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ABSTRACT

For several years control theorists have been examining the
problem of reducing the sensitivity of a control system containing
a plant, a precompensator and a feedback compensator. The purpose
of this study is to ascertain the underlying structure of a feedback

control system in order to reduce its sensitivity relative to a nom-

inally equivalent open-loop system.

This problem is initially formulated in Banach spaces in order
to emphasize the operator theoretic point of view. Attention is then
restricted to Hilbert spaces, to obtain more detailed results in-
cluding interpretation, from a physical point of view. Finally, the
problem is formulated in terms of plants described by linear time-
varying differential equations of the form

x(t) = A(t)x(t) + B(t)u(t), X(to) =x, te Q= [t ,t.]

o f
y(t) = C(t)x(t).

Here the tuplet x = (xl, ce xn) represents the state variables, the
tuplet u = (ul, cees up) represents the independent plant inputs, and
the tuplet y = (yl, ceey ym) represents the independent plant outputs.

The matrices A(t), B(t), and C(t) are real and continuous on the set 9
and are of compatible dimensions. The pertinent question then ans-
wered in this thesis is: "Given a precompensator G and a feedback
compensator M, what are the relationships between these compensa-

tors and the plant to ensure sensitivity improvement?"

vii



To facilitate this study a concept of positive realness for time-

varying kernels is introduced. This concept is demonstrated to in-
deed be a generalization of the standard definition given in the fre-
quency domain for stationary systems. The concept of positive real-
ness is then brought to bear on the pertinent issues, illustrating the
natural relationship between positive realness and sensitivity im-

provement.
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Chapter 1

INTRODUC TION

1.1 Basic Concept of Sensitivity

There are basically two notions of sensitivity both of which
have the distinction of being considered classical. The first notion
considers a system as represented by a set of vector differential
equations whose solutions are dependent upon the parameters of the
equations. The second notion, which is perhaps better known
to control engineers, was introduced by Bode [g9] and is almost as old
as the theory of feedback.

The first method (see Kokotovic and Rutman [29]) considers the
perturbations in the state vector due to disturbances in a parameter

vector for systems, which can be described by

x = f(x,u, 1, t): x(t.) =%, (1.1)

where x is the nx 1 state vector, u is the mx1 control vector, u is
the px 1 time-invariant parameter vector and t is the independent

variable. If the vector u is perturbed such that
pep =i+ Ap,
then the corresponding state vector becomes

x =f(x,u,u,t); x(to) =X (1. 2)

The perturbation in the state is then defined to be



AX =X - X, (1.3)
Forming a Taylor series expansion of equation 1.3 in powers of u
the perturbations in the state due to perturbations in y is straight-
forward. First define the trajectory sensitivity function

(E)xi
0,. =
ij
ou .
u]

Au =0

To a first order approximation the perturbations in the state are then
given by

p
AX, = 2‘ 0..AL.. (1.4)

If £ is continuously differentiable and uniformly Lipschitz, the solution
of 1.2 exists and is given by equations 1.3 and 1.4 where Uij satisfies

the sensitivity equation

n
O'k]_: Z ( ) g.. + —

1
ia {ox | 1 o,

with the constraints

ok].(to) =0, k=1,...,n; j=1,...,p).

The second method, as devised by Bode, measures the system
sensitivity by the ratio of the percentage change of the transfer function
(transmission)T(u) to the percentage change of the parameter . For

differential variations, the sensitivity measure becomes

§T_ 3T()/ T . B 3T,
H op/u T(u) M



To illustrate an application of the sensitivity measure, consider

the stationary single-variate feedback system of Figure 1.1,

M

Figure 1.1 A Clcszrd-Locp Sysicia

The plant and feedback compensator transfer functions are represented
by P and M where Ve and u respectively represent the output and input

of the feedback system. The transfer function of the system is given by

T(n) = P(s, )
1+P(s, u)M(s)

)
where it is tacitly agreed that P and M are Laplace transformable.
Applying the definition of sensitivity reduction, and interpreting the

parameter p to be a parameter of the plant, the classical sensitivity

measure becomes

$p(s,1,) = [1+P(s, 1 M(s)] ™" (1.5)

where Ky is the nominal value of y. Clearly, a good feedback design
should insure that |$g(jw, uo) Ij 1 over the frequency band of interest.
Two primary reasons for introducing feedback are to reduce
the effects of parameters variations upon the system behavior, and to
improve the rejection of disturbance signals. If the feedback design

does not include sensitivity considerations, then it is certainly possible



that the effects of parameter variations could make the closed-loop
system worse than the open-loop system.

Consider, for example, the stationary single-input, single-
output feedback system of Figure 1.1 and the corresponding open-loop

system of Figure 1,2

Figure 1.2 An Open-Loop System
It is easy to verify that the nominal system equations for the open-

loop and closed-loop systems are given by
Y _(s) = P(s, 1)U (s) (1.8)
and

Y,(5) = Pls, 1) [U(8) M(S)Y o (s)] 1.7

If the parameter changes from Hy to Au + o the deviations from

nominal for the open and closed-loop system are given by
éYo(s) = AP(s, u)U(s) (1.8)
[1+P(s, 1 )M(5)] 67 (5) = AP(s, W[ U(s)-M(s)(Y ()40 Y (s))] (1.9)

where AP(s,u) = 6P(s,u)\ Au.
ou ; m=1y

From equations 1.8 and 1.9, it follows that the percentage change in



the output of the closed and open-loop systems are related by

5Y 5Y (s) 6Y (8)
C(S) =1 +P(S,LL)M(S)]—1 O(S’ Bg o
Yc(s) Y0 (s). Y, (s)

Hence, if |1 +P(jw,u)M(jw) | _15 1 for all p and jw, then the percentage
change of the output of the closed-loop system will be less than that of
the open-loop system. Note that for small plant variations such that
P(s,u) is approximately equal to P(s, p,o), $ is equal to the classical
sensitivity given by equation 1.5. The above discussion forms the
beginning of the modern concepts of sensitivity reduction of multi-
variate control systems. That is, it serves as a foundation from which
the modern concepts are constructed. The following section gives

a review of some of the more important developments in the modern
theory of sensitivity reduction, and illustrates how these results
reduce to the classical concepts described previously for single-variate

stationary systems.

1.2 Review of the Literature

Recently efforts have been directed to extend the concept of
sensitivity as presented by Bode to linear multivariate systems
(references [11], [39] and [43 ] serve as a introductibn into this
subject). In particular, the works of Perkins and Cruz [11], [39]
were the first successful attempts to establish a sensitivity reduction
criteria for multivariate systems. Although the purpose of these

papers were not to establish all the elegant structure pertinent to the



sensitivity operator, they did serve to illustrate a methodology by
which this objective could be achieved. The approach used by Perkins
and Cruz established a criteria under which a closed-loop system would
be less sensitive to disturbances than a nominally equivalent open-loop
system. The criteria pbeing that the closed loop system is said to be
less sensitive than the open-oop system if1 for all tf € (0, o),

t t

1 f
J oyl (Qoy mdt < [oy! Q6 (Mat, Q> 0, (1.10)
0] 0

providing, of course, both integrals exist.

These authors considered the two system configurations illustrated

in Figure 1. 3.

u G P — —Y

Figure 1.3 Two Nominally Equivalent Systems

1 Throughout the thesis, prime is used to denote matrix transpose
and the notation A > 0 is used to emply that A is a positive operator.



The plant, P, is linear,causall, and stationary and is represented by
the matrix P(s, ) and the feedback compensator is a constant matrix
M. The compensator G is chosen so that the two systems have equiv-
alent transfer functions with no disturbances in the form of plant
perturbations or additive noise 7.

If the plant is perturbed, then the relationship between the output
of both systems is given by

-1

GYC(S) =[1+P(s,u)M] GYO(S) (1.11)

or

8Y (s) = $(s,u,)6Yo(s). (1.12)

Using Parseval's theorem and equation 1.12, it follows that the
sensitivity criteria can be given a frequency domain interpretation
via

0
J 5Yz(jw)[$*(jw)Q$(jw)-Q]GYO(jw)dwf_ 0 (1.13)

=00
where * denotes the complex conjugate transpose. If inequality 1.10

exists and

Q-$"(10)Q$(w) > 0 for all we (~0,0),  (1.14)

the closed-loop system is said to be less sensitive then the open-loop
system. If Q is replaced by the identity operator, we see that for

single-variate systems inequality, 1.14 reduces to

11+P(jw, u)M ’_1 <1, for all we (-0,).

1For a definition of causality, see Appendix C.



Consequently, these results reduce to those discussed previously
for single-variate systems. We now see that sensitivity reduction
for multi-variate systems is givenanew meaning via the performance
index of inequality 1.10, which is a generalization of the classical
definition for the single-variate case.

Having established this concept of sensitivity reduction for
stationary multi-variate systems, Cruz and Perkins extended this
concept to linear time-varying multi-variate systems [38 |. This was
accomplished by recognizing that 6yc(t) and byo(t) are related by a

linear time-varying operator $, such that
-1
5y, (t) = $5Y0(t); $=[1+PM] . (1.15)

whenever I + PM is nonsingular. The sensitivity reduction criteria
was then formulated by a natural generalization of inequality 1.10.
This criteria states that the sensitivity of the closed-loop system is
less than the open-loop system if the norm of 6yc is less than the norm
of 6y0. It is evident this criteria is equivalent to the norm of $ less
than unity. This fact led the above authors to establish the relationship
between the mapping$, and contraction1 mappings. These results
although interesting for their own sake, were not sufficient to com-
pletely characterize the fundamental structure of $.

Porter demonstrated, (see [4]1 | through [45]), that the entire

question of sensitivity reduction by means of feedback could be form-

1 For a definition of contraction mappings, see [34].



ulated in terms of Banach spaces. This was accomplished by consid-
ering the two nominally equivalent systems of Figure 1. 4 with 5 equal

to zero. Letting B, and B2 denote Banach spaces, the plant P is de-

1

fined to be linear such that P: B1 - B2' The compensators G and M

are also linear and G: B1 - B1 as well as M: B2 - Bl'
n
A G P —— Ye
M ——
n
U—= p v,

Figure 1.4 Two Nominally Equivalent Systems

As before when P is perturbed, the perturbations in the outputs
of the two systems are related by a linear operator é, such that

6y, = §0y,; § = [1+pam] L.

(1.16)
C

The sensitivity was then said to be improved if and onlyif the norm
of $is less than one. Porter, then focusing attention on time-
varying systems whose operators map between finite cartesian

products1 of the Hilbert space, Lz(-oo,oo), demonstrated that the

1 See Appendix A for a definition of the Hilbert space L2(—oo,oo).
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perturbations of the open and closed-loop systems can be related

by

Il

2 G Gl 2 X
Loy II7= <$oy ,$0y> = lloy |I"-<sy _,(1-$8)oy_>

Consequently a necessary but not sufficient condition for sensitivity
reduction is that the operator I-$*3 be positive. This condition is not

sufficient in the sense that the inequality

t t
f f
_{o[ 5yc(t), Gyc(t)]dt i_foo[ GyO(t), Gyo(t) ]dt, for all tf € (-0, )

will not be satisfied for noncausal $. The above author then illustrated

that if P, G, M, and é are bounded and stationary;
I-9*$ >0 &e=I- $*(jw)$(w) > 0 for all we (-0, ),

where é(jw) is the frequency matrix representation of é This result

is identical to that given by Cruz and Perkins [11 | with @ =I1. Itis
emphasized that the results given by Porter are not restricted to the
stationary case. In particular Porter extends the concepts of sensitivity
reduction, in Hilbert spaces, to distributive systems (see [41 | and [42])
as well as to time-varying systems [44].

Anderson and Newcomb [ 5 |, following the ideas of Cruz and
Perkins, were the first to formalize the necessary as well as sufficient
conditions for sensitivity reduction when the Hilbert space is L; (-00, 0).
By means of distribution theory, these authors demonstrated that the
relation between the perturbations of the open and closed loop response

due to plant parameter variations is linear and describable by a
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distributional1 kernel.
For the systems of Figure 1.3, the kernel of the sensitivity eperator
$ is given by

-1
$ = [61n+pusm]

where pli is the impulse response matrix of the perturbed plant P(u),
and consequently a distributional kernel dependent on u, m is the
impulse response matrix of the feedback compensator and 5In and
denote‘ the unit impulse matrix and convolution respectively.

The criteria for sensitivity reduction is not given by the usual norm

on L;(-oo, ), but instead by

b b
_foo[ 6yc(t), GyC(t)]dt i_ofo [éyo(t)‘, GyO(t)]dt, for all tee (-00, ).

Employing this criteria, the necessary and sufficient conditions for
sensitivity improvement are then demonstrated to be
1. §: erl(—oo,oo) —*L;(-oo,oo)
2. $ causal (A1)
3. lIs$ll<1.
For stationary systems the authors point out but do not prove that
conditions (Al) are equivalent to
1. $(s) analytic for Re s >0
2. $(s) = $(s) for Re s >0 (A2)

3. I-$*(s)$(s) > 0for Re s >0

1 See Reference [50] for a comprehensive treatment of distribution
theory.
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where the overbar denotes complex conjugate and $(s) denotes the

Laplace transform of the sensitivity kernel.

1.3 Sensitivity Reduction of Linear Optimal Control Systemsl

Since the primary reason for introducing feedback is to. reduce
the effects of parameter variations upon the system behavior, the
question of whether linear optimal regulator systems provide a closed-
loop sensitivity reduction becomes pertinent. Kalman [23 | was the
first to answer this question affirmatively on the basis of the analogy
of his results with the classical return difference of Bode. The result

can be stated as follows: consider the completely controllable plant,

x(t) = Ax(t) + bu(t); x(0) -x, (1. 17)

with linear state feedback

u(t) = -m'x(t),

(where A,b, and m are nxn, nx 1, and nx 1 matrices respectively),
and a performance index of the form
0
2
(

J) = [ [x' ()L'Lx(t) +u®(t)]dt; L'L> 0,
0]

. 2
where {A,L} is completely observable.” Then a necessary and
sufficient condition for m to be an optimal control law is that m is

a stable control law and

|1+m'<I>(jw)b\2= 1+ |\L<I>(jw)bH2 (1.18)

hold for all w, where ®(jw) = (ij-A)_]i

1 The optimal regulator problem as well as associated concepts
of modern control theory are discussed in Appendix B.

2 Observability is discussed in Appendix B.
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Cruz and Perkins [39] demonstrated that equation 1.18 was

equivalent to the classical percentage-change sensitivity replacement
|$(jw)| < 1 for all we (-o0, ),

provided ®(jw)b # 0. Hence, Kalman's result demonstrated that for
the single-input, multi-variate output, a necessary and sufficient
condition for optimality is that the feedback control law reduce the
sensitivity to disturbances.

Anderson, | 6 | following arguments similar to Kalman, obtained
analogous results for the multi-variate feedback system. In particular,

Anderson considered the controllable plant described by the equations,
x(t) = Ax(t) + Bu(t); x(0) = X, (1.19)

where
u(t) = -M"x(t)
(such that A, B, and M are nxn, nxp, and nXx p matrices respectively),

is the optimal control law for a performance index of the form
0
J@) = [ [x' (HL'(E)Lx(E) + u'(t)u(t)] dt. (1.20)
0
The following theorems follow from Anderson [ ¢ |:

Theorem 1.1  Let M be an optimal control law for the completely

controllable plant 1.19 with the performance 1.20. If {A,L} is

completely observable, then

[I+B'<I?*(jw)M] [T+ M'®(jw) B] >1, for all we(-w, ).
(1.21)
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Theorem 1.2 Let M be a stable control law for the completely con-

trollable plant 1. 19 such that {A,M} is completely observable and
[1+B'®*({w)M] [ I1+M'®(jw)B] > 1 for all we (-, ),

then, there exists a matrix L such that {A, L} is completely controll-
able such that M is an optimal control law for the performance index 1.20.
Kreindler [32], who was also working in this area, demonstrated that

inequality 1.21 was equivalent to

$*(w)Q8 (w) < Q,

where

Q=MM* > 0.

Consequently, Anderson's result illustrated that for the multi-variate
feedback system, a necessary and sufficient condition for optimality
is that the feedback reduce the weighted system sensitivity. Gener-
alizing these results to multi-variate time-varying systems [ 3 ],
Anderson was again able to demonstrate that over the infinite interval,
the optimally derived controller reduced the sensitivity to a particular
weighting of the output errors.

Kreindler, utilizing the notion of a trajectory sensitivity function,

o, defined by
_ox(t)
ou

o(t) =

established a criteria under which the closed-loop system would be

less sensitive to disturbances than a nominally equivalent open-loop
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system. The criteria being that the closed-loop system is less
sensitive than the open-loop system if there exists a positive self-

adjoint matrix Q such that

tf | ts
fo 0! (HQU, (B)dt < fo o! (t)Qo_(B)dt for all t, e (0, ),

where o, and T, represent the open and closed-loop trajectory sensitivity.

For the multi-variate control system described by 1.19 where

u(t) = -M"x(t)

is the optimum control law for the performance index

J) = fofx' (t)L'Lx(t)+u' (t)Ru(t)]dt; R >0,
0

then there exists a matrix Q namely, M'RM such that the sensitivity
is reduced. Kreindler [32] also points out that in general it is not
possible to reduce the sensitivity for arbitrary weighting matrices
Q. To clarify the condition under which the optimal regulator
reduces sensitivity, a necessary condition relating the matrices M

and B is given in Chapter 5.

1.4 Dissertation Objectives

In the past, considerable effort has been devoted to identifying
the structure of the sensitivity operator $. In the prief review
given in section 1.2, it was seen that some of the tools used to tackle
this problem owe their origin to functional analysis and distribution

theory. However, made obvious from its scarcity, is the application
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of these tools to identify the structure of the compensators to achieve
the aforementioned goal.

The purpose of this thesis is to apply Banach and Hilbert space
techniques, as employed by Porter and Newcomb, to determine the
relationships between the plant and its associated compensators to
ensure sensitivity improvement. That is, necessary conditions and
sufficient conditions relating the plant matrices {A(t), B(t), C(t)} and
the compensators G and M are given which guarantee sensitivity
reduction to noise and plant parameter perturbations., It is also
shown that the concept of positive realness plays an important role in

developing these relationships.



Chapter 2

POSITIVE REAL OPERATORS

2.1 Introduction

For several years, network theorists have been employing a
concept of positive real functions in the analysis of time-invariant
networks (references [17], [ 18] and [33] are recommended as
entries to this literature). More recently this concept has become
an important tool for the control systems analyst. Popov, for example,
successfully employed this concept in his development of a stability
criterion for nonlinear feedback systems [49]. Anderson, employing
the matrix analog of positive real function [ 4 | explored the relation-
ships between linear feedback control laws chosen to reduce system
sensitivity, and linear feedback control laws derived on an optimal
control basis from a quadratic loss function [ g |. These and other
applications provide in part the motivation of the present effort to
formulate a notion of positive realness that can be fruitfully employed

in the study of time-varying systems.

2.2 Integral Operators

We begin the discussion with the notion of an integral operator.

