of this process is used to obtain an upper bound on
the expected number of iterations which is a linear function of the dimension of the problem.

Although at this time there is no known efficient implementation of the pure adaptive
search algorithm, the theoretical result of linear time complexity for global optimization is
interesting in itself. Pure adaptive search is not practical because the principal computational
effort of the algorithm lies in generating a point uniformly distributed in the improving region.
At present, this is a challenging problem with no satisfactory solution. However, the linearity
result suggests there is hope for an efficient random search method for global optimization.
In fact, several random search algorithms have reported linearity in dimension [23,24,26],
although only for convex programs. Pure adaptive search is analogous to a randomized
method of centers [12] which, itself is not very practical, but has been the precursor to
a class of extremely efficient projective and affine scaling methods [8,10,13,17] for linear
programming. Our hope is that pure adaptive search can similarly inspire better random
search methods for global programming.

2  Pure Adaptive Search

Consider the following global mathematical program,

(P) min f(z)

where z is an n-dimensional vector, S is a convex, compact subset of R", and f is a real-
valued continuous function defined over S. We will assume that f satisfies the Lipschitz
condition with Lipschitz constant ky, i.e.,

1f(z) = f(y)] < kglle -y



for all z and y € S, where || - || is the Euclidean norm on R"™. To ensure a proper sampling
distribution, we further assume that f has no flat spots, i.e., that f'(z) # 0 for almost all
r € 5. Let the optimal solution to (P) be denoted by (z.,y.) where

z. = arg min f(z)

and

v = f(z.) = mip f(a).

€
It will also be convenient to define

y" = max f(z).

Note that we do not require that a unique minimum exists at z,. If there are multiple
minima, let z, be a arbitrary fixed minimum.

The pure adaptive search (PAS) procedure for solving (P) begins by generating a point
X, uniformly distributed within the feasible region S. The associated objective function
value is labeled W; = f(X;). The next point is generated from a uniform distribution over
the region formed by the intersection of the feasible region with the level set of points with
objective function values equal to or less than W;. The procedure proceeds iteratively in
this fashion until a stopping criterion is satisfied.

More formally,

Pure Adaptive Search (PAS)
Step 0. Set k=0, So =S, and Yy > y*.
Step 1. Generate X, uniformly distributed in Si+1 = {z : 2 € S and f(z) < Wi}

Step 2. Set Wiy1 = f(Xk41). If a stopping criterion is met, stop. Otherwise set k = k + 1
and return to Step 1.

The difficulties of implementing pure adaptive search are discussed in Patel, Smith, and
Zabinsky [16]. In this paper we are however interested in its computational complexity as a
model for other possible algorithms that share some of the same features as pure adaptive
search. For example, if another algorithm can generate random points (uniform or not) with
associated objective function values stochastically less than those of uniformly distributed
points, then the performance of the new algorithm will be bounded by the performance of
pure adaptive search. Thus a theoretical result of linear time complexity for PAS supports
research in other random search algorithms for global optimization.



3 A Comparison with Pure Random Search

It is instructive to compare pure adaptive search with pure random search [4,6,7]. Pure
random search (PRS) generates a sequence of independent, uniformly distributed points
in the feasible region. When a stopping criterion is met, the best point of the sequence
generated thus far is used as an approximation to the optimal solution. For the global
optimization problem (P), consider the stochastic process {Wy, k =10,1,2,...} of objective
function values generated by PAS, and let {Y), k =0,1,2,...} be the corresponding sequence
of values for the points generated by PRS so that Y, = f(Xx),k = 1,2,... where X;,X,,...
are independent and uniformly distributed over S. For convenience, define Wy = Yy = y*.

Let p(y) be the probability that a point in the sequence generated by PRS has an objective
function value less than or equal to y, that is,

p(y) = P(Yi <y)

for k =1,2,... and y, <y <y*. Note that p(y) is the same for all k since PRS generates
identically distributed points. Also, due to the uniform distribution employed in PRS, we
have

p(y) = v(S(y))/v(5)
where S(y) = {z :z € S and f(z) < y} and v(-) denotes Lebesgue measure. Incidentally,
although a uniform distribution is used in both the PRS and PAS algorithms, much of the

subsequent analysis holds for nonuniform absolutely continuous distributions. We have for
pure adaptive search that

P Wiy < y|Wi = 2) = v(S(y))/v(5(2)) = p(y)/p(2)

for any k, where y. <y <z <y*.

