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ABSTRACT

STRUCTURAL INFERENCE AND IDENTIFICATION
OF DISCRETE TIME SYSTEMS

by
Anna Sylwia Zalecka-Melamed

Co-Chairmen: William A. Porter, Bernard P. Zeigler

This dissertation develops a general theory of coordinatized sets
and structured functions. This theory is then applied to structure in-
ference and identification of discrete time systems with coordinatized
state spaces.

The aforementioned inference and identification are based on
partial data produced by the system. To every set of experiments there
corresponds a family of structured partial models of the system. As
experimentation progresses, a sequence of families of partial models is
obtained. Those models and their interrelations are studied.

Several measures of model performance such as structural confi-
dence, predictive range and confidence are introduced. Properties of
these measures and their dependence on parameters are discussed. We
show that the structural confidence measure for a sequence of partial
models never decreases as the partial data set grows.

We show how the system model can be identified on special subsets



of the state space, given certain complexity bounds on system structure,
The construction of a parameterized family of such subsets with desirable
properties is described and their computational properties investigated.

Several experimentation strategies are suggested and their advan-
tages and disadvantages discussed. A novel feature of these strategies
is that they employ a methodology for predicting not-yet-observed state
transitions which can be formally justified.

Finally, we point out that the theory developed provides a basis

for computer aided methodology of model structure inference.
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CHAPTER I

INTRODUCTION

1.1 Review and Motivation

In many real life situations, we deal with systems for which only
partial data is available to construct a system model. We often re-
strict our attention to a subclass of all possible models, constrained
by considerations of elegancy and the sheer necessity to substantially
cut down the search space to be explored.

In this context we consider the problem of modelling autonomous
discrete time systems, with special emphasis on structure inference and
identification.

It is assumed that the state space of the system is structured
(coordinatized). Each system state thus is a finite tuple, where the
coordinates represent the chosen attributes of the system.

Examples of such a system are: a bacterial cell, specified by
the set of vectors giving the concentration levels of chosen molecule
types and their transitions ([Z1]), digital networks ([HS1]) and tes-
sellation automata ([YAl]). Systems with coordinatized state spaces
have been discussed in [K1] and [ZW1].

Klir ([K1]) talks about the need for classifying appearances of
observed attributes as an important aspect of any empirical investiga-
tion. He discusses the level of refinement (resolution level) used in

observing system attributes. Zeigler and Weinberg ([ZW1]) use the



above system description in simulation of a living bacterial cell
(E. coli).

In this work we shall not be concerned with the way in which sys-
tem attributes come about, but simply assume that they have been chosen
and can be measured.

In a typical modelling situation, we seek structured models,
whose state spaces are identical with the one assumed for the system
and whose transition functions have been structured. Essentially, this
means that the global transition function is thought of as composed of
local (component) transition functions. With each coordinate transition
function there is associated a subset of coordinates (its "influence
set") such that the knowledge of the present states of "influencers" is
sufficient to determine the next component state. A given transition
function can be structured in many ways. We will refer to a family of
influence sets (one influence set for every component) as a model struc-
ture. In general we must explore a multitude of structured models for
a given system.

It is here that the choice of coordinatization can have important
ramifications for modelling. Of special importance are the irredundant
coordinatizations, which guarantee the uniqueness of a structured model
with minimal interaction (i.e. minimal influencer sets).

We discuss various kinds of coordinatizations and their rela-
tionships. We also introduce a hierarchy of coordinatizations and dis-
cuss methods of irredundant set generation.

The framework used follows that of Zeigler ([Z1],[Z2]), where a
formalism for handling structured automata is developed. Zeigler dis-

cusses coordinatizations of abstract sets and introduces the concept of



structured functions. He points out potential implications for modelling
of a state set coordinatization used.

After every set of experiments (or every data generation phase) we
can construct a family of structured partial models--partial in the sense
that in general they are defined only on a proper subset of the system's
"operating range'. This subset always includes the set of states visited
in previous experiments and all partial models match the real system
behavior on the latter set.

Partial models and various proposals for their performance evalu-
ation and comparison of rival models have been discussed in [M1], [H1]
and [Gl]. Maciejowski ([M1l]) suggests that the problem of choosing be-
tween rival models is the same as that of assessing confidence in the
models--the model, in which one has higher confidence is the one to be
preferred. Hanna ([H1]) suggests evaluation of learning models based on
the information content of a model. Gaines ([Gl]) proposes model evalu-
ation based on complexity, with preference for less complex models. He
also points out a trade-off between complexity of a model and the degree
to which it approximates a given behavior.

We are interested in experimentation and construction strategies,
which efficiently generate "credible" models. To this end, we define a
probability measure reflecting, for every partial model, the confidence
we have, that the total model of the system (i.e. defined on the whole
state set) is identical to it in structure. All the measures are de-
fined under the assumption that "everything we have not seen yet" is
equally likely to happen. The degree of confidence is also used by
Klir ([K2]) to evaluate correctness of structure candidates representing

a given data system.



Alternate rounds of experimentation and model construction result
in a sequence of families of partial models. In case that each of the
experimental sets in the sequence is irredundant, every family consists
of just one partial model. We show that in this case, there exists a
total ordering (by inclusion) of partial model structures. Moreover, as
long as the number of coordinates is finite, even if the state space is
infinite, there is a point in the sequence beyond which each partial
model has the same structure as the total system model. However, unless
an upper bound on structure complexity is known and attained, we do not
know at what point the structure has been ‘identified.

This result is analogous to results in language and grammar identi-
fication ([G3], [F1]). Gold ([G3]) discusses concepts of language iden-
tification in the limit and finite language identification. Feldman
([F1]) discusses grammar identification in the limit and grammar ap-
proachability. In case of language identification in the limit, the
learner guesses a language at each time. After finite time all the
guesses are same and correct, but the learner does not necessarily know
when his guess is correct and so must go on processing the information.
Finite identification is analogous to our structure identification, when
a bound on structure complexity is given and known to be attained.

In general, we show that the structural confidence measure for a
sequence of partial models never decreases as the partial data grows.

We define and discuss several other measures of model performance, in
particular predictive range and confidence. Predictions are made for
the predictive range of a partial model and are constrained by so-far-
acquired data. They are made in belief that regularity detected in the

data will continue to be present in the behavior of the system on the



predictive range (i.e. that the structure will not change).

This is analogous in spirit to a methodology of predictions pro-
posed by Klir ([K1]). Klir suggests identification of time-invariant
properties representing the data, by processing the empirical activity
matrix (acquired data). Those properties are then used for generation
of activity matrices (further data points). A rule of generation of
further data is thus based on the same properties as the empirical ac-
tivity matrix.

We show that the more a partial model is able to predict beyond
the experimental set, on which it is constructed (the predictive range),
the smaller our confidence must be that what it predicts is correct.

But every misprediction on the predictive range is informative--it in-
validates the hypothesis that the actual function has same structure as
its observed portion, and so forces us to extend at least one of the
influence sets. Thus if structural information is our main goal, the
larger the predictive range the better.

Based on the theory developed, we offer a modeller several experi-
mentation strategies based on various trade-offs between expected confi-
dence, expected predictive range and computational complexity. Some of
the strategies proposed use special domain-subset construction methods.
Under certain upper bound conditions on system structure, those allow a
modeller not only to determine model structure but also system transi-
tion function.

The theory developed here provides a basis for computer-aided
methodology of model structure identification. Feasibility of a soft-
ware package, aiding a modeller in constructing a system model, is

largely due to the simplicity of evaluation of the proposed measures.



The problem of designing computer aids to help the modeller in
dealing with plurality of partial models has been raised and discussed
by Zeigler ([Z23]). Zeigler points out the requirements that need to be

met by such a software system.

1.2 Organization

This dissertation is organized in two parts.

The first part consists of Chapters 2-4 and is concerned with the
theory of coordinatizations and functions from structured domains.
Chapter 2 develops a theory of coordinatizations. It introduces a
hierarchy of coordinatizations. In particular irredundant coordinati-
zations are analyzed and ways of generating irredundant sets proposed.

Chapter 3 discusses properties of functions from structured do-
mains. We introduce the concept of a location of a function and inves-
tigate properties of locations of a function, when restricted to a
family of nested subsets. Based on those results we proceed to discuss
determination of locations for a finite family of functions on the basis
of a proper domain subset. Finally, methods for construction of special
domain-subsets of a Cartesian domain with desirable properties are set
forth.

Chapter 4 addresses itself to the problem of location inference.
Methods of location inference for a function known on a proper domain
subset only are discussed. Notions of structural confidence, average
confidence on a subset, predictive range and predictive confidence are
introduced. Computational methods for their evaluation are provided
and their properties and dependence on parameters analyzed.

The second part consists of Chapter 5 and is devoted to the



application of the theory developed in the first part to discrete time
systems. It discusses structured transition functions, i.e. structured
functions on coordinatized state space of a system. A concept of a par-
tial system model is formalized and structural confidence, predictive
range and predictive confidence for a partial model are discussed. A
methodology for predicting state-transitions not yet observed is pro-
posed. Ways of comparing rival partial models are suggested. Finally,
several experimentation strategies are proposed and their advantages

and disadvantages discussed.

The above parts are followed by Chapter 6, which summarizes the
results obtained in them and suggests a number of further research
topics. Finally, Appendix A discusses irredundance of open convex sub-
sets of Rp, with potential applications to identification of stochastic

automata.

1.3 Some Notational Conventions

Each chapter in this dissertation is divided into sections. Sec-
tion m of chapter n is numbered according to the scheme n.m. Theorems,
lemmas, corollaries, etc. within each section n.m are numbered accord-
ing to the scheme n.m.1 and delimited by the symbol .

Lines are tagged by numbers or lower case letters. References
to a line tag made within the scope of a theorem, lemma, corollary,
etc., are always local, unless otherwise specified. A referenced
acknowledgement is provided whenever a theorem, definition, etc. is
reproduced from another source; all other theorems, definitions, etc.
are original to this dissertation.

The reader is referred to page X for a detailed list of symbols.



CHAPTER II

THEORY OF COORDINATIZATIONS

2.1l Introduction

In this chapter we develop the theory of coordinatizations of a
single set. This development is largely based on work of B. P. Zeigler
(see [Z1]). His formalism and definitions are used here as the starting
point. The importance of this theory stems from the fact that the type
of coordinatization of a state space of a discrete time system has im-
portant implications for modelling enterprise.

We explore here several types of coordinatizations and their inter-
relations. The spectrum of coordinatizations, which fall in between
independent ones at one end and Cartesian ones at the other, is intro-
duced. Irredundant coordinatizations will be particularly emphasized.
Their special importance results from the fact, that when a state space
of an autonomous discrete time system is irredundant, there is a unique
structured model of this system with transition behaviour identical to
that of the system.

We will demonstrate ways of constructing irredundant sets, for
example using as constructing elements the sets already known to be ir-
redundant, like the Cartesian ones.

It is often easier to determine whether a given set is irredundant
or not, by looking at the way it is built from basic elements, rather
than by using other criteria (like the one following directly from the

definition of irredundance).



2.2 Types of Coordinatizations

The next few definitions and theorems follow those of [21], with
only minor deviations.

We start with a concept of a structured set.

A set S is said to be structured if it is a subset of a cross
product of an indexed family of sets, that is S Q:;x;sa. With a struc-
tured set S, we associate a family of coordinate piijections {PQIGSD},
where Pa:S - Sa is defined in the natural manner.

With index set D totally ordered, we extend the projections to
project on all nonempty subsets of coordinates. Thus for any D'g; D,

P.':s — S and P_, = P , where the order of coordinates is the
D dedr ¢ D aed' &

one induced by the order of D. P¢ is defined to be any constant func-

tion with domain S.
From now on we assume that a set S we are dealing with is struc-

tured over a finite index set D, where cardinality of D is at least 2.

Definition 2.2.1 ([Z1])

A partition Il on S is said to be induced by a subset D' of D, if

for every pair x,yeS, xlly iff PD.(x) = PD,(y). O

We will denote I as above by H;. and refer to it as a basic parti-

tion on S induced by D'. In case D' is a singleton, e.g. D' = {a}, we
. . S S
will often write I rather than I} ..
o {a}
When it is clear what structured set we have in mind, we will
, , S .
sometimes write HD" when HD' is actually meant.

In general there might be more than one subset of D inducing the same

partition on S. In other words the map f:ZD'—* PS, defined by

f:D' HD" is not one-to-one for arbitrary coordinatizations. As we
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shall see later however, this condition will turn out to be a necessary
and sufficient one for S to be independent.

We remind the reader that PS denotes the set of all partitions on
S and Pg the set of all basic partitions on S.

When S is a proper subset of >K:Pa(s), intervariable depend-
aeDd

ence may arise. This leads us to the following definition.

Definition 2.2.2 ([z1])

Coordinate aeD is dependent on S, whenever H;_a < Hi. m]

Coordinate qeD is independent, if it is not dependent. We will
say that S is coordinatized independently (or is independent) if all
coordinates of D are independent.

It follows directly from the definition, that coordinate o is
dependent on S, if for arbitrary tuple in S, knowledge of its projec-
tion onto D-¢, suffices to determine o~coordinate value of the tuple.

A concept of a location of a partition or function we are just
about to introduce will play a central role in this thesis. With every
partition Il on S, we associate a family of subsets of D with special

properties-locations of II.

Definition 21213 ([z1))

Let Il be a partition on S. D' D is a location of T on S, if
P — A LT

]’I]S), < I and for any D" C D', if HS,, < 1, then D" = D', a

We see that a location of I is a minimal subset D' of D, such that
the basic partition associated with D' refines [].
In general a partition may have many locations. Tor special types

of coordinatizations though, every partition on S has a unique location.
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We will call such coordinatizations irredundant.

Definition 2.2.4 ([Z1])

A coordinatization of S is irredundant if every partition on S has

a unique location. O

The next theorem states necessary and sufficient conditions for a

set S to be irredundant.

Theorem 2.2.1 ([z1])

A coordinatization of S is irredundant

. S S
, L =
a) iff for all D,,D, C D, HDIK“ ng HDIFWDZ

. : S
b) iff for all D,D, CD, HDIFWDZ < Hgl{J H;Z R

S S
where HDILJHD

.

2

. . . S
is the transitive closure of the set union of HD and
2 1

Proof

Can be found in [Z1]. n|

We remind the reader that if Hl and H2 are any relations on S,
then the transitive closure of Hl and nz’ HllJ Hz’ is defined by

S(HIlJ Hz)s' & S, »8 S, = s' such that siﬂls for all odd i,

PEREE i+1

and s.I s, for all even 1i.
12 ih

Definition 2.2.5

A coordinatization of S is Cartesian if S = )X:Pa(s). a
aED

Cartesian coordinatizations are always irredundant. This is

proven in the next proposition.



12

Proposition 2.2.1

If S is Cartesian, then it is irredundant.

Proof

We need to show that for any DI,DZ(; D, HD1FWD2 < HDIL)HDZ.

If |S| = 1, S is clearly irredundant. So we assume |S| > 2. Let
s(a) for aeD,
s,s'€S, where sl s'. We define z by z(q) =

DD, s' (0) for aeD-D,

z is well defined and zHD S, zHD s'. This follows, since D, =
- 1

2

1 [] . .
(DzﬂDl) U (Dzﬂ(D—Dl)) and SH'DlﬂDZS . Thus SHDlz and zI[Dzs implies

1 .
that s(HDllJ HDZ)S , which was to be proved. |

We will now show that for any finite family of partitions on S
with unique locations, the location of their intersection is also unique

and equal to the union of the locations of all partitions in the family.

Lemma 2.2.1
Let [1= {Hl,HZ,...,Hn} be a finite family of partitions on S, with

the property that Hi has a unique location Li’ for all i = 1,...,n.

n n
Then the location of g:)ﬂi is unique and equal to E;{Li.

Proof

n
We begin by showing that for arbitrary location L of (”\Hi’
i=1

n n
i < i = 1 ~
L ;gkiji' Since Hi é‘( ‘Hi < Hi’ for i 1,...,n, L contains a loca
i=1 i=1
tion of ﬂi, for all i. But Hi's have unique locations and thus

n
L QLi, Vi, which implies that L QULi.
1_
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n n
Since [I. <€ II,, V., I, | < (ENH.. But (—\HL- = ] . lence
L= i (31 i gt =11 O,
n i=1

n
L, contains a location of (—\H., say L. Then L ;}ﬁ and since both L
=11 i=1

n
and E are locations of (ﬁ\Hi, L= %, We showed then that for an arbi-
i=1

n n n
trary location L of (-)Hi’ L ;}k’%Li;Q L holds. Thus L = k_gLi is the
'= .= i:

unique location of the intersection. O

The next theorem gives several characterizations of an

independent coordinatization.

We shall denote by Pi the set of all basic partitions on S. We

note in passing, that for amy D" C D' C D, HD' < HD"'

Theorem 2.2.2

A coordinatization of S is independent
a) iff for all oeD, o is the unique location of Ha'
b) iff for all D' C D, D' is the unique location of HD"

c) iff for all D',D" C D, if D" # D' then HD' # HD"'

Proof
a) TFirst we show, that if for VaeD, o is the unique location of
Ha, then S is independent.

Suppose S is not independent. Then dqeD s.t. HD_ < I . This
o o
implies that D~o contains a location for Ha’ which is distinct from o.
But this leads to a contradiction.
We now prove that if S is independent, then ¢ is a unique location

of Ha’ for all oeD.

Suppose this is not the case. Then d an 0eD s.t. a is not a
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unique location of Ha. Thus either o is not a location of Hu or 0. is a

location of || , but not a unique one. In either case AL s.t. L is a
o

location of I, and ofL. This implies that L C D-a, implies that

II <T

L < Ha’ which in turn implies that o is dependent. This how-

D-q
ever contradicts our assumption.

b) Clearly if for all D' C D, II , has a unique location D', then
for all aeD, Ha has a unique location Q. So by part a) S is independ-
ent.