Let k(t,7) be a complex valued mX p matrix of functions continuous in

both variables1 on the set Ox O where Q R denotes a closed

1 Henceforth, if a kernel is said to be continuous it is assumed
to be continuous in both variables.

17
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interval of the real line. Denote by K the multivariate integral

operator

(Ku)(t) = fQ k(t, Nu(7r)dr, teqQ. (2.1)

Let z = Ku, then in component form, each component of the vector z

is given by

=

z(t = k (t Tll(T)dT, i=1,...,m.

j=1
The matrix k(t, 7) is called the kernel of the integral operator.
Throughout this chapter, we will focus our attention on bounded
operators mapping between finite cartesian products of the Hilbert
space1 LZ(Q). The scalar product between any two vectors x,y € L; ()
is given by

(t)y;(t)at

n
<x,y>=), [ x
1

%
j=1 @
consequently the Hilbert space norm is computed by

%112 = < X,X > = Z f |x t)l dt = fQ[x(t),x(t)]dt,
i=1

where [ , ] denotes the inner product in the complex Euclidean
space EIl
The Hilbert space adjoint, K*, of the operator K, can be

determined in the following manner:

1 Appendix A is recommended for a brief introduction into
Hilbert spaces.
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<y,Kx>=[ [y, fgk(t, Nx(n)d7] dt

f f y (), k(t, Ix(7)]drdt.

By Fubini's theoreml, we can then write

< y,Kx> = fQ [fﬂk'(t, Dy (t),x()]dtdr = < K'y,x >.

Hence, the adjoint operator is computed by

(K*y)( fk' (1,t)y(n)dT, teQ.
Q

This serves to identify the kernel, k*, of the adjoint operator namely

k*(t,7) =k'(7,t), (t,7)eQ2xQ.
Let w(t, 7) be a continuous complex-valued n xm matrix defined
on the set Qx Q, and let W denote the associated integral operator.
The application of W to z of equation 2. 1 serves to identify the kernel

of the composition WK
(Wz)(t) = {Q w(t, 7) fﬂk(T, s)u(s)ds dr.

Employing Fubini's theorem it follows that

(Wz)(t) = fQ {fﬂw(t, Ik(1,8)dT ju(s)ds; te®

and thus the kernel of the composition N = WK is given by

n(t,s) = fﬂw(t, nk(r,s)dr; (t,8) e QxQ

1 See Halmos [20], p- 148.
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Remark 2.1 The composition of two operators may be used to

introduce the idea of an inverse operator. That is, W is said to be the

left inverse of K when
x(t) = (WKx)(t) teQ,

for all X in the domain of K. Using the unit matrix delta function,

the identity can be viewed as an integral operator; namely

Ix(t) = fgx 5(t -7)x(PdT = x(t).

Therefore the kernel of the inverse system, k-l(t, 7), may be viewed

formally as the solution of the integral equation

16 (t-1) = [ k™1, )k(r, D).
0

The following three lemmas (which are available in single variate
form in the literature 1) are helpful in characterizing kernels of integral
operators which are bounded on the function space L; (2) and in
introducing the mathematical terminology. Because these kernels
play an important role in the sequel, the proofs of these lemmas are

included here.

Lemma 2.1 If the matrix kernel f(t, 7) satisfies the condition

n
Y[ 6., %drdt <o
ij oxQ 1)

! See for example [28].

n n
2The notation Z is equivalent to Z f: .
ij i=1 j=1
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it is called a Hilbert-Schmidt1 kernel, and its associated integral

operator F is bounded on L}

9 (Q).

Proof: Lety = FX such that xe L;(Q) then in component form, each

element of y is computed by

n
;) = ]Z J 5t Dxj(mar

Employing the obvious inequality for |yi(t) | we obtain

n
ly, 1 < ]Z fQ £t D)1 1x,(7) lar.

By Schwartz's inequality for integrals

n 1
ol D0S lfi].(t,f)|2d7 [ I )1%ar]?
j
<[ f |f (t, T)I dr] [Zf IX._(T)Isz]E
Q i o !

1

J, 1yt Par)” |

I A

[

= “"'L\ﬂ::

Using this inequality we obtain for HY Il

Iyl=(3 0 Iyola] < [ i arad lisll.
i Q ij QxQ

Since ||x|| < o, the lemma is proved.

Lemma 2.2 If the matrix kernel f(t, 7) satisfies the conditions

2 2
fﬂlt‘ij(t, 7ldr < M/, fﬂlfi].(t,T)[oLtiM2

1 For further properties of Hilbert Schmidt operators see [12].

fori,j=1,...,n
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then, the associated operator F is bounded on L; ().

Proof: As in the previous lemma, for y = Fx, A is computed by
n
t) = f..(t, )x.(ndr
730 = 4 J 0 70

Taking absolute values

n
ly, 1< 7] 336 (1) T,
? o

and using Schwartz's inequality

[N

ly.l< 2 fQ[lfij(t, Dz 1] 156,01 ar

b\‘—l

LS gl gt Par {16, lar)

A
Cavd o

n 1
My {5 [ 1857 %1% ar}”.

I A
Cond e

We obtain for ||y|]

lly ] —{Zf ly. (t)|2dt} <M {Zf |f (t T)(Fx (M1 d'rdt}
ij axQ

<M {i Ix T)IZZf If (t 'r)ldtd'r}

Hence,

(M

Iyl < n* MM, lIx]l,

1
and since ||x|| is finite, the lemma is established.
If the matrix kernel {(t, 7) is of the stationary type, that is

f(t, 7) = £(t - 7), then the following lemma is pertinent.
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Lemma 2.3 Iff;eL (@) thatis, f9|fij(7') ldr < Mfori,j=1,...,n,
then the associated integral operator is bounded on L; () where

Q = (-0, ).
Proof: Let FX =y such that xe L;(Q). A is computed by

n n
y;(t) = ; fgfi].(t—T)Xj(T)d’T= z? fﬂfij('r)xj(t—'r)dT

Taking absolute values

FACEES

fQ 1) | Ix,t - 7) ldr,

5

and using Schwartz's inequality

DO

1

7,0l < Tf [ty (0] Ixe- 212 ), <~r|E

.'3'—'

Z{f |f T)|]x(t T| dT} {f If )Id'r}E

Coned o

< M{Z J It (] lx.(t-T)lsz}E
Computing |ly||

n 9 %
lyll = (3 J, sy et

=

I A

{Tf Q 1] |[x(t 7) det}

I A

2 2
M{? fQ|Xj(t-T)| }ijfﬂuij(r)ldfdt}

IA

1 n 1
n’ Mz{Zf |x.(t—7)|2dt}2
j e

w202 (x|

I A

Hence, the lemma is proved.
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Definition 2.1 A continuous self adjoint matrix kernel k(t,7),

defined on Q x Q, is called a positive kernel ifl

<x,Kx> = [ [x(t),k, 7)x()]drdt >0 (2.2)
QxQ

n
for all xe L2 ().
To see that this class is nonvacuous, we consider, for example,

the kernel defined by

k(t,7) = fo'( X, O D), (t, 7)€ QXQ (2.3)

where f(t, 7) is a continuous complex valued mx m matrix.
Since

[ £, Dx@), (0, Dx(7)]dAdrdt
QXQXN

J LS 1, 0x®at, [ £, Dx(r)dr]da
Q Q Q

< xX,Kx>

H

= [I7x|12 > o,

it is clear the k(t, 7) is a positive kernel.
The following two lemmas are helpful in further characterizing

positive kernels. Let Q be the set [to,tf] , then

Lemma 2.4 If the kernel k(t, 7) is continuous in both variables on

the set Q x Q, then a necessary and sufficient condition for k(t,7)
to be a positive kernel, is that for every finite uniform sequence

{ta}? of distinct points belonging to O and arbitrary complex vectors

1 In short a kernel is positive if its associated operator is
positive. See also Zaanen [58].
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g1 v2, ... ,y™eE", the following relation holds
s 8
2 [y% k5t )y7]> 0. (2. 4)
a,B

Proof: Thais proof is a straightforward generalization of the single
variate case and follows that given in Widder [ 55]. Assume equation

2.4 is valid, and let

Set

and substituting into 2.4 yields

‘ t, -t
Letting y¥ = X(td) ( f o

m+1
m ’cf - to 2
aZB [x(t,), Klty, t)x ) N ) 2 O (2.5)

Equation 2. 2 then follows from 2.5 by taking the limit m - oo. [ 56]

To prove necessity we proceed as follows: suppose that there
exist {y?} and {ta} for which equation 2. 4 is not positive. We éhall
then show that there exist continuous complex vectors x(t), such that
equation 2. 2 is not satisfied. Define a continuous scalar function
6 (t,t), such thatt and t belong to . Let ¢ and y be small enough

€,y
sothatt <t-e-y<t+e+y< te. 0, y(t,t) is then defined to be
H
zero in the interval (toft_<_t -e-9y)and (t + ¢ +y_<_t§tf) and
unity in (t - ¥ < t < t + ). In the rest of the interval 6, y(t,t) is
’

defined to be linear in t. Now choose € > 0, and y > 0 so small that
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no two intervals (-e -y + ta’ta +€ +7) have a non-zero intersection.

Set
3 a

mo=§y-%”m%>
and let

m

K (t,7) =) [y%k{t+t ,7+t)y"].
m a B

a,p

Hence
Y .Y
<6,Kp>= ffK t'rdtd'r+y ff [ 6(t) 6(7)] drdt
-y -y a,

aB

where A  is the region between the square

ap

ta-e-yitf ta+e+y, t,-e-y< 1<t

B

+E+Y

B

and the square

t -v<t< -y <1< t .
o 'y_t__ta+'y,t67/_'r_ B+y

For any point (t, 7) in the region A

ap

[ [6(t), k(t, 7)6(7)] I<MZ ly:'y ¥, a
i,j

where
M—sup(t )Ik t, 7| fori,j=1,..
Hence,
m m n
% S Lok, Dem)]drdtl < deM@yve) ), ) lg vl
a,B AQB a,B 1,]

Since we assumed that equation 2. 4 was non-positive, we will let

K_(0,0) = -5
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and choose an y so small that

K (6,7 <-8/2 ltl<y, 7] <y
Then, for such a v,
Y.y 2
[ J&_(t, ndrdt < -26y
'

and therefore,

< 9,Kp>< -2 5y2+4eM(2y+e)Z Z |yiayj3|.
a,B1,]

By choosing ¢ small enough, the right-hand side of this inequality is
negative and since 9(t) is a continuous vector function, we have a

contradiction which completes the proof.

Lemma 2.5 If a continuous matrix kernel k(t, 7), is positive, then

k(t,t) is a continuous positive matrix.

Proof: By lemma 2.4, we have, for any point t in (to’tf)’

[v,k(t,t)y]> 0

Hence, by definition, k(t,t) is a positive matrix, and since k(t, 7) is

continuous in QX Q, k(t,t) is also continuous for te Q.

2.3 Linear Time-varying Systems

Turning now to more physical considerations we will define a
concept of L2 - positive realness for integral operators representing
time-varying dynamical systems as well as demonstrate their necessary

structure to ensure L2 - positive realness. For time-invariant systems
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it will be shown that these concepts are generalizations of the standard
definition. 1

m |
Definition 2.2 An integral operator W: ern(ﬂ)" Lo (), whose kernel,

w(t, 7) is continuous in both real variables on @xQ, is said to be Lo-

positive real if

1. w(t, 7) is real

2. Wis causal

3. W is bounded

4. W+W*> 0.

Consider now the linear causal dynamical system with the
mathematical model of the form

X(t) = AM)x(t) + Blt)u(t),x(t ) =0, teQ = [to,tf] (2. 6)

(S1)
y(t) = C(t)x(t). (2.7)

Here the tuplet u=(u_,... ,um) represents the independent system

1’

inputs, the tuplet x = (xl, ...,X ) represents the state variables, and

)
y = (yl, - ,ym) represents the output. The matrices A(t), B(t), and
C(t) are real, and continuous on Q, (that is, each element of each matrix
is real and continuous on Q), and are of compatible dimensions., The

output of the linear system is related to the input by the integral operator

(Wu)(t) = fQ w(t,7yu(r)dr (2.8)

where w is the impulse response matrix2 of the system described by S1

such that

1See definition B. 8 of Appendix B.
%See Zadeh [59].
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w(t,7) =C{t)®@(t,7)B(7) t > 71
wt,7) =0 t<rt
and where @is the transition matrix of the system described by

x(t) = AQ)X(t) + u(t), x(t,) = 0, teQ.

If the integral operator associated with S1, is Lz-positive

real, then S1 is said to be an L o~ Positive real system.

The next theorem establishes a sufficient condition for L 9~ positive

realness in the context of Si1.

Theorem 2.1 Let the kernel of the causal integral operator W, be

bounded on L;n (R),andgiven by C(t)®(t, 7)B(7), If there exists a
continuous, positive self-adjoint nxn matrix Q, and a continuous rxn

matrix 1. such that

1. -QM) = QA + AR + L'OL(E) (2.9)
2. QUB() =c'(t)
3. (Fx)(t f L(t)®(t, DB(Dx(")dr: ||F]|| is finite

where Q(to) is chosen to satisfy condition (2) at t = to’ then W is

Lz- positive real.
Proof: We shall make use of the identities

d sar
d—,7—. {(b (T, t) ( @(T, } (I)'(T t {A’ Q(T)+Q(T)+Q }‘b(T,
(2. 10)
. = -®'(7,t)L"(7) L(1)®(7, s)
T t & ty t
ftftft TsdsdT_ffft 7,8 )deS+fff(t 7,8)drds.
o 0 t s
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Employing the above condition, F'F can be written as

t it
(F*Fx)(t) = {f B'()@" (7,t) L'(P)L(7)®(r, s)B(s)x(s)dr ds

te t;’ (2.11)

+ [ [ B' ()@ (7,t) L' ()L(1)&(r, s)B(s)x(s)d 7 ds.
t s

Now proceeding with the proof, it follows by substituting equation

2. 10 into equation 2. 11,

f
(F*Fx)(t) f [ B'(t) % [8'(7,HQ(1)&(r, s) } B(s)x(s)d7ds
t t

b t

- fB'(t)————{<I>' 7,)Q(7) ®( 7, 5)}B(s)x(s)dds.
t s

Employing the fundamental theorem of integral calculus, it is clear

that

B' ([ Q1) ®(t, 5)-2'(t;, )Q(t) & (1, 8)] B(s)x(s) ds

Since @ is the transition matrix of a causal system, it follows from

the preceding equation that

(F Fx)(t) = f B! ( £)®(t, s) +&'(s, t)Q(s)] B(s)x(s) ds

- [ B'(1)®" (1, Q)2 (¢, 5)B(s)x(s)ds
Q

By employing condition (2) it is seen that

(F*Fx>(t>=<[W+W*]x<t)—fQB'<t>¢'< Q) (t,, 5)B(s)x(s) ds
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and since F*F is positive and bounded and since the integral operator
associated the last term of this equation is positive and bounded, the
theorem follows.

The following theorem gives a necessary condition for the

L2 - positive realness of W in the context of the system described by S1.

Theorem 2.2  Let the kernel of the integral operator W be given by

C(t)®(t, 7)B(7) then a necessary condition for W to be L, - positive

real is

C(t)B(t) + B'(t)C'(t) > 0, for all te Q.

Proof: From definition 2.2 we see that a necessary condition for

positive realness is that the kernel
C(t)®(t, )B(7) + B'(t)®'(7,t)C'(7)
be positive. Employing lemma 2.5 it follows
C(t) @ (t,t)B(t) + B'(t)@'(t,t)C'(t) > 0.

Since &(t,t) = I, the theorem follows.

Before continuing the analysis of L2 - positive realness it is
pertinent to examine some of the characteristics of the matrix

differential equation given by condition (1) of theorem 2.1

Remark 2.2 The solution of the differential equation

-Q(t) = A'MQE) + QU)A() + L'(HL(t)

exists and is unique (see Porter [46 |) and is given by
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t
Q) = @', H{Qt,)- { ®'(1,t JL'(NL(7) @(7,t )dT} B(t ,1), te Q.
)

Moreover, if Q(to) is self-adjoint and chosen so that
t
f
Qt)> [ @'(r,t)L'(DL(7)&(7,t )dr
t
0

then Q(t) is positive and self-adjoint for all te Q. It is also noted

that if L ® is the impulse response matrix of an exponentially

asymptotically stable systeml, then lim || e'(t,t )M @(t,t ) || is finite.
t—>w

Remark 2.3 Assume that; A(t) = A1 + Az(t) and Q(t) = Q1 + Qz(t)

where A, and Q, are stationary and Re {or(Ai)} < € < 0 where o (A)
denotes the spec'crum2 of A. Choose Q1 to be the unique, positive,

self -adjoint solution of
' — 1.
Q1A1 + A 1Q1 = -L'L.

Then sufficient conditions (see Porter [44]) for the existence of a
matrix L(t) and a bounded, uniformly positive matrix Q(t) satisfying
equation 2.9 are given by

At -t )

1. for some scalars k,A > 0, H@(t,to) || <ke o',te (to,oo)

2. for some scalars 6,3 > 0, ||A2(t)|| < Be_(3 t,te (to,oo)

3. for some scalarsk',\' > 0, ||® (to,t) | < k'e}‘ (t_tozte (to,oo)
kk'")2

4, Bkk") HQlH < y where Q1>'}/I> 0.
V206

1 See Appendix B.

2 For discussion of the spectrum of an operator, see Appendix A.



33

Remark 2.4 If the matrices B and C are stationary then equation

2.9 becomes algebraic, namely;

QA(t) + A'()Q = -L'(t)L(t) (2. 12)
Porter has shown (see [44]) that for the matrix A(t) such that
A() = Ay + A, (1); Re [0(A)] < e <0,

it may still be possible to satisfy equation 2. 12 with a constant Q.
Following Porters development it follows that if I|A2(t) | < 1for

te [to,oo) then equation 2. 12 can be expressed by
QA(t) + A'(H)Q= A'1Q+QA1 + V[A'z(t)Q + QAz(t)] = L'(H)L().
Hence it is sufficient that Q satisfies
AlQ+QA, = -L'L
where L'L > 2y ||Q]|L.

The following three examples serve to illustrate the previous

theorems.

Example 2.1 To illustrate the use of theorem 2.1, consider a single

variate system. In equations 2.6,7 let x,y and u be scalar valued
functions. The matrices A, B, and C are replaced by the scalar
functions -a(t), b, and ¢ respectively.
Equation 2. 6 reduces to
X(t) + a(t)x(t) =bu(t), x(0) =0, teQ =[0,w], (2.13.1)

y(t) = ex(t) (2.13.2)
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where it is assumed that a(t),b, c are real and

a(t) =t + &, and 6,b,c > 0.

This system defines an integral operator given by

t
(Wu)(t) = [ c@(t,Dbu(ndr,
0
where
t
®(t,7) =exp { - fa(s)ds} t>r7
T
=0 t< 7.

Clearly (1) and (2) of definition 2. 2 are satisfied. 1t is evident that

W is bounded on Lz( Q), since

t, 7) < e-é(t_T) =e_5A,A =t-7;
therefore t

f le®(\)bldx < o for te (0, ).

0

Hence, from lemma 2.3, & is an L1 kernel and the boundedness of W
follows. The operator W + Wx is positive since there exists an ((t)

and a q(t), namely
V2a(t)q = (), q =C/p,
such that theorem 2.1 is satisfied. Consequently, the system

described by equations 2.13 is L - positive real.