We now establish a fundamental relationship between the iterates of PAS and PRS. The
lemma below states that the record values of pure random search are equal in distribution
to the values generated by pure adaptive search.

Definition A record is said to occur at epoch i for the sequence {Yj, k=0,1,2,...} if
Y; < min(Yp, Y4, ..., Yi1). The corresponding value Y; is called a record value.

Lemma 3.1 For the global optimization problem (P), the stochastic process {Wi, k =
0,1,2,...} is equal in distribution to the process {YR(k), k= 0,1,2,...} where R(k) s the
k™ record value of the sequence {Yi, k=0,1,2,...}, i.e.

Wiy k=0,1,2,..} ~ {Ya, k=0,1,2,...}.
In particular,

P(Wkﬁy)=P(YR(k)§_y) for k=0,1,2,... and y. <y <y~



Proof: See Appendix. =

An intuitive understanding of the previous lemma follows from the property that a point
X uniformly distributed over a region S is conditionally uniform over the region S’ C S when
given that X is in 5. It follows that a simple acceptance-rejection approach to generating
{Wy} would be to generate {Y;} and select the record values {YR(k)}.

Theorem 3.2 Let k and R(k) be respectively the number of PAS and PRS iterations needed
to attain an objective function value of y or better, for y, <y <y*. Then

R(k) = eF+o®) with probability 1
where limg_ 0o(k)/k = 0 with probability 1.
Proof: We have by definition that
Wi >y 2 W
However by the previous lemma, this holds for a given k with the same probability that
Yr(k-1) >y 2 YR

holds. From [9, p. 298], the record values R(k) of a sequence of continuous independent and
identically distributed random variables satisfy
In R(k)

lim
k—oco

=1 with probability 1.

This implies that
InR(k) =k + o(k) w.p. 1

and thus,
R(k) = eFto® wp. 1. =

The result in Theorem 3.2 states that the number of PRS iterations needed to reach the
k'™ minimum, R(k), is exponentially growing in the number of iterations of PAS, k, needed
to reach an equivalent minimum. Thus the complexity of PRS is exponentially greater than
that of PAS. Of course, each iteration of PAS may be more difficult than an iteration of
PRS since the search region changes with each iteration. It is nonetheless interesting that
the simple device of forcing monotone value improvement on PRS achieves an exponential
improvement in iterations required.



4 The Distribution of Improvement

We turn now to establishing the distribution of the values {Wy, k =0,1,2,...} obtained by
pure adaptive search.

Lemma 4.1 Let Z,,7Z,,... denote a sequence of independent and identically distributed
nonnegative continuous random variables, whose hazard rate function is given by A(z),
Mz) = f(2)/(1=F(z)) where f and F are respectively the density and cumulative distribution
function of Z. Let M(z) denote the number of record values (mazimum) of {Z;, 1 =1,2,...}
less than or equal to z.

Then, {M(z),z > 0} is a nonhomogeneous Poisson process with intensity function A(z)
and mean value function m(z) = [5 A(s)ds.

Proof: See [22,p. 47].

Applying the lemma above, let Zj be the relative improvement obtained on the k't
iteration of PRS where Z; = (y* — Yx)/(Yx — y«). Then, the assumptions of Lemma 4.1
are satisfied since Zy = 0, and {Zy, k =1,2,...} are independent identically distributed
nonnegative continuous random variables. The cumulative distribution function F of Zy, k =
1,2,... can be written in terms of p(y), as follows. For 2 > 0,

F(z) = P(Zx<2)
= P(Yi2(y" +zy.)/(1+2))
B {0 if <0
Tl 1=p((y* +2v.)/(L+2)) if0<z< o0

Since M(z) counts the number of records of {Z;, k = 0,1,2,...} with values less than or
equal to z, M(z) by Lemma 3.1 is equal in distribution to the number N(z) of PAS iterations
achieving a relative improvement of z or less.

Theorem 4.2 Let N(z) equal the number of PAS iterations achieving a relative improve-
ment at most z for z > 0. Then {N(z),z >0} is a nonhomogeneous Poisson process with
mean value function

m(z) = In (1/p((y" + 29.)/(1 + 2)))
for 0 < z < 0.