We need to show that if S is independent, then D' is the unique
location of Hb,, for all D' C D.

By part a) we know that independence of S implies that for every

oeD’, Ha has a unique location 0. We note that HD' = (ﬁ\'ﬂa. Using
0D

finite induction and Lemma 2.2.1, we show that ﬂb, has a unique location
D',

c) We show first that if S is independent, then D' # D" implies
ﬂb, # ﬂb". Since S is independent Hb, has a unique location D' and ﬂb"
has a unique location D". This follows from part b) of the theorem.
Since D' # D", ﬂb, and Hb" have distinct locations and thus cannot be
equal.

We now prove that if for V¥ D',D" s.t. D' # DﬂﬁHD,#THyu then S is inde-
pendent. Suppose this is not the case. Then d 0€D s.t. 0 is dependent,

I

f.e. Tl H(D—-oc) ulal = = Ty

D-a‘S Ha. This implies that HD_a(W Ha =

which contradicts our assumption. a

There are other necessary and sufficient conditions for irredun-
dance besides those of Theorem 2.2.1. Which condition is used as an ir-

redundance criterion depends of course on a particular situation involved.



15

The next theorem states those conditions.

Theorem 2.2.3

A coordinatization of S is irredundant

a) iff for V HEPS with II # I, mD' =L # ¢ and HLSH.

HD;EH
b) iff for VIEP’, VD ,D C D, if M, < Mand N, <T, then
' 1 2
Il < 1.
D,ND,
Proof
a) If coordinatization is irredundant, then any D' s.t. HD' <I

contains the unique location of I, say L, for any Il # I. Since II # I,

L # ¢. Also clearly I £ Il and thus mD' =L # ¢.
HD.SH
We now need to show that if for every I # I, mD' =L+ ¢

Ty <

and I&J < II, then S is irredundant. It suffices to show that L is the
v
unique location of JI. Suppose L is an arbitrary location of II. Then
I[% <1 =}f 2 L. Since HL < II, L contains a location of I, say L. But
~ 3 - . r\" ~ 3

then ']\.f 2 L, and since ,I\: and L are both locations, L = L. Since
'I\i 2L DL holds, this implies f = L. Thus L is the unique location of
1.

b) We first assume that S is irredundant and show that for any Il

on S, any D ,D_ C D, if < II and < I, then < 1. This
rP2 € o T o,

2
= ]TD1 U %zg I and by Theorem 2.2.1 ]'I:D1 UHD?_ = T[DlnDz.

We now show that if for every ngs, VDI,D2 cDh HD <1 &

follows immediately from Theorem 2.2.1, since T[D < I, ILD <1I
1

T[D2 < II implies ]'[Dln D, < I, then S is irredundant.

Suppose S is not irredundant. Then d all on S, I # I, with at
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< H,]H‘ < 1L
2

By our assumption I AL < I and thus L, N L, contains a location of II.
1t e

least two different locations, say L1 and L,. Then II

L

Since LIQQ LIF\LZ, LZIQ LlﬁL2 and both L/, L, are locations of I,
L, =LNL, and L, = L,AL,. This implies L, = L,, which contradicts

our hypothesis, O

It turns out that for any coordinatization there exists a relation
between the number of indpendent coordinates and the cardinality of the

coordinatized set. This is expressed in the next proposition.

Proposition 2.2.2 ([Z1])

Let {SalaeD} be a coordinatization of a finite set S. Let D' C D

be any independent subset of D. Then p'] < Isk 1.

Proof

See [Z1]. O

The implication of the above proposition is that if S is independ-
ent, then the cardinality of S is at least one greater than the cardinal-
ity of the index set, S is coordinatized over.

We will now illustrate the concepts introduced by a few examples.

Example 2.2.1

Consider S C {a,d} X {b,e} X {c,f}, where D = {1,2,3} and
s = {(a,b,c),(a,e,c),(d,b,£f),(d,e,f),(a,e,f)}. First we list all the

basic partitions on S.

foma|
[

= {(a,b,c),(a,e,c),(a,e,f), (d:b»f)’(d:eaf) }

==
I

{(a,b,C),(d,b,f), (a,e,C),(d,e,f),(a,e,f)}
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H§ = {(a,b,c),(a,e,c), (d’bsf),(dae’f),(a,e,f)}

s - {Go o @eaDn, @, @nd, @ab)
{1’2} - a,e,c),(a,e, ) a,b,c), sVUs L/ ’ €,

HS -} (a,b,c),(a,e,c) (d,b,f),(d,e,f) (a,e, f) }

{1’3} ‘ sy ’ LR ] ’ sV ’ 1Sy ) 1Sy

I - 1G@ho, @eo, @50 (def)(ef)}
{2’3} ' Yy ’ » Sy > s Uy ’ ’» Sy s \a,€,

Hd) =1I-= {(a,b,C),(a,e,C),(d,b,f),(d,e,f).(a,e,f)}
M1,2,3)= 0= {(a,b,C), (a,e,c), (d,b,£), (d,e,f), (a,e,f)}

It can be easily verified that S is independent. The easiest way
to do it is to use part ¢) of Theorem 2.2.2.

We will now demonstrate that although S is independent, it is not
irredundant. To do so, it suffices to exhibit one partition on S with

more than one location.

Take II = {(a,b,C), (a,e,c),(d,b,£),(d,e, £), (a,e, f) }

We check that HS <1 and HS < I, while HS, HS and Hs do not
{152} {2,3} 1 2 3

refine II. Thus {1,2} and {2,3} are locations of Il and S is not irredun-

dant. 0

Example 2.2.2

Consider § = {(a,b,a),(b,b,b), (b,b,a), (a,b,b)}, D = {1,2,3}.
We note that PI(S) = {a,b}, PZ(S) = {b} and P3(S) = {a,b}. Clearly,

S = PI(S)><P2(S)>’P3(S) and thus by Definition 2.2.5 is Cartesian. O

Example 2.2.3

Consider any open circle C ianz. C is irredundant. To show that

we need to prove that for any x = (xa X ) and any y = (ya

»Y_ ), where
1 %2 Gy

1
X,veC xHaILJ Hazy.
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. . 2 2 2
From the definition of a circle it follows that X, + x <r

1 O,
and yé + yé < r? both hold. (r is the radius of the circle C.) Hence
1 2

2 4.2 2 4.2 2
+ <2
clearly (xa yaz) + (ya1+xa2) r

is true. But then either
1
2 2 2

x° + yé <r°or y; tx, < r’must hold (or both). W.l.o.g. assume

oy 2 1 2
2 2 2
+ . = . .
that xal yu2 <r Let p (xal,yaz) peC and pHalx, pﬂazy hold
Thus Xna U Ha y, which proves irredundance of C. O
1 2

For the illustration of Example 2.2.3 refer to Figure 2.2.1.

We remark that the above result can be generalized for any open

ball inTR".

Example 2.2.4

Consider any open convex subset S of the plane,TRz. S is thought
of as coordinatized in a natural manner. We will denote the coordinates
of D by o, and 0,. We will prove that such an S is irredundant.

For let p, and p, be any two points of S. Since S is convex the
line segment joining P, and p,» L is in S. Since S is open, for

1°P;

every x on Lp > there exists at least one open ball with center x con-
1°P2

tained in S. We will denote it by B(x).
Let ¥ = {B(x)!xeL }. Then clearly ¥ forms an open cover of
12P2

L . L is compact and thus Y contains a finite subcover of
P1sP2 P1sP2

Lp p.° We will denote this finite subcover by C =
1°F2

{Bl(xl),Bz(xz),...,Bn(xn)} , where x_ €L P, for i = 1,...,n, for some

integer n. Without loss of generality we will assume that the enumera-
. [] . .

tion of x.'s is such that d(xi+1’p2) < d(xi,pz), where d is the usual

Euclidean distance in 1R?. Also we remove from our finite cover all open

balls properly contained in other balls. Then any two neighboring balls

must intersect, i.e. B(Xi) F)B(xi+l) # ¢. If this were not the case the
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balls would not form an open cover. Choose any zch(xl)fﬁ B(x,),
zzeB(xz)fW B(xa),...,zn_leB(xn_l)IW B(xn). Since as was shown in
Example 2.2.3 any open ball in R? is irredundant, the following holds:
| .
pIHalLJ HQZZIHQILJ Huzzz"'zn—znall’ Hazzn-lna1LJ HQZPZ' This in turn

implies that lea LJ Hu P,. Thus S is irredundant (refer to Figure
1 2

2.2.2). O

Remark

We note in passing that the above result can be quite easily ex-
tended to R". Namely, every open convex subset of R" is irredundant,
for an arbitrary integer n. Also it can be shown that

n
Sn = {(pl""’pn)lpi 2 0, Vi, and gi;pi < constant} is irredundant.

For the proof the reader is referred to Appendix A. This fact has
implications for identification of probabilistic automata and other

types of systems dealing with concentrations, populations, etc. O

We will now turn to other types of coordinatizations.

For lack of a better name we will refer to the first three of them

as coordinatizations of type 1, type 2 and type 3.

Definition 2.2.6

A coordinatization of S is of

. S S _
a) type 1 if for all qeD, HD_u(J Ha =1

. _ S S _
b) type 2 if for all D,D,C Ds.t. D, N D, = ¢, Ip VT, =1
c) type 3 if for all HEPS,H¥I,r‘\L # ¢, where L is the family

Lel
of all locations of II. |
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Figure 2.2.2: Every Jpen Convex Set S in IRZ Is Irredundant.
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We will now elaborate some more on the properties of the coordin-

atizations just introduced.

Proposition 2.2.3

A coordinatization of S is of type 1 iff for every HgPS if o is a

location of ]|, for some aeD, then 0 is the only location of IL.

Proof
We first show that if S is of type 1 (i.e. ﬂalJ HD—a = I, VaeD)
and O is a location of II, then o is the only location of Il. Clearly
I # I, for I has the unique location ¢. Suppose L # o is a location
of II. Since ofL, L C D-a and HL <I. LCD-0o=> HD—u s,HL and
HalJ HD-u =1 = HalJ HL = I. But Hu <1, HL <1h :@-Ha U HL <.
This in turn implies that II = I which is a contradiction to our assump-
tion.
We now show that if for every Il on S, s.t. o is a location of I,
for some aeD, a is its unique location, S is of type 1, i.e. that
Ha L}HD_G =1, for all 0eD. Suppose this is not so. Then 4 o0eD, s.t.
Ha LJHD_a # I. Ha < Ha L}HD—a and HD—a < Hu LJHD_Q. This clearly im-

plies that o contains a location of HaLJ Il and so does D-0. Since

D-o
HaLJ HD—a # I, o is a location itself. Thus o and L are distinct loca-

tions of HalJ HD—a’ where L is some subset of D-a. This contradicts

our assumption. Hence S is of type 1. I

Proposition 2.2.3 proves that S is of type 1 if and only if all
partitions with singleton locations have unique locations.
We now proceed to show that S is of type 2 if and only if for

any partition on S, no two of its locations are disjoint.
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Proposition 2.2.4

A coordinatization of S is of type 2 iff for every HeFS, if L,

and L2 are any distinct locations of I, then Llrﬂ L2 £ ¢

Proof
We first prove that if S is of type 2 (i.e. for any DI,D2 CD
with D, N D, = ¢, HDI(J HD2 = I) and if I] is any partition on S with
more than one location, then for any two distinct locations L, and L,
of 1, L, F1L2 # ¢. Clearly I # I, since I has the unique location .
Suppose L1 N L2= ¢. Since L,, L, are locations of I, HLlLJ Hiz < 1.
But by our assumption ﬂillj HL2 = I, which implies ] = I. This however
is a contradiction.
Secondly we show that if for any Il with more than one location,
intersection of any two of its locations is nonempty, then for all

D,,D, s.t. DI!W D, = ¢, HD IJ HD =1, i.e. that S is of type 2. Sup-

1 2

pose not. Then 34D,,D, s.t. D; N D, = ¢, but HD U HD # I. Let

1 2

II = HDILJ HDZ. Then D, contains a location of II, say L,, and D, con-
tains a location of I, say L,. L, and L, are different from ¢, since
I+41I. D,MD,=¢ =>L; NL, = ¢. This however is a contradiction.
Thus S is of type 2, which was to be proved. i

The next two types of coordinatizations are motivated graphically.

These are coordinatizations with extension property (e.p.) and

strong extension property (s.e.p.) defined below.

Definition 2.2.7

Let {S . thﬁD} be a coordinatization of S, where {“|’“y"""%l
( .
i

is the total ordering of D. S is said to have
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a) e.p. if for all x,yeS and any ic{l,...,n} if xﬁa y, then

x(aj) for j € i t

w,2€S, where w(aj) = and
y(aj) for j > i
y(aj) for j €1
z(o,) =
] x(aj) for j > i
b) s.e.p. if S has e.p. for all permutations of D. O

Every set S with e.p. has a graphical representation G(S) by a
multi-level graph. G(S) is obtained in the following manner. The set

of vertices V equals k‘,)sa » Where all Sa are treated as distinct. Every
aieD i i

edge of G(S) represents a subset of Sa ) 4 Sa » for some 1 < i < n-1,
i i+l

where n is the cardinality of the index set D. There is an edge joining

(Sa s sa ) in G(S) just in case there is a point in S with the pro-
i i+i
jection onto {ai’ai+1} equal to (Sa sS, ). Every point s of 5 is thus
i it
represented by a path (Sa 38y seeea8y ) of the graph. It is clear from
1 2 n
its description that this representation is one-to-one. Thus given

o

G(S) of the type as above we can determine S uniquely.
To make the representation more readable we will align the ver-

tices along vertical lines. This is illustrated by Figure 2.2.3.

Remark
Every set S coordinatized over an index set D with |D| = 2, has a
one-to-one graphical representation G(S). This is so, because every

such S has e.p.

We note that the above type of graphical representation does not

provide a one-to-one map of sets without e.p. Looking at G(S)

we cannot "retrieve" S, but only its closure with respect to e.p. By
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the closure of Sw.r.t. e.p. we mean the smallest subset X of ><SOL,
QeD

such that X @S and X has e.p., It can be easily verified that the

above closure is unique.

We will say that a coordinate 0€D is independent of the coordi-
nates D' C D-a on S if HD' ﬁ,Ha. 0. is independent on S then, if it is
independent of coordinates (D-a) on S.

For sets with e.p. '"local independence" implies independence.

This is stated more formally below.

Proposition 2.2.5

Let S have e.p. and let {al,az,...,un} be the ordering of D.
Then S is independent iff o, is independent of its neighbors, for
i=1,...,n, where the neighbors of 0, are a, and o, if
i i-1 it

2 <i<n-1, and the neighbors of o, are 0, and o and of o ah_l and

0.
Proof
If 0y is independent on S, then it is clearly independent of its
neighbors.
We need to prove the implication the other way. Let ie(2,...,n-1).
ui independent of its neighbors => A x,yeS with X, =Y, and
i-1 i-1
x =y but x  # y_ . But then Jdz,weS s.t. z_  =w_ for
o /
it i % Y % %
k # i, where z =w =X =y and z =w = X
%0 %o % %y %41 %4 %4

=Yy and Zy S Xy W, =Y, o This follows from e.p. property of
i+l i i i i

S. Thus zHDuaiW' but ;H&iw, which implies independence of a; on S.

The proof for 0y and o follows in a similar way. -
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We will now take a closer look at coordinatizations with s.e.p.

First, we will establish some auxiliary results to be used later.

Lemma 2.2.2

n
Let S Q;:XCS » where S has e.p. Then S has the property, that
i=1 i

for any x,yeS, any O s if xHa y, then for any aj
i
a) (X ,X  ,e..,% WX Y ooy ) eS

o o o, . ol
12 -1 7§ Tih n

and
B) (Y 3Y  seeesy sV 5K yeeesX )eS hold
a; 0y Oy "0 Oy o

&= for any two disjoint subsets of D = {al,...,an}, D' and D" s.t.

. 1
xa if a,€D

D' UD" = D and any point z s.t. z(ai) = i t , 2Z€S.

. "
yOLi if OtigD

Proof
Clearly if any z as above is in S, conditions a) and b) are met.
We have to prove that if S has e.p. and a) and b) hold then any

z as above is in S. Let X, ¥, 0, be such that xHa y.
i
Let {o. ,a. s+es50, } denote the coordinates of D at which z
i,’"1, i

changes from x to y or y to x, ordered by order of D. W.l.o.g. assume

z =x forallo,<o, , 2z =y fora, < o.<0. , 2 =X for
. . i~ . . i = i i . .
O % 1 Y &y 1 2 94 %

a. < 0, <0, , etc. Then if a) and b) hold, x| y = z_ =
P! i3 ai 1

(B yeee,x . Vo, Yy TR A )eS. But zlna'x =z, =
11+1 n i

(X 5eee,x . Wy vreesYy WX TERE 5 )eS. Again zzna.y = z3 =
i, -1 i i -1 i n i

(X yee.x 2V seeesy sX  yeeesX Vo, 20e Yy )eS, etc.
i i i -1 i i -1 i n

Finally 2, = zeS, which was to be proved. a
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Lemma 2.2.3
n
S g;)K:S has s.e.p, iff for any x,yeS, any 0.€D, if xIl y, then
0. i 0,
i=1 i i
for any ajED
a) (X ;X y.0.X yX_ »Y seeesy. )ES
o, o, 05_1 aj aj+1 o
and

b) (ya ,yu 3---Ya' ,Ya.,X . ,-n-,xa )ES hold.
1 2 j-1 ] j+1 n
Proof
I. If S has s.e.p. then S has e.p. for all permutations of D.
If o = o, (i.e. j=i-1) both a) and b) hold since S has e.p. and

=y , same is true for 03 = ai.

1) We assume that j < i - 1.