2

Example 2.2 The purpose of this example is to illustrate a kernel

which doesn't satisfy theorem 2.2 and demonstrate that it is not

L2 - positive real.
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Consider the single-variate system represented by

).c(t) +X(t) = Sin t u(t), x(0) =0, te[o,w]

y(t) = tx(t).
This system defines the integral operator given by
t t
(Wu)(t) = [ te - Dgin Tu(r)drT.
0

Let u be given by
ut) =1 7 <t <27

u(t) =0 otherwise,

hence, u ¢ Lz(o, ). It will now be demonstrated that < u, (W + W¥)u >
is non- positive, hence the single-variate system is not L 9~ positive
real.

It is clear that
21 27 21 27 y

<u,(W+Wiu> = [ fte'(t'T)Sin rardt+ [ f(smt»e'(T'tl‘Tdet
T T T t

(

-47 -3 +e " (1+27) <0.

Example 2.3  The purpose of this example is to illustrate an operator

that satisfies theorem 2. 2 and is not L2 - positive real. Thekernel

under consideration is given by
wit, 1) = - _%_e-4(t-'r)+ _;__e"(t-'T)’t > 1,
wit,7) =0 t<r7

and Q is the set (-o0,1). Theorem 2.2 is satisfied since the ma-

trix BC is the zero matrix. Let u be given by
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u(t) = e(1+j4)t,

—0o< t< 1
u(t) =0 otherwise,
hence u ¢ Lz(-oo, 1). Substituting u into the following inner product,

it follows that

-(t T) —4(t T) (14347 (1- ]4)t

< u,(W+W*)U> = f f drat
=00 =00
+f f (T8 o~ 4(T-0) (i) 7 (1§41t 4y
= -1.04.

consequently W is not L - positive real.

2

2.4 Stationary Systems

In this section, we will focus our attention on the dynamical
system S1 when A, B, and C are constant real matrices, and
demonstrate that definition 2. 2 is a generalization of the usual concept
of positive realness given by definition B.8, when the integral operator
representing S1 is defined in ern(-oo, c0).

The first order of business is that of establishing the relation-

ship between L, - positive-realness in the time and frequency domains.

2

Lemma 2.6  If the integral operator W, defined on Lén(-oo,oo), is Lig -

positive real and its kernel, w(t-7) is continuous and stationary, then
for Re s> 0

1. W(s) is analytic
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where W(s) is the Laplace transform of w(t-7).

Proof: 1. Since the kernel w(t, 7) is stationary and causal and
since its associated integral operator is bounded on
Ln;(—oo, o), then it follows from theorem C.5 of Appendix

C, that W(s) exists and is analytic for Re s> 0.
2. Condition (2) is equivalent to w({-7) being real.
3. SinceW + W is positive, it is also real and consequently

we need only concern ourselves with Re < x,Wx > Let
st » .
e 'x, fort<t, wheres=0+jw (0> 0

0 fort >tf,

such that x eEI:’11 hence x ¢ Lng(—oo,oo). Since x(t) = 0 for

t>t

- 1
b t
Re<x,Wx> =Re [ [x(t), [ W(t-nx(n)dr] dt
-0 -0
te ©
=Re [ [x@t), [ w(Dx(t-7)dr]dt.
-0 0
Consequently,
T t
Re<xWx>=Re [ [e°'x, [ w(r)e ®Tdre x]at
~0 0
g
= Re [x, W(s)X ] erOtdt.
-0

Since
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b
f e?%gt > 0
-0

and since Re < x, Wx >is positive, we obtain the desired

result; namely
Re [x,W(s)x] > 0, Re s > 0. (2. 14)

Hence the definition for L2 - positive realness of time-varying system
is a natural one, since it is a generalization of the well established
definition for time-invariant systems, when restricted to operators
defined on L;n(-oo, ). It is for precisely this reason that the definition
is given by "I_.2 -positive real' instead of ''positive real.' If W(s) is

represented by rational polynominals in s and is analytic for Re s > 0,

then the two definitions are equivalent,

Corollary 2.1 If, in addition to the three conditions describing W(s)

in lemma 2. 6, W(s) is absolutely convergent for Re s >0 and W(jw) is
essentially bounded for w €(-w,), then the converse of lemma 2.6 is
easily established.
The proof follows from theorem C.6 and lemma 2. 6.

Consider now the stationary representation of the system

described by S1, which is given by

x.(t) = Ax(t) + Bu(t), x(0)=0

y(t) =Cx(t)

(82)

where it is assumed that X, ue Lzm(o, «). Taking Laplace transforms

of the above system, it is easily seen that
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1

Y(s) = C(sI-A) "BU(s) = W(s) U(s).

Since y is given by the convolution integral
t

y(t) = [ C&(t- 7)Bu(ndr,
o

it follows easily that the transform of the kernel C®B, is given by
the matrix C(sI -A)_lB.
A pertinent question to ask at this point is '"What relationships

must exist between the matrices A, B, and C to ensure that W(s)

is L2 - positive real?' The following two theorems are useful in

resolving this question.

Theorem 2. 3 A necessary condition for C(sI -A)—IB to be L2 -

positive rea.l1 is that

CB=B'C'>0
Proof: Since we are concerned with a real-rational matrix,
equation 2. 14 is valid for Re s > 0, and we can write the following
chain of identities:

0 < Re [x,W(s)x &= W(s) + W*(s) >0

-1 -1

&=> C(si-A) "B+B'(sI-A') "C'> 0, for Re s > 0. (2.15)

For large s inequality 2. 15 reduces to

CB + BC' >0 Res>0. (2. 16)
) S -

1 This theorem also applies for positive realness.
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if s = re!? for “T/2 < 6 < /2 then 2. 16 becomes

[CB+B'C'] €088 . j[B'C'-CB] Sirf}@> 0. (2.17)
- >

Evaluating inequality 2. 17 at 6 = 0; %9; and -7/ we obtain
6=0. CB+B'C'>0
6 =Tq9: j(B'C'-CB) > 0 =>B'C' =CB

6 ="Ts: -j(B'C'-CB) > 0

Hence the theorem is proved. It is to be noted that these conditions

are analogous to those of theorem 2. 2.

Theorem 2.4 If the matrix A is nonsingular, a necessary condition

for C(sI-A) 1B to be positive real is:

cal e <o

B + B'(A")

This is easily seen by evaluating the inequality 2. 15 as s~ 0.

Returning now to the matrix differential equation
Q + A"(HQ(D)+ QU)A(H) + L'()L(t) = 0. (2. 18)
it is apparent that for stationary systems, equation 2. 18 reduces to
A'Q+ QA = -L'L.

Hence from theorem 2.1, sufficient conditions for positive realness

can be stated by the following:

Corollary 2.2  If there exists a positive self adjoint matrix Q and

a matrix L such that
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1. QA+A'Q=-L'L, Re{o(A)} <0,
2. QB=C'

then the real time-invariant dynamical system S2 is L - positive real.

2
As pointed out in lemma B.5 of Appendix B, Anderson was able to
sharpen this result for positive realness by showing that it was
necessary as well as sufficient for Q >0. His result, howevef, relied
heavily on concepts developed in the complex frequency domain. At

the present time, this Author has been unable to obtain the analogous

necessary conditions for L2 - positive realness in the time domain.

2.5 L, -Positive Realness and Stability

As a direct application of the preceding section, we shall
demonstrate the utility of the concept of L2 - positive realness as
applied to stability in time-varying systems. The application of
positive realness is not new to stationary plants (see for example
[ 1] and [10]); however it is refreshing to see that a generalization

of these concepts can be extended to time-varying systems.

Theorem 2.5  If the kernel of the composition of the operators P

and M is given by C(t)® (t, 7) B(r)M(7) and is Lzepositive real such that
theorem 2.1 is satisfied with Q(t) > 0, then the closed-loop system

illustrated in Figure 1.1 is stable.

Proof: Since theorem 2.1 is satisfied we have

1. -Q(t) = A'()Q®) + QWA() + L'()L(t); Q) >0 (2. 19)
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2. QE)BH)M() = C'(t) (2. 20)
The tentative Lyapunov function’ V is defined by
V(x,t) = [x(t),Qbx(1)], (2.21)
where
x(t) = [A(t) - BE)M()C (t) ]x(t). (2. 22)
Differentiating equation 2. 21
V(x, ) = [x(t),{[A®)-BOMOC ()] 'Q+Q ()+QW[A®) -BOMOC®) ] }x(®)]
(2. 23)

and writing equation 2. 19 in the form
-Q(t) -Q(t) BE)M(t)C(t)-Cc't)M' () B'(t)Q(t) = Q(t) [A(t)-B(t)M(t)C(t) ]
+ [A(t) - BOMOBCEH)]'QE) + L' HL(),  (2.29)

and by employing (2) it is clear that equation 2. 23 becomes
V(x,t) = [x(t), (-2C"(£)C(t)-L" () L(t))x(t)] (2. 25)
=-[L(t)¥(t, t () LTt )x(t )] -2[COF(E, )x(t),CET (Lt )x(t )]
= -llLw, t)x( ) 112 -2llcwue,t)xt )17 < o
where ¥(t,t ) satisfies the equation
ir(t,to) = [A() - BOMBCH)]¥(t,t ), ¥(t ,t ) =1L,

Therefore the closed-loop system is stable but not necessarily
asymptotically stable. The following corollary gives a sufficient

condition for the closed-loop system to be asymptotically stable.

1 See Appendix B for a short review of Lyapunov functions.
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Corollary 2.2  If either of the matrix pairs {A(t)-B(t)M(t)C(t), L(t)}

or {A(t)-B(tyM(t)C(t),C(t)} are observablel, and ||Q(t) || is finite for
all te (to, w), then the closed-loop system is asymptotically stable.
Another version of the stability criteria is given by the following

theorem.

Theorem 2.6  If the kernel C(t)&(t, 7)B(7) is L, - positive real such

2
that theorem 2.1 is satisfied and Q(t) > 0, M(t) > 0, then the closed-

loop system illustrated in Figure 1 is stable.

Proof: Since theorem 2.1 is satisfied it follows that
1 -Q(t) = A'(HQM) + QA + L'(HLEM Q(t) >0
2. Q()B(t) =C'(t)

The body of the proof is identical to the preceding theorem with the

exception that

V(x,t) = [x(t), (-2C" ((ME)C () -L' () L{t)x ()] (2.26)

1

= - |ILO¥(E, t)x(t,) 12 - 2llcompret, t)x(t.) I& <o,

1
where M(t)? denotes the unique positive square rootz of M. For
completeness we shall add the following corollary which is analogous

to corollary 2. 1.

1 See Appendix B for the definition of observability.

2 This terminology is discussed in Appendix A,
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Corollary 2.3  If either of the matrix pairs {A(t)-B(t)M(t)C(t), L(t)}

or {A(t)-B(t)M(t)C(t),C(t)M%(t)} is observable and ||Q(t)|| is finite for

all te (to,oo), then the closed-loop system is asymptotically stable.

2.6 Summary

This chapter has served to define a generalization of the concept
of positive realness to time-varying linear systems. A natural con-
sequence of this generalization has led directly to, what network
theorists call, passivity. That is, if the integral operator, W, de-
fined in definition 2. 2, is viewed as representing an n-port such that
W: v(t) = i(t) where ©= (-, ®), then it is easily seen that conditions
2 and 4 of this definition are equivalent to Re f ! v*(t)i(t)dt > 0 for
all 7€ (-0,0). Hence, the material set forth i-noothis chapter have
their obvious implications in the area of linear passive network theory.

Starting with the definition of L2—positive realness, necessary
conditions and sufficient conditions were then formulated in the con-
text of time-varying linear systems described by S1 and time-invar-
iant systems described by S2 to illustrate the relationships between
the matrices A(t), B(t), and C(t). Finally, an application of the

concept of Lz-positive realness was given to illustrate its usefulness

in the study of stability.



Chapter 3

SENSITIVITY REDUCTION IN LINEAR TIME-VARYING
DYNAMICAL SYSTEMS

3.1 Introduction

One of the classical problems of control theory is to reduce,
by means of feedback, the sensitivity of single variate systems to
parameter variations of the plant and other disturbances. A lot of
effort has been devoted to the pertinent aspects of this problem
resulting in a considerable wealth of literature (see [9 | and [22]).
More recently efforts have been directed toward generalizing these
concepts to include multivariate systems (references [11], [39], and
[45] serve as a good introduction to this literature). This chapter
and the following chapters establish the fundamental relationships
between the plant matrices {A(t), B(t),C(t)} and the compensators G
and M to ensure sensitivity reduction of multivariate systems. This
is clearly the first step which must be dealt with before an effective

design procedure can be established.

3.2 Statement of the Problem

To begin the discussion of sensitivity reduction of linear systems,
the problem is formulated in Banach spaces in order to emphasize
the operator theoretic point of view. Attention is then restricted to
Hilbert spaces, in order to obtain more detailed results including

interpretations, from a physical point of view,

45
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The problem of sensitivity reduction is based on the comparison

of the perturbations of the outputs of two nominally equivalent systems

under the influence of a disturbance. The system whose perturbation,
in some sense, is the smallest, is said to be less sensitive. The
disturbances may take the form of parameter variations or noise.

For this analysis, attention is focused on the two nominally equivalent
closed-loop and open-loop systems of Figure 1.3. The compensators G
and M are to be chosen so that the closed-loop system is less sensitive,
in some sense, than the open-loop system.

and B

Let B denote Banach spaces. P isa linear plant with

1 2
parameters {al, cees an} such that P: B, ~ B,. The compensators, G
and M are such that G: B1 - B1 and M: B2 - Bl' The symbols u and

y denote the system input and output respectively while n denotes a
system disturbance. The two systems are said to be nominally
equivalent when the terminal mapping u— y is identical for both systems
with no disturbances.

The equations describing the systems of Figure 1.3 are given by

yC=P[Gu—MyC] (3.1)
and

Y, = Pu. (3.2)

It is easy to verify that for linear transformations such that (I + PM)

is invertible, the above equations reduce to

g, = [1+PM] 'PGu (3. 3)



and

y, = Pu, (3.4)

which are defined to be the nominal system equations. To establish
a terminal equivalence between them, it is necessary that

a+PMY%G=P

or equivalently
PG = P(I + MP).
Therefore, if G is chosen so that
G =1+ MP, (3.5)
the requirement is satisfied. Equation 3. 5 gives the explicit relation-
ship for G in terms of the plant and the feedback compensator M,
which is chosen to reduce the relative sensitivity of the closed-loop
system.
If there are plant parameter perturbations, that is {al,az,. -
{511, &2’ ... } such that the perturbations in P are bounded additive

and linear, then

where

P=P+ 5P,

The system equations are then given by

V, 6y, = (P + 6P)u
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and
Vo + 6yc = (P+ 6P)[(I+MP)u-M(yc+ 6yc)],

where 8y represents the perturbation in the output. The perturbations
in the open and closed-loop can then be shown to be related by the

linear operator $:

(3. 6)

where

$-1+pM] (3.7)

If the closed-loop system is to be less sensitive than the open-
loop system with respect to the norm of the perturbations, then M

must be chosen so that:

oy Il < Iy Il (3.8)

where the norm is taken on B2. Hence, it is necessary and sufficient

that $ satisfy

$ 1l < 1. (3.9)

Clearly, M cannot be chosen a priori to reduce the sensitivity for all
perturbations. However, it is possible to choose M to reduce the
sensitivity for perturbations belonging to a specified class. This
topic will be pursued in the sequel.

The aspect of sensitivity reduction which we shall discuss

first, is that of reducing the perturbations of the output of the closed-

loop system to additive noise n. The output of the closed-doop and
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open-loop systems due to the presence of noise, 7, is given by

~ , -1
yczyc+(I+PM) ]

and

Yo =V * 1

where 3; represents the perturbed output. The perturbations in the
closed-loop and open-loop systems are related by the linear operator
$.

8y, = $0y,,
where 0y =3~r - vy, and evidently

$=(@1+PM L, (3. 10)

Therefore, if the closed-loop system is to be less sensitive than the
open-loop system, $ must also satisfy equation 3. 9.

From equation 3.9, it is seen that the formulation of the
sensitivity criterion in Banach spaces is not very rewarding, since it
gives only a condition on the norm of the operator $ and consequently
doesn't lend itself to easy evaluation. If the problem is formulated
on Hilbert spaces, additional structure on $§ can be obtained.

Since the perturbations are related by ch = $6 Vo the norm

IIGyCII can be written as
2 *
oy ¥ = <sy,,06y,>=<$ 8y , 86y >=< 6y, $ $oy_>

2 *
= lloy 17 - <6y ,@-§"8)6y_>. (3.11)
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Hence, equation 3.8 is satisfied if
I-§"$> 0 =11 < 1.

Therefore, in Hilbert spaces the necessary and sufficient condition

for sensitivity reduction is
*
I-$8>0. (3. 12)

This equation, although abstract in nature, has proved very fruitful
in understanding the nature of sensitivity reducing compensators.
(See for example the papers of Porter [43] through [45].)
Throughout this discussion the sensitivity problem has been
discussed in an abstract function space setting. A framework is now
established which is helpful in bringing these abstract ideas to a
concrete form. The analysis of linear time-varying systems will be
the method by which this will be accomplished. Attention is focused
on those transformations which act between finite cartesian products

of L2(t0,tf) equipped with the usual inner product defined by

<xy> = [[x®),y0]d, 2= ¢,tp.
For time-varying systems, the closed-loop system is then said to be

less sensitive than the open-loop system if

.
j;:[byo(t), éyo(t)]dtz j;géyc(t), 6yc(t)]dt, for all 7e¢Q, (3.13)

m
where it is tactitly agreed that 5yo and éyc belong to complex E .
Inequality 3.13, is a stronger condition than 3.12 since it not only
implies that the norm of § must be less than unity but moreover, $

must be causal on the interval . Causality is easily established
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by selecting
(‘)yo(t) =0 for t< 7 and for all 7e
consequently, from inequality 3. 13 it must be the case that
éyc(t) =0 for t <7 and for all 7e Q.

Therefore, for time-varying systems, the generalization of the
necessary and sufficient condition for sensitivity improvement given

by 3.12 can be formulated by the following

m
Lo $ Ly ()~ Ly (R), @=(t,t) (3.14)
2. $ causal (3. 15)
3. I-%"%>0. (3. 16)

Now that the criteria for the sensitivity operator has been
established, we shall investigate the implicit constraints that it
imposes upon a plant which is described by S1, (where A(t), B(t),
and C(t) are real continuous nxn, nxp, and mxn matrices respectively),
and a feedback compensator, M(t), which is a real continuous px m

time-varying matrix.

3.3 Structure of the Sensitivity Operator

To understand the physical implications of conditions 3. 14, 15,
1€, it is necessary to identify the kernel of the operator $. From

equation 3. 10, recall that

@) =([1 + PM} ")), (3.17)
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and

(Pz)(t) = [ C)@(t, NB(Nz(Ndr, teQ (3. 18)
Q

To manipulate equation 3. 17 to a more meaningful form, consider the
following differential system
alt) = Afa(t) + BOMOB (t): 1) =@E)  (3.19)
v (t) = C(t)a(t) + B(t) (3.20)
The solution of this system is given by:

y® = [ {16@-7) + C()@ (t, NB(HM(1) 8 (Ddr, teQ,
Q

which is an explicit form of $_1. The mapping $, is identified as

follows:

B(t) = ¥ (t) - C(H)alt) = ¥ (t) - fﬂcuw(t, IB(1)M(7)y (1)dr

= J {16 @-n) -y w(t, DB(DM(n}y (1 dr, (3.21)

where ¥(t, 7) satisfies:

A¥E, 7 = [A®) - BOMECH)]EE, ), ¥(t ,t ) =1
dt 0" 0

The mapping $: y -~ B, given by equation 3.21, identifies the kernel

of the sensitivity operator as:

$(t,7) =16 (t-r) -C(t)¥(t, DB(HM(7. (3.22)

5 (t-7) -h(t, 7) (3.23)
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where the m X m matrix kernel h(t, 7) is defined in the obvious way.