Proof: By definition,



where A(s) = f(s)/(1 — F(s)). Making the substitution ¢ = 1 — F(s) yields

miz) = | O

= —Int)i~F®
= —In(1-F(2))
for z > 0. Now,
1= F(z) = p((y" + 2y.)/ (1 + 2))
and hence,

m(z) =In(1/p((y* + 2y.) /(14 2))) for 0 <z < c0. m

It is now an easy matter to obtain the distribution of the objective function values
obtained through pure adaptive search. In particular, since

Wi <yif and only if N((y* —y)/(y —v.)) <k
and Wy is a continuous random variable,
P(We <y)=P(N((y" —y)/(y —y.)) <k)

where by Theorem 4.2, N(z) is a Poisson distributed random variable with mean m(z) =
In(1/p((y* + zy.)/ (1 + z))). We therefore have

Theorem 4.3

P <y) = - PO (o8

1=0

fork=1,2,... and y, <y <y~

Proof: See Appendix. =

There are several problem classes in the literature where the asymptotic distribution for
large sample sizes of PRS and PAS have been obtained (see for example [1,5,11,15,16]). The
result in Theorem 4.3 is particularly striking in that it provides the exact distribution of
values generated by PAS for all sample sizes and all global optimization problems.



5 Performance Bounds

A simple measure of the performance of pure adaptive search is the number of iterations
N*(y) required to achieve a value of y or better. Since an objective function value of y
corresponds to a relative improvement of z = (y* — y)/(y — y.), we have that

N*(y) = N((y" - 9)/(y —3.)) + 1.
The distribution of N*(y) then follows from Theorem 4.2.

Corollary 5.1 The cumulative distribution function of N*(y), the number of iterations of
PAS needed to achieve a value of y or better, is given by

k= )(In( 1 p(y
Py <y = 5 HCpl)
1=0
fork=1,2,... and y, <y <y*.
The expected value of N*(y) is given by

E(N*(y)) = 1+ 1In(1/p(y))
fory* <y <.

As seen in Theorem 4.2 and Corollary 5.1, performance measures of PAS depend on
the function p(y) for y. <y < y*, where p(y) is the probability of obtaining an objective
function value between y and y. when selecting a feasible point at random according to a
uniform distribution. We now derive a bound on p(y) for the class of global optimization
problems with objective functions that satisfy the Lipschitz condition over a convex feasible
region. The bound is a function of the dimension, n of the problem; the Lipschitz constant,
ks of the objective function; and the maximum diameter, dg of the feasible region, where
ds = max{||w — v||,w,v € S}.

Lemma 5.2 For the global optimization problem (P) over a convex feasible region S in n
dimensions with diameter ds and Lipschitz constant k; for objective function f,

P(Y) 2 ((y —vx) [krds)"  for yu <y <y
Proof: See Appendix.

From the above lemma together with Corollary 5.1, we get the main result of this paper.



Theorem 5.3 For all global optimization problems (P) over a conver feasible region in n
dimensions with diameter at most d, and with Lipschitz constant at most k,

E(N*(y)) <1+[In(kd/ (y —y.))In  for y. <y <y~

Proof: This follows immediately from Lemma 5.2, where

p(y) = ((y =) /kd)"
implies that

p(y) < (kd/(y —w))"
and from Corollary 5.1,

E(N'(y) = 1+In(1/p(y))
< 1+[n(kd/ (y—y)n.

From the above theorem, we conclude that the expected number of PAS iterations grows
linearly in dimension for a class of problems with finite Lipschitz constant k and feasible
region diameter d. This is in dramatic contrast to PRS where from Theorem 3.2 we know
that the expected number of iterations will be an exponential function of dimension n. The
logarithmic term, kd/(y — y.) can be viewed as a bound on the “length” of the graph of f
expressed in units of the specified error from the optimal. Clearly, an exponential increase
in the Lipschitz constant or the diameter gives rise to a linear increase in the correponding
number of iterations of PAS required to achieve the same value error.

Although several researchers have empirically reported linear behavior in dimension for
a variety of other random search algorithms including Schumer and Steiglitz [24], Schrack
and Borowski [23], and Solis and Wets [26], PAS is a difficult algorithm to implement. The
principal reason is that there is no known efficient procedure for generating a point uniformly
distributed in a general region. Although the problem of efficiently generating many points
uniformly distributed within a single bounded region has met with some success [2,3,21,25],
the problem of efficiently generating a single point uniformly distributed in each of many
bounded regions is still unresolved.