We permute the o, and o coordinates, denoting so permuted S by

j+1
S (aj+1’ O‘i)

(X 43X 5e.e5X X LX s X seessX 5X seeesX  )ES
Gy o i-1 % Y41 Yo % %4 %
Then
sV Y seeesy . )ES

G-1 0% %4 %4, O %4, %

. (0, »0)
(X 43X ,ee0yX 2X 53X ,X seeesX WX syeoesX )ES Jti 1
o, o o, 0. . . . o, a,
1 2 =1 7] i Tj+2 j+1 i+1 n
=
( ) (O5412%)
Y. sV  seeesy Y Y . Y sesesyy €S
% %1% % T Y, %41 %+ %

(Otj+1 4 OLi)

But since S has s.e.p. S has e,p. and thus

o, a,
T Ly Cyr™)
o > PCICICIEY a. > a.3 a.;ya seevy o [}

3003y )ES
1 %2 j-1 j i Ti+2 j+1 4 o

i+ n

(Y »Y ’OOO’Y ’y ;x ’X ,...,X ,X . e 3 X )ES
’ o (A
a9 %-1 7% % Y J+1 it n
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o, ’XO!.,’YG. ’YOL "”’yOl._’yOl "“’yOt )€S
1 n

i+1

L S N TERTE se e X )ES

=1 0§ i1 it i ik n
Thus a) and b) hold for any j £i - 1, if S has s.e.p.
2) for j >i - 1, we proceed in an analogous way, except that we per-

mute coordinates (ui,aj) rather than (o,

J+l’ai).

II. We nowprove that if for any x,yeS and any 0,€D with xl'[a y, a) and
i
b) of Lemma 2.2.3 hold for any aj # 0y then S has s.e.p. Suppose this

is not the case. Then d a permutation of D, p, such that sP does not

have e.p. That is 4 xp,ypesp and an aiED, s.t. xpﬂa yp, i.e.
i

(XP(ul) ge s ,Xp(ai) gs e ,Xp(urP)Hp(ai) (Yp(ul), coe ,yp(al) , o -;yp(an)) but

p_ P
eilther z (Xp(al)’ cee ,XP(ai)syp(ai+l) 3o e ,yp(an))¢8

= p
or w (yp(al),...,yp(ai),xp(ai+l),...,xp(an))¢s .

W.l.0.g. we assume that z'¢sP. We note that zP¢sP — z¢£S, where

P =

, xai if zp“l(u.) Xy

s i
z=(z ) and z =

o, o,
1 1 y if z° ) =y
oy P (ai) i
pS p S
x Ha y :$~xHa y. 2¢S = a) or b) do not hold for some uj, by Lemma
i i

2.2.2. This however contradicts our assumption.
For the illustration of the proof we refer the reader to

Figure 2.2.4. =

In the next proposition we prove that a set S with e.p. has s.e.p.
if and only if it has e.p. under all cycle permutations of D, or,

alternatively, if and only if it has e.p. under all transpositions of D.
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G(S)

0 J 0
1} - 1
2 2 2

S = {(0,0)0)3(0,0’1)’(2’0’0)’(2’0,1)’(0)1)~1)’(2’2’1)}

Figure 2.2.3: A Graphical Representation of S.

xHa y x,yeS imply z,weS

Figure 2.2.4: Properties of S with S.E.P.




Proposition 2.2.6

n
Let S have e.p., where S g;:X<Sa and D = {al,...,an}. Then S

i=]1 "1
has s.e.p.

a) iff S has e.p. for every transposition of D

b) iff S has e.p. for every cycle permutation of D.

Proof

a) Clearly if S has s.e.p. then for all transpositions t of D, St

has e.p. We want to show then that if for all transpositions t of D,
St has e.p., then S has s.e.p.
By Lemma 2,2.3 to show that S has s.e.p. we just need to show that if

xﬂa y, then for any uj # o (Xu seeesXy 5Yo seesYy ) and
i 1 | j+1 n

(Y. seeesy, »X syeee X ) are in S.
% % %4 n

The proof of this however is exactly the same as the proof of I in
Lemma 2.2.3, since only transposition type of permutations were used in
the proof.

b) We just need to show that if S has e.p. and s has e.p., for
every cycle ¢ of D, then S has s.e.p. Equivalently, we need to show

that for every x,yeS, any aiED, where xﬂu'y, (xal,...,xa’,yu. ey )es
i i i+l n

and (yal,...,yu.,xa. seeeaXy )eS, for any ajED.
j j+1 n

1) We first show that for any x,yeS with xﬂu y, any point z s.t.
1

z(ai) = y(ui) or z(ai) = x(ai), z is in S. Let . denote the cycle of D
with @, in k'th position, i.e. c1=={a1,u2,...,an_l,an} and for k 2 2,

¢, = {an-k+2’an-k+3""’an’al’QZ""’an—k+1}' There are n cycles of

D= {Gl,...,an}. Let {ui ,ai TERELN } be ordered by the order of D,

1 2 k
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where those are the points of change of z from x to y or y to x. W.l.o.g.

take z = (x ,x ey X “es X .
( al, o, s , ai -l,y . , ,ya. l,xa' . ..,xu. ,ya. yevo)e
1 1, 1, 1=t 1,

Consider czm, where Zm = (n+1)—(im—l) = n+2~im, i.e. Kl = n+2—il,

C.
i
L, = n+2-iz,...,2k = nt2-i, . By our assumption S @ has e.p. for
cp ¢ cp. cp
w=1l,...,k. Now xeS,yeS => x ¢S ! and y les 71, 1.e.
Ly
>
( e ) SCJ&1 d
X X seeesX 35X 3K 3e.s,X 3 an
Cf.i Oli +1 Otn Oll 062 OLi -1
1 1 1
c L Czl
(ya' 3 ERRED IE 0 E TR )eS °. Since S has e.p. and
i, 1+1 n 1 2 11_1
c c c
£ £ L
x Ly T (Y, s¥y, seeesVy oKy 5Ky se-esk, )ES ', This
., a’’a,’Ta a,
1 11 11+1 n 1 2 ]_1—1

clearly implies that z, = (xa 1Ky e Xy Vo 3y seees¥y ) €S,

1 2 i -1 i i +1
i I n
where z = for all a, > o, .
o, Ya, 3= 1
J J 1
c c c
Z2 ﬂz 22
z_. ‘€S and z = (z  ,z sevesZ 32 32 secesZ ), i.e.
1 1 U.i ('li +1 O(.n Ctl (12 a, 1
1 2 1,
CK c
Z2, 2 = (YOC ,yOL ’-c-sya ’XOL ,th ’”.’XOL ’y(l' ’y(l "..’YOL )eS '@2
. . 1 . - 3 3 . -
1, 12+1 n 2 1, 1 1l 11+1 12 1
c c
£ L
x 2=(Xa ’Xa ’...’XO, ’xufgxa ,'OO)X ’-a-o.uaoo-on-'r’x )ES 2
. N 1 3 - 1 -
:i.2 12+1 n: 2 i 1 i,-1
Cc Cﬁ C}e
Since z| 2]IOt X 2 and S 2 has e.p.,
1
Cp
(xa X seesX aX 0K X S A SRR )eS 2
i, iz+1 n 1 2 i,-1 1, 11+1 12-1
ézz = (xa ’Xa ,...,Xa ,y ,y ,na.,ya ’Xa )x ""’xu )€S
1 %2 i-1 %4 %44 i-1 %4, %5 4 i
1 1 1 2 2 2 n

Proceeding this way we show that zeS.

2) We now want to show that for any x,yeS any aieD if xﬂa y and ¢
i

has e.p. for all cycles ¢, then for any ajeD
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W= (X ,e00yX_ ,y seeesyY ) @nd p = (V. 37 seeesy. HX seeesX )
. : uj+1 o a o, aj aj+1 o

are in S. It suffices to show that weS, since the proof for p is analo-

gous. Let ¢ be a ((n+2)-i)'th cycle, i.e. ¢ = {ai,ai ,0,

IREEEETL SRR
(i 2 2, since for i = 1 the assertion was proven).

To show that weS it suffices to show that w eSC. We note that x° and
yc are related by first coordinate in s€. Also S€ has e.p. and so do
all cycle type of permutations of c¢. Thus by part 1) wcesc, which im-
plies w S.

The proof of 2) is illustrated by Figure 2.2.5. O

2,3 Relations among Coordinatizations

In this section we will analyze the spectrum of coordinatizations.
The levels of the spectrum will be numbered I through VI and we will
prove that if coordinatization is of level j, then it is also of level
i, for any i smaller than j, provided coordinatization has no constant
coordinates. The case of coordinatization with constant coordinates
will be discussed separately.

We will also provide and prove some sufficient conditions, under
which the implication goes from lower to higher levels.

The spectrum of coordinatizations is shown in Figure 2.3.1.

Theorem 2.3.1

Let S g;)x:sa be a set with no constant coordinates. Then if co-
aeD

ordinatization of S is of level j in the spectrum of coordinatizationms,

for any 2 £ j £ 6, it is also of level j - 1.
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X,yeS,xII y implies (x ,x ,x
%3 1 %

a y
LT
4
y X
y a \

Figure 2.2.5: S Has E.P. and S°©

s X ,Y L,y )eS
4 % %

X,YyeS

xI y

C _cC .C
X ,y €S

c = (as,a4,u5,a6,al,u2)

z = (X ,X ,X_ ,X_ ,Y ,y_ J)eS
4 % %

Has E.P. for Any Cycle c.
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Proof

a) j = 6. By Proposition 2.2.1 S is irredundant and hence of
level j - 1 = 5.

b) j = 5. S is irredundant, which implies that every HEP% 41,
has a unique location Ly # $. Thus {F\ILH =Ly # ¢ and S is of level

Lyel
j - 1= 4 in the spectrum (i.e. of tvpe 3).

c) j =4, i.e. S is of type 3. Let Il be any partition on S with
more than one location. Let L, # Ih be any two locations of Il. Then
clearly since intersection of all locations of Il is nonempty, so is
LIFW L,. By Proposition 2.2.4 this implies that S is of type 2, i.e.

level IIT in the spectrum.

d) j = 3. Clearly if for all D,,D, C D with D, N D, = ¢,

HleJ HDz
o MN(D-o)

I then HulJ HD~& = 1 for VoeDd. This is true because

it

® (we note that !D[ was assumed to be 2 2). Thus if S is
of level III in the spectrum it is also of level II.

e) j =2, i.e. S has the property that HaLJ HD—a = I, for all
0eD. Since S has no constant coordinates, Ha # I and thus o is a loca-
tion of Ha' By Proposition 2.2.3 this implies that o is the unique
location of Ha’ for all aeD. Finally, by part a) of Theorem 2.2.2 this
implies that S is independent, and thus of level I in the spectrum of

coordinatizations. ]

We will now show that all levels of the spectrum are distinct (in
general). For every level we will exhibit a coordinatization, which is

of this level, but not of level one higher.

Theorem 2.3.2

For every j, 1 £ j £ 5, there exists a coordinatized S s.t. S is
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for VoeD, I X1

for V aeD, Hoch HD—oc =1

for vD,,D, C D, with D, N D, = ¢,

H:DlU HD2= I

for v HEPS, I# IJfNWL # ¢, where
Lel

L is the family of all locations

of I
for v HePb, Il has a unique loca-

tion

S = P (S)
XPa

Spectrum of Coordinatizations

(No Constant Coordinates),
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of level j, but not of level j + 1.

Proof
a) I H II
Consider S = {(al,bl),(az,b1),(aa,b2),(a3,b3)}. Clearly S is indepen-

dent. With D = {al,az}, we note that HD—QZL) Ha2 = HalLJ Haz =

{asb ), (a,00))5 (2,55, G b0 UGa b)), (a6 )y (agb,)s (a, b )b=

{(31’b1)’(az’b1)’ (33’b2)3(33’b3)} #1
b) 11 & 1II
Consider § = {(a ;b ,c ,d), (a,,b,c ,d), (a b se »d ), (al,bz,cl,dl),

(al,bl’cz,dl), (a19b1’c1’d2)}’
It is easy to show that

HalLJ ED'al =1

= 1
HuZLJ HD-az

=1
fy, U Ty,
HaqlJ HD—a =1.

However the partition II =

{(al’bl’cl’dl)’(al’bl’CZ’dl)’(al’bl’cl’dz)’(az’bl cl’dl)’(al’bz’cl’dl)’

(az’bz’cz’dz)}
has locations {al,az} and {a,,0,}, which are disjoint. Thus by Proposi-
tion 2.2.4 S is not of type 2 and hence not of level III in the spec-
trum.
c) IIT # IV

Consider S = {(a,b,c),(a,e,c),(d,b,£),(d,e,c),(a,e,£)}, D = {al,az,ag}-
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We first show that S is of level III, i.e. that for all DI,DZ(; D with

D, N D, = ¢, HD U HDz = I. Actually to show that it suffices to show
1

that for all D,,D, C D with DIFW D,=¢and D U D, = D, HD1LJ HDZ = I.
Thus we need to show that

I Ul =I, 101 UTI =Tand ] U I = I. This how-
. 0,0y ? a, a,Ua, a, a,Ua,

ever follows easily by inspection.

Let ]I = {(d,b,f), (a,b,c),(a,e,c),(d,e,c),(a,e,f)}. It can be
verified that {al,az},{al,aa} and {az,qa} are locations of JJ. Obvi-
ously {al,az}IW {ul,as} f]{az,as} = ¢, Thus S is not of level IV.

d IV #V
Let S = {(a,b,c),(a,e,c),(d,b,f),(d,e,f),(a,e,f)}. We first prove that
S is of level IV, i.e. for any partition Il on S with more than one loca-
tion, intersection of all its locations is nonempty. Since ID' =3
however, to prove that, it suffices to show that for any Dx’Dz C D s.t.

D,NDy =¢, T LJHD = I, i.e. that no two distinct locations of I

Dl 2

are disjoint. (For then no II can have more than two locations.)
To prove that, it suffices to show that

=I, 11 UTI
2,u3} a, {“1’“3

Hdllj H{a } = I and Ha »; H{

} = I, which
3 1272

clearly holds.

S is not irredundant, for example Il =

{(a,b,¢), (a,eac),(d,b,f),(d,e,f),(a,e,f)} has two locations {al,az}
and {az,a3}.

e) V H VI
Consider S = {(0,0),(1,0),(1,1)}. S is irredundant but not Cartesian,

since (0,1)¢s. O
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Remark

For 5 with constant coordinates and any 3<j < 6, if S is of level
j then it is of level (j-1). If coordinatization of S is of level II
however, then every acD is either independent or constant. Thus II #1.
The above can be easily verified by tracing through the proof of The-

orem 2.3.1,

We shall now give some conditions under which the implication in
the spectrum goes from a lower to a higher level.

We note that if cardinality of an index set is two, levels II,
III, IV and V are all equivalent.

Also as was pointed out in part d) of the proof of Theorem 2.3.2,
if |Dl = 3, then levels III and IV are equivalent.

Other conditions are stated and proved below.

Proposition 2.3.1

Let S be independent. Then S is irredundant if either a) or b)

holds, where

a) Il = {H[HEPS and T has a unique location} is a sublattice of P°.

b) P]S) ={I IS), D' C D} is a sublattice of P,

Proof

1) We prove that if a) holds, S is irredundant. We need to show

S S S

<
that for any D,,D, C D, HD1(1D2 < HDIIJ HDZ.
Since S is independent, by part b) of Theorem 2.2.2 HD has a unique

1
a unique location Dz' Since a) holds J] = HD U nD
2 1 2
has a unique location, say L. Since HD < II and HD < 1, D, DL and
1 2

. ) o . <. .
Dz;g L. Thus D, M D, D L. This implies that Hle\Dz L But L being

location D1 and HD
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the location of I implies M, <1T. Thus I np. S T L}ﬂb .
1 'Y, 1 2

2) We prove that if b) holds S is irredundant. Again we need to
S S
< Y oo . i
show that HDlr1D2 < HDllJ HD2 Since PD is a sublattice of P,

%1U]%2=]5; mrsmmDagD. MM]%131%1U152=I53mm

HDZ-S ﬂb3. Since S is independent, D3 is the unique location of Hba'

Thus D, 2 D, and D, 2 Dy, which = D, N D, 2 D,. But this in turn
implies that < = Ul . O
hop, s =T UL

As was stated in Proposition 2.2.2 cardinality of an independent
set S5 is at least one larger than the cardinality of its index set. If
those two are equal, i.e. if |S]| = |D| + 1 we will refer to S as a mini-
mal independent set. We will prove in the next proposition that every
minimal independent set is also irredundant. First we will state and

prove an auxiliary lemma.

Lemma 2.3.1

Let S be an independent subset of :xisa, where |D| = n and Is| =
n+l. Then 4 an enumeration of D, {a.l,ajj?...,ain} and an enumeration
of S, {so,sl,...,sn} with the following property. For Y., i=1,...,n,
defined recursively by Y, = {so,sl}, and Yi =Y., L}{si} for i=2,...,n,

<
SlrLD-oci s, and for every S ps where 2 € £ <n, J an SEYE—1 s.t.
1

SZHD—ui s.

L
Proof
Pick any aeD and let o = O Then since coordinate oy is inde-
1 1
pendent on S, 4 S,15,€S s.t. SOHD—ai S .- (of course};Ha. S;-)

1 1

Let Y, = {so,sl}. We now show that d a B&:D—oc,i and an SBES—YI s.t.

1
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SBHD—BS° or SBHD—BSI' This is true for the following reason. All co-

ordinates of D—ai are independent. So for every YED—ai A sY,zYES
1 1

s.t. HD—YZY (while SYR;ZY)' Now sY = s, and zY = s, cannot hold for

8
Y
any YeD—ai » Since ai

1 1ED—Y and soﬂd s,. If for no YED—ai 4 a zYES—Yl

i 1
ZYHD"YS° or ZYHD‘YS’ all coordinates of (D—ail) are independent

on S-Y,. Since ID—ai |=n-1, this implies by Proposition 2.2.2 that
1

s.t.

|s-¥,| > (n-1)+1=n, which implies that |s| = |s-Y, [+]Y,| > n+2. This
however is a contradiction to |S| =n+1l. Soda BeD—ai and sBe:S-Y1
1
s.t. SBHD_BSO or SBHD_BSI. Let aiz =B, s, = sg and Y, =Y, U {Sz}‘
k| - .t. s 1l

We then show that a YED—{ail,aiz} and an syeS Y2 s.t sY D—YS°

or s II. s ors . s holds. In an analogous manner we prove at the
Y D=y 1 Y D=y 2
\J g -

k'th stage that J a YeD—{uil,...,aik} and an SYES Yk s.t. SYHD-YZ’
for some zeY, . O

We will now illustrate Lemma 2.3.1 by an example.