It is therefore evident that the sensitivity operator is equivalent to
$=1-H, (3.24)

where H is the integral operator associated with the kernel h(t, 7).
The following theorem is helpful for establishing the sensitivity

conditions 3. 14,15, and 16, in terms of the integral operator H.

Theorem 3.1 A necessary and sufficient condition for sensitivity

reduction is that the operator H be L2 - positive real and H+ H* H*H > 0.

Proof: The proof is made obvious from the following four conditions
and definition 2. 2:

1. § Lzm(sz)» L?fn(cz) & H:L, (@) ~ Lz‘,“(gz),'gz = (t,,t,)

2. $ causal == H causal

3. I-$"$>0&—=H+H"-H'H> 0, hence H+H* > 0.

4, Since A(t), B(t),C(t), and M(t) are real time varying matrices

h(t,7) is real.

In the theorems that follow, the concept of L, - positive realness

2
is brought to bear on theorem 3. 1 thus establishing the relationships
between the parameters of the plant described by S1 and the feedback
compensator M(t). For example, theorems 2.1 and 2. 2 supply

sufficient conditions and necessary conditions for L2 - positive realness

of H, by replacing the kernel C(t)&(t, 7)B(7) with C(t)¥ (t, 7)B(7)M(7).
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The following three theorems help to identify the conditions under

which sensitivity is improved in the context of S1.

Theorem 3.2 Let W be a integral operator bounded on L2m (Q)

whose kernel is given by [C(t)-M'(t)B'(t)K(t) ]| ¥(t, 7)B(r)M(1) where

K(t) is the unique self-adjoint solution of
-K(t) = K()[A®)-BOMBC )] + [AL)-BOMCH] ¥ (H+C'(OC(H), te D,

and where K(to) is given by

i
K(t,) = {Oxp'(f,to)c'(f)C(T)qf(T,to)dT.

If H is a bounded, causal and real operator defined on L (Q), then

the sensitivity is reduced if W + W* is positive.

Proof: The first step of the proof will be that of identifying the

kernel of H'H. Following the arguments of theorem 2.1, it is seen

that ¢
t %
HH)(t) = [ [ M )B'(t)¥'( 7, )C'(r)C(7)¥(r, s)B(s)M(s)x(s)d 7 ds
t t
t Otf

+{ fSM' t)B'(t)¥'(,t)C"(7)C(7)¥(T, s) B(s)M(s)x(s)drds.

Hence, Substituting the differential equation for K into (H).< Hx) (t)

(H*Hx)(t) = - f f M B(t) - {¥'(, DK(D¥ (7, 5)} Bls)M(s)x(s)drds

t

tf
- f ff M'(t)B' (t) _91_{\1;' (1,t)K(7)¥(7,s) )}B(s)M(s)x(s) d7ds.
t s
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Since ¥ is the transition matrix of a causal system, it follows that

t
(H*Hx)(t) = { M' (t)B' ()[K(t)¥(t, s)+¥'(s, t)K(s)] B(s)M(s)x(s)ds
t. O
f
-f M'(t)B' ()" (t,, YK (E,)¥ (., ) B(s)M(s)x(s)ds
t
0

Therefore, the kernel of H'H is given by
M'(t)B'(t) [K()¥'(t,7) + ¥'(7, )K(7) | B(r)M(7)
- M'(t)B' (0¥ (t,, YK (t)¥ (¢, DB()M(7). (3. 25)

The kernel of H + H* is clearly given by
Ct)¥(t, 7)B(n)M(1) + M'(t)B'(t)¥'(7,t)C(7), (3.26)

and by subtracting equation 3.25 from 3.26 it follows that the kernel

of H+ H*-H'H is

[C(t)-M"(t)B'()K(t) ¥ (¢, 7)B(1)M(7)+M'(t)B'(t)¥"(7,t)[C'(7)-K(7) B(1)M(7) ]

+ M'(t)B'(t)\If'(tf, t)K(tf)\If(tf, 7)B(T)M(7).

The theorem follows by recognizing that the first two terms of the
preceding expression correspond to the kernel of W + W*, and the
last term corresponds to the kernel of a positive operator.

If Q is the set (to, ), and C¥ is the impulse response
matrix of an exponentially asymptotically stable system, then

¥'(0, t)K(co)¥ (0, 7) is the zero matrix and theorem 3.2 is necessary

as well as sufficient.
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Theorem 3.3 A necessary condition for W + W* to be positive is

that
C(t)B(t)M(t) + M'(t)B'(t)C'(t) > 2M'(t)B'(t)K(t) B(t)M(t)
where K is defined in theorem 3. 2.
The proof follows directly from theorem 2. 2.
A sufficient condition for positivity of W + W* can be obtained

via theorem 2.1, thus ensuring sensitivity reduction. This is

established by the following

Theorem 3.4 A sufficient condition for positivity of W+ W* is the
existence of a continuous, positive, self-adjoint nxn matrix Q and a
continuous rxn matrix L such that
1 -QU) =QUIA®M-BOMECH) |
+ [AQR)-B)M()C(t) ' Q(t)+L"(t)L(t), teQ
2. [Q(t)+K(®)]BHM(E) = C'(t)

3. (Fx)(t) 2 J L@, DBOM@(Adr: [|F]] is finite,

where Q(to) is chosen to satisfy condition (2) at t = to.

The proof follows from theorem 3.2 and theorem 2. 1.

Example 3.1 To illustrate the use of previous theorems we will

consider a single-variate plant. In equations 2.6, 7, let X,y and u be
scalar valued functions. The plant matrices A(t), B(t), C(t) and the
feedback compensator M(t) are replaced by the scalar functions:

-a(t), b, c and m respectively.
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The plant equations reduce to

x(t) +a(Ox(®) = bu(®), x(t) =0, te(t, )

y(t) = ex(t)

where it is assumed that a(t),b,c, and m are real and 8> a(t) > 6 > 0

and b,c,m > 0. The sensitivity kernel is then given by
$(t, 7) = 6(t-7) - c¥(t, Hbm

and ¥ is seen to be an L1 kernel since
t
U(t, 7) = exp {- f [a(s) + bmc]ds} t> 7
-

¥t,n=0 t<m.
The operator k(t) is the solution of the differential equation
’ 2
-k(t) = -2 [a(t) + bmc ] k(t) + c

which is given by

o0
k(t) =2 ,t) [ c2¥P(r,t )dr,
(0] t (0]

and is positive and finite for all t and is bounded by

2
0 < k(t) < ¢ < £
B ~ 2(6 +bmc) bm

Define the scalar q(t) by

_c
01(t)--bm k(t)

then substituting this expression into the differential equation for

k(t) gives

a(t)= ~2[a(t)rbme][ oz - ah)] + 2,
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hence,

-q(t) = -2 ra(t)+bmc]q(t)+c . 2ale
“bm
Consequently, if ((t) is defined by

() = T 220 42,

then ((t) ¥(t,7)bm is an L1 kernel and theorem 3.4 is satisfied.
Throughout this section, structure of the sensitivity operator
in the context of S1 has been identified and the necessary and sufficient
conditions for sensitivity improvement have been interpreted in terms
of the matrices A(t), B(t),C(t) and M(t). The relationship between
positive realness and sensitivity reduction was also established. The
following section serves to supﬁlement the preceding conditions relating
the structure of P and the compensator M to insure sensitivity

improvement.

3.4 Sensitivity Analysis Via the Inverse Sensitivity Operator

The purpose of this section is to demonstrate that insight into
sensitivity reduction can be obtained by employing the inverse of the
sensitivity operator. As noted previously, the inverse operator for

the system under discussion exists and is given by
-1
$"" =1+ PM, (3.27)

where P is a real causal plant described by S1, and M is a continuous
time-varying matrix. The necessary condition for sensitivity

reduction given by inequality 3.16 can be reformulated via g1 by
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the following:
0< 1-$$ = §* [" I L se— (47 141 1> 0.

The necessary and sufficient conditions for sensitivity reduction can
then be written in the form
m m
1. Ly (@) = Ly (2), @ = (¢, t;)
2. $ causal

N e R ) (3. 28)

Since the implications of (1) and (2) have previously been examined,
the pertinent question at this point is: '""What is the sufficient structure
of PM to insure that inequality 3. 28 is satisfied?'. The answer to this
question is readily obtained by substituting equation 3. 27 into 3.28

which results in
0 < ) %1 e—>PM+ (PM)* + (PM)*PM > 0. (3.29)
It is clear that if the operator PM + (PM)* is positive, then inequality

3.29 is satisfied. Translating this result into the context of the

system described by S1, the following theorem is formally stated.

Theorem 3.5 A sufficient condition for PM + (PM)* > 0 is the

existence of a continuous positive self-adjoint nx n matrix Q a

continuous rxn matrix L such that
1. -Q) =Q)A) + A'()Q(H) + L'(BL()
2. QM)BOM() = C'(t)

3. (1?x)(t)=A fQL(t)‘I’(t,T)B(‘T)M(T)X(T)dT: ||IF|| is finite,
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where Q(to) is chosen to satisfy condition (2) at t = to.

The proof follows that of theorem 2. 1.

Remark 3.1 If the matrices B(t) and C(t) are equal to the identity

and M(t) is invertible, then the above theorem for sensitivity reduction

is equivalent to a condition established by Porter [44].

*
Theorem 3.5 is overly strong since the operator (PM) PM

was not considered to aid in the positiveness of 3.29. The following
theorem provides a split of (PM)*PM and utilizes this to give a weaker

sufficient condition for ($*)'1$'1-I > 0.

Theorem 3. 6 Let V be a integral operator bounded on Lzrn (Q)

whose kernel is given by [C(t)+M'(t)B‘(t)K(t)]<I>(t, 7)B(7)M(7) where

K(t) is the unique self-adjoint solution of
-K(t) = K(t)A(t) + A'(H)K(t) + C'(H)C(t), teQ,

and where K(to) is given by
b
Kt )= [ &'(r,t)C"(DC(N&(7,t )dr.
(0] t (0] (0]

)
If PM is a bounded operator on Lgl(ﬂ), and V + V* > 0, then
PM + (PM)* + (PM)*PM > 0.
The proof is straight forward and follows theorem 3. 2.
It is clear that if Q is the set (to, ) and if C® is the impulse
response matrix of an exponentially asymptotically stable system,

then PM + (PM)* + (PM)*PM is positive if and only if V + V* is positive.
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Moreover, it is also noted that by employing the inverse sensitivity
operator, the sufficient conditions for sensitivity reduction impose
a more severe restriction on the plant matrix A(t) then previously.
This is easily seen by noting that the operators associated with the
kernels C(t)¥(t, 7)B(7)M(7) and C(t)®(t, 7)B(7)M(7) must both be

bounded on L2m ().

3.5 Sensitivity Reduction with Plant Perturbations

In the previous sections the structure of the plant and it's
associated feedback compensator has been discussed from the point
of view of reducing the sensitivity to additive noise 7. In this section
attention is directed to the question of sensitivity reduction when the

parameters of the plant matrix A(t) are perturbed, such that

A(t) ~A(t) + 5A(t) = A(t),

correspondingly,

H - H.

For such disturbances, the necessary and sufficient conditions for
sensitivity reduction are given by theorem 3. 1 by replacing H with I~1
The starting point for this discussion is the assumption that the
closed-loop system does indeed have a reduced sensitivity to noise
compared with the nominally equivalent open-loop system. It is also
assumed that theorem 3. 4 is satisfied. In view of these assumptions,

the following theorem is presented.



62

Theorem 3.7 If H is a real, causal, bounded integral operator on

L;n(Q) and if there exists positive, self-adjoint nxn matrices Q and
K, a continuous rxn matrix L, such that

1. -Q(t) = QB[A() - BOMEC()] +
[A()-BEMECH)]'Q() + L' (E)L()

[A(®)-BEM()C(H)]"K(t) +C'(H)C(t)
3. [QM)+K(®)]B(H)M(t) = C'(t)

4. (FR)@) £ fQL(t)(i(t, DBHM(Dx(d)dr: ||F|| is finite

where Q(to) is chosen to satisfy condition (3) at t = tO and where K(to)
is given in theorem 3.2, then a sufficient condition for sensitivity

reduction is

[Q(t) +K(t)] 5A(t) + SA'(H)[Q(t) +K(t)] < 0

Proof: Following the proof of theorem 2.1, we shall make use of

the integral operator F:

- t -
(Fx)(t) = f L)Y (t, nB(M(n)x(1)dT teQ

t

and its adjoint, F*, given by
t

(F*2)(t) fM(t)B (8 (1, h)L(D2(nd7, teQ.

We shall also make use of the identity.

— {\If’ (1, t)Q('r)\I' 7,8)} = ~ (1,0 {6 A" (7)Q(7) + Q(7T) 6 A(7) - L' (7) L(T)}‘I’(T,
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~ -~

Hence F F can be written as
- t b
(F Fx)(t) =-ft ft M'(t)B'(t) ;T{ "7, YN (7, 5) VB(s)M(s)x(s)d 7 ds
(0]
tr t
- [ [mr)Bt .._{q:f (7, )Q(7)¥ (1, 5) } B(2)M(s)x(s)d T ds
t s

te o )
+ f/. "(1,0) [ A (DNQ(T) + Q(1) 6 A(7) | ¥(7, s)x(s)ds dT.
t t

Since V¥ is the transition matrix of a causal system, it is clear that

t
- f -
(F*Fx)(t) f M'(t)B' (t)[Q(t) (t,s) +¥'(s, t)Q(s) | B(s)M(s)x(s)ds

-ft M'(t)B'(t)‘i"(tf,t)Q(tf)‘i’(tf, s)B(s)M(s)x(s)ds

+ ff U (7, t) [ 6A(T)Q(T) + Q(T) S A( )]\If(T,s)x(s)dsdT.

~ o~

~ %
Leaving this expression for the moment, and computing H+H -H H,

it follows that

e ey s t .
((H+H -H HJxXt)= [ [C(t)-M"¢)B'(t)K(t)]¥(t, s)B(s)M(s)x(s)ds

t
0

f M'(t)B()'(s,)[ C'(5) -K () B(s)M(s) % (s)ds

{ '(t)B' ()% (t,, K ()T (t,, 5)B(e)M(s)x(s)ds
O

[cff "(1,t)[ 6 AT (7)K(7)+K(7) 6 A (T)]‘I’(T, s)x(s)ds dr.
0

Using condition (3), it is seen that



64

([H + H- H H]®)() = (F Fx)(t)

t -
¢ [ MU OB (¢, O QL) +K(E) 1, 5)B(S)M(s)x(5)ds

t £
0
tf T -
—{ "{,; (7, ) {[Q(N)+K(7) ] 6 A(7)+6 A" (T) [ Q(7)+K (7)] }¥ (T, 8)x(s) ds.
0

.
The theorem follows since H+H -H H is positive.

It is remarked that in this last theorem, the assumption was
made that ||§ ]| < 1 forall y, € L;n(Q). This assumption is
not necessary for sensitivity reduction when the plant is perturbed
but it is necessary that HgH < 1 when its domain is restricted

to the range of 6 P. For elements belonging to the complement of

the range of 6 P, H?S || may be greater than one.

3.6 Summary

In this chapter, the basic problem of sensitivity reduction was
formulated for multivariate systems in terms of the sensitivity operator
$. The structure of its kernel was given for the class of systems
described by S1. The concept of L2 -positive realness then was brought
to bear on the problem to establish fundamental relationships between
the plant matrices {A(t), B(t),C(t)} and the compensators G and M to
ensure sensitivity improvement for disturbances in the form of noise

and plant parameter perturbations.



Chapter 4

SENSITIVITY REDUCTION IN LINEAR STATIONARY SYSTEMS

4.1 Introduction

The last chapter discussed the problem of sensitivity reduction
in the time domain and established the relationships between the
time-varying plant matrices {A(t), B(t),C(t)} and the feedback
compensators G and M. Our present objective is to examine these
previous results with the additional assumption of stationarity, and
employ frequency domain techniques1 as an added tool with which to
work. It will become evident that many of the previous theorems,
which proved to be only sufficient in the time domain, are necessary
as well in the frequency domain. This is to be expected since as the
definition of the system is sharpened, it is possible to obtain more
detailed results about its structure. In short, the relationships
between the constant plant matrices {A, B,C} and the compensators

G and M which ensure seasitivity reduction are established.

4.2 Conditions for Sensitivity Reduction in Stationary Systems

To begin the analysis of sensitivity reduction in stationary
systems, it will first be helpful to translate the necessary and
sufficient conditions for sensitivity improvement given by 3. 14, 15, 16,
to the complex-frequency domain when Q is given by [ -w0,]|. The

following lemma formalizes these conditions.

1 See Appendix C.
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Lemma 4.1 Let $(t) be the kernel of a stationary sensitivity operator,

satisfying 3. 14, 15, 16, then its Laplace transform, $(s), is such that
for Re s> 0

1.  $(s) is analytic

2. 1-$"(s)$(s) >0,

Proof:

1. Employing the conditions given by statements 3.14 and 3.15
and using theorem C.5 of Appendix C, it follows that S(s)
exists and is analytic for Re s > 0.

2. Inequality 3.16 implies condition (2) of this lemma by the

following arguments:

I-$"$> 0= <x,(I-$*$x> > 0 for allxeLzm(.oo,oo)

(4. 1)
where
t 0
$x)) = [ $¢,Ix(nd7= [ $(n)x(t-7)dr.
-0 o)

Let

x(t) =eStX, S=0+jw,0>0, t< tf

x(t) =0, t >t

~

where x ¢ E™ hence x ¢ Lzm(-oo, w). Therefore,

@90 = [ Dy(nxar
0
= $(s) eSt}E.

Inequality 4.1 can now be written as
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<x,(I-$*$)x>=< eStﬁ, eSti>. < eSt$(s)§, eSt$(s)§ >

- <%, _ <§,e2°t$*(s)$(s)§> c>0

b

i
= [ ®%x, (1- % (5)$(s))%] it
~ X ~ f 20t
= [x,(I—$ (8)$(s))x] f e dt, o>0.
-0
t
. 20t ., . .
Since fe dt is positive, the lemma follows.
-0

The converse of this lemma is easily established from theorem
C. 6 if $(s) is absolutely convergent for Re s>0 and $(jw) is essentially
bounded for we(-w,x). It is pointed out that Newcomb, concerned with
stationary sensitivity operators mapping between real Hilbert spaces,
stated that conditions (1) and (2) of lemma 4. 1 as well as the condition
$(s) = $(s) (for Re s > 0) were equivalent to conditions 3. 14, 15, and
16. These results were made possible by the additional structure
employed in the use of distribution theory. Techniques in this direc-
tion are not within the intended scope of this thesis.