An alternative is to design an improving algorithm that generates points that in value
stochastically dominate the uniform distribution. That is, if an algorithm generates random
points (uniform or not) with associated objective function values stochastically better than
those of uniformly distributed points, then the same linear bound on performance will apply.
Natural candidates include interior point methods that have displayed similar dimensional
linearity for linear programming problems, such as Karmarkar’s projective scaling algorithm
(13] and its affine scaling variants [8,10,17]. Several of these algorithms [17] are similar



in spirit to the method of centers due to Huard [12]. PAS can in fact be viewed as a
randomized method of centers. Just as the method of centers has given rise to a class of
extremely practical interior point methods for linear programming, perhaps PAS can be
similarly employed to inspire a class of practical methods for global programming.
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Appendix

Lemma 3.1 For the global optimization problem (P), the stochastic process {Wy, k =
0,1,2,...} is equal in distribution to the process {YR(k), k=0, 1,2,...} where R(k) is the
k'™ record value of the sequence {Yi, k=0,1,2,.. .}, te

{We, k=0,1,2,..} ~ {Yaw, k=0, 1,2,...}.
In particular,

P(Wkgy)zP(YR(k) Sy) for k=0,1,2,... and y. <y <y".

Proof: First, we show that the conditional distributions are equal. Let k be any iteration,
k=1,2,... and z, y be such that y, <y <z <y*. Now,

P (YR(k+1) <y|Yre) = 1?) = P (YR(k)-H S y|Yry) = I)
+P (YR(k)+2 <9, Yei)+1 2 |Yre) = :C) + -
and since the Y are independent and R(k) is a stopping time for all ,
= P (YR(k)-H < y) +P (YR(k)+2 < y) P (YR(k)+1 > w) +o
and since the Y) are identically distributed, i.e., Yi~Y; for £ > 1,

= P(Y; Sy)iP(Yl > z)
P(i<y)
I-P("; 22

= v(5(y))/v(S(x)),
which is the conditional distribution of improvement for pure adaptive search,

= P (Wi <y|Wi =1).

We have
P (YR(k+1) <y|Yrw) = 37) =P Wiy <y|Wi =2).

Next, induction is used to show that the unconditional distributions are equal. By definition,
Yo = Wy = y*. Thus,

P(Yn(x)ﬁy) = P(YR(I)S?/%”/*)
= P(W; <y|Wo=y")
= PW,<y) foraly, <y<y,

13



and hence,

YR(l)NWI-
Let k be an integer greater than 1, and suppose Ypi)~W; for : = 1,2,... k. Then,
P (Yaus) < y) = F [P (Yagen) < y|YR(k))]
= /(; P (YR(k+1) S y|YR(k) = .t)dFyR(k)(x)
and using the equality of the conditional distributions and the induction hypothesis
= [P (Wist SyWi = 2)dF, (@)
= E[P (Wi <y|W)]
= P(Wipa <y)  forally. <y <y

Therefore,
Yrk+1)~Wigr

and by induction the two sequences are equal in marginal distribution. Finally, by the
equality of conditional and marginal distributions, the two sequences are equal in joint
distribution. =

Theorem 4.3

P(W, <y) = "z‘:‘p(y) (ln(‘l/p(y)))" for k=12 andy. <y<y"

1=0 21
Proof: As noted in the text,

P(Wi<y) = P (N((y* -y)/(y =) <k)

= ZP (v =)/ (y—v.) =1)

1=

and because N(z) has a Poisson distribution with mean m(z) (Theorem 4.2)
k-1

= Y e @ -0/w-vDm((y* - y)/(y - y.))'/i!

1=0

and since algebraically m((y* —y)/(y — v.)) = In(1/p(y)) for y. <y <y", we have

_ kfalnﬂ/r’(y))un(l/p(y)))" i
= Zp (In(1/p(y )) /.

14



Lemma 5.2 For the global optimization problem (P) over a convex feasible region S in n
dimensions with diameter d and Lipschitz constant k,

p(y) 2 ((y —y.) [Rd)"  for y. <y <y~

Proof: To obtain a lower bound on p(y), we construct two intermediate bounds. Let

YL
B, = n-dimensional hypersphere centered at z, with radius r
B, = n-dimensional hypersphere centered at z, with radius d
_ kl||z — z.|| +y« ifz € B,
9(z) = Y otherwise
_ | inf[y: (z,y) € convex hull of (z.,y.) and (B,,y")] ifz € B,
B y* otherwise
Gly) = {z:2€S5andg(z) <y}
S, = B.NS
ha) = { inf [y : (z,y) € convex hull of (z.,y.) and (S,,y")] if z € S,
y” otherwise

H(y) = {z:z€ Sandh(z) <y}

For a geometrical interpretation of these, refer to figure 1. Notice that two expressions are
given for g(z). These expressions are equivalent in defining g(z), which can be easily verified
by comparing the ratio ||z —z.||/r to the ratio y/ (y* — y.). The sets G(y) and H(y) are the
level sets of the functions g(z) and h(z) respectively.