Example 2.3.1

Consider S = {(0,0,0,0), (0,0,0,1), (0,1,0,1), (0,0,1,1), (1,1,0,1)}
where D = {al,az,ag,a“}. S is clearly independent and |S| = |D|+1 = 5.
We demonstrate one enumeration of D and S, as of Lemma 2.3.1. Let s, =

(0)0»0:1), 5,

1]

(031:031), 32 = (0,0,l,l), 53 = (l,l,O,l), S, T (0a03030)-

O, = 0O,» Oti

i 5 = 0p oo oo and a; = - Thus Y1 =

2 3 4

{¢0,0,0,1), (0,1,0,1)}, Y, = {¢0,0,0,1) (0,1,0,1), (0,0,1,1)}, Y, =

{¢o,0,0,1), (0,1,0,1), (0,0,1,1), (1,1,0,1)}. We verify that S°HD—a 8>
2

s,. Hence the enumeration is as desired.
SZHD—uasO’ S3HD—alsl and SHHD—a 0 u

Proposition 2.3.2

Let S be an independent subset of ;X(sa, where |D| = n(n>2) and
aeD
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|S| =n + 1. Then S is irredundant.

Proof
We proceed by induction on n.
a) induction base
We show that for n = 2 = ]{ul,a2}| and S = {30’51’82} if S is indepen~-
dent then it is irredundant. For S independent either 1) S°Halsl’
SIH%S2 or 2) SDHaIS , soﬂ%s2 or 3) soﬂa S, soﬁa s, or 4) soﬂa s

2
1 2 1

SlHaZSZ or 5) SIHaISZ’ sOHazs1 or 6) SlHals2’ SZHGZSO holds. 1In all

i 2

those cases S is irredundant.

b) induction step

(*) We assume that if |D| = k and S is any independent set coordinatized
over D, with ISI =k + 1, then S is irredundant. We want to prove that
if |D| =k + 1 and S is any independent set coordinatized over D, with

ISI =k + 2, (¥) = that S is irredundant.
Let S = {so,sl,...,sk,sk+1} be an enumeration of S and

{ui , 0, ,...,ai 5O, } an enumeration of D as in Lemma 2.3.1.
1 Lo k  Tktl

S = Yli {Sk+1}’ where Yk = {so,...,sk}. The coordinates {uil,...,aik}

are all independent on Yk’ since for every SZ’ 1 <2<k, 4 an saYk s.t.

s Il s and s, # s. We also note that coordinate a, is constant on
L D—ai 2 i

Yy - This follows, since s, s, =P, (s)) = Po.  (s0)s splly sy

1) et Lt i,
or SZHD—ui s, = Pmi (s,) = Pa, (sl) (or Pa. (sy))s etc. Let Yk
2 k1 Mot Tkt
denote the projection of Yk onto D = D—aik+1, i.e. Yk = PD-ai (Yk).

k+1
k + 1 and |D| = k, by (%) ¥, is

Then since ?k is independent, |§k|

irredundant. This implies (trivially) irredundance of Yk’
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We now need to prove irredundance of S. We have to show that for

any zeYk any D,,D, C D, if s z, then s i U H; z. Let

S
k+1'D, ND, k+1 D, )

z,D.,D be as ove. ince s
»D.5D, ab Sinc zH;i St

kt1

s O, éDl M Dz' W.l.0.g. assume
lk+1

S
i -
that a, gD, i.e. D, © D—-OLi . Now Sk+1HD—a. s, for some S€Yk
k+1 k+1 14

(by construction of Yk's). Since D, C D—ai , this implies that
k+1

. S S
Sk+1ngls° Since Sk+1HD1r1Dzz and SHDIFWDzsk+1(f°r D,Np, CD),

S Yk . s
SHD1r1Dzz holds. Hence clearly SHD1FWD22‘ Since Yk is irredundant,

s( Yk U Yk)z and so s( S U S ) Si H% (Hg 1) HS )
HDl HD2 HDI HDz z. ince s, ls, Si1t1 o S.
So s(Hg U Hg )z, which completes the proof. (We note that this proof
1 2

works for DI(W D, = ¢.) a

Example 2.3.2

Let S = gzgsa, where ISa[ 2> 2 and |Dl = n., We construct a subset

X of S in the following way. We pick any s,€5. Let s, be any point of

S s.t. Pal(sz) # Pml(sl) and PD—QI(SZ) = PD—al(Sl)’ let s, be any point

of S s.t. Pa2(83) # Paz(sz) and PD_uz(s3) = PD—uz(SZ)’ etc. That is

s; is any point of S s.t. Pu. (Si) = Pa. si_l) and PD—a, (Si) =
1-1 i-1 i-1
PD—a (si_l), for 2<i<n+1. |X| =n+1 and X is clearly inde-
i-1

pendent by construction. Hence it is irredundant by Proposition 2.3.2.
For S = {0,1}° the following set X (constructed as above) is ir-

redundant.
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0, 0)}

0, 0)}

0, 0)}
X =

0, 0)}

U
1, 0)}
Y1, 1,1, 11,\@»}. 0

We will next show that if S is of level II and has strong exten-
sion property then it is Cartesian, in case the cardinality of an index

set is greater than or equal to three.

Proposition 2.3.3

Let S g;:xisa, where |D| 23 and S has s.e.p. Then if S is of
aeD

level II (type 1) it is Cartesian.

Proof
First we note that if S is of type 1, Ha UHD__Ot = 1 for all oeD.

This implies that for any «,BeD, o # B, Ha LJHB =1 on S. We will show

that for any xieFi(S), i=1,2,...,n, where lDI = n, (xl,xz,...,xn)es,
provided HalJ HB = I, for all «,BeD(0#B). So actually we will prove a
somewhat stronger result than the one stated. To show that
(xl,xz,...,xn)es it suffices to show that for every i, 1 <i <n -1,

Jd some point s; in S s.t. Pi(si) =X, and F&+1(Si) = Xy

This follows since S has s.e.p. and siHi+lsi+1, where sl's are as above.

4,1 itl iy = ity _
xigPi(S), xi+1€Pi+1(S) = 427, wr S s.t, Pi(z ) = X, and Pi+1(w ) =

1 i+1

X o i
X,, . Since HilJ Hi+1 I,J,pl,...,pKES s.t. z Hilei+1p2... i+1¥

i+

This implies that 3 a broken line from the point X, of G(S) (the graph
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of S) to the point X, of G(S). This line is composed of segments

+1

> f &
(pi,pi+1), where piafi(S) and pi+1€F3+1(S). By the length of this
line we will mean the number of segments it is composed of. We want
to show that there is always a broken line of length 1 connecting x,

and X (for any i, i+l, any X X, ). This will clearly imply that

+ +1

si's as defined before are in S.
We note the length of the broken line is always odd, i.e. 1, 3, 5 etc.
This is illustrated by Figure 2.3.2.

We will proceed by induction on /{, the length of the broken line

connecting X, and x, We show that for any odd k, k > 1,if there is

i+’

a broken line of length k from x, to xi+1, then H a broken line of

length 1 from X, to Ry
a) induction base, for k = 1 this is obvious

b) induction hypothesis. Let k be any odd number > 1.

(*) We assume that if there is a broken line of length k connect-
ing any two points piePi(S) and pi+leF3+1(S), then M a broken line of
£ = 1 connecting Py and Pig,

We will show that (%) implies that for any xiePi(S), any

Xi+1gpi+1(s>’ if 4 a broken line of £ =k + 2, then there is a broken

line of £ =1 from x; to x, Let L be such a line, £(L) = k + 2.

+1°

Then let Vit denote a point on L s.t. y EPi+1(S> and

i+

£ = 2,
(L(yi+1,x )) 2 L(yi+1’xi+1) denotes the segment of L between

i+1
'K i .
Ve, and Xy and (L(yi+1’xi+1)) its length

= x) & i L
Then Z(L(xi,yi+1)) k and thus by (*) d a line segment L(Xi’yi+1) s.t.
L(L(x ,yi+1)) = 1. Let L be a broken line between x; and Xii defined
by L(x ,yi+1) = L and L(yi+1’xi+1) = L(yi+1’xi+1)’ Clearly £(L) =

1+2=3. Let yiePi(S) denote the point of f, s.t. K(f(yi,x ) =1,

i+1>
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i.e. (yi,xi+1) is the last segment of 1. We assume that i + 1 < n - 1.

Then 9 a peS s.t. P; T Vi pi+l = Xi+1’ Piy, = Piy, Also d reS s.t.

r

. =y, and r, Since pll.r and S has s.e.p. d a teS s.t.
i i i i

+1 Tty
t

y., L, and t =p

. =y, . Also since (=, is a seg-
i i i+ y1+1 i+2 ( i ) &

Yit+1
hHi+1t holds,

it2’

ment of ﬁ, d an he! s.t. h

. . and h, =y, .
i Xl a i+ y1+1

which implies that T a ueS s.t. u, =X, u and u

ity Jit1 itz Pit+o”

i i i ‘

N 1, oy . . ., = . . = . . t' -'l
ow uW1+2p = d a s €S s.t s = X, and Sl+1 X Thus 4 a length
egment i . L e

segment connecting x, and X,

In case i + 1 = n, we use (i-1)'th coordinate as an auxiliary one
(rather than (i+2)'th coordinate) and proceed in an analogous way.

The proof is illustrated by Figure 2.3.3. O

2.4 Theory of Irredundance

In this section we will discuss ways of obtaining irredundant sets
from other sets, for instance those which are known to be irredundant.
We will start by pointing out a graphical interpretation of irre-

dundance for sets coordinatized over an index set with cardinality two.

Proposition 2.4.1

Let S C_:;SOl X Sa . Then S is irredundant iff for any two points
1 2
P,»P,EG(S), T a path connecting P, and p,.

Proof
We first point out that any S as above has e.p. and so G(S) is

well defined. S is irredundant é;)Hz U HZ = 1 ¢ for any two points
1 2

X,YES, xﬂalLJ Hazy = | z],...,zkgs s.t. xﬂalzlnuzzz,...,Hazzknaly.

<=>for any p;,p, G(S), & a path connecting p, and p,. O
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Example 2.4.1

Consider S ,5, €S X S , where S = {0,1,2} =S and
12 oy @, a, o,
sl = {(0,0),(O,z),(l,O),(2,2)}, 82 = {(0’0),(130)’(1)1),(2’2)}- Then

(refer to Figure 2.4.1) §, is irredundant but S, is not. n

We will now prove that if S is irredundant then its projection

onto any subset of an index set is also irredundant.

Proposition 2.4.2

Let S g;)K:Sa be irredundant and let D be any subset of D. Then
oeD

- /A

S = Pﬁ(s) is an irredundant subset of )x\Sa.
oD

Proof

Suppose S = Pﬁ(S) is not irredundant. Then T a partition Il on S

=1

with more than one location. Let Ll,L2 be two distinct locations of
We will show that then ¥ a Jon S s.t. L1’L2 are locations of [[. Let
I on S be defined by xHy«<;>P5(x)ﬁP5(y). Il is well defined and we show
that I, <1, I <.

1 2 -
S -
P_ p_ - )
Let xﬂily, where x,yeS. Then D(x)]'[Ll D(y), since L, C D. But

HS < = P=x)1TP-(y) = xIy. Similarly HL < II. We now show that
L, = 51D )

= .. -8 S _ = - S_ A
for any L C D, if HL < I then HL < 1. Let xHLy, where x,yeS.
X = Pi(x), y = Fﬁ(y) for some x,yeS. Clearly xﬁiy holds. Since Hi <1,
X[ly. This = Pﬁ(x)ﬁpﬁ(y), i.e. xlly. So L, and L, are locations of I
(Ll,L2 both contain locations of ]I, but by the above argument this con-

tainment cannot be proper.) Thus S is not irredundant, which contra-

dicts our assumption. L

We will now show that a Cartesian product of a finite family of
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sets is irredundant iff all the sets in the family are irredundant.

Proposition 2.4.3

Let S C:>X< st o’ for i=1,...,n, where D MD, =¢ for i # j.

aeD

3

Then S = :K:Sl is an irredundant subset of )K:(:X;S ) iff S1 is an ir-
i=1 i=]1 asD

redundant subset of :X: S for i=1,...,n.
ueD

Proof

a) Since st = PD (S), clearly if S is irredundant so are all st
i
(by Proposition 2.4.2).

b) We now prove that if all st are irredundant, then so is S.
We will prove it for n = 2 case, since this can be easily gener-
alized by induction. Let SI,S2 be given, where 81,82 are irredundant,
S S S -~
= aql 2 -~ L ]| ~ D
S =8"X S84 We need to show that HD(WD L HD F1HD, for every D,D C D,

where D = D, LID,. Let D,=DND, and D, = D M D,. Similarly let

~ - -— —

D, = 7N D, and 32 =D M D,. Clearly D =D, U D,, D= 31 U 32, where
D,N"D,=¢, D, D, =¢ D,ND, = ¢ and D,ND, = ¢. Thus

- ~ = X ™ Y S 5
DD = (D, N D) UD, NDy), and Iy 5= N5 A5y 5,n5,) ~
S

H(ﬁlrWﬁ&) r1ﬂ% r15;' We will denote any point xeS by (xl,xz), where

X eS1 and x s§2 are such that x, = P (x) and x, = P (x) Let
D,

Hirw~y. This implies x H; (\Dlyl and x Hg (WD y,- Since sl,s? a

k
irredundant 4 z},zl, ..,z es? and wz,wg, ..,wg s.t.

rr]s) HSQWZ 122
ZIHD z Hi ZIHD y, and XZHD WZHD wz,..., =W, ﬁ;yz‘ Let

m = max(k,ﬁ). W.l.0.g. we assume £ < k and set w £+1 w§+2 = ,,., =

1 g2

- _1 _l__ S 1 .1 . .
Wy, = Y, XIHDIZI and XZHDZWZ = (XI’XZ)HDIL}DZ(Zl’wz)' By similar

argument it is clear that

2
(prz)np U3, (215w, )HD U3, (z2,wl).. D UD(zl,w )HD U, (y,57,)5 i.e.
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S .S S .8 _id . R ,
xﬂnlﬁnﬁqb...HDpknﬁ.y,where p; = (zl,wz). So x(HD LJﬂﬁay, which was to

be proved. ]
Proposition 2.4.3 is illustrated in Figure 2.4.2.

In general, union of pairwise nondisjoint family of irredundant
sets is not irredundant. This is shown in the example below. We will

state the conditions under which such a union is irredundant.

Example 2.4.2

Let S1 = {(0,0,0),(1,0,0),(1,1,0),(1,1,1)}. S1 is of the form
of Example 2.3.2 and so is irredundant. Let S, = {(0,1,1),(1,1,1) }.
82 is obviously irredundant. s,Ns, = {(4,1,1)} 4 ¢ S = s, Us, =
{¢0,0,0),(1,0,0),(1,1,0),(1,1,1), (0,1,1) } however is not irredundant.

Consider a partition on S with two equivalence classes,

I={(0,1,1), s-{(0,1,1)}}. Then L = {a,0,} and L, = {0,,0,} are

both locations of I. C

Proposition 2.4.4

Let F be a family of irredundant subsets of >x:Su s.t.
aep

SMNS # ¢» for any S,SeF. Then X = l ’S is irredundant if
SEF

a) for any S,SeF any seS, any SeS and any L C D, if sTLLE, then 1

a point peS M S s.t. pHLs.

Proof

We need to show that for any DI,D2 C o, H')SIODZ < ]'[)g1 U H)é

Let D,,D, be given and let x,y be arbitrary points of X s.t.

2

XHD np.Y* Then xeS,yeS for some S,SeF. If S = S the above clearly
1''2

holds, since S is irredundant. So assume S ﬁ S. Then by condition a)
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0 0 0 0

1 1 1 1

2 2 2 2
G(Sl) G(SZ)

Figure 2.4.1: Graphical Interpretation of Irredundance.

0
0 0 o 0 0 0
X ;1 11 ) - 1
G(ST) G(S™) G(S%xST)

st = £00,00,¢0,1),01,00}  s% = {(0,0),(1,0),(1,1)}

s'xs? = {(0,0,0,0),(0,0,1,0),(0,0,1,1,(0,1,0,0),(0,1,1,0),(0,1,1,1),

t,0,0,0),(1,0,1,0),(1,0,1,1)}

Figure 2.4.2: Irredundance of 81,82 Implies Irredundance of S%<Sz.




= S S
L] L] H .
4 a 2eSMS s.t XHDIFWDzz and y D1F1Dzz

says simply x,z€S and y,z€S.) Now by irredundance of S and S this im-

(1f D, N D, = ¢, then this

plies x(Hg LJHS,)z and y(T[S U HS )Jz. This clearly implies that

X(H§ U H§ )y, which was to be proved. O
1 2

Remark
The sufficient condition of Proposition 2.4.4 is not a necessary

one. This is demonstrated by the example below. e |

Example 2.4.3

Let Xl = {(31’b1)’(az’b1>’(az’bz)} and X2= {(alsbz)’(azsbz),(a3ab2)}
be subsets of {al,az,as} X {b,,b,}. X, and X, are both irredundant and
so is X = X, UX, (refer to Figure 2.4.3). X,NX, = {(az,bz)} and al-
though for (31’b1)€X1’ (al,bz)ex2 (al,bl)Hal(al,bz),there is no point z

in X, F\Xz s.t. (al,bl)Halz.

As a corollary to Proposition 2.4.4 we will now show that a union
of a family of pairwise nondisjoint Cartesian sets is always irredun-

dant.