It is convenient to translate conditions 3. 14, 15, 16 to an equiv-

alent form along the jw axis.

Lemma 4.2 Let s(t) be the kernel of a stationary sensitivity operator

satisfying 3. 14, 15, 16 such that $(s) is absolutely convergent for
Re s > 0 and is described by a rational matrix then, the sensitivity is
reduced if and only if

1. $(s) analytic for Re s > 0

2. I-$%(jw)$(w) > 0 for all ¢
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The proof of this lemma is well known and can be found in most net-
work synthesis textbooks (for example Newcomb [36 ]).

Having now established the criteria that the stationary sensitivity
operator must satisfy, the constraints that it imposes upon plants
described by S2 and feedback compensators described by stationary
matrices will be investigated. It will be noted that as we proceed
through the development of sensitivity reduction for stationary systems,

we shall heavily rely upon the results developed in chapter 3.

4.3 Structure of the Stationary Sensitivity Operator

For stationary systems, the sensitivity kernel given by equation

3.22 becomes

$(t-7) =106 (t-r) -C¥(t-7)BM,
where ¥ (t-7) satisfies

WET) - [A-BMCIRE-7), ¥t ,t) =L (4.2)

dt

Since the sensitivity kernel is time invariant, its Laplace transform
is given by

$(s) =1-C [sI—(A—BMC)]—lBM 2 I-C¥(s)BM. (4. 3)
It follows that $(s) is analytic and converges absolutely for Re s >0

1 .
if and only if the irreducible realization Ot

C[SI—(A—BMC)]_lBM

is asymptotically stable, or if

Re {0(A-BMC)} < e <0,

1-'For a definition of irreducible realization, see Appendix B.
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hence closed-oop stability.
As demonstrated in the preceding chapter, condition (2) of

lemma 4.1 is equivalent to
0 < T-$"(jw)$(jw) = H(jw)+H" (ju)-H* (jw)H(jw) > 0. (4.4)
where H(jw) is identified by
H(jw) = C[ij—(A—BMC)]-lBM,

and is L2— positive real. 1 The following theorem consolidates these

results.

Theorem 4.1 A necessary and sufficient condition for sensitivity

reduction is that
1. The irreducible realization of H(s) is asymptotically stable
2. H(jw) +H*(jw) —H*(jw)H(jw) >0 we (-0,00)

The proof follows directly from the preceding discussion, theorem 3.1

and lemma 4. 2.

Hence, as expected from the preceding chapter, positive real-
ness plays a dominant role in the basic structure of sensitivity
reduction. Because of this, we are able to obtain additional structure

on the matrices B, C, and M via theorem 2. 3.

Theorem 4.2 A necessary coundition for sensitivity reduction is

CBM = M'B'C' > 0

1 Since H(s) is analytic in Re s > 0, L2-positive realness is
equivalent to positive realness.
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Remark 4.1 Since it is necessary that H(s) be positive real, theorem

4.2 can be supplemented by utilizing the concepts developed by Falb
and Wolovich [13]. It is demonstrated in section B.6 of Appendix
B that a necessary condition for H(s) to be positive real is that
CiBM #0fori=1,2,...,m, where Ci denotes the ith row of the
matrix C.

The following theorem serves to further clarify theorem 4.1

in the context of S2.

Theorem 4.3 If Re {o(A-BMC)} < € < 0 then the necessary and

sufficient condition for sensitivity reduction is that W(s) be positive

real where
W(s) = (C -M'B'K)¥(s)BM, (4.5)
and where K is the unique positive self-adjoint solution of
K(A - BMC) + (A-BMC)'K = -C'C

Proof: The proof follows from the definition of positive realness and

by equation 4. 4:
0 < C¥(jw)BM+M'B"Y (jw)C'- M'BY* (jw)C'C¥(jw)BM =

CY¥ (jw) BM+M'BY (jw)C'- M'B" (jw)K[ jw I-A+BMC | ¥ (jw) BM

-M'B"¥*(jw)[ jwI-A+BMC]* ¥ (jw)BM =
C¥(jw)BM+M'B"Y (jw)C'- M'B"Y (jw)KBM - M'B'KY (jw) BM =

(C- M'B'K")¥(jw)BM + [(C - M'B'K) ¥ (jw)BM]" > 0.
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The following two theorems give necessary conditions and sufficient

conditions for (C - M'B'K)¥(s)BM to be positive real.

Theorem 4.4  If Re {o(A-BMC)} < e < 0 then a sufficient condition

for (C - M'B'K)¥(s)BM to be positive real is the existence of a positive
self -adjoint matrix Q and a matrix L such that

1. Q(A-BMC) + (A-BMC)'Q = -L'L

2. (Q+K)BM =C'

The proof follows from theorem 3. 4.

Theorem 4.5 Necessary conditions for (C - M'B'K)¥(s)BM to be

positive real are
1. CBM =M'B'C'’
2. CBM > M'B'KBM > 0.
This sharpens the results of theorem 4.2 and is proved by application

of theorem 2. 3.

Example 4.1  To illustrate the vrevious theorems consider the

plant described by

52 1.89 1 1
X = X + u
-.74 -1.94 0 1
0 1
y = X
1 1

with the feedback matrix
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. 89 .26

-1. 51 .26

A necessary condition for sensitivity reduction given by theorem

4.2, is satisfied since

CBM = M'B'C' =——6— > 0.
115 -
It is also seen that the eigenvalues of A - BMC are given by Al = -1,
)\2 = -2, hence the closed-loop system is asymptotically stable and
$(s) is analytic for Re s > 0. For sensitivity reduction, it is then

necessary and sufficient that
W(s) = (C -M'B'K)[sI-(A-BMC)] _1BM

be positive real where K is the unique positive, self-adjoint solution

of

K(A-BMC) + (A-BMC)'K = -C'C.
Solving the preceding equation, K is given by

7 1
ko | N2 /2

R%) %3

hence W(s) can be written as

-18 166 S+3 21 [-12
3

W(s) = v
(115)7(s +1)(5+2)

130 130 -1 1117

10
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Since

5 [436+11710° -180+41502+920jw)
(6 /115)

(2—w2)2+9w2

W(jw)+W* (jw) =
‘—180+415w2-920jw 1300+325w2
is a positive matrix for all w, the sensitivity is reduced. This fact

could also have been established from theorem 4. 4 by establishing the

existence of positive self-adjoint matrix Q and a matrix L, namely;

5 3
1
Q= 5
3 7
1 1
L= 3
0 2

such that theorem 4. 4 is satisfied.

By using the concept of irreducibility introduced in Appendix B,
it is possible to obtain additional structure on the matrices B, C, and

M.

Theorem 4.6  If Re {0 (A-BMC)} < ¢ < 0 and C¥(s)BM is irreducible

then a necessary condition for sensitivity reduction is the existence
of a positive definite self adjoint matrix Q and a matrix L such that
1. Q(A-BMC) + (A-BMC)'Q = -L'L
2. QBM = C' which implies Rank (BM) = Rank (C)

The proof follows theorem 4.1 and lemma B.5.
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Theorem 4.7 If Re {oc(A-BMC)} < € < 0 and (C - M'B'K)¥(s)BM

is irreducable then a necessary and sufficient condition for sensitivity
reduction is the existence of a positive definite self-adjoint matrix Q
and a matrix L such that

1. QA -BMC)+(A-BMC)'Q=LTL

2. (Q+K)BM =C'.
The proof follows from theorem 4.3 and lemma B.5.

Throughout this section we have developed the necessary and
sufficient conditions, in the complex frequency domain, that the
sensitivity operator must satisfy to insure sensitivity reduction.
These conditions illustrate the strong ties that exist between the
relatively old concept of positive realness and the relatively new
concept of sensitivity reduction. Also exhibited were the necessary
conditions relating the matrices B,C, and M, to ensure sensitivity
improvement. The following section will employ the inverse of the
sensitivity operator to supplement the conditions already developed.

4.4 Sensitivity Analysis Via the Inverse of the Stationary Sensitivity
Operator

To begin this discussion we will borrow freely from lemma

4. 2 and inequality 3. 28 to formulate the sensitivity conditions as

Lemma 4.3 Let $(s) be described by equation 4. 3, then the necessary

and sufficient conditions for sensitivity reduction are

1. $(s) analytic in Re s > 0
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2. § (o) 0w 1> 0 for all we (~w,00). (4. 6)
Since $'1(jw) = 1+ P (jw)M, condition (2) is equivalent to
. oy-1g4-1. . . . .
0< $*(jw)”$ ™ (jw) -1e—=>P(jw)M+ [P(jw)M] "+ [P(jw)M]  P(jw)M > 0.
(4.7)
To gain understanding of the physical implications of inequality

4.7, consider a single-variate time invariant system. Let P and M

be represented by
P(S) = kW(S)/KI/ (S), M = m,

where 7(s) and y/(s) denote two polynominals in the complex variable
s with real coefficients. The constants k and m are given by positive

scalars. Inequality 4.7 then takes the form

0< P(jw)m+P*(jw)m+mP*(jw)P(jw)m = (4. 8)
K 6o+ 22 0] v 1 L) > 0. (4.9
By denoting

Ly(Gw)],

T+ ()(0) =2 Re [(

a sufficient condition for I - $*(jw)$(jw) to be positive is for
2mk Re [(—%)(jw)] > 0. This condition can be substantially relaxed

by rearranging inequality 4. 8 to the following
P(jw)m+mP*(jw) +mP*(jw)P(jw)m =

*
T (o) {mk[ Y(jw) + LU (jw)+m 2 }W(]
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It follows that

0< {mP*+Pm+mP*Pm}(jw)<;~% {mk( —%+;”g)+m2k2}(jw) > 0.

Hence the necessary and sufficient conditions for $* (jw)_1$(jw)_ 1 >0

for all w is equivalent to
*
L2 212y N
0 < {mk (- +Z0)+ m K} (o) =

2 mk Re [(-;Z)(jw)] +m%? > 0 for all we(-w,x). (4.10)

It can be seen from 4, 10 that a positive scalar m can be found to
satisfy this inequality provided that - < inf Re [(—;Tk)(jw)] . This is

w
formalized by the following theorem.

Theorem 4.8  If P and M are represented by kn(s)AAs) and m res-

pectively where 7(s) and y(s) denote two polynomials in the complex s

with real coefficients, and if -co < inf Re[(%)(jw)] then there exists a
w

positive scalar m such that I—S*(jw)S(j w) > 0.

Proof: Writing 4. 10 in the form

mk > 0 and Re [(—;E—)(jw)] > :—2——

—~—
N
Y
Uy

N

(K
0 < {mk (L% )+m2k2}<jw>@{

(mk < 0 and Re [(%D—)(jw)] < e

and since the two conditions on the right side of 4. 11 differ only by a

change in equality sign, we will without loss of generality, consider

only the case mk > 0. Let a = inf Re [(%)(jw)] , then for
w
mKk

m e (max {0, —-i—q—]’o@) the conditions: mk > 0 and Re [(%)(jw)] > _——2——

hold.
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Note, that the difference between the orders of the polynominals
7 and Y play an important role in the existence of an m to satisfy

theorem 4.8. This point is exemplified by the following:

Example 4.2 Consider a second order plant represented by

P(s) = —g——— =k (n/0)(s); k,a,b > 0.

s“+as+b

Equation 4. 10 becomes

2mk (b -wz) + rn'zk2 >0,

which can't be satisfied for any finite m as w ~ w. From this example,
it is clear that not all types of plants are suitable for satisfying the
condition $" (jw) —1$(jw)_1-1 > 0. This point is well borne out in the
multidimensional case, as we shall demonstrate in the following

theorem.

Theorem 4.9  If $(s) is analytic in Re s > 0, and o(A) < € < 0,

then the necessary and sufficient condition for sensitivity reduction

is that the matrix V(s) be positive real where
V(s) = (C + M'B'K)®(s)BM
and where K is the positive self adjoint solution of
KA + A'’K=-C'C.

Proof: The following chain of conditions follow from inequality 4.7 :
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C®(jw)BM+M'B'3* (jw)C'+M'B'®* (jw)C'C®(jw) BM =
C®(jw) BM+M'B'& (jw)C'+M'B'3 (jw)[ K(jwl-A)+(jwl-A)*K] & (jw)BM =
C®(jw) BM+M'B'$ (jw)C'+M'B'@ (jw)KBM+M'B'K® (jw)BM =
[(C+M'B'K)@(jw)BM] + [(C+M'B'K) & (jw)BM]* > 0,

and the theorem follows from the definition of positive realness.

From the above theorem it is seen that if it is necessary to
ascertain if the closed-loop system is less sensitive than the nominally
equivalent open-loop system, (given that both are asymptotically stable),
all that has to be done is to verify the positive realness of

(C + M'B'K)®(s) BM.

Example 4.3 This example serves to illustrate theorem 4.9.

Consider the multivariate plant given by

-

-2/3 0 | 0 1|
X = X + u
_2 ';
\o /3‘J 1 1
1 1
y = X
0 1

with the feedback matrix
1 -1 2

M:—‘3-

1 -1 )
A necessary condition for sensitivity reduction is

CBM = M'B'C' > 0
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which is satisfied since

. 10
CBM:—?)— > O.

o1y

To establish sensitivity reduction, it is seen that {G(A—BMC)} = {_1} <G

hence it is necessary and sufficient to establish the positive realness of
V(s) = (C+M'B'K)®(s)BM.
Performing the indicated matrix multiplications it is seen that

5
V(jw) + V*(jw) = - /12 I> 0for all we(-w,x)
w?s 4

hence, sensitivity reduction. This result is expected from corollary 2. 2,

since there exists a positive self adjoint matrix Q and a matrix L, namely;

3.75 3.75 ' 2 1
Q = ,and L =

3.75 7.5

- —

such that
QA + A'Q = -L'L
and

(Q-K)BM =C".

4.5 Sensitivity Reduction with Plant Perturbations

The previous sections have been discussing the structure of the
plant and the control law to insure that the sensitivity of the closed-
loop system to additive noise, 7, is less than the nominally equivalent

open-loop system. In this section attention is directed to the question
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of sensitivity reduction when the parameters of the plant matrix A
are perturbed.

As a logical starting point for this discussion the assumption is
made that the closed-loop system does indeed have a reduced sensitivity
to noise n compared with the open-loop system. Hence, it is assumed
that the operator H(s) is positive real, and, without loss of generality,
it is also assumed that it is irreducible.

For notational convenience the perturbation in A is defined to be
the mapping

A~A+SA=A
consequently,

~

H-H, W-W.

The necessary and sufficient conditions for sensitivity reduction with
plant parameter variations are interpreted from lemma 4.2 and are

formalized by

Lemma 4.4 The necessary and sufficient conditions for sensitivity

reduction with perturbation in the matrix A are given by
1. é(s) analytic in Re s > 0 (4.12)
2. I- é*(jw)é(jw) > 0 for all we (-0, ) (4.13)
where

éﬁw)=1-c[yuL4A-BMcﬂ'1BM.

Because of the perturbations, theorem 4.1 is written in the following

form
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Lemma 4.5 A necessary and sufficient condition for sensitivity
reduction with plant perturbations is

1. Re {O’(A—BMC)} <e<0

2. H(jw) + H*(jw)- H*(jw)H(jw) > 0 for all w ¢ (-0, ). (4. 14)

Employing lemmas B.5, 4.4 and 4.5, sufficient conditions can be

obtained on the perturbations, 6 A, to ensure sensitivity reduction.

Theorem 4.10  If Re {o(A- BMC)} < € < 0 and if -Q0A - 6A'Q +

L'L-C'C > 0, where Q and L are given by lemma B.5, then the

sensitivity of the closed-loop system is reduced.

Proof: Since H(g) is positive real, then by lemma B.5 there exists
a positive definite self adjoint matrix Q and a matrix L such that
1. Q(A-BMC) + (A-BMC)'Q = -L'L. (4. 15)
2. QBM=C". (4. 16)
Writing inequality 4.14 in the form
C(jw) BM+M' B (jw)C' - M'B"F* (jw)C'C¥ (jw)BM > 0
and employing equation 4. 16, we obtain
M'B'Q¥ (jw)BM+M'B'¥ (jw)@BM-M'B'¥* (jw)C'C¥ (juw) BM =
M'B'\i*(jw)[ij-(A-BMC+5A)]*Q~i(jw)BM
+ M'B (jo) {Q[jw I-(A-BMC+ 5A)] -C'C 1 ¥ (o) BM =
M'B" (jw){-(A-BMC)'Q-Q(A-BMC)-C'C-6A'Q-Q6 A1 (jw) BM =
M’B'xi*(jw) {ﬁ'ﬂ—C’C—éA'Q—QaA}\i(jw)BM > 0.

Hence, the theorem is proved.
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Example 4.4 he purpose of this example is to illustrate theorem

4.10. We will again consider the system given by example 4.1 which

is described by

52 1.89 1 1
X = X + u
-. 74 -1.94 0 1
L
0 1
y= X
1 1
with the feedback matrix
C .89 .26
M =
-1.51 . 26

The matrices Q and I, computed from equations 4.15, 16, are:

1.41 1 1.41 1.41
Q- , L=
1 1.83 0 2.23

Let the entries of the matrix A be given a 10% perturbation, so that

.52 1.89 7] -.05 -.19

2
il
+

L™ 74 -1. 94 .07 .19

The perturbed matrix W is then given by

-18 1667 [s+2.9 1.8\\ -12 16
~ 3 ;

W(s)=.

_\l
(115)2(s2+2. 955+1. 82) i J
' 130 130 -.93 s+.05)L 17 15
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Since
W(jw) + W (jw) =
7520 + 1379802 -2120+ 500009440
5
(115)271. 82-w?)%+ 2. 952 L 2120+ 500002+ j94400 13720+ 3980w°

is a positive matrix for all w, the sensitivity is still reduced. Employing
theorem 4.10, it is seen that

L'L -C'C-Q0A-0A'Q =
1.0 4.68

|

is also positive hence, this result also ensures sensitivity improvement.

4.6 Summary

In this chapter the problem of sensitivity reduction was formulated
for stationary multivariate systems in terms of the sensitivity operator
$. Tae results of the previous chapter were then translated via
frequency domain techniques to establish the relationships between the
constant plant matrices {A, B,C} and the compensators G and M to
ensure sensitivity improvement for disturbances in the form of additive
noise and plant parameter perturbations. It was also demonstrated
that the concept of positive realness plays an important role for sensi-
tivity operators of the form $(s) = I-H(s). This concept is a very im-
portant one since it brings to bear on H(s), all the structure associ-
ated with positive real matrices. For example, for plants described

by S2 and feedback compensators given by constant matrices, it can
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be shown by using the concepts developed in section B. 5 that every
entry of H(s) must be a proper rational fraction of s and moreover,
the order of the numerator and denominator can not differ by more
than one. This is clearly a very severe limitation which was well
illustrated by example 4. 2. This restriction could be reduced if it
were desired to improve the sensitivity reduction only over some
finite frequency band and not the entire frequency band. This is

indeed a fruitful area for future research.