We first show that the level sets are nested,

H(y) € G(y) € S(y)

for any y. <y < y*. We begin by considering any ¢ € H(y) for any y. <y < y*. By
definition of H(y), z € S and h(z) < y. There are two cases, either z € S, or z & 5.
If z € S,, then

h(z) = inf [y : (z,y) € convex hull of (z.,y.) and (S,,y")].
Since S, = B, S, z € B,, so
g(z) = inf [y : (z,y) € convex hull of (z.,y.) and (B,,y*)].

Also, S, C B, implies that h(z) > g(z), thus ¢ € G(y). Now, because f(z) satisfies the
Lipschitz condition, we have

|f(z) = f(z.)] < Kllz — 2]

15



f(x)
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for any = € S, or equivalently
f(z) < kllz = 2. + .

which equals g(z) using the first expression for defining g(z). Thus f(z) < g(z) and z € S(y).
If z¢S,, then

h(z) =y~
Also, because z € S, we have z ¢ B,, and thus

*

9(z) =y
And f(z) < y*, so again, z € H(y), z € G(y), and = € S(y). Combining both cases gives us
H(y) € G(y) < S(y)-

Now, using this result yields,

I
<

p(y)

v v
Et
=

<

and due to the similarity of the convex conical sets,
= ((y=v) /(" = 9))" ((5:)/v(S)) -

Thus the first intermediate bound is:

p(y) 2 ((y =) / (y" = 3))" (v(S;)/v(S)). (1)

It remains to develop a lower bound on v(S,)/v(S). Before we continue, notice that for
some mathematical programs, the set S, equals the set S, and thus the bound simplifies to

p(y) 2 ((y—w)/ (" — )"

For example, let f(z) = |z|, with § = [-2,2]. In this simple example, k = 1, y* —y, = 2,
and r = 2. Thus we have an example with B, = S = S,, and the bound is tight. In
fact, the bound in equation 1 is tight for the class of convex programs, even though S, is
not necessarily equal to S for all convex programs. A proof is given in Patel, Smith and
Zabinsky [16].

We now show that v(S,)/v(S) > v(B,)/v(Ba). In order to continue the proof, we need
to introduce a similarity transformation. Let A(z) : R® — R™ be the affine function defined

by

Mz)=z.+c(z —z.) forany r € S withc:%: ¢ k_dy*)

17



which takes a point z in S and moves it towards z, by a factor of c. Also, let
By={%:%=Mz),z € By}

and similarly, ~
S={z:z=XNz),z €S}

The first step is to establish that ~
By = B,. (2)

This follows directly from applying the similarity transformation, A, to By, which shrinks a
ball of radius d centered at z, by a factor of ¢ = r/d. This yields a ball of radius r centered
at z,, or B;.

The second step is to establish that

SCS,. (3)
To prove this, consider any T € S. We show that Z € S, and € B,. Now, & € S because

I = AMz) for some z € S
= z,+c(z—uz,)
= cz+ (1l —c)z.

and since z,z, € S and 0 <c¢ <1, and S is convex, we conclude
TeSs.
Also, T € B, because

IZ =z = [|Mz) -z for some z € §
= flz. + (e —2.) — o
= le(z —2.)]

¢ (@ =z

and by the definition of ¢ = r/d
= (r/d)]|(z —z.)|
and because z € S and d is the diameter of S,

< (r/d)d
S T',

18



UNIVERSIT OF MICHIGAN

O

3 9\})1 504732 6759

hence,

Therefore, 7 € S,, since S, = SN B,.

Now, using equation 3 yields,

v(S,)/v(8) 2 v(8)/v(S)
= v(B)/v(By)

because the ratio of the contents of sets is preserved under the similarity transformation, and
= v(B,)/v(Bd)
from equation 2. Therefore,
v(5:)/v(S) 2 v(B:)/v(Ba).

Substituting the above inequality into equation 1 yields the second intermediate bound:

p(y) > ((y —v) / (¥ — 9))" (v(B:)/v(Bg)). (4)

But the ratio of the volumes of two n-dimensional hyperspheres of radii a and b is (a/b)"
[14], thus

v(B)[v(Bs) = (r/d)"

(5" —ya) [ Rd)".

o

Hence, the final bound on p(y) is:

p(y) 2 ((y —v.) /kd)" (5)

and the proof is concluded. =
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