Corollary 2.4.1

Let ¥ be a family of Cartesian subsets of :><Sa with the property
QeD

that for any C, C in ¥, C M C # .

Then X = (_)C is an irredundant subset of :x<s .
CeV¥ 0£D &

Proof
We just need to show that condition a) of Proposition 2.4.4 is
met. Let L C D and let xeC,yeC be such that foy. We need to show that

7 a point zeC N C s.t. PL(z) = PL(x) = PL(y). If L = ¢ this is clear



for c NC# ¢. IfL=0D, x = yeC(C. So assume ¢ # L € D. Since
CNC# ¢, 7 apoint weCNC. Let z be a point defined by

*x(a) for acL
z(o) = ‘ . Since C is Cartesian and x,weC,z€C. Since

w(o) for aeD-L

x(a) = y(a) for VaeL, and y,weC,26C. Thus zeCNC and z is as required.

)
In general, complements of irredundant sets are not necessarily

irredundant, as is illustrated below. Complements of some irredundant

sets however are always irredundant. The next few propositions will

demonstrate types of irredundant sets, for which this is the case.

Example 2.4.4

Let S = {al,az,aa}2 and let X =
c
{(a,a),(a;5a,),(a,,a,),(a,,a)),(a,,a,),(a,,a,)}. Then X" =5 - C=
{(al,aa),(az,al),(az,az)}. X is irredundant while its complement is

not. TFor the graphical interpretation refer to Figure 2.4.4. O

We will now prove that a complement of a Cartesian set is always

irredundant (in general not Cartesian).

Proposition 2.4.5

Let S = )X:Sa and let Y be a Cartesian subset of S.
oeD

Then S-Y is irredundant.

Proof

Since Y is Cartesian, Y :X:Ya. S-Y = :X:Sa - :xiY = L_)(:x(§gﬂ,

oeDd oeD oD 0D BeD

S, -Y for B
where §% = | B B’

8 SB , for 8 # o

]

o
This can be easily shown by induc-

tion on |D|. Let D = {a|aed & Y,=8,- IfD=D, then S =Y and
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b s D) 4 b
) 3
b
2 b, | b,
a3 as
3.2 G.l 0.2 ul 0‘2
X, X, X = X UX,

Figure 2.4.3: Irredundance of Union of Sets.

G(X) G(S-X)

Figure 2.4.4: Irredundance of X Does Not Imply Irredundance

of its Complement.
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S-Y = ¢ is vacuously irredundant. So assume D C:D Then for every

aeﬁ, :X:§Z = ¢. Hence S-Y = \~} <><S Now (ﬂ\ >K\S s

BeD 0eD-D BeD 0€eD-D BeD 0ED

S for aeD

>

where Sa = . Su # ¢, for Va. Thus S-Y is a union

S -Y for aeD-D
o o
of a family of Cartesian sets with nonempty intersection and is irre-

dundant by Corollary 2.4.1. (1

Remark
Since every singleton is a Cartesian set, its complement is always
irredundant. In other words removal of any point from a Cartesian set

does not change its irredundance. t

As was shown in Proposition 2.3.2 every minimal independent set
is irredundant. We shall now prove that its complement is also irre-

dundant.

Proposition 2.4.6

Let S be Cartesian, S = :X:Su, where |D| = n. Let X be an inde-

pendent subset of S with |X| = n+l.

Then (S-X) is irredundant.

Proof

We will use induction on n(n)2).
1) TInduction base. n = 2 case. Let D = {al,az} and X = {x!,x%,x3}.
Then ¥ xeX s.t, o, is constant on X - {x} and its value on X - {x} is

distinct from Pu (x). (This follows from the proof of Lemma 2.3.1.)
1
W.l.0.g. we assume that x = x!. Thus P_ (x?) =P (x% #P (x!). Also
Oy %y Oy
1y - 2 1y = 3
Paz(x ) Puz(x ) or Paz(x ) Paz(x ) holds. W.l.o.g. assume



= 2 = 37 = [(. 2 2 2 .3
Paé(xl) Paz(x ). X = {x!'} U {x%,x3} {(x&l,xaz)} J {xal} X {xaz,xaz}.

= {42 = {2
Thus 8, X85, - X {xa } X (sa {xu

3 2
x> huE. -&*hHxs. -
1 2 1 2 2’ O"z ' o o 2

1 1
{(x& ,xéz)} = {xél} X (S - {xéz}—{xéz}) W) (Sa

L2 1 _ g1
1 - {xal} {xul}) XS, U

1
1 2 _ 2 - 3 — - 2
{xal} X (8, {xaz}). We note that §, {xaz} {xaz} Cs, {xaz} Cs,

and also that each of the three sets in the union is irredundant. Thus

I v I[OL = I holds on S-X and S-X is irredundant.
1 2

2) (*)We assume that for n = £(>2) the proposition holds. We need to

prove it holds then for n = f+1.

W.l.o.g. let D = {(xl,az, } and X = {xl,xz,...,xz,xzﬂ,xﬁz}

.o ’O{:@’ 0€@+1

be enumerations of D and X s.t. Poz (xl) is constant for all i > 1 and
1

POL (xh # PQ (xl) for all i # 1. (We know a Y and an xY with this
1 1
property do exist.) We also note that 4 an x €X - {x!'} =

2 3 L2 1y _ h . 1
{x%,x%,...,x °} s.t. PD-O(.I(X ) = PD—Otl(X ), i.e. PD_al(x ) C

PD—OL ({x%,%3,... ,xj ye oo ,xﬁ+2}) .

1 S,X S, X woe X8, X 8y | -

1.2 L L+1y _ ., , T
xhLx%,..0,x,x" T} = {xal}X S, X ... XSEXS£+1 ' uU

L4+1
(Sl—{x& b X S2 X oo X SEXS£+1 - {xz,xs,...,xz,x‘*- } =

1

1
{x&l} ><(s2 X oaun xsﬂx sj£+1 - PD_al(x ))~ U

1 2 2 _
(Sl_{xal}—{xal} U {Xo‘l}) XS, Xuee X8y X8,
L+1
2 ( 2 3 = 1 :
{Xo"1} X PD—{ul}({x X% 00X 1) {xal} X(s, X... X8

1
T PD-oz(lX )Y

1 2
(s 1-{xu1}-{xal}) X 52 X eoe X s£>< S£+1 U

{xél} X (8, X eeu X 8y XSy, = PD_{QI}({xz,...,xﬁﬂ P) =Y, UY,UT,.
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We note that Y, is irredundant as a product of irredundant sets (by
Proposition 2.4.5 and 2.4.3). Y, is irredundant since it is Cartesian.
Finally since the set X = P}{al}({xz,...,xml}) is a minimal
independent subset of S, X ... X S£+1’ by the assumption (*),
(S2 X esa X Sﬂ+1 - §) is irredundant. Thus by Proposition 2.4.3 Y is
irredundant.
Hence Y,» Y,, Y, are all irredundant. We need to prove that so is
their union. We need to show that for any Xx,ye€S-X, any D,,D, C D s.t.

xTIDlszy, x(HD1 U HDz)y. If both x and y are in Yi’ for some i, then

x(l'LD U HD )y clearly holds, since V Yi are irredundant. Now if xEYi,
1 2

yEYj, i+#j, then 0,#D, M D,. This is so, because POL (Yi) N Pd (Yj) =0

1
for i # j. W.l.o.g. we assume that o #D,, i.e. that D, C D-0t,.

2

P
We note that PD_al(Ya) - PD—OLI(YI) c D—OLI(YZ) holds, so for any

pair i,j, i#j either PD-—OLI(Yi) - PD_al(Yj) or PD_al(Yj) C PD-ocl(Yi)'

. P =
Say, PD_al(Yi) C PD—OLI(Yj) holds. Then for XEYi['la zE:Yj s.t (x)

PD_al(z). But D, C D-a, = xl'[Dzz = x(]'H)1 U ]'[Dz)z. Now zeYj, y&:Yj and

— R i irr I .
z%lszx = ZHDlﬂDzy But Yj is irredundant and so z(HDl U Dz)y

This implies that x(T[D LJ HD )y, which was to be proved. O
1 2

We will next prove that a complement of an arbitrary subset of a
Cartesian set, all of whose coordinate projections are properly contained
in corresponding coordinate projections of a Cartesian set, is irredun-
dant. Further we will show that every superset of such a complement is

irredundant. TFirst we will prove an auxiliary lemma.
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Lemma 2.4.1
Let S = ><S , where |S | 2 2 for all aeD. Let C CS, where
o o
oeD
c = ), and C G5,

aeD

Then any set Y O S-C is irredundant.

Proof
Let X = S-C. Then by Proposition 2.4.5 X is irredundant. We will
assume then that Y ;_) S-C. We will now show that for every z€C, every
o]

. o
0€ED, d an x €X s.t. z]TD_.ax . Let a, € S - Cy Then

0]

- . o
X = (25000 ..,zn) eX, for aoc¢C0L' Obviously x HD—OLZ'

,zu_l,au,z.wl,.
We need to show that for any x,yeY any Dl,D2 C D, if xﬂ% AD Vo
1 2

Y Y
then x(r[Dl W Ty )y.
2
Now if D, = D, D1 = ¢, D2 =DorD, = ¢ the above clearly holds.

So assume ¢ # D, #D, ¢ # D, # D. Let x,y€Y be as above. Then 4 z,weX

s.t. xﬂ% z, yH_E w. If xeX take z = x, if yeX, take w = y. Since
1 1
X = §-C, if xe¥-X, then xe€C. But we showed before that then Jd a point
zeX s.t. zHD x. (Note that D, C D-a for some aeD.) The same holds for
1

ye¥Y-X. Since X is irredundant and wﬂ% z, w(ﬂ% U ﬂ% )z. Thus
1D, 1 2

x(H]z U ng)y, which we set to prove.
'

For an illustration of this proof refer to Figure 2.4.5. O

Corollary 2.4.2

Let S = ><Son’ where |Su! 2 2 for V oeD. Let Y be an arbitrary
aeD

subset of S with the property, that POL(Y) ; SOL, for all oeD. Then

every set X s.t. X D S-Y is irredundant.
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Proof

Clearly Y g;)K:P (Y) and so $S-Y O S - :Xip (Y). Every superset of
oeD o - Q.ED o

S-Y is clearly a superset of § - >K:Pa(Y) and so is irredundant by
0eD

Lemma 2.4.1. =

We will illustrate the above corollary by an example.

Example 2.4.5

1) Let S = {0,1,2}*. Then X = 5 - {1,2} X {1,2} = S-C is irredundant

and so are all supersets of X (refer to Figure 2.4.6).
2) Let's = {0,1,2}". Then X = S - {(0,1,0),(1,2,1),(0,2,0)} is irre-

dundant and so are all its supersets. 0

2.5 Conclusions

The results of sections 2.3 and 2.4 have important implications
for automatic construction.of irredundant sets. We will summarize the
more important ones among them.

Suppose that a Cartesian set S is given and we want to automati-
cally generate irredundant subsets of S.

Clearly any proper Cartesian subset C of S can be generated
easily. Then so can the set difference S-C. Both of those were proved
to be irredundant.

If C is such that COL(; Sa’ for all peD, we proved that every
superset of 5-C is irredundant. All such supersets can again be very
easily generated.

Finally, we can easily generate minimal independent subsets of S
(especially those of Example 2.3.2), which were also proved to be irre-

dundant.



Figure 2.4.5: Illustration of the Proof of Lemma 2.4.1.

1
0 0 0 0 0 0
1 1 1 1 1 1
2 2 2 2 2 2
%1 % % % % e,
G(S) G(C) G(S-C)

Figure 2.4.6: All Supersets of (XS - X C ) Are
a a
aeD aeD

Irredundant, Where C = S .
aF o
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Thus there is a subclass of all irredundant subsets of S, which

can be easily automatically generated on the computer.

The results of this chapter also often facilitate the verification
of irredundance of sets under consideration. For example once we know
that a set is a union of a family of nondisjoint Cartesian sets, we know
it is irredundant without any need for further verification. Same goes
for other types of sets, for example a projection of an irredundant set
onto any subset of its index set.

If a set is known to have s.e.p. property it is irredundant if and
only if it is Cartesian. Verifying whether a set is Cartesian is clearly
much easier than verifying its irredundance directly from the definition.

Checking if S has s.e.p. is again facilitated by Proposition 2.2.6.
We do not need to check whether every permutation of S has e.p., but just

whether all cycle type of permutations of S have e.p.

The problem, which still remains open, is that of finding a minimal
irredundant superset of a given set X. It is hoped that the closure of
a set X with respect to extension property will turn out to be useful in
generating a minimal irredundant superset of X. The solution of this
problem will have implications for the design of experimentation strate-

gies, Why this is so will become clear in later chapters of the thesis.



CHAPTER III

FUNCTIONS WITH STRUCTURED DOMAINS

3.1 Introduction

In this chapter we will discuss properties of functions from
structured domains, whose codomains are arbitrary abstract sets (not
structured). The results obtained here will be later used, when func-
tions from structured sets to structured sets will be considered. In
particular the results are going to be applied to finite autonomous
discrete time systems, where the functions involved will be the transi-
tion functions on a structured state space.

We will start by introducing the concept of a location of a func-—
tion. This concept refers to a minimal subset L of an index set, such
that HL refines the partition of kernel equivalence of a function. We
next explore the relations between locations of functional restrictions
to a sequence of nested subsets of a function domain. Based on those
results, we prove that for any finite family of functions with a common,
infinitely countable domain, there exists a finite domain-subset X with
the following property: for every function f in the family,

L(f) = L(f|X), where L(f) and L(£|X) are the families of locations of
f and f|X respectively.

We will then discuss extensions of functions from proper domain

subsets with given locations.

Finally, for finite Cartesian domains, we show how to construct

60
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proper domain subsets with special properties. Namely, given an upper
bound on a location size of the function, we construct a minimal proper
domain subset such that the restriction of the function to the subset

determines uniquely the function itself.

3.2 Properties of Function Restrictions to a Family of

Nested Domain-Subsets

The notion of a location of a function is intimately related to
that of a location of a partition. Actually it will be defined to be a
location of a partition of kernel equivalence of a function.

We recall that for a function f from S, a kernel partition of f

denoted by Hf, is a partition on S defined by: sl_s' iff f(s) = f(s'),

f

for all s and s' in S.

Definition 3.2.1 ([z1])

Let f be an arbitrary function from S, where § C;;X:Sa.
aeb

D'C D is a location of f iff D' is a location of Hf. Cl

Definition 3.2.2 ([z1])

A function f from S, where S Q;;X:Sa, is in reduced form if D is
aeDd
a location of f. [

In the sequel we will denote the family of all locations of f by
L(f). 1In case the location of f is unique we will often denote it by
L(f).

The restriction of f to a subset X of S will be denoted by le.

We will now show that for any two subsets X1 and X, of S, where

X Q;XZ, the following relation holds. For an arbitrary function f
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from S, every location of f|X2 contains at least one location of lel.
We also prove that the converse of this statement is not true. That
is, there might exist a location of (f|Xl), which is not contained in

any of the locations of (fIXZ).

Proposition 3.2.1

Let f be a function from S g;)x%su and let X1’X2 be any subsets
(0435

of S, where X, C X,. Then

a) for every LEL(f|X2) d an ieL(f,Xl) s.t. L ;}i

but
b) the statement
"for every iEL(f|X1) 4 an LeL(f]Xz) s.t. LCL "
is not generally true.
Proof
X XZ X X
2 1 2
a) Let LEL(f]Xz). Then HL < Hf,xz. We note that n- = (HL ]Xl)
Xl X2 XZ 2 s Xl Xl
and Hflxl = (Hfllexl). Hence (HL ]Xl) < (Hf]XZIXI), fe. ! < Hflxl.

But this implies that L contains a location of f

X .
b) It suffices to give a counterexample. Consider

S

{(al’b])’(al sbz):(azybl)’(azybz)} = {a1’a2} X {bl’bZ}’ where

D

{a,B}. Let X = {(al,bl),(az,bz)} and let X, = 5. Clearly

X; C X,. Let f be an arbitrary function from S with a kernel partition

Hi = {(a1’b1)’(a1’b2)’ (az’b1)’(a2’bz)}' X2 is irredundant and thus f

has a unique location. L(f|X,) = L(f) = L(Hi) = {a}.

X

X
Telx, - {(a;,b)), (a,,b,)} and L(£]X) = L(Hfllxl) = {{a}, {8}}.

Obviously R g;d, which completes the proof. 0
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Remarks
1) If ]L(lel)] = 1, that is if f|X1 has a unique location, then
this location is contained in every location of fIXZ, where X C X,.
2) For any sequence of nested irredundant subsets of S, the cor-
responding sequence of locations of function restrictions to the sub-

sets is totally ordered by set inclusion. O

We show next that for an irredundant set S and any irredundant
nonempty subset X of S the following holds. If f1 and f, are arbitrary
functions from S with equal locations, such that the kernel partition
of fllx refines the kernel partition of lex, then the equality of the
location of f2 and the location of f2]X implies the equality of the

location of f1 and the location of f1|X.

Proposition 3.2.2

Let S be irredundant and let f,»f, be arbitrary functions from S
s.t. L(fl) = L(f,). Then for an arbitrary honempty irredundant subset

X of S, if (I |X) < (I [X) and if L(f)) = L(f,|X), then L(f) = L(f]X).
1 2

Proof

nfilx ST |x = L(Hf1|X) ») L(nf2|X), i.e. L(E [X) DL(E|X).
But L(f2|X) = L(fz) = L(fl) and so L(fl|X) D L(f)). By Proposition 3.2.1
L(£)) ;}L(fllX) and hence L(f ) = L(£,|X). o

Suppose that X ¢ X, C X, C S and that L(f|X)) = L(f]X,). One
might then attempt a guess that from this point on the equality of
families of locations of f restricted to supersets of X2 will obtain,
in particular that L(lea) = L(f|X2). As we illustrate below, this

turns out to be a misleading guess.
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Example 3.2.1

Consider S = {0,1}° and x, = {(0,0,0),(1,0,0)},
X, = X, U{(0,1,0),(1,1,0)}, X, =S. Let D= {a,,a,,0,} and let f be

any function from S with a kernel partition

Hf = {(0’0)0) ,(0’1)0) ’(l’o’l), (1’0,0) ’(151’0) ’(O’O,l)’ (0’1’1) b (1’111) }'

We note that X,»X,,X, are Cartesian and so irredundant.