Chapter 5

A COLLECTION OF RESULTS IN SENSITIVITY REDUCTION

5.1 Sensitivity and Optimal Control

In Chapter 1, it was illustrated that there is a very definite
relationship between sensitivity reduction and optimal control of
regulator systems. In particular, Kalman [23] has shown that for
single-input, single-output systems, the optimal control law does
indeed reduce the sensitivity. More recently, Anderson [ 6 ] and
Kreindler [ 52] extended the results of Kalman to include muliti-variate
systems. They have shown that the optimal control law does reduce
sensitivity if a particular weighting is employed on the output errors.
This weighting is not arbitrary, but follows from the optimization.
Kreindler, points out that for an arbitrary weighting matrix, the
optimum control law does not always reduce the sensitivity. Therefore,
from previous discussions, it is germain to answer the question:
"Under what conditions does the optimum control law reduce system
sensitivity for a unity weighting matrix?'" This question is not
completely answered here, but a necessary condition is given to
ensure reduction.

In this section, the optimal linear regulator problem, described
in Appendix B is analyzed from the point of view of sensitivity reduction,

and the salient features are presented.

85
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To review, the linear dynamical system is characterized by
x(6)= A(E)x(t) + B(u(t); y(t) = x(t),

and the optimal control law is given by

ut) = -M(Ox(t) = -R B OEQ)X(),

where R(t) is a positive, definite self adjoint matrix, and E(t) is the
unique positive self adjoint solution of the matrix Riccati equation
discussed in section B. 3. To discuss the behavior of the optimal
regulator system from the point of view of sensitivity reduction, it
is pertinent to establish the sensitivity kernel s(t,7). From equation

3.22, it is clear that
§(t, 1) =16(t-7)-¥(t, DB(IR (DB (DE(7), (5.1)

where ¥ (t, 7) satisfies

4 y(t,7) =[A®) - BOR OB'OEW®]¥(t, 7, ¥t ,t ) = 1.

It is evident from equation 5.1 that the sensitivity kernel can be

written as

$(t,7) =I5 (t-7)-h(t, 7, (5.2)

where h(t, 7) is defined in the obvious way. Employing theorem
3.1 we see that it is necessary for h(t, 7) to be a positive real
kernel. Hence, from theorem 2.2, a necessary condition for the

optimal control law to reduce sensitivity is

BOR (OB OEM +EQBOR OB > 0. (5.3)
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This is clearly a pertinent result since it illustrates the
relationship which must exist between B, R, and E for sensitivity
reduction. For time invariant systems with regulation on the infinite
interval, the necessary conditions for sensitivity reduction become

more clearly defined.

Theorem 5.1 Necessary conditions for the optimal control law on

the infinite interval to reduce sensitivity are

1. EBR_IB' = BR-IB'E

2. BR'IB'E > EBR_l

B'KBR—IB'E}_ 0

where K is the positive definite self adjoint solution

1 1

K(A-BR B'E)+ (A-BR "B'E) 'K = -I.

1

Proof: Since, from theorem B.€, Re {c(A-BR "B'E)} <¢ < 0, the

theorem follows from theorem 4.5.

Hence, the solution of the algebraic form of the matrix Riccati
equation must commute with BR_lB'. A stronger condition relating
E, B, and R can be obtained via theorem 4. 3 if

1 1

(I1-EBR™ B'K)¥(s)BR "B'E (5. 4)
is irreducible.

Theorem 5.2 If 5. 4 is positive real and irreducible, then a

necessary condition for sensitivity reduction is

1

BR "B'> 0.
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Proof: From theorem 4.7 there exists a positive definite self

adjoint matrix @, such that

(Q+K)BR 'B'E =1
or

Q=-K+ (BR—lB’E)_l

Therefore, it is necessary that BR-IB' be nonsingular, consequently
positive definite. It is also to be noted that B' must be one to one.
This section has demonstrated the necessary conditions which
must exist for the optimal regulator problem to have improved
sensitivity as defined in Chapter 3. The next section shall discuss
linear discrete systems and give sufficient conditions for sensitivity

reduction.

5.2 Sensitivity Reduction in Linear Discrete Systems

The discussion of Chapter 3 and 4 illustrated the natural
relationship between positive realness and sensitivity reduction of
linear systems. In this section, we shall study the question of
sensitivity reduction for discrete systems but, as we shall see, there
is no relationship similar to positive realness to facilitate this study.

Consider the two nominally equivalent systems of Figure 1. 3.

The plant is described by the set of linear vector difference equations
x[(k+1)7] = Ax(kT) + Bu(kT) (5.5)

y(k7) = Cx(k7), (5. 6)
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where the mapping u(k7) - y(k7) acts between finite cartesian products

of QZ(Q) equipped with the usual inner product. The feedback operator

M is given by a constant matrix. If the plant P is bounded linear and

stationary, then P has a multiplicative form and the mapping y = Pu
can be written as

Y(z) = P(2)U(z), (5.7)

where z is the complex variable associated with the z-transform.
Taking z-transform of equations 5.5, 5, P(z) can be identified by
the following:

Y(z) = C®(z)BU(z),
where

®(z) = (z I—A)-'l.

The discretestime analog to the necessary and sufficient conditions

for sensitivity reduction given by lemma 4.2 can be written asl

1. $(z) analytic |z| > 1 (5.8)
2. I-$"(2)$(z) > 0 for all z such that |z| = 1, (5. 9)
where
$(z) = [1+P)M] . (5. 10)

Rearranging equation (5. 10) the sensitivity operator takes the now
familiar form

$(z) = I-C¥(z)BM,

1 See also Perkins and Cruz [39].
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where ¥(z) is given by
-1
¥z) = [2zI -(A-BMC)] .

Previously it was shown that the analysis of the single-variate
case was fruitful for establishing insight into the multivariate case.

With this in mind, consider the operator H(z)

(z)

W(z)

H(z) = C¥(z)BM = k

where 7(z) and Y (z) are polynominals in z, with real coefficients.
The gain k and the feedback operator m are real scalars. Condition

(2) can then be written as

T2 e T 22 2>0f Mzslzl=1 (5.11)
T!/T—ij-*_ -ip—;m— m ) or all z Z | = .

T
v (2)

Clearly a necessary condition for inequality 5. 8 to be satisfied is

for

*
mk [T +—ZT](Z) > 0; forall z3 |z| = 1.

v

Under general pole zero configuration, the above inequality cannot

be satisfied. For example, consider the operator H(z) described by

H(z)zz—c_%— =mk(~£—)(z); c,m> 0, |a] <1,
Then,
K lf_ _ 2mc(a-a) i
m [ll/+tf/*](z) m*z—,z a+ jp. (5.12)

It is clear that equation 5. 12 is negative for all « less than a. Hence,

the positive realness condition which was used so fruitfully in Chapter
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4 does not seem to have an analogous counterpart in the z-plane.
Even though positive realness doesn't carry over, it is still

possible to reduce the sensitivity. Representing P(z) by

it is clear that

*

0< () 5 g1 6= 1&% k[ (£ (2)+ <f‘y~*—><z>] A28

Hence we can formulate the following theorem.

Theorem 5.2 If H(z) is analytic for |z > 1, and L(—Z-—; has no

a(z
*
poles on the unit circle, then an m can be found so that I-$ (2)$(z) is

positive.
The proof is trivial, and follows that given in theorem 4. 8.

Turning now to the multivariate case we will again consider the
question of sensitivity reduction when perturbations take the form of
additive noise n and variations in the plant matrix A, If A, B, C and
M are real matrices then sufficient conditions for sensitivity reduction

in the presence of additive noise is given by

Theorem 5.3 If the absolute value of the eigenvalues of A-BMC are

less then unity, then a sufficient condition for sensitivity reduction is
the existence of a self adjoint matrix Q and a matrix W such that
1. QBM =C¢"

2. -Q(A-BMC)-(A-BMC)'Q + 26Q-C'C = W'W, for all 6¢[-1,1].
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Proof: 1-$%(z)$(z) = C¥(z)BM+M'B"¥*(2)C'-M'B"¥*(2)C'C¥(z) BM

- M'B'Q¥ (z) BM+M'B"¥ (2)QBM-M'B'"*(2)C'C¥ (z) BM
= M'B"¥V*(2)[-Q(A-BMC)-(A-BMC)'Q+2Re zQ-C'C] ¥/ YBM
= M'B"V*(2)W'W¥ (z) BM.

which is clearly positive.

As seen in Chapter 4, the problem of insuring sensitivity
reduction in the presence of perturbations of the plant parameters is
very difficult to solve satisfactorily. This problem is compounded
since the concept of positive reality doesn't carry over in discrete
systems. We can however obtain sufficient conditions on § A which

guarantee sensitivity reduction.

Theorem 5.4 If the absolute value of the eigenvalues of A-BMC

are less than unity and the nominal closed-loop system satisfies
conditions (1) and (2) of theorem 5. 3, then the sensitivity of the
perturbed closed-loop system is less than the open-loop system if
-Q0A-0A'Q+W'W is positive.

The proof follows directly from the previous theorem by replacing
A with A.

From this section it is seen that the results consistent with the
preceding chapter, are not very conclusive and are left as an area of
future research. In the next section we will study a different closed-
loop configuration and discuss its structure to ensure sensitivity

reduction.
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5.3 Sensitivity Reduction of a Linear System

This section will discuss the question of sensitivity reduction
for the nominally equivalent systems of Figure 1.4. It is to be noted
that the only difference between the closed-loop system shown here
and the one discussed in Chapters 3 and 4, is that the compensator
G is inside the loop. We will see, however, that this makes a
substantial difference in the structure of the plant and the associated
compensators. As before: P: B, -~ B

1 72

the plant, G: B1 ->B1 and M: BZ »Bl are compensation transformations.

The system equations for the closed-loop and open-loop systems are

represents the response of

given by
y.=[1+ PGM]_lPGu
and

y, = Pu

which are defined to be the nominal system equations. To insure
terminal equivalence between the open and closed-loop systems,
G is given by

G=(@-Mp)~ !

provided that I - MP is nonsingular. It can easily be shown that the
perturbations in the closed-loop and open-loop system in the presence

of additive noise are related by

8y, = (1+PGM)'15yO.
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Hence by the following sequence of identities

-1 -1

(I+PGM)_1 = [1+P(I-MP) M]

= [I+P(I—MP)_1M(I -PM)(I—PM)_l]_l

]

- [(1-PM + PM)(-PM)]”

1.-1

=[I+PM(I-PM)

1

-1 - PM,
the sensitivity operator $, is given by
$ = (I - PM). (5.13)

Now focusing attention on plants which are described by S1 and
feedback compensators M which are real and continuous, . it is clear

from the discussion in Chapter 3 the kernel of $ is given by
$(t,7) = 16 (t-7)-C(t)®(t, 7)B(T)M(1).

The necessary and sufficient conditions for sensitivity improvement
given by 3. 14, 15, 16 can be formulated in terms of the composition

PM by the following

m

1. s L) »Lén(ﬁ)(?—% PM: L,

2
2. §$ causal &

(Q)»Lzm(o), Q=(t,t

~

-> PM causal

3 I-$"%>0<&=>PM+ (PM)* - (PM)"PM > 0.

Since the system described by S1 is real, the following theorem is

given;



95

Theorem 5.4 A necessary condition for sensitivity improvement

is that the kernel associated with PM be L2 - positive real.

The proof follows from the above conditions and definition 2. 2.

From the preceding theorem, it is clear that the necessary
conditions for sensitivity reduction are similar to those of Chapter 3

The primary difference being the L, - positive realness of PM instead

2
of H.

m

Theorem 5.5 Let G be an integral operator, bounded on Lz

()

whose kernel is given by
[C(t)-M'(t)B'(DK(t)] (¢, 7)B(r)M(7)
where K(t) is the unique, positive, self adjoint solution of
K (1) = KA () + AT (DK() + C'(HC (1)

such that K(to) is given by
4
Kt,) = | &'(r,t )C'(7C(Ne(r,t )dr.

t
0

If PM is a bounded, causal and real operator defined on L2m (),
then the sensitivity is reduced if G + G* is positive.

The proof is straight forward and follows that of theorem 3. 2.

Several theorems, similar to those following theorem 3. 2,
could be given here but because of their similarity, they will be
omitted. Instead, attention is focused to the analysis of sensitivity

improvement of stationary plants described by S2 with constant
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feedback matrices. The following theorem helps in establishing the
necessary and sufficient conditions for sensitivity improvement for

this system configuration.

Theorem 5.8  If g(A) < e < 0, then the necessary and sufficient

condition for sensitivity improvement is that (C-M'B'K)®(s)BM be
positive real, where K is the positive, self adjoint solution of
KA+A'K = -C'C.

Proof: The proof follows from definition B. 8, and theorem 5.4
0 < I-S*(jw)S(jw)=C¢ (jw) BM+M'B'® *(jw)C'-M'B'd *(jw)C'C(jw) BM
= C&(jw) BM+M'B'®*(jw)C'-M'B'®*(jw) [ K(jw I-A) +(jw I-A)*K ] @ (jw) BM
= C®(jw)BM+M'B'®*(jw)C'-M'B'® *(jw)KBM-M'B'K® (jw) BM
= (C-M'B'K)#BM+[(C-M'B'K)®(jw)BM]* > 0 for all w e (-o0, 0).

To gain a better understanding of the restrictions placed in the piant,

consider a single variate system with the plant represented by

_ ki (s)

P
® = e

The function 7 and iy denote two polynominals ot a complex variable s
with real coefficients such that all the zeros of ¢ are in the left

half plane. The operators k and m are also real scalars. Hence

0 < {m'P*+Pm—m'P*Pm}(jw)@W—“_ﬁmk(%b—qtig(jw)—mzkz > 0.
= : . Z
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Noting that (¢/7 + ¢/ 7*(jw) = 2Re [(—;’T-D—)(jw) |, the preceding inequality,

can be written in the form
fmk > 0 and Re [(¥7)(jw) ] > Mk/y

0 < mk (Wi + wyﬁ*)(jw)—mzkz =3 (5.14)

mk < 0 and Re [ (¥)(jw)] < mKA
Without loss of generality we will consider only the case; mk > 0.

Theorem 5.7 A scalar m can be found which satisfies 5.14 if and

only if the frequency plot of (¥/7)(jw) lies in either the left half or the

right half of the complex plane.

Proof: (Sufficiency) Suppose that 0 <a=inf {Re[(¥/7)]}. Then for
w
me[ 0,2 o/k] the conditions; mk > 0 and Re [(¥/7)(jw)] > mk/2 hold.
Similarly if sup {Re[(y/7)(jw)] } = 8 < 0 then for me[25/k,0] the
W

condition; mk < 0 and Re [(¥/r)(jw)] < mk/2 hold. Necessity is obvious.

Corollary 5.1  The value of m which maximizes I-$*(jw)$(jw) is

given by
m = 1+ inf Re[( ¥r)(jw)]
W
if the frequency plot of (y/7)(jw) lies in the right half plane.

Corollary 5.2 The value of m which maximizes I-$*(jw)$(jw) is

given by

m = = sup Re [(V/r)(jw)]
w

if the frequency plot of (y/7)(jw) lies in the left hand plane.
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Hence, by the preceding corollaries it is possible to select
the feedback compensator M, to minimize the sensitivity. Tais
feasibility was demonstrated for single-variate systems, however,
it is felt that there may be a generalization of this result for the
multivariate case. This problem is left open as an area of future

research.

5.4 Summary

In summary, this chapter has discussed three problems pertinent
to sensitivity reduction. First, a necessary condition relating the
solution of the matrix Riccati equation and the plant matrix B was given
to ensure that the optimal regulator does indeed reduce sensitivity.
Second, in the study of discrete systems, a sufficient condition for
sensitivity improvement was established relating the plant matrices
{A,B,C} and the feedback compensators G and M. Finally, a variation
of the closeddoop system was studied resulting in necessary and
sufficient conditions relating the plant matrices and its associated

compensators.



Appendix A

A REVIEW OF FUNCTIONAL ANALYSIS CONCEPTS
AND TERMINOLOGY

The books by Porter [48 |, Liusternik and Sobolev [34], Kolmogorov
and Fomin [30], Simmons [52 |, Taylor [53 |, Riesz and Nagy [49],

and Bachman and Narici [7 ] are the principal sources of definitions.

A.1 Linear Space

A set X of elements {x,y,...,...} is called a linear space if

the following conditions are satisfied.
A.  For any two elements, x,y ¢ X (read "x and y belong to

the set X"), there is a uniquely defined third element z =x + y,z¢ X,
called their sum, such that

1. X+y=y+X

2. X+(y+2)=K+Yy)+2z

3. Thereexists an element 0 having the property that

x+0=xforallxeX

4. For every xe X there exists an element -x such that

X + (-x) = 0.

B. For arbitrary scalars o,B8¢F and any element x ¢ X,
there is defined an element a xeX such that

1. a(Bx) = (ap)x

2. 1 x =xXx.

99
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A linear space is said to be normed if to each element x e X

there exists a mapping || || called a norm such that

Il 1l: x-R

x - ||x]l

satisfying the conditions

1. |l >0

2. |lx||=0if and only if x = 0

3. llaxll =lal x|

4. lx+yll < lixll + llyll. x,yeX

where R is the space of real numbers.

When applied to the difference between two elements x,y € X, the
norm ||x -y|| has the geometric interpretation of being the distance
between x and y in the space X (||x -y|| defines a metric for the space
X).

A sequence of elements {xn} of a normed linear space X is

called a fundamental sequence or Cauchy sequence if for every number

€ > 0 there exists an index number N such that llxm -X || < ¢ for
all m,n > N. An element x of a normed linear space X is called the
limit of a sequence {xn} of X (written x ~xorlimx =x)if

Hxn -x|| ~0andn - . A normed linear space X is called a

complete space if every fundamental sequence of this space has a

limit in X. Complete normed linear spaces are by convention called

Banach spaces. We now describe some of the main examples of
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Banach spaces.

Example 1 Let X be an n-dimensional real Fuclidean space with
the norm defined by ||x|| = |x1 124 lxn 12 for all x ¢ X,
Example 2 Let M be the set of all measurable functions on the

interval Q, then the linear space defined by

X =Ly(@) = fxeM: [ x(t)|2dt < @) where

x| = {fQ |x(t) lzdt}é is a Banach space.

Example 3 LetX =L (R) = {xeM: J, |x(t)|dt < e} where
lx || = fﬂ |x(t) |dt, then X is a Banach space.
Example 4 Let X = Loo = {xeM: ess sup |x(t)] < w0} where
||x|| = ess sup |x(t)|, then X is a Banach space.
It is to be noticed that all the definitions given up to now do
not say anything about the 'angle' between two elements. The concept
of the 'angle' helps to determine when two elements are orthogonal
(or perpendicular). Precisely to take care of this need the definition

of an inner product space is introduced.

A linear space X is said to be an inner product space if there
exists a function (denoted by <, > ) defined on X which maps X x X
the cartesian product space, into the scalar field F such that

XxX~—-F
x,y) - < x,y >

(where ( , ) represents an order pair in Xx X) with the following
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properties:
1. <x,y>=<y,Xx>, x,yeX (where bar denotes
complex conjugate)
2. < ax+f8y,z>=0<x,2>+B<y,z>, o,BeF and
X,y,zeX
3. <x,x> >0ifx=0
4, < x,x> =0if and only if x is the zero vector.

Any two elements X,y € X are said to be orthogonal if < x,y > = 0.
1

Because of conditions (3) and (4) we can define ||x|| = < x,x >?
and it is a simple exercise to check that this defines a norm on X.

In this case it is said that the norm is induced by the inner product.

A Hilbert space is an inner product space which is complete with

respect to the norm induced by the inner product. The following
examples illustrate two of the more important Hilbert spaces.
Example 1 An n-dimensional real Euclidean space is a real
Hilbert space.

Example 2 The space L,(Q2) is a complex Hilbert space where

o
<X,y> = fQ x(t)y (t)dt.
Many Banach spaces are not Hilbert spaces since an inner

product does not exists which generates a particular norm. An

example of two such spaces are
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A.2 Functions

If there exists a correspondence between the elements of one
space X and the elements of another space Y, then the mechanism
by which the relationship is established is called a transformation or
mapping. The relation between an element x € X and its image element
y € Y may be denoted by
y = F(x)
or

y = FXx.

The space X is called the domain of the operator F and Y the range.
It is assumed here that both X and Y are normed linear spaces. If
the domain and range of F are both in X then F is said to be an
operator on X.

At times it so happens that Y is a subset of the real line, i.e.,
the image elements y are simply real numbers. Then the operator
is called a functional.

A transformation is said to be bounded if there exists a constant
¢ such that

Fx[] < ¢ |lxl]

for all xe X.

To site two examples of bounded operators consider the following:

Example 1 Let xe Ll(Q) and let y € LOO(Q) be a fixed element, then

FX = fgx(t) y(t) dt
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is a bounded linear operator and
IFxll=1Fx| < folx@) |- ly®lat < Hyll_ f 1x) lat
=yl 1=l
Example 2 Let x¢ LZ(Q) and let y ¢ Lz(ﬂ) be fixed then
Fx = fﬂx(t)ﬁ)dt

is a bounded linear operator and by the Schwartz inequality

°

IFxl1? <[ [ 1x@)1 Iy lat)® < [ =) %at- [ Iy 2 at

Il

Unbounded operators often arise in control problems and the following
examples illustrate two such operators.
Example 1 LetX={xe L2(o, ©): X is absolutely continuous and
X € L(o, ©)}. If Fx = x, then F is an unbounded operator.
Example 2 Let X={xe Ly(0,00): t- x(t) e L2(_0,oo)}. If (Fx)(t) =t- x(t),
then F is an unbounded operator.

A transformation F is said to be continuous if for every number
€ > 0 there exists a number 6 >0 such that

'||Fx1—Fx2|| < e

whenever

lx, -x, 1 <8

1

for all Xy5%q

interpreted according to whether the domain X is involved or the

€ X. Note that the norms in these expressions can be

image space Y. Thatis ||Fx|| refers to the norm in the range space

while ||x|| refers to the norm in the domain space.
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A.3 Linear Operators

An operator F is said to be linear if it satisfies the condition:

F( ax, + sz) =« F(Xl) + BF(xz)

for any two elements X10%y e X and arbitrary scalrs ¢ and 8. If a
linear operator is continuous, then it is also bounded. The reverse
is also true.

The norm of a linear operator F, (denoted by ||F||), is defined as

the greatest lower bound of the numbers c which satisfy the bounded-

ness condition:
|| Fx |l

IFIl = sup - sup IIFxll = sup |lFxl.
l1xll=0 1] lIxl] < 1 lIx|l=1

If F1 and F2 are two linear operators on a normed linear space
X, then the inequality

Pl < HF 1]+ 17yl

holds for their sum F1 + F2 =F.

If F is a linear transformation from the space X into space Y
and G is a linear transformation from Y to Z, thenthe composite
operator H = GF defined by

Z =HEX) = G(Fx)), xeX, zeZ

is called the product of the transformations F and G. The norm

||H || satisfies the inequality

=l < llall- HFll.
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Some Additional Definitions

In dealing with operators on a Hilbert space several additional
concepts occur with sufficient frequency to merit specific mention in

this Appendix.

A.4 Adjoint Operators

Before defining an adjoint operator, it is worthwhile to introduce
the concept of a conjugate space.

It is known that the set of all bounded linear functionals defined
on a normed linear space X forms itself a normed linear space called

‘the conjugate space of X and denoted by X*.

It is true that for any arbitrary bounded functional J defined on

the Hilbert space H there is a unique element y ¢ H such that

J(z) =< z,y >
for every ze H. Letting z = Tx where T is a linear bounded operator
on H, the definition of the adjoint of T (denoted by T*) is arrived at
by letting

X
< TX,y>:<X,Ty>
*

for every X,ye H. T maps into H, is linear, bounded and the equality

HT*|l = [Tl

holds. A linear, bounded operator T on H is said to be self-adjoint

if T=T%
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Four basic properties of adjoint operators are the following:
If T1 and T2 are two linear operators on H, then
1. The adjoint of their sum is equal to the sum of their

adjoints,

(T1+T2)*=T +T

2. The adjoint of their product is equal to the product of

their adjoint in reverse order,

* T*T*

(T Ty) =Ty Ty

3. The identity operator is self-adjoint

A.5 DPositive Operators on a Hilbert Space

A linear, bounded operator T different from zero defined on a
real Hilbert space H is said to be positive if for every f e H the
condition

<Tf,f> >0
holds. The operator T is said to be positive definite if 0 in this

equation is replaced by 6 < f,f > (6 > 0). It is customary to normalize

f in which case the inequality becomes
< TE,f> >0

for all fe H with ||£[| = 1. Symbolically the notation T > 51 is used.
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It is true that a positive definite, self-adjoint operator T on H

1

possesses a unique, self-adjoint, positive definite operator T 2 well-

defined on H called the square root of T such that

o=

1
T2T? = T.

Five basic properties of positive and self-adjoint operators

are the following: If T, and T, are operators mapping a complex

1 2

Hilbert space H into itself then

1.

T, is self adjoint if and only if < ”Jix,x > is real for

1

all x. Hence every positive operator on H is self

adjoint.

If T, and T, are bounded and if T, and T, commute,

then T > Oand T

If T, and T, are bounded and if T

1 2 1 2

> 0 implies that T1T2 > 0.

>0, T

2

> 0, and

1 2 1 2

T.T. > 0then T, and T, commute.

If T, is positive definite, then T

172 - 1 2

is non-singular.

1 1

If T, is one to one then TXT, > 0 otherwise T, > 0.

1 171 171~

A.¢ Unitary Transformations

The linear transformation U of one Hilbert space H1 into another

Hilbert space H

2

is said to be isometric if it leaves the inner products

invariant, i.e., for every f,ge H1 the equality

< Uf,Ug>=<f,g>

holds. It is to be noted that the inner products are on different spaces
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and have to be interpreted accordingly. If the image of the space H1

under the transformation coincides with H2 , in other words, the mapp-
ing under U is 'onto', then the transformation U is said to be unitary.

Equivalently, the relation

holds on Hl'

A.7 Eigenvalues and Eigenvectors

If T is an operator on a complex Hilbert space, and if Tx = Ax
for some non-zero x and for some scalar A, then A is called an
eigenvalue of T and x is called an eigenvector of T. The set of all
eigenvalues of T is called the spectrum of T and is denoted by o(T).

If Re {o(T) } < 0 ( < 0) then T is asymptotically stable (stable).




Appendix B

CONCEPTS IN MODERN CONTROL THEORY

B.1 Stability Theory

A fundamental aspect of the study of dynamic systems is the
determination of their stability. There are several powerful methods
for the study of stability but perhaps the most general method is that
of Lyapunov which was developed 70 years ago in Russia [35] and
which has become an invaluable tool in optimal control theory.

Intuitively the problem of stability is that of determining the
behavior of a physical system in the neighborhood of an equilibrium
state. If the system returns to this state after being perturbed it is
called stable; if not it is unstable. Unfortunately, this intuitive con-
cept excludes many forms of motion which are also recognized as
being stable. It is for this reason that terms like "asymptotically
stable'', "uniformly stable', ''stable in the large'', etc. have arisen.

For the purposes of this thesis, the stability concepts introduced

are related to linear systems which are characterized by
x(t) = A(Dx(t); x(t ) =x (B.1)

where A(t) is an nxn matrix whose elements are continuous functions
of time on (-0, ).

‘Definition B. 1 The state x = 0 is said to be Lyapunov stable, if

for any to and any ¢ > 0, there is a 6 > 0 depending on ¢ and to such

110
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that HXOH < § implies le(t:xo,to) || <€ forallt> t,, where x(t;x ,t )
is the response of time t to the perturbations x :x(to), and ||x|| is

the Euclidean norm defined by Hxllz = lxl |2+. ot Ixnlz.

Definition B.2 The state x=0 is said to be asymptotically stable if (1)

it is Lyapunov stable and (2) for any X, sufficiently close to 0,

X(t;xo,to) -0ast —ow.

1

Theorem™ B, 1 The system described by equation B.1 is Lyapunov

stable if and only if there exists a constant M, which may depend on to’

such that |[@(t,t )|[<Mforall t >t .

Theorem ! B.2 The system described by equation B.1 is asymptotically

stable if and only if there is a constant M such that

ettt )l <Mfort>t; tlimoo le,t )|l =0forallt

hence ||x(t;xo,to) || ~0ast - w.

Definition B.3  The system described by B.1 is said to be exponentially

asymptotically stable if there exists scalars A, k>0 such that

&, Nl < ke M gor an t > 7e [t , ).
Lyapunov devised a method of applying quadratic functionals to
discuss the questions of asymptotic behavior of solutions of linear
differential equations. Before proceeding with the method of Lyapunov,

the following terminology is introduced. 2

lsee Zadeh [59].

2See Hahn [19].
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Function of Class K: A function ¢(r) which is a continuous real

function defined on the closed interval [0,h ] such that ¢(r) =0
when r = 0 and increasing strictly monotonically with r is calleda
function of class K.

Decrescent function: A function V(x,t) is said to be a decrescent

function if |V(x,t)| < ¢ (|[x|l) in the region
IxIl <h forallt>t
where ¢(||x||) is afunction of class K.

Radially Unbounded function: A scalar function V(x,t) is said to

be radially unbounded if V(x,t) > y(||x||) in the region

Ixll < hforallt> t_

for arbitrarily large hwhere y(||x||) is a function of class K.

Positive (Negative) Definite function: A scalar function V(x,t) is

said to be positive (negative) definite if V(0,t) = 0 and V(x,t) > ¥ (||x]])
(< —w(lle)) in the region
x|l < h for allti to
where ¥ (||x||) is a function of class K.
In studying the stability of the system characterized by equation

B.1, the following lemmas are very important.

Lemrna1 B.1 The origin is stable in the sense of Lyapunov if there exists

a positive definite function V(x,t) such that adT V(x,t) evaluated along the

solution of equation B.1 is not positive.

1Ibid.
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Lemma1 B.2 The origin is asymptotically stable if there exists a

function V(x,t) which is everywhere positive definite, radially unbounded,
descrescent, and —C% V(x,t) evaluated along the solution of equation B.1

is negative definite.

Definition B.4 A function V which satisfies lemmas 3.1 and 3.2 is

called a Lyapunov function for the differential equation B.1.

One of the important uses of Lyapunov functions other than for
purposes of stability, is to establish the nature of the solution of the

algebraic equation
A'E + EA =Q (B.2)

Lemma B.3 Consider equation B.2 where E, A and Q are nxn

matrices and Q < 0, then there exists a unique solution E >0 if and

only if Re {o(A)} < e < 0.
Proof: Define the solution of equation B. 2 by the integral

0 A
E=- [ eAthAtdt. (B.3)
0

. - o . At . .
E is clearly positive definite since e~ is never singular and

!
A thAtX]

'X,EX| dt

0
- f [x,e
0]

0
:_f _eAtx,QeAt] dt.
0

Integrating B. 3, premultiplied by A, by parts it follows that

L pia,
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0

0 . ' Dy
AE - - fA,eA thAtdt . [eA thAt] -+ fo gA thAtAdt
0

=Q - EA.
Conversely assume E > 0 and consider the differential equation
X = AX,
A Lyapunov function V(x) is defined by

V(x) = [x,Ex ]
then
V(x) = [X, Ex] + [x, Ex]
_[ Ax, Ex]+ [x,EAx]

=[x, (A'E + EA)X].

Hence V(x) = [x,Qx] < 0 and x(t)~0 which implies Re {o(A)} < ¢ < 0.

To prove uniqueness consider the existence of a solution E1 such

that

AE, +EA=Q (B. 4)

Subtracting B. 4 from B. 2 we obtain

A(E-E.) = -(E —El)A.

7

Since1 o(A)o(-A") = ¢, E = E_ and the lemma is proved.

1

B.2 Controllability and Observability

The fundamental concepts of controllability and observability

of linear systems were first introduced by Kalman and play an

1 See Gantmacher Ref [14 ] page 220.
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important role in modern control theory. In this section we will
restrict our attention to continuous and discrete, linear multi-variate
control systems. However, since most of the results for discrete-
time systems can be obtained from the continuous-time case by

replacing the variable t with discrete points t, , and by replacing

k!
integrals with summations, it will be sufficient to study only the
continuous time case.

Consider the multi-variate linear system described by

x(t) = A()x(t) + B(t)u(t) (B. 4.1)
y(t) = C(t)x(t) + D(t)u(t) (B. 4. 2)
where: x is an n-vector, the state; u(t) is an m-vector, the input;
y(t) is a p-vector, the output; A(t), B(t), C(t),D(t) are nxn, nxm,
pxXn, pXm matrices, respectively.

Definition B. 5 A plant is said to be completely state-controllable

if for each pair of points X, and x, in Rn, there exists a bounded

f

measurable controller u(t) e R™ on some finite interval t0 <t< tf

which steers x to x,.
0 f

Definition B. ¢ A plant is said to be completely output-controllable

if for each pair of points Y, and Ve in Rp, there exists a bounded
measurable controller u(t) e R™ on some finite interval t, < t < t}f
which steers Y, to Vg

It has been shown [31] that the plant is completely output-controllable

n [to, tf], if and only if, the Gramian matrix
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Pt ,t) + D(tf)D*(tf)

where
L

* * *
Pt t,) = ftOC(tp@(tf,r)B(T)B (M@ (t, NC (tp)dT,
is nonsingular. The necessary and sufficient conditions for the doublet

{4, B} identified with equation B. 4.1 to be completely state-controllable

is that the Gramian matrix
tf
W(to,tf) ={ @(tO,T)B(T)B*(T)Q)*(tO, 7)dr,
o)
be nonsingular,

From the above equation it is clear that the necessary and
sufficient conditions for controllability depend explicitly on the state
transition matrix @(to,t). Consequently, it is necessary to cbtain a
solution of the time-varying differential equations. To overcome this
difficulty Silverman and Meadows [ 51] define state controllability
matrices characterized in terms of A(t), B(t), and C(t) and their

derivatives. The state controllability matrix of the system described

by equation B. 4 is

Q (t) = [Po(t),Pl(t)," . 7P

c 1] (B.5.1)

n-

where

Pk+1(t) = —A(t)Pk(t) + Pk(t), Po(t) = B(t). (B.5.2)

It can be shown that the system is completely state controllable if and

only if Qc(t) has rank n on the interval [to’tf]'
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For stationary systems, the preceding conditions for state
controllability reduce the fact that

n-1

Q, =[B,AB,...,A" "B]

has rank n.
A necessary and sufficient condition for complete output-

controllability is that the px (n+1) m matrix
r, = [CB,CAB,... .cA" 15 pj

have rank p. Note that although output and state-controllability are
conceptually similar, they do not imply each other. This is easily
seen by setting D = 0. The rank of I' is less than or equal to the

rank of C or Qc‘ Thus if the rank of I, < p the system would not be

1
completely output-controllable. Conversely, the rank of I“1 =p

does not imply rank Qc =n,

Definition B. 7 An unforced plant is said to be completely observable

on [to,tf] if for a given t_ and t; every x(to) in R" can be determined

from the knowledge of y(t) on [to’tf]’

It is well known [ 4g] that the necessary and sufficient conditions
for the doublet {A,C} identified with the plant, to be completely observ-

able is that ¢
f

Mt t,) = [ &t )cTHcma,t )dt

t
0

be non-singular. The corresponding observability matrix due to |

Silverman and Meadows, is given by
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where

R, () = A'OR (B + R (1), R (1) =C'(1).

Hence the system described by equations B. 4 is completely observable
on the interval [to,tf] if and only Qo(t) has rank n on the interval,
For stationary systems this condition is equivalent to the nxnp
matrix
icr,arcr,..., a0 e

having rank n.

Further simplification of these conditions is possible for special
forms of the constant matrix A. For example, if A has distinct

eigenvalues and if A is a diagonal matrix then

1. The stationary system is completely controllable if and
only if B has no all-zero rows.
2. The stationary system is completely observable if and only

if C has no all-zero columns.

B.3 Optimal Regulator Problem

In this section the optimal regulator problem is formulated and
the salient features of the optimal solution are presented.

Consider the linear dynamical system characterized by

X(t) = At)x(t) + Bt)u(t), x(t ) =X,
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where x(t) is the n dimensional state vector, u(t) is the m-dimensional
control input and the matrices A(t) and B(t) are locally measurable
and of compatable dimensions. The optimal linear regulator problem
is to determine the control u on the interval (t f) which minimizes

the cost functional:

t

Fx(t;) + [ [x"®L'(t)L(O)x(t) +u'(tRu(t) ]dt

t
0

Ju) = X'(tf)

where the terminal state x(tf) is unconstrained, F is a positive matrix

and R(t) is a continuous positive definite matrix.

The optimal control U is given by the linear feedback control

law

A = -R I OBOEGR) = -ME)x()
where E(t) is the unique positive solution of the matrix Riccati equation
_E(t) = -A"QE(®) + EQA®D) -EQBOR LOBME®) + L' (L)
satisfying the boundry condition
E(tf) =F

The matrix E(t) has the property that for arbitrary te [to’tf]
J(u)= minJ(u) = [x(t),E(t)x(t)].
u

Restricting our attention to the case when the matrices A, B, R,

and W are stationary and t, - oo, the cost functional takes the form

f

= lim f { ), L'Lx(t)] + [u(t),Ru(t)]} dt

- O
tfoo
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where an admissible controller u is measurable on (0< t<cw) and is
such that the cost functional converges to a finite value.
By a suitable normalization of the input vector, it is possible

to take R =1, the unit matriX' thus the cost function takes the form

J(u) = lim f {[x(t), L'Lx(t)] + [u(t t)] bdt (B. 6)

tf—>oo

1
where 1 = R2u.
Now stating the results due to Kalman [23], the problem may be

solved as follows:
Let m(t: tf,O) = E(t) be the unique self adjoint solution of
_E(t) = E(t)A + A'E(t)-E'(t) BB'E(t) + L'L (B.7)
such that
(tf,tf,O) (tf) =0
If the plant is completely controllable, then

lim #(t; tf,O) E(t)
tf -0
exists for all t and

lim 7 (O,tf,O) =E

2K (B.8.1)

tf—>oo

is the steady state solution of equation B. 7.

Let the control law be given by
M = B'E (B.8.2)

then as given by Kalman:
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Theorem B.3 If {A, B} is completely controllable and the cost

functional is given by B. 6 then the optimal control law is given by

B. 8.2 where E is obtained by evaluating the limit of B.8. 1.

Theorem B.4 If {A, B} is completely controllable and {A, L} is

completely observable, then E is positive definite and self adjoint
and the optimal control law is asymptotically stable.