{(03030)) (1,030)} and II = {(0:030),(0)1)0), (1,0,0),(1,1,0)}

e, =
L(£]|X,)

£X,
{o, 1, L(f]xz) = {o,} and L(f) = {a,,a,,0,}. So

L(f|Xl) = L(lez) # L(f]X3). This illustrates the above assertion. [
The example is illustrated by Figure 3.2.1.

We next show that if a set is a union of a pairwise nondisjoint
family of Cartesian sets, then for any function from this set there
exists a decomposition of its location along the "constructing compo-
nents'. Namely, the location of the function is equal to the union of

the locations of its restrictions to all the sets of the family.

Proposition 3.2.3

Let § = :X<S(xand let ¥ be a family of Cartesian subsets of S s.t.
0eD

for any C,Ce¥, C N C # ®. Further let X = kch.
CeY
Then for any function f from X

Ln = Ulo.

CceV

Proof

Let LC = L(f|C), for all Ce¥. Since C C X, by Proposition 3.2.1

L=1L(f) D L., for all ce¥. So L ;2k—)LC holds. We need to show that
Cevy

ng L, or equivalently that for any x,yeX if XHXL)I y then

ceY
€ cep ©
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X

1}
—~
Q
-

L(nflxl) )

H
v
Q
——

L{Me|X,) 1

- !
L(Hf) {al,az,us,

*(1,1,1)

Figure 3.2.1: TIllustration of Example 3.2.1.




66

f(x) = £(y). Let x,y be such points.

Then xeC,yeC, for some C,C in ¥. Also XHLCLJLEY and since

cnNCc¢ # ¢, d a zeCNC s.t. i (See the proof of

xI1 z y.
FeUly LeUly

Corollary 2.4.1.) So xHL z and yHL~z. Since x,zeC, y,zaa and LC and
C C

La'are the locations of fIC and f|Errespectively, f(x) = f(z) and

f(y) = £(2z) hold. Thus f(x) = f(y), which was to be proved. "

Remark

The equality of Proposition 3.2.3 does not necessarily hold for
a pairwise nondisjoint family ¥ of irredundant sets, which are not
Cartesian, even if their union is irredundant. The location of every
function f from k_jx always contains k,)L(fIX): but this containment

Xe¥ Xe¥
may be proper. O

Example 3.2.2

a) Consider X = {(0,0),(1,0),(1,1)} U {(1,1),(2,1),(2,2),(0,2) } =

X, UX,. All X,,X, and X are irredundant and X, N X, # ¢.

Let Hf = {(0:0)’(190),(131), (2’1)9(2:2)3(0;2)}- Then L(Hf) = {al,az}-

fomen |
3
]

. = 1(0,0),(1,0), (1,1} = T and L(N|X,) = ¢.

s
!

Hfl 2 = {(1,1>: (2,1)9(2:2):(0’2)} and L(HIXZ) = {a1}~

L(Tp) 2 LA [X,) U L,

X)), for {al,az} ;}{al}-
(For illustration refer to Figure 3.2.2.)
b) Comsider X = {(0,0),(1,0)} U {(1,0),(1,1)} = CllJ C,.

C,NC,=1{(1,00} # ¢ and C,»C, are both Cartesian. Let f be any

function from X with a kernel partition Hf = {(0,0), (1,0),(1,1)}.
Then L(f) = {a,} and L(£|C,) = {a,}, L(£|C,)) = ¢. Clearly

L(f) = L(f'Cl)LJ L(f]Cz). (For illustration refer to Figure 3.2.3.) [
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0 0 0 0 0 0
1 1 1 1 1 1
21 2 2 2 2 2
16 %2 1o,y %2
X
Te
% Hflxl
L(f) 2 L(E[X) U L(£[X,)
Figure 3.2.2: Illustration of Example 3.2.2 a),
X = C ucC,
0 0 0
L(f) = {al}
L(f|C,) = ¢
L(f|c,) = {a,}
) ;1 1 1 1
G(C)) G(C,)

Figure 3.2.3: TIllustration of Example 3.2.2 b).
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Next we will consider an infinite set S structured over a finite
index set D and an arbitrary function from S. We will show that for

(0]
any sequence {X,} of nested subsets of S, which constitute its cover,
i=1

and any function f from S, there exists a point N in the sequence, such
that for every i > N L(£|x,) = L(f).

As a corollary we will then prove that same holds for every finite
family of functions from S.

Before we do that however, we need to establish some auxiliary
results.

We will now prove that for S and a sequence {Xi} ® as above the
i=1

following is true. Given any f from S and any sequence {Li} of loca-
tions, such that LisL(f|Xi) and {Li} is totally ordered by set inclu-
sion, the sequence {Li} becomes constant and equal to one of the loca-

tions of f.

Lemma 3.2.1

Let S Q;Ex:sa, where |D| = n. Let f be an arbitrary function
aeD

from S and let {X Lo be a sequence of subsets of S s.t. X, ., D X,
%5 i+l = %1

for all i and ‘w}Xi = S. Then if {Li} ® is a sequence of subsets of
i=]1

i=1
D, s.t. L, C L, and L el(£]X;), dNs.t. for Vi >N, L, = Ly and
LyeL().
Proof

Our proof will consist of two parts. First we will show that 4

N s.t. Li = LN for all i > N. Then we will prove that LNeL(f).

a) Since all Li are finite (this follows from finiteness of D)
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and totally ordered the sequence becomes constant after a finite number
of elements. So N as above exists.
b) We first show that LN as above contains a location of f. To

do so it suffices to show that Hi < Hf, i.e. that for any x,yeS s.t.
N

XHLNY, f(x) = £(y). Since UX; =S and X,
and y are in XNX y. Let N = max(N,NX’y). Then X,yeXs and LN€L<fIXﬁ)'
H

X—
Clearly xII N y,and thus (f]Xﬁ)(x) = (f|Xﬁ)(y), which implies that
LN

X, AN s.t. both x
=74 X,y

f(x) = f(y). Hence LN contains a location of f, say L,LN J L. We will

show that LN = L. By Proposition 3.2.1, L contains a location of f|Xﬁ,

say f,L ;}Z. Hence LN ;}z, where LN,Z are both locations of flxﬁ.
This implies that LN =1 and so LN;Q L ;}Z implies L = LN. Thus for all
i >N, Li = LN and LNEL(f), which was to be proved. O

. . e
From now on, unless mentioned otherwise, we assume that S g;)x\s

@ >
aeD

where cardinality of D is finite and equal n.
In the next lemma we prove the following result. We assume that

a sequence {Xi} ®  of nested subsets of S is given and that f is a func-
i=1

tion from S. For every set Xi in the sequence we choose a nonempty sub-
L L.
set of (fIXi), N

~ ['] ~
This way we obtain a sequence {Li} . Provided that Li were
i=1

chosen so that for every i and every location in Li+l there is some

”~N
location in Li contained in it, there exists an infinite sequence of

D) Li.

w N
i L
locatlons{Li} , where Lis i and Li+l D

i=1

The existence of such a sequence is not obvious at all and to

prove it we employ a graph theoretic result known as The Infinity
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Lemma. (For the statement and proof of generalized Infinity Lemma the

reader is referred to [BW1l].)

Lemma 3.2.2

Let {X.} ”
i

. 1
i=1
i, and let f be a function from S, where Li = L(f|Xi). For every i,

be a sequence of subsets of S s.t. Xi+ D) Xi’ for all

let ti be a nonempty subset of Li'

If {E,} ® has the property that for every i, every LEE. ,» d an
a1 i+l
-~ -— [0 o} ”~
L€Li s.t. L DL, then J an infinite sequence {Li} s.t. Li€Li and
i=1
Livi 2Ly
Proof

Since D is finite so is clearly each Ei' Let Qi be a subset of

Li X Li+1’ i=1,2,..., s.t. for any LleLi, any L2€Li+l,

(Ll’Lz)EQi <~ L, CL,. Then each Qi is finite and nonempty, since
every Lat. contains at least one‘fez..
i+l i

Also the first point of every pair in Qi+l(i=l,2,...) is the same

as the second point of some pair in Qi' All conditions of the Infinity

(o]
Lemma are satisfied and thus J an infinite sequence {Li} s.t.

i=1
(Li,Li+1)eQi, Vi.

We note that this sequence is totally ordered by set inclusion,

since by our definition of Qs (Li,Li+l)€Qi‘¢$ L; C Ly 4+ Also

~

LieLi. This is a desired sequence.

The proof is illustrated by Figure 3.2.4. O

Theorem 3.2.1

Let {X.} ® be a sequence of subsets of S s.t.

i1 Xi+l 2 Xi and
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L1,1 L1,2 I41,3 o . Ll,k1
y
Lz’l -L.zo’.z ..... > e ®te e w Lz’kz
Lz 3,2 3,3/ N L3,k3

Figure 3.2.4: Graphical Illustration of Lemma 3.2.2.
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o]
' ’Xi = §. Then for any function f from S, d N s.t. for all i > N,
=1

L(fIXi) = L(f).

Proof

1) First we show that A N s.t. for all i > N, L(f) Q;L(f|Xi). We
will denote L(lei) by Li’ Let |L(f)] = £ > 1. We will proceed by
finite induction on the number of locations of f contained in Li'

a) Induction base.

We show that at least one of the locations of f is contained in Li’ for

Vi 2N, some N. By Proposition 3.2.1 for every ZELi+l d an fELi s.t

/\

2 L. With Ei = Li Lemma 3.2.2 can be applied. Thus ¥ a sequence

i+1° By Lemma 3.2.1 then A N s.t,

T

{ } s.t. L,el, and L, C L,
i=1 i1 i=

L LN for Vi > N and L €L(f) Thus A N s.t. at least one of the

locations of f(LN) is contained in Li’ for V i > N.

b) Induction step.
We show that if A N s.t. k locations of f are locations of (lei) for
Vi?>2 ﬁ, where k < £, then d an N > ﬁ s.t. (k+l) locations of f are
locations of (lei) for all i > N.

Let {Lil,Liz,...,Lik} be locations of f s.t. LijeLi, for

j=1,...,ky, i 2 N. Then Li are locations of (f[Xi) for all i 2> N and
h|

thus it suffices to show that I N Z‘ﬁ and d L, el(f) - {L, oL, 5eee, L, }

Tkl oot Tk

s.t. Li eLi for all i > N.
k+1

Let [, =L, - {L, ,...,L. } for all i > N. We note that
1 1 11 1k.

Li # ¢, Vi2N. TFor suppose Lz = ¢ for some 1 2> N. Since

LD >k, L) = L)) - {1, 4.esl, }# 6. S0 let Tel(£). Then by
1 k
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Proposition 3.2.1 & Lel- s.t, T DL, but then L = Li-i for some
je(l,...,k). This implies T QLIj . Since L{j E:L(f), this in turn
implies T = L-i-_ y in contradictién to our assu;nption that zei(f).

We now w;nt to prove that for all i > ﬁ, if L€£i+1’ then H an

ﬁeii s.t. L2 £. We know that this holds for Ii+l and Li’ i.e. that
for every Leii+1 q an fel_i s.t. LD L. We need to show that fefi or

equivalently that I # L, for j=1,...,k. Suppose L= L, . for some
J j
3.
L. is a location of f|X,,, and so LDL, =>L=1L. . This
ij i+l =iy ij
contradicts LE’I:. . Thus fef
i+l i

Now all the conditions of Lemma 3.2.2 are satisfied and thus 4 a

sequence {L} ® s.t. L,el, and L, C L, By Lemma 3.2.1 then 4 N zﬁ
1 1 1 1 it

1°

s.t. L, =1 T for i > N and tE:L(f). Since Liel/.\i, Vi, teL(f) holds.

We showed then that 4 N s.t. L(f) C L(f[Xi), Y i?2>2N.

2) We still have to show that d an N s.t. for all i > N,
L, = LElx) = L.

Let N be s.t. L(f) SL(f[x), Vi2N. Letl, = L, - L),
Vi2N. If Jan N >N s.t. Ei = ¢ for all i 2 N, then obviously
Li = L(f) for i > N and we are done.

Suppose that such an N does not exist. Then d a sequence of

w Al
N, > L .
natural numbers {Ni}i_l s.t. Ni+l > Ni’ ‘\Ii > N and Ni # ¢. As before

we show that tN satisfy the conditions of Lemma 3.2.2 and so d a

i
i | el 1
sequence of locations {Lifi=1 s.t. Lig Li+l’ Li Ni. By Lemma 3.2.
then d N s.t. L, = f,, for all i > N and Tel(f). But Ll =L -k,
i i

Vi, which leads to a contradiction.

So N as above exists. Cl
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Corollary 3.2.1

2 X, and
i

Let {X.} * be a sequence of subsets of S s.t. X,
i 421 i+l

Xi = S. Then for any finite family F of functions from S d an N
i=

s.t. for Vi > N and any feF, L(f|Xi) = L(f).
Proof
By Theorem 3.2.1 for every feF H Nf s.t. for all i > Nf,

L(£]X,) = L(f). Simply take N = max N_. o
* feF t

As a corollary to Theorem 3.2.1 we will show that for any finite
family F of functions from an infinitely countable set S, there exists
a finite subset X of S with the property that for every f in F,

L(E) = L(E]X).

This is to say that to find a set of locations of any function in
the family we just need to know the function on a subset X as above.

It is important to mention that although the existence of such a
set is guaranteed, this set is not known a priori. For any nested se-
quence of finite sets, which cover S, from some point on every set in
the sequence has the desired property.

Suppose that S is irredundant and without loss of generality that
we consider a single function from S, cardinality of whose location is
a priori known.

Then "experimenting' we obtain the function values on a sequence
of nested subsets and after a finite number of steps we find the loca-
tion of the function.

It is the knowledge of location cardinality which tells us when

to stop. We stop when the cardinalities of the location of the restric-
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tion and of the location of the function are equal.
Without this knowledge however, we never know whether we have al-
ready reached the location or whether we still need to go further, un-

less of course one of the locations is equal to the index set D.

Corollary 3.2.2

Let ISI =){°. Then for any finite family F of functions from S d

a finite subset X of S s.t. L(f) = L(f]X) for all feF.

Proof

Let {Si} ® be an enumeration of S. Let X, = {s,} and
i=1
— . o0 - '
Xipp = Xi}J {s;41}s for Vi >1. Thenx, . 2 X, §=fxi S and V X.'s

are finite. Thus be Corollary 3.2.1 A N s.t. for Vi > N, L(f|Xi) = [(f)

for all feF. Take X = XN. R

Remark
We note that for arbitrary S there is no proper subset X of S such

that for every function f from S to some codomain R (with IR| > 2),

L(£) = L(£]X).

(Given X let f be a function with the kernel partition Hf = {i,g:i}.

Then L(f|X)

{¢} and since Hf # I, L(E) # L(£]X). O

Corollary 3.2.3

Let S be a countably infinite set, s.t. S = )X:S - >K:C s where
o o
o€eD oeD

Ca(_; SOL, for all aeD. Then for every finite family of functions from S

d a finite irredundant subset X of S of the same form as S s.t. for

every feF, L(f) = L(f|X).
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Proof
Let {si} be an enumeration of S . With [Dl = n we construct a
i=(Q
sequence {Xi} ® of subsets of xK:S s Where X {(s ,s ,...,s0 )}
= 0O,y o
i=1 aeD n
0 o - 0
X, = X, LJ{(S o 0cz,s%,.. )}, X, = X, LJ{(sa ’Sa .80 0, Sy, ),
% n
(s&l,s&z,sés,...,s&n)}, etc. That is at the i'th stage we add to Xi—l
all points in :x:S » which are in
o
oeD
P (X, )XP (X, )X...X (x s ' X oo X X, 1),
al l_l P(],Z l__l Puk — 1_ (X,ij P(X,k +l l) Pun( 1__1)
i
[3] + 1 if [i] <'% 1mod n if lmod n # 0
where j, and ki = .
1 if [_]:.] =1 n if lmod n- 0
n n n

For any number r [r] denotes the largest integer not greater than r.

) 1] . .
Clearly all Xi s are Cartesian by construction and L,)X >K:S s

aeD

Xi+l =!Xi hold for all 1.

. - - = — !
For every i, let Yi Xi >§%Ca Xi Xi(W C, where Xi s are

as constructed above and C = >X:C . XirW C are Cartesian, since both
QED

Xi and C are. Thus Yi is a set of the form of S (and of Proposi-

tion 2.4.5) and thus irredundant. Clearly Yi+l;2 Y, for all i and

kv}X - C=5-C. So by Corollary 3.2.1 4 N s.t. for Vi 2> N,
1—0

V fEF L(f) = L(f]Yi). Take X = Y. o

Example 3.2.3

3 (e¢]
Consider S = S1 X'82 X S3, where Si = {si} . Then the first
j=0

few sets in the sequence {Xi} of Cartesian subsets of S, such that

Xi+l D X, and %JXi = S are given below.
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X, - {e2hs,ed) )
b U {sheded )

(s1,55,53),
X, =X, U
(51555557)
(

sg,sg,sé)ﬁ
(si,sg,sé),
(sg,s;,s;),
ési’si’sé))
st,sg,sg)>
(sf,sé,sg),

2
(SI:S;’S;)’

2 0 1
ésl’sz’sa)J
f

0 2 0
(51:32’53)’
2

0 1
(31)82,53)’

1 .2 _0
(s158558,)s

B
il
b
C
AN

1 2 1
(81:85:5,),
2 2 0
(Slsszas3)s

2 .2 _1
S 98 S
(535550 |

3.3 Properties of Extensions of Functions Defined on

Proper Domain-Subsets

Throughout this section we deal with functions from a structured
domain S to a codomain R. It is assumed that the cardinality of R is
at least two, thus allowing nonconstant functions.

R is treated as an abstract nonstructured set.
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When a function f is known on a proper subset X of S only, several
questions arise.

For example, for every location L of f we want to be able to count
all extensions f of f to S,with the property that Lel(f). Also for every
Lel(f) and an arbitrary subset L of the index set D containing L, we
want to count all the extensions f of f to S with the property, that
there exists a location of f equal to L.

The importance of answering those questions will be clear in later
chapters, where the above results are going to be used to compute confi-
dence in a given partial model, average confidence, predictive confi-

dence and other parameters of interest.

We first establish some notation.
With f a function from a proper subset X of S to R and F the

family of all functions from S to R

Eféxé) denotes the set of all extensions of f to S, in F.
’
f(X) (L") denotes the set of all extensions f of f s.t.
(S R) f€F and Lel(f).
f(X) (CL,*) denotes the set of all extensions f of f, s.t.
(S R) f€F and 4 an LEL(E) s.t. L CuL.
£(X)
f(X) (-, ub) denotes the set of all f s.t. fEE(S R) and d an
Es,m 00 Lel(f) s.t. |L]| < ub. ’
£(X) . £(X) )
We will often write h(S,R)(L) instead of E(S,R)(L’ ) and
B ey s £(X) i
E(S,R)(::L) in place of E(S,R)(Q;L, ).

Also when the sets S and R remain constant, we will drop (S,R)

£(X)

(%)
(S,R :

subscripts, for example E ) will be shortened to E Same holds
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for superscripts, e.g., when X is constant we will often write Efs R)
- b
£(X)

instead of E(S,R)'

For an arbitrary subset X of S and an arbitrary subset L of D we
introduce a set called completion of X w.r.t. L and S, denoted by

COMPLE(X).

Definition 3.3.1

For an arbitrary X C S Q;;Xisa and an arbitrary L C D,
oeD

COMPL;(X) = {s]seS and 1 xe€X s.t. sHLx}. a

We remark that for any L C D, COMPLE(X);Q X. Also COMPLg(X) = S,

while COMPL?(X) = X. It is possible that although L # D, COMPLE(X) = X.

We will now show that for any chain of subsets of D the correspond-

ing completions of X also form a chain, but reversely ordered.

Proposition 3.3.1

Let X be a subset of S and let {L ..,Lk} be subsets of D, where

1°°
.+ L, L, Ly }
L; C L, goi=1,..0,k-1. Then {COMPL"(X), COMPL,“(X),...,COMPL*(X)
L

Sl+1(x), for all i = 1,...,k-1.

L,
form a chain, where COMPle(X);Q COMPL

Proof
The proof is trivial and follows directly from Definition 3.3.1.

L.
Fix an i€(1l,...,k-1). Then SECOMPL81+1(X) iff 1 an xeX s.t. SHL X.
i+1

L.
. _ i 0
But L, , DL, = sHLix, => s€COMPL" (X) .

Our next result is the following. Given a function f from a sub-

set X of S to R, such that LelL(f), we show that for any L D L, if there
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£(X)

exists an extension f of f to S, such that fEE(S R
bl

)(L), then the
restriction f of f to COMPLE(X) is unique and L is a location of f.

Further we give the definition of f on COMPLE(X).

Lemma 3.3.1

Let X CS and let f be a function from X to R with Lel (£). Then

£(X) £(X)

for any L s.t. L CLCD and any fs:E(S R (s,R
’ b

)(L) (provided E )(L) + ¢)

a) f = flCOMPLé(X) is unique
b) £ 1is defined by

f(s) = f(x), for all sECOMPLg(X), where x€X is such that sHLx.

¢) Lel(f)
hold.
Proof
Let feEfé%;)(L) be given.
1) We first show the uniqueness of the restriction f of f to
L
CM@L(@ =
f(X) L s
= < s . -
(S R)(L) = HL H Let eCOMPLS(X) Then by Defini

tion 3.3.1 d an xeX s.t. sHLx. This implies that f(s) = £(x). Thus
%(s) = f(x). We need to show f is well defined. Let y # x be a point
in COMPLE(X) s.t. slly. Then xILy holds and so xll-y, since L DL.
But Lel(f) implies then that f(x) = £(y).

Hence a) and b) are proved.

2) We now prove part c).

To show that ieL(f) it suffices to show that H% < Hf' For this

inequality implies that L contains some location of f, say T. But then
by Proposition 3.2.1 d an L'el(F) s.t. L L', So i;Q‘f;Q L' holds.

Since LeL(F) and L'€L(f) however, L = L' and thus L = L, which means
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that if HL < HA, then ieL(f). So let s,s'cy = COMPLE(X) be such that
sHis'. q X,x'eX s.t. SHLx and s'HLx'. By part 1) of the proof

E(s) = f(x) and %(s') = f(x'). Since L oL, SHix and s'Hix' hold.
Also sﬂis' = xﬂix'. But Lel(f) = ¥(x) = f(x'). Thus %(s) = %(s')

and HL < HA which was to be proved.

Corollary 3.3.1

Let X C S and let f:X > R, where L is a location of £, i.e.

Lel(E). Then for any L, s.t. L CLCD

£ (COMPL]é‘ (X))

f(X) )(Q;L) , where

(S R)(CL)

(S,R

£ is the unique extension of f to COMPLE(X) of part b) of Lemma 3.3.1.

Proof

Since f is an extension of f, clearly E
where Y = COMPLg(X).

We need to show that EE(X)(Q;L)Q; E%(Y)(Q;L). Let fEE%(X)(g;L).

Then AT,LCT CL s.t. ‘fEL(f) and ieL(f). But by Lemma 3.3.1 then

flCOMPL;(X) = %: where %Zs) = f(x), for seCOMPLg(X), where xeX is such

that sllox. Since T CL, COMPLIS‘(X) C COMPLIS‘(X) holds.

We show that ?}COMPLE(X) = f, where T is as above.

For any seCOMTLg(X), g(s) = f(y), where ye€X is such that SHLy

But sHLy = sth = %ks) = f(y)= f(s) for V seCOMPLg(X). Clearly

f|COMPLé‘(X) = 'E’lcoriPL]S‘(x) = f and so feEf(Y)((_:_L), which was to be

proved.

Given a function f from a subset X of S s.t. Lel(f) and any
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L DL, we show how to construct all extensions f of f to S, such that

at least one of the locations of f is contained in L.

Theorem 3.3.1

Let X C S and let f:X » R, where L is one of the locations of f.
Then for any L, s.t. L CLChb,

£(X)
(S,R)

£(X)

E (S,R)’

(CL) = {f|feE f|COMPL;‘(X) = f and 1. > I},

f
where f is the unique extension of f to COMPLg(X) of Lemma 3.3.1 and Il

is a partition on S defined by

[s] Hg for ss:COMPLg(X)

@]H =
for sES—COMPLg(X)

@]HL
Proof

We note that by Corollary 3.3.1 we need to "count" only

%(COMPLIé‘ (X))

E (CL). Thus clearly fEEf(X)

- . L _ A
(S,R)(; L) = f|C0MPLS(X) £.
We show next that Il as above is well defined. It suffices to

show that S—COMPLL(X) = K“} [z]

g g- Equivalently we just need
26S-COMPLE (X) IS

to show that for every zeS—COMPLg(X), [z]ns(; S—COMPLE(X) or that for
L

any seS s.t. zﬂis,){xex s.t. sHix. This is obvious for given an s€S
s.t. sﬂiz, if 4 an xeX s.t. XHE s, then xﬂiz, ¥ to ZES—COMPLg(X).
So Il is well defined. Also since ieL(?), it is easy to show that

S
< II.
HL <1 |
a) We show that if f is such that f!COMPLé(X) = f and Hf > 1,
then feEf(Y>(g;L), where Y = COMPLg(X). Clearly f is an extension of

£ so we have to show that A 1L CL s.t. ZeL(f). To do so we just need
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to show that Hi < Hf. But Hi <J < Hf =) ni Sva-

f(Y)(g;L) then f|Y = f and HfE’H. That

b) We now show that if feE
fIY = % is obvious.
Now d an t'g;L s.t. Lel(f). This implies that H%rs Hf, implies that
Hi < Hf. Let x%,yES be such that xlly. Then by definition of Il either
X,y€Y or x,ye€S-Y. If x,y€Y, then xlly ;? %(x) = %(y) = f(x) = f(y). If
X,ye5-Y, Xy = xﬂiy = foy, since we showed that Hi < Hf. This com-

pletes the proof. H
Theorem 3.3.1 will be later illustrated by an example.

Given f as in Theorem 3.3.1 and an arbitrary L D L we will now

show how to find the set of all extensions f of f, such that Lel(f).

Proposition 3.3.2

Let X be a subset of S and let f:X + R, where LeL(¥). Then for

an arbitrary L s.t. LC L C o,

E(X) (X £(X)
Bis gy (D) = Brgay (L) - kLJE(S 2 ®.

(;L
Proof

£(X)

This is obvious, since from the definition of E(S R)
b

(CL) it

]

follows that Ef(g;L) k,)E MU E (L) Also for any
TCL
o

0

©
N
-

TCL, EE(L) N E-(f)

Proposition 3.3.3

Let X C S and let f:X > R, where Lel(¥). Then

£(X) £(X)

a) Ees,r (S,R

y(CL) = E y (L)

and
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£(1) (L), where Y = COMPLE(X) and f is the exten~

(5,R)

£(X)

b) E(S,R

)(L) = E

sion of f to COMPL;(X) defined by Lemma 3.3.1.

Proof
a) Let fEE-f(g L). Then d an 'fg L s.t. Lel(f). Also d an
’T:.EL(E') S.t. f_)_i This implies that L D L. But since
both L and L are locations of f, L = L and soT =1. So
feETf(I-,) and Ef(g L) C E-f-(f:).
Clearly Ef(f) g;EE(g;E) and thus a) has been proved.

b) Part b) follows directly from Lemma 3.3.1. O

We will now illustrate by an example how to construct extensions

with desired locations.

Example 3.3.1

Consider S = {0,1}° and X = {(0,0,0),(1,0,0),(1,1,0),(1,1,1)}.
Then S and X are irredundant (X by Proposition 2.3.2) and S is actually
Cartesian,

Let f be a function from X to R = {0,1} defined in Figure 3.3.1.
Then f has the unique location {a,}.

We are seeking all extensions of f to S with locations contained
in {al,az}. Since L(f) = {al} we are thus seeking all extensions of f
to S with locations {a,;} and {a,,a,}.

To construct those we first find the COMPLéul’az}(X) and then use
Corollary 3.3.1.

{0,,0,}

COMPLS

(X) =XU {(Ososl)s (1’0’1)}-

N

f as of Lemma 3.3.1 is defined by f£|X = T and %((0,0,l)) = £((0,0,0)) =1,

while £((1,0,1)) = £((1,0,0)) = 0.
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X f(x) « F(x)

(0,0,0) 1 (0,0,0) 1
X
(1,0,0) 0 (1,0,0) 0
(1,1,0) 0 log,ap) (1,1,0) 0
COMPL,  (X)
(1,1,1) 0 (1,1,1) 0
L(E) = o)} (0,0,1) 1
(1,0,1) 0
L(f) = log}, f]x=F

X fl(x) X fz(x)
(0,0,0) 1 (0,0,0) 1
(1,0,0) 0 (1,0,0) 0
(1,1,0) 0 (1,1,0) 0
(1,1,1) 0 S S (1,1,1) 0
(0,0,1) 1 (0,0,1) 1
(1,0,1) 0 (1,0,1) 0
©.1,0) 0 (0,1,0) | 1
(0,1,1) 0 (0,1,1) 1

{d ,ao} {oy sant

£, |CoMPL S - ", | COMPL o -k

L(f)) = {al,az} L(fz) = {al}

Figure 3.3.1:

Tables of Functions of Example 3.3.1.
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{ay, 0,1}
We note that S-—COMPLS 12 (x) = {(0,1,0),(0,1,1) }, that is,
there is one HS block in (S—COMPL{QI’QZ}(X)).

We will now use Theorem 3.3.1. 1[I of this theorem is defined by

1= 1{(0,0,0),(0,0,1), (1,0,0),(1,1,0),(1,1,1),(1,0,1), (0,1,0),(0,1,1)}

All the extensions f of f, whose locations are contained in {ul,az} are

{oy,0,}

S xX) = % and T <10

those, for which flCOMPL There are two such

£
extensions. One of them, f,, assigns value 0 to (0,1,0) and (0,1,1),
and f, assigns value 1 to (0,1,0) and (0,1,1). f, and £, are as in

Figure 3.3.1. We easily check that L(f) = {o),a,} and L(f,) = {o,}. O

We will show in the next corollary that for an arbitrary subset
X of S, if f is a function from X to R such that Lel(f), there always

exists an extension f of f to S, such that Lel(f).

Corollary 3.3.2

Let X C S and let f:X + R. Then for any LeL(f) d an f such that

£F(X)

fEE(S,R)

(L. 1f lPi(S)| and |R| are finite, then

20 |Pi<s>!—|Pi<x>l'

s x

)(L)l = IRl

Proof

By Proposition 3.3.3, EE(X)(i) = Ef(Y)(i) = E%(Y)(g;f), where
Y = COMPLE(X) and f is as in Proposition 3.3.3. But then by The-
orem 3.3.1

(%) @@ - g)pef®

- <
and HL__ Hf}.
But since |Rl # 0, clearly f as above exists. For example assign any

value of R to all points of S-COMPLE(X). (If the latter is empty

S = COMPLE(X) and there is a unique extension of f to S s.t. Lel(£)).
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b) From equation (%) above it clearly follows that we get all the
desired extensions by assigning all possible sets of values of R to
Hi blocks of (S—COMPLE(X)).

There are (]Pi(s)l - |Pi(x) b I blocks of S in (s—COMPLg(x)).

|P=(8) |- | P= (0 | _ -
So there are |R] extensions f of f s.t. Lel(f), which

was to be proved.

As a corollary to Corollary 3.3.2 we will now show that if f is a
function from X to R and feL(f), there exists a unique extension of £

to any subset of COMPLE(X) such that L is a location of this extension.

Corollary 3.3.3

Let X C S and let f:X ~ R. Then for any Lel(f) and any subset Z
of COMPLE(X) s.t. Z )X, 4 a unique extension E of f to Z s.t. EEL(f).

If L = L(f), then L = L(f) holds.

Proof

of f to Z s.t. feL(E).

>

1) We first show that d an extension

By Corollary 3.3.2 ¥ an f, an extension of f to S s.t. Lel(f). Let

A

f=1

ol |

where EeL(f). Thus L ;}f

Z. Then L DT, where LeL(f) and T >
and so L = f. This implies L = T. Thus feL(%) and the desired exten-
sion exists.

2) We next show the uniqueness of the extension. Suppose the
extension is not unique. Let fl and fz be two distinct extensions of
f to Z, s.t. ieL(%l) and feL(%z). Then by Corollary 3.3.2 applied to

fl(Z)(I—.) and fngfz(Z)(i). Since

Z and S, d £, andfzst. f ek
XCz CCOMPL (X), and £, = (£,]2) # £, = (£,]2) holds, clearly
L

f |COMPL X) 4 f2|C0MPL (X). This however contradicts part a) of
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Lemma 3.3.1. Thus the uniqueness of the above extension follows.
If L is the unique location of f, then for every IEL(E),II;Q L.

But Lel(F) = I = L(). ¥

Remark

1) For £:X ~ R and Lel(¥), if L 2L is such that COMPLIS"(X) = s,
then EE(L) = ¢. This follows directly from Lemma 3.3.1.

2) It can be shown that with f and L as above, even if
S ;QCOMPLE(X) and both X and S are irredundant, given L'; L, the set
Ef(L) may be empty.

3) If S is Cartesian however and all the conditions of 2) are

met, ET(L) 4 ¢. 0

It is easy to show that given an irredundant subset X of a Carte-
sian S and any subset L of D, the COMPL?(X) is irredundant. This need
not be the case when S is irredundant but not Cartesian.

In either case though, if f:X ~ R and L = L(E), every extension

fof T to COMPLE(X) such that Lel(f) has the unique location L. (This

was proved in Corollary 3.3.3.)

3.4 Construction of Domain-Subsets with Special Properties

Throughout this section we will assume that S is Cartesian and
that cardinality of every Sa is at least two.

We will start by constructing, for every subset L of the index set
D, an irredundant subset X of S with the following property: for every
function f from S, whose location is contained in L, L(f) = L(fIX).
Actually we will construct a parametrized family of such subsets.

All sets of the family will be alike--have same cardinality and
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essential structure. They will be shown to be minimal in cardinality
among all the subsets with the described property.

Using as constructing elements the sets described above, for every
integer k, (0<k < hﬂ), we will construct a parametrized family of irre-
dundant subsets of S, each of which has the following property: for
every function f from S, such that [L(f)l < k, the locations of f and
its restriction to the subset are the same.

In the sequel we will use the following notation.

For any subset X of S

F denotes the set of all functions from X to R
(X,R)
F(X R)(L") denotes tEe set of all functions f in }(X,R)’ such
’ that Lel(f)
F(X R)(Q;L") ienofes the set of all fEF(X,R) such that J an
i Lel(f) such that LC L.
£ q
F(x R)(',ub) éenofes the ?Et of all feF(X,R) such that an
’ Lel(F) with L] < wb.
F(X,R)(L’Ub) denotes the set F(X’R)(L,') FIF(X’R)(',ub).

We will often shorten our notation in an analogous way to the one

described in section 3.

Definition 3.4.1

Let S = >X:Sa and let L be an arbitrary subset of D. Then for
oeDb

any yeS, X{ is defined by

Xz = {s]ses and PD_L(s) = PDeL(y)}' C

It follows directly from the definition of X{ that for any two

. ~ _ = Y y
points y and y of S, such that PD_L(y) PD~L(y)’ XL and XL are equal.
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As a matter of fact X{ and X{ are equal if and only if P

(y) = (y).

D-L PD—L
We also note that Pi(S) = Pi(x{) for arbitrary L C L and any v in
S. This obviously implies that for every L C L, the COMPLg(X{) is equal
to S.
We can think about X{ as defined above as a subset of S, for which
all o coordinates of L are open, that is vary over entire Sa’ and all
coordinates of (D-L) are fixed and equal to those of y.

We will sometimes denote X{ schematically using [ to denote an

open coordinate. Thus for example if D = {1,2,3,4}, then OO y3y,

denotes X, , where v = (y1,¥2,¥3,¥4).
{1,2}

We note that Xé = {y} and X% = 8,

We will summarize the important properties of X{ sets in the the-
orem to follow. First we will establish an auxiliary result to be used

in its proof.

Lemma 3.4.1

Let S = :K:Sa, where IS@iEZZ for all o0eD, and let L be an arbi-
QED

trary subset of D. 1If ZL # ¢ is an arbitrary subset of S with the

property that for every fEF(S R)(L)’ L(f) = L(fIZL), then ZL contains

at least one point from every equivalence class of Hi.

Proof

| > 1 works. (Since then HS has

¢

1 equivalence class.) So assume L # ¢. Suppose d an equivalence class

If L = ¢, then any ZL s.t. 'ZL

S
of HL’ [x] s.t. ZL N [x] g = ¢. Let a,beR, where a # b and let f be

S
T I,
a function defined by f([x] S) = a and f(S-[x] s) = b.

1 m
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Then M, = {[x] ., S-[x] .}. L(f) = L, since Mo < and for every
f S S L f
i il
L L
S . .
oeL, nL—a i Hf. (This follows, since for every ocL 4 xaes—[x]ns s.t.
L

S
xaHL—ax but dei Xx.)

We note that ZLf; S - [x] S and so L(fIZL) = ¢ # L. Thus d §,
Il
L

fEF(S R)(L) s.t. L(f) # L(f]ZL) and this contradicts our assumption.
b
So indeed ZL contains at least one point from every equivalence class

of Hi. a

Corollary 3.4.1

Let S = >K<Su’ where lSal 2 2, VoeD. Then the only subset Zy of

oeD
S with the property, that for every feF(S R)(D), L(f) = L(fIZD) is S
itself.
Proof

We simply notice that [x] g = {x}, V xeS. We then apply the above
Ip
lemma. [

We will now illustrate the construction of X{ sets by an example.

Example 3.4.1

Consider S = {0,1}°, where D = {a,,0,,0,}.

Then
xfpo’o’o) = 1(0,0,0)}
$090 | 10,0,0),(1,0,0)}
{al}
{000 10,0,0),(0,1,0), (1,0,0), (1,1,0)}
{og,0,1}
£(0,0,0) (0,0,0) _ o

{alya2’a3} B XD
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(0,0,0) _

We note that X{a } X{Ot }
1 1

Also X{

We will show later that IXEI = lx{!, for any y,yeS. For the illustra-

(1,1,1)

_ (1,1,1)| _ 1,(0,0,0)
a7 HOLD, LD and [xp T = fxp el

tion refer to Figure 3.4.1.

Theorem 3.4.1

Let S = ><SOL, where |Su’ 2 2. Then the following hold.

a)

b)

c)

d)

£)

g)

Proof
a)

where X
o

b)

QEeD

for every yeS, every LCD, XZ is irredundant.

]
[

1Tl e, ;
,XLI anga, where m, ISOLI , for VL # ¢ and |X¢|
| = %]

- , and if
1

ey

for any y,yeS and any L C D, |

e

for any yeS, any L, cL,Co,

L, g L,, then X{lg XZZ.

for any yeS, any L C D, if feF

)

(s,r)(C L) then L(E) = L(£]X)

for any yeS, any L C D and arbitrary ﬁ cL, if fcF (f)

(X, R)

then 4 a unique extension f of f to S, s.t. £==L(f).
for any L C D, if ZL is any subset of S s.t. for

VEEF o oy (CL), L(E) = L(£]2), then |z | > |X]

(S,R)
for every yeS.

XZ is actually Cartesian, for Xy = ;X(X R
L gy @

S if ael

{ya} if oeD-L

This follows from part a) of the proof. Since for

L = ¢, X{ = {y}, IXéI = 1. TFor L # ¢, since X{ = )K:Xa, where Xa's

oeD

0
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Figure 3.4.1: X{ Subsets of S.
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are as above, lX{l = EIXOJ = WIXOJ = H|8a|.
O OEL €

¢) This follows directly from part b), since IX{| is independent
of y and depends only on L.
y .
d) Let sEXLl. Then sHD_Lly. But since L, C L,, D~L,; D D-L,.
y -
Hence SHD—Lzy holds and thus sEXL2 by Definition 3.4.1.
For L, 2;11, let s be the point of S defined by

ya for ozeD—L2

s = , where y = (ya) and z = (Zu)'

z for oeL,
o

z is any point ofSs.t. z # y for all o0eD. Then clearly SEX{ , but
a’ ‘o 2

Sﬂfle, since PD_LI(S) # PD_Ll(y) (za # y, on (L,~L ).

e) Let L,y be arbitrary but given and let faF(S ng;L). Then
b
C| L CL s.t. L(f) = L. We denote f = f|X{. Let L = L(E). Then clearly
L DL. Also feE (). As we noted before COMPLS(X) = S, We use

Lemma 3.3.1, all of whose conditions are met. By this lemma LEL(f).
But S is irredundant, which implies T =1. Thus L(f) = L(flxi), which
was to be shown.

f) Again we note that for every L cuL, COMPLE(X{) = S and we apply
Corollary 3.3.3. (Remember that both X{ and S are irredundant.)

g) We notice that X{ has exactly one point from every equivalence

class of Hi. By Lemma 3.4.1 any ZL as of part g) has to contain at

least one point from every equivalence class of Hi. So clearly

n
2| 2 %]

Although we do not intend to do it here, it can be shown that every

set ZL satisfying g) of Theorem 3.4.1, whose cardinality is minimal, is

an X{ set, for some yeS.
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Using X{ sets as defined above we will construct Yi sets, where k
is an integer ranging from O through n.

Given an index set D with cardinality n, we will denote by Lk the

set of all subsets of D with cardinality k. Of course |Lk| = (E) = n..

Definition 3.4.2

Let S = ;X:Su’ where ID[ = n, and let k be an arbitrary integer
0€D

s.t. 0 £k <n. Then for any yeS

Yy=kgy'
k LeXL a

k

It follows from the above definition that Yi is the set of all

points in S, which differ from y on at most k coordinates.

y

X there is at least (n-k) coordinates

In other words for every seY

0 of D such that Sq, = Yoo

If d is a Hamming distance on S (i.e. d(x,y)

[{alP ) # P (1,

then YK = {s|seS and d(s,y) < k}.

Unlike for X{ sets, Y{ = Yi if and only if y = y, except when
k = n.

We also note that for any L, such that |L| < k, Pr(s) = Pi(Yi) and
thus COMPLE(YK) = S§. This follows directly from the fact that for any

such L there is a subset L of D such that L C L and |L| = k. But then

X{ Q;Yi holds, and as was noted before COMPLE(X{) = S,
As is easy to see Y = X = {y} and Y’ = X% = S. Also for every
0 ¢ n
k<n, Y is a proper subset of S.

k

We are now ready to summarize the most important properties of

y
Yk sets.
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Theorem 3.4.2

Let S = S_, where |S | > 2. Then the following hold.
o o,

0eD .
a) for every k, 0 £ k £ n, every ye$ Yi is irredundant.
b) |Y{| = 1 for all yeS, and for n, = ISGI
W1+ Y T s ves
< g a
i=1 LeLi o€l
In case m, = m for V oeb
k
| = n 51
9] Z(i)(m 1
i=0
v <k < Y| = y
c) for any y,yeS and any 1 < k < n, lYk| IYkI

- vy . Further if

d) for any yeS and any k, < k,, YZ C Y.
1 2

y y
k, ¢ k, then Ykl - Ykz'

e) for any L CD s.t. |L| <k,
L(f) = L(ley) holds for every fcF (L) (for Vy, V k).
k (S,R)
f) for any k, any y if f:Y{ + R and IL(f)I <k, then 4 a
unique extension f of f to S such that L(f) = L(f).

Proof
a) Yi = (\/}X{ X{ are Cartesian and clearly {y}efﬂW:X{.

Thus by Corollary 2.4.1 Yi is irredundant.

k
b) YK - k.)zy’ where Zi = {s|seS and d(s,y) = i}. Assume k > 1,
i=0

k k
All Zi sets are disjoint and so ]Yi] = ;Z%[zzl =1+ g§;|zz

. . . s n .
We can choose subsets of D with cardinality i in (i) ways. Li is the

class of all such subsets. Clearly Z{ = kvg W{, where W{ is the subset
Lel,
i

of Z{, whose points are different from y on all coordinates of L and on
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those only. lwyl I I (m -1). Again for L# T W (1 wZ % and so
k

L
2] = 2 [T . mes [v] -1+ Z 2 UL("‘“"D .
Le Q€eL Le i

For m = ma, V a, this becomes
) k-

VAT n), i _[n 0
] =1+ g;;(i>(m 1) (O)(nrl) +

c) follows directly from part b)

™M=

k

/ . .

n 1 n 1

. J(m-1)" = ()( -1)
1\1> : i=o\t B

1

d) Yil = {s|d(s,y) < k!, YKZ = {s]d(s,y) < k,}.

y y
So clearly if k1 <k, Ykl C Ykz holds.

For kl £ k,, YIZ C YK » since the set of points with distance k,

from y is nonempty.
e) Let L be given, [f{ <k. Then 4 Ls.t. LCLCD, lLl =

and X{ C Yi. Let feF (L) be given. Let T-= L(f|Y§). By part e) of

(S,R)
Theorem 3.4.1, L(f]X{) = L(f). But then since S QYK 2 X{,
L(f) D T D L(f) holds, which implies T = L(f). This completes the
proof.

f) Suppose there are two extensions of ¥, £, and £, s.t. £, # f,
and L(f) = L(f)) = L(f,) = L, where |I| <k (f:Yi > R). Clearly
L)

XLZ gYi and by part e) of Theorem 3.4.1, L(fIIX-L}-’) = L(fl) = L(le% = L.

Since both f, and f, are extensions of f, f |XZ = f |XZ = f.
17, 2L
But then L(f) = L and f,,£f, are two different extensions of f to

S with location L. This however contradicts part f) of Theorem 3.4.1.0

Corollary 3.4.2

Let S = XS , where IS | m, Vo. Then the following hold.

oeD
2 <k

i

a) for any L C D with |L|

¢, = [PL(S)] = [P = 0
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b) for any £ > k and any L (_ D with |L| = £
[ _1
- B y - L . £-i
Cp lPL(S)l IPL(Yk), ;Z: (i)(m 1)

Proof
a) This is clear from the definition of Y{.
b) the proof of this part is analogous to the proof of part b)

of Theorem 3.4.2, except that projections are taken. G

As we shall see later cz—values will be required for confidence

computations. It is then important that they be easily computable.

Remark
Every superset of Yz—l is irredundant. We simply note that

S - Yz-l = {z|d(z,y)=n} = ;Xg(sa—{ya}) and use Corollary 2.4.2 0
oE

Suppose that given an integer k, 0 < k < n and some enumeration
of Lk we are seeking a family {Yi} of irredundant subsets of S with
the following property. For every i < k and any subset L of Li (where
L,5Ly,... is the enumeration of Lk), if fEF(S,R)(L)’ then L(f|Yj) = L(f)

holds for all j 2 i, and |Y Yil is minimal. In other words at i'th

i+l
stage we add a minimal number of points to Yi—l to achieve the desired

property. X{l, X{ U X{ se ooy k_) X{ turns out to be such a family
1

2 i
LieLk

(for an arbitrary yeS).

Proposition 3.4.1

Let S = >K:Sa, where |D| = n and let k be any integer, 0 < k < n.
oeD

n n
Let {Li} k be an enumeration of Lk and let {Yi} k be a family of sub-
i=1 i=1
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- - y )
sets of S, where Y, XL and Yi+l YilJ XL, , for all i,
1 i+l
1 <4< n - 1.
Then the following hold.
n
a) {Yi} k has the property, that given any i, 1 < i s,nk,and any
i=1

L CL,, for every st(s R)(i)’ L(f) = L(f]Yj) holds for all j > i.
. < i < _ . .
b) for every i, 1 < i < n, 1, if Zi+l is a subset of S such that
Ziy 2Y,; and for every L C L;,q» any feF(S,R) (L), L(f) = L(f[zi+l)
holds, then Izi+1 -Y

2 |y Y

i, i+l i"
Proof

a) The fact that the family {Yi} satisfies property a) follows
directly from part e) of Theorem 3.4.1.

b) It follows from Lemma 3.4.1 that zi+l has to contain at least

one point from every equivalence class of Hi . To prove the minimal-
i+l
ity of (Yi+1 - Yi) then, it suffices to show that for every zeYi+l - Yi’
[2] g FlYi = ¢. Since X{ contains exactly one point from every
HL i+l
i+l

equivalence class of HE » this will show that every point of
i+1

(Yi+1 - Yi) is the only point from its Hi equivalence class in Yi+

’
i+l 1

and thus at least as many as IY - Yil points have to be added to Yi

i+l
to achieve the desired property.

i

y y
Let zeY -Y, = -
P41 .
1 1 XL:H‘]_ =1 "2
y _ = -
ZEXL. = 2, = Y,y for all oeD Li+l'
i+l
2f, = zﬂqz for V&= 1,...,i. From Definition 3.4.1 then it

follows that for every fe(l,...,i) T an g eD-Lz s.t. z, #y

But
L

a .

£z £
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since z2, = Yy for all aED—Li+l, this implies that for every £ d an

GZE(D_LZ) N Li+l s.t. z_ # Yo * (It can be checked easily that since

o
L
LE # Li+l for all &, (D~L£) N Li+l is nonempty.)
Suppose d an s€Yi s.t. PL (s) = PL (2z), i.e. s€[z] 5
i+l i+l HL

i+l

P = A y
Then a(z) Pu(s) for all ueLi+ If s€Yi then clearly SEXLz’ for some

1°

£. This implies s, = ¥, for all aeD-L,. But s = z, for all ceL,

o 1

and by the above argument d an 0,e(D-L,) N L, . s.t. s =12z_ #y_ .
L £ i+l ap o, a,

So indeed for every zeYi+l - Yi,[z] S N Yi = ¢, which completes the

i+l O
proof.

It follows directly from Proposition 3.2.3, that for any function
1 y
f from S to R, L(£]Y,) = %;JlL(flez).

We remark that the {Yi} family of Proposition 3.4.1 has the fol-
lowing property: for any i and any L Q;Li, given any j 2 i and any

function feF(Y R)(]:), there is a unique extension f of f to S with
*9

location L.

We also note that given k, 0 < k < n constructing {Yi} family of

subsets of S as of Proposition 3.4.1 is a way of building up Y{ set,
since Y_ = Y.
o, k

Suppose that although the function f on S is not known, an upper
bound on the size of its location is given and equal to k, where
0 <k <n.

Then if fIYi is known we find L(f) and f itself without needing
any more information. That is guaranteed by parts e) and f) of

Theorem 3.4.2. This is also the manner in which Yi sets will be used
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for model building.

Another way to proceed would be to experiment on Y,, then Y,, etc.,
eventually finding the desired function and its location. Although in
particular cases it might be possible to quit at some earlier stage,

before Yn = YK is reached, this is not the case in general.
k

Essentially, this results from the fact that for L,UL, DL,, and
f any function from S s.t. L(f) Q;La, although

LOER ) U LCeln ) = LCelg UK ) CL(e) = LeElx] ), the above con-

3

tainment may be proper. Thus it is not sufficient to choose enough

elements of Lk to cover D, we might need them all.

We will now illustrate the construction of Yi sets by an example.

Example 3.4.2

Consider S = {0,1}° and y = (0,0,0). Then

vy = % = {(0,0,0)}

v =% ux ux = {(0,0,0),(1,0,0)} U {(0,0,0),(0,1,0)} U
G, @,7 0Oy

{(0,0,0),(0,0,1)} = {(0,0,0),(1,0,0),(0,1,0), (0,0,1) }

Vo9 y y -

Y = X{ayaszX{apa3}“JX{uz,a3} {(0,0,0), (0,1,0),(1,0,0), (1,1,0) } U
{(0,0,09),(0,0,1),(1,0,0),(1,0,1) } U {(0,0,0), (0,0,1), (0,1,0),(0,1,1)} =
{(0’0’0)’(09190)(1’030)’(1’1’0),(0’031)’(1’0’1)’(0’1!1)}

vy =5

Y C Y G Y)C Y] holds. o

We would like to remark now on a relative size of Yi sets.

It follows from part b) of Theorem 3.4.2 that if all ma's are
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n—1
y - n 1
same and equal to m, IYn—lI = ;Z%(i)(m—l) =

I

E (n)(m—l)i - (n)(m—l)n =m - (m=1)".
hed \ § n
i=0 y ]
IY n n
For large m the relative size of Y’ 1 l _m - (el
b 5

n
1- (l—-i) becomes very small. Some example relative sizes of Yz_l

are given in the table of Figure 3.4.2.

In the next proposition we will show that every superset of YZ—l
is irredundant. This result will be used in later chapters.
Proposition 3.4.2

Let S = >§£Sa, where IDI = n. Then for any yeS and any X ;QYZ_l,

o]

X is irredundant.

Proof

We recall that YZ- = {s|seS and d(s,y) € n - 1}. Since lDl = n,

1

for every seS, d(s,y) < n holds. Also since ISal 22,

n} = j%:(saf{ya}) = :X(ca = C, where
0eD