Theorem B.5 If {A, B} is completely controllable, a necessary and

sufficient condition for the stability of the optimal control law is that
all the eigenvalues of A restricted to uncontrollable states have
negative real parts.

Theorem B.6 Let {A, B} be completely controllable and {A, L} be

completely observable, then a necessary and sufficient condition for
M to be a stable optimal control law is that there exists a matrix E
such that

E>0and E = E'

M = B'E

"E(A-BM) -(A-BM)'E = L'L + M'M

B.4 Irreducible Dynamic Systems

Consider the linear, time-invariant, finite dimensional plant,

described by the following equations

X = Ax + Bu (B.9.1)

y = Cx (B.9.2)

where u,x, and y are m, n, and p-vectors respectively. The number
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n is defined to be the dimension of the system. This description is
isomorphic with the triple of matrices {A, B,C} which is called a
realization of the transfer function matrix

T(s) = C(s1-A) !B, (B. 10)

Any matrix triple {A, é,é} satisfying B. 10 is a realization of T(s)
but this realization is not unique. A realization of T(s) is called
irreducible if the dimension of A is as small as possible. Kalman
[26] has shown that every rational, proper matrix T(s) possesses an
irreducible realization. Moreover if {AT, BT,CT} and {AT’ éT’éT}
are two irreducible realizations of T(s) then there exists a constant

nonsingular matrix I" such that

A -1
AT = TATF
BT =TB

= -1
CT —CTF

Hence the two realizations represent the same system but with respect

to two different basis. This is easily seen since

-1 -1 -1_-1
) Bp=CpI T(sI-Ay) T TBg

T T T

- A = g
= CT(sI-PATI‘ ) "B, =C..(sI-A

T(s) = CT(sI -A

_1“'
) Bp

Kalman [9g] has shown that if T(s) is a transfer function matrix

satisfying

T(s) =C(sI-A)—1B
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then,

1. T(s) is irreducible if and only if it is completely
state-controllable and completely observable.

2. If {A,B,C} is a non-minimal realization, then
there exists a nonsingular matrix I" such that the
triple {A, B,C} is brought into the canonical form

{A,,B,,C,} with

AA AB AU "

(A A A
A = rarl- o aBB  ABU
0 0 AUl |
oA
o B
B, =TB-= B
- O J

c,=crt=qo,c®c"l.

The system of differential equations for this realization is identical
with that of equations B.9 since X, is related to x via the nonsingular

operator I" such that

The superscript letters have the following meanings
A: controllable and unobservable

B: controllable and observable



124

U: uncontrollable.

BB, BB

The triple {A ,CB} is irreducible and its realization

T(s) = cB(s1- ABB) 1B

is equivalent to T(s).

B.5 Positive Realness

For several years, network theorists have been employing the
concept of positive realness. More recently this concept has become
an important tool for control systems analyst. This section reviews
the concept of positive real matrices and gives an important lemma
due to Anderson [ 4 ].

The definition of a positive real matrix can be found in several
books on network synthesis (for example Newcomb [ 3¢]) and is given

by

Definition B.8 An nxn matrix T(s) is called positive real if for

Res>0

1. T(s) is analytic

2. T(s) = T(s)

3. T(s)+T(s)>0
where the overbar denotes complex conjugate and * denotes complex
conjugate transpose. If T(s) is composed of rational polynominals in
s then the above statements are equivalent to

1. T(s) is real-rational

2. T(s) analytic in Re s > 0
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3. Poles of T(s) on Re s = 0 are simple
4, For each pole on Re s = 0, the residue matrix is
positive and sélf—adjoint

b3
5. T (jw) + T(jw) > 0 for all we (-oo,0).

It is of interest to see what necessary conditions are placed on
the entries of a matrix described by equation B. 10 to ensure positive
realness. To facilitate this, it is helpful to write equation B. 10

in the form

™ 311(8) alz(s) alp(s) R
a,,(s)
T(s) = 21
L apl(s) Coe app(s) J

Consider an arbitrary entry ai].(s) of T(s), given by

aij(S) = ﬂij(S)/ wij(s).

Let ﬂij and Wij be the nth and mth order polynominals in s respectively.
It is well known that for the given system of differential equations,
described by equations B.9, n < m for all i, j and since the poles of
T(s) must be simple on Re s =0, it must be the case that m =n + 1 for
all i,j. A little reflection also shows that all of the entries along the

main diagonal must be positive real functions.
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Lemma B.5 (Anderson [4 ]) Let T(s) be a matrix of proper rational

functions such that T(s) has poles which lie in Re s < 0 and are simple
on Re s = 0. Let {A,B,C} be an irreducible realization of T(s). Then
T(s) is positive real if and only if there exists a positive definite self
adjoint matrix Q and a matrix L such that

1. QA+A'Q=-L'L

2. QB=C".

B.6 Decoupling and the Inverse System

In the recent months there have been several studies (see [13],
[15] and [ 47]) concerned with the problem of decoupling multi-variate
systems by state feedback. In particular the paper by Falb and
Wolovich [13] give the necessary and sufficient for this character-
ization for stationary systems, as well as conditions relating to the

inverse system.

Consider the time-invariant linear feedback system shown in

Figure C. 1.

v—= G X = AX + Bu = c [—7

Figure C. 1 A Time-invariant Linear Feedback System
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The plant is described by equations B. 9 with the control vector u,

given by

u = FX + Gv; G is nonsingular.

The closed-loop form is then given by

X = (A+BF)x + BGv; y = Cx.

Definition B. 9

affects only the ith output.

Let 509,

LN be given by

The system is said to be decoupled if the ith

input

o, =min{j: CAIB#0, j=0,1,...,n-1} or

oy = n-1 if CiA]B = 0 for all j,

where C; is the ith row of the matrix C. Let A, ]_;;, D denote the

matrices
a

-ClA

1 - A

>
i
oo}
H
>t
(o9)
t

Q
m
-

-C_A
L “m

a

-
ClA

lB— 2

a

e m
L -CpA "B~

The next two lemmas follow from [13].

Lemma B.5

a,.+1
a

dt 0l1+.1.

dam+ 1

dt m

There exist a pair of matrices F and G which decouple

the system if and only if B is nonsingular. In particular the matrix

pair

~_1-~

F=B

AA, G =B

satisfies the requirement of decoupling the system.

0 —a—t
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Lemma B.€ If the matrix B is nonsingular then an inverse system

exists which can be represented by

v = (]~3G)-1{Dy —A(A +BF)z}

z = (I - B]~3_11~&)A+ BI~3—1D"y.

(83)

A question of interest is ""What are the restrictions on the plant
described by B.9,1, 2 in the context of the previous discussion, to be
positive real?" To help answer this question, the representation of the
plant in the context of (S3) with G =1 and F = 0 (in the transformed
domain) is given by

D(s)Y(s) = AAX(s) + BU(s)
X(s) = (s1-A) " 'BU(s),
which combine to the form

D(s)Y(s) = {AA(SI-A) !B + BlU(s).

With some manipulation the plant transfer function simplifies to the

form

1

P(s) =D~ (S)A(I -A/s)—lB

for all values of s for which the inverse exists. Since D-l(s) is

diagonal it follows that

i=1
where Ei is the orthogonal projection on the ith coordinate subspace.

Hence, we have the expression



P(s) = }IQ S 1 EiA(I-A/s) B. (B.11)

For large s, equation B.11 becomes

a+1) ~
lim P(s) = E s E.AB.
S~

For P(s) to be positive real, it is necessary that all the poles on
Re s = 0 be simple, hence ¢, = 0 for all i. Therefore, C;B # 0 for

any i. We can formulate the following:

Theorem B.7 A necessary condition for the plant described by

equations B. 9 to be positive real is that CiB £ 0 for all i.



Appendix C

A SUMMARY OF FOURIER ANALYSIS

C.1 Introduction

Throughout this Appendix Lp will denote the usual Lebesque
space on the infinite interval (-, ). That is Lp consists of all

measurable complex valued functions, f, of a real variable such that
o0 1/
el =1 f 1e1Pdt] P<
~00

holds (with integration in the Lebesque sense). The casesp =1,2

will be of primary interest. The Hilbert space L, is equipped with

2

the innerproduct ( , ) where
©

x,7) = [ x(5)¥(s)ds, x,yeL,.
=0

The following discussion extends easily to finite products of L,. The

9°
n

notation L 9 will denote the space of all tuplets

f=(f1,...,f ), f.eL

n i 72

being finite with respect to the norm

& @ 2 1%
el =) J lg@%at]”.

i=1 -~

n

Again L 9

is a Hilbert space with the innerproduct < , > where

n (00]
<t,g>=) [ f.@Mga, f,geL‘zl.
21 2o 11

L; is equipped with the usual algebraic operations.

130
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In dealing with physical systems an important notion is that of
stationarity. Let D(T) denote the domain of T and Ka’ for real a,
denote the time translation operator

(K X)) =x(t-a), xe L;.
Then T is stationary whenever
1. D(T) = KaD(T) all real a
2. TKa = KaT all real a
In other words if x ¢ D(T) and if y = Tx then Kax e D(T) and Kay = TKax.
In dealing with stationary systems Fourier transforms play an
important role. The Fourier transform 4 of a function x ¢ L2 is to

be defined by the expression

1 N
. 1.2 jwt
¥ =l.im. (5= t)dt. .1
(Fx)(w) L (5-) _fNe x(t) (C.1)

Here 1.i.m. denotes limit in the mean. Some salient properties of

F are summarized in the following theorem of Plancherel (See [54],

page 51).
Theorem C.1 As an operator on LZ’ ¥ is one-to-one, onto, and
norm preserving. The inverse of & is determined by
1. 1 E
- 2
(F “y)() =1.i.m. 77 f e w)dw (C.2)
N -

In other words ¥ is an isometric isomorphism of L2 onto itself.

A consequence of this is that for x,y (5L2

(Fx, Fy) = X,y)
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X -
holds, moreover ¥ =<F 1. The Fourier transform is also extended

n
2

being the tuplet of component Fourier transforms. We remark only

to the space L, in the natural way; the Fourier transform of a tuplet

that the innerproduct relationship takes the form

n 0

<Fx,Fy> =) [ @)@y, () do
i=1 -0
xR

n -
= Z f X (by.(t)dt = < x,y >
j=1 -~ ! 1!

The next result which is apparently due to Bochner (see [21]) is

a cornerstone in the study of stationary systems. In this theorem

y = Tx is mapping from Lzm into L; while 37 and x denote the L2

Fourier transform of y and x respectively. T denctes an nx m matrix

of measurable functions.

Theorem C.2 A necessary and sufficient condition for T to be linear

bounded and stationary is that

A A ~

y(w) = T(w)x(w), we (-0,wo).

where each component of the matrix Tisa uniformly bounded meas-
urable function.

This theorem may be paraphrased as stating that the transfor-
mation T from L?f“ into L; is linear bounded and stationary, if and
only if, T has a multiplicative form. Since y = Tx <= y = Tx the

matrix T, which represents T in its multiplicative form can, as we

see from the equality chain



133

7 =Fy + FTx = FTF Fx

be represented as T = FTF 1

C.2 Convolutions

The examples to be presented later come from the class of
systems which may be identified with convolution operators. The
convolution operator '"fe'' is defined by

(feg)(t) = foof(t-s)g(s) ds, te(-ow, ) (C.3)
—wv

The well known operational properties: feg = gek and fe(gak) = (feg)ek
are easily verified. The convolution of a nx m matrix and a mxk
matrix is defined in the obvious manner. In particular the case mx1
is of interest for, as we shall see, such convolutions can define the
type of linear transformation under discussion.

The next theorem (see [12], pg. 951) isolates several important
facts concerning convolutions on L., and L,,.

1 2

Theorem C.3 For f, xe¢ L1 the convolution fex is well defined and

satisfies

el < llell - [l .

Forfel,, xeL, the convolution fex exists in L, and satisfies

1 2 2
lexll, < Nell, - llxll,

Iff, xe L2 the convolution fex defines a continuous function with norm

(sup norm) at most ||f||2' ||x||2.
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In view of equation C. 3 and this theorem it is clear that for

fe L1 the convolution fe defines a bounded linear transformation on

both L 1 and L2. With the domain of fe being the entire space L2,

it is easily verified that this operator is stationary. The theorem
also generalizes easily to the multivariate setting. For instance

4 Such that W] € Ly where

|W|(t)= |W(t)| denotes the norm of W(t) as a mapping from 2,(m)

if W is a nx m matrix of functions Wij el

into ﬂl(n) then We is a bounded linear stationary transformation

sending L2m into L; with norm satisfying

o0
||1We || 5[00 |W(t) |at

Finally it is noted that fe, as an operator on L,, has a Hilbert space

2’
adjoint (fe) *  This adjoint is itself a convolution namely (fo)* = fo

where f(t) = f(-t), te (-0, ). More generally for any bounded linear
stationary system T, acting between finite products of L2 with T the

matrix multiplicative representation T, the identity chain

<T*2,x>=<2z,Tx>=<12,Tx> =< (T)*z2,x >
shows that (’f‘)*, the conjugate transpose of T, is the multiplicative

matrix representation of ™,

C.3 Causal Systems

Heuristically a noncausal system is one in which present values
of the output are not influenced by future values of the input. To

sharpen this somewhat let P'r’ for real 7, denote the projection
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operator defined by

X(t) o< t< T

(BA) =
0 T7<t

In other words P—r is computed by multiplication with the characteristic
function of the interval (-, 7]. A function T is said to be causal if

for every x Xq € D(T) such that PTX =P _x_, for any real 7, then

1’ 1 72’

PT’I‘x1 = PTsz.

A convolution fe causal if and only if f(t) = 0 for t < 0. In this

case with y = fex we have

t 0 ’
y(t) = [ ft-s)x(s)ds = [f(s)x(t-s)ds, te (-o0,c0)
-0 0
and the output y at any t e (-0, ) clearly depends only on past values
of the input. Similarly a convolution fe, where f(t) =0 for t > 0, is

called purely anticausal. Evidently

o0
(fex)(t) = ff(t-s)x(s)ds, t e (-o0, )
t

and hence present output values depend only on future values of the
input.

The Fourier transform representation of a causal convolution
has a certain familiar and important property. To state this result

we introduce the complex Fourier transform on L_ by means of

2
definition
127 ¢
X(s) = (Fx)(s) = (57) [ xt)e™at, s=0+ju
-0

D=
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From the definition it is not difficult to show that if x(t) =0, t < 0
then ﬁ(s) exists for o > 0 and is analytic in the right half (i.e. 0 >0)

of the complex plane. 1 Furthermore for ¢ >0
o0

0
[ Ix(0 + jw) 1240 = [ 1x(t)
oo o

26 2%t < |Ixl1% < w.

The converse of this result is also true as is stated in the next

theorem (see [37] section 1.4).

Theorem C.4 The two subsets of Lz(-oo, o)

E={x:x(t)=0,t<0}
E = {x: x(s) is analytic in ¢ > 0, ||x(0)!] < |Ix||. o> 0}
are identical. Moreover for }26 E

X(w) =l.i.m. x(s).
0‘—>O+

where the limit exists for almost all we (-, ).

n

Theorem C. 4 extends to L2

with norms replacing absolute values
where necessary.

Suppose now that xe L, satisfies x(t) = 0 for t > 0 and that y is

2

the function defined by y(t) = x(-t). Then y e L, and y(t) = 0 for t <0.

2
The equality chain

) ) ©
x(s) fooe StX(t)dt = - f e-Stx(-t)dt
) o

[ e Sty@at = y(-s)
-0

H

1 See Widder [55 ] pp. 80-81.
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then shows that the properties set forth in Theorem C. 4 for y in the
half space ¢ > 0 hold also for )2 in the half space o < 0. This
observation establishes the corollary: the conjugate of a causal
convolution is a purely anticausal convolution. The proof of this
statement follows from the above remarks and the fact that if &(s) <~ ¢&
then ®(s) «— (qm).*

Employing the preceding theorems it follows that stationary,
causal convolutions associated with operators bounded on Lz(-oo, )
have complex Fourier transforms that are analytic for ¢> 0. This is

formalized by the following.

Theorem C.5 Let g(t) be a continuous function for t e (-0, ), such that

ge is a causal stationary convolution bounded on L2(-oo, ), then g(s)

exists and is analytic for ¢ >0.
Proof: Lety =gex where x is chosen so that

x(t) =eStfort§t:s=o+jw, c>0

x(t) =0 fort > tf.

Then, since ge is causal and bounded on Lz(—oo, ),

-s(t-7)

t t
y(t) =™ [ glt-ne dr

-0
exists for almost all t and belongs to Lz(-oo, ).

Making the change in variable; A =t-7,

o
y(t) = eStfg()\)e_SAdA, o> 0.
0
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Since y(t) exists for almost all t, it follows that g(s) exists, and
converges for ¢ > 0. Moreover, é(s) is analytic1 for o> 0.
With a few additional assumptions placed on é(s), the converse

of theorem C.5 is demonstrated.

Theorem C.5 If g(s) is absolutely convergent for ¢ > 0 such that

A

g(w) is essentially bounded for almost all we(-w, ), then ge is a

causal stationary convolution bounded on L (-c0, o).

o

Proof: Letxe Lz(o, ), then x(s) exists and converges absolutely for

o> 0. Hence,2 g(s)x(s) = {@}(s) = 3:(s). Since the l.i.m.as ¢ -0

~ A

of g, X, and 3; exist, then by theorems C.2 and C.4, gs is linear,

bounded, causal, and stationary on Lz(—oo, ).

Theorem C.7 If ge is a causal stationary convolution bounded on

L2(—oo,oo) such that g(t) is continuous on t e (0, ) and if g(s) consists of
rational polynomials in s with real coefficients such that g(w) = a,

then g(s) is analytic for o > 0.

Proof: By hypothesis, the inverse complex Fourier transform of

~

g(s) consists of finite linear combinations of terms of the form

g(t) = a@(t)+tne—yt, t>0
- 0 L t<0

where n is a nonnegative interger and  is a complex constant. If there

1 See Widder [55], pp. 57.

2 See Widder [56], pp. 453.
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exist any poles on the jw axis, then g(t) can be written in the form
g(t) = g4(t) +8,(t)

where gl(t) consists of finite linear combinations of terms of the form

JWmt+y.)
g4®) _ e mm

~ - ~ Hw.t+
Let y = g#x be the response when g(t) = tne ( Y 7/0) where x(t) = 1 for

te [0, 1] and zero otherwise. Then

~ 1 - lw t+y ) G 7
yt) = [ {thrntn 1. +7e 0 %% 0dr t>1
0

jlw t+y,)
= [a t'+...+a Je © °.
n 0

where a_,...,a_ are constants resulting from the integration.
n 0

Consequently, the total response at w =W is the form

jwat

y(t) = [A th+. .. A e ©

where An, ce ,A0 are complex constants. Since y(t) must belong to

L2(1, w), it is the case that An,. .. ,A0 = (¢ and the theorem follows.

Corollary C. 1 If ge is a causal stationary convolution bounded on

L, (-0, ) such that g(t) is continuous on te (0, ) and if g(s) consists

2

of rational polynomials in s with real coefficients such that g(w) = 0,

then é(s) is analytic for ¢ > 0 and g(t) ¢ Ll(O, 00)(M) L2(0, ).
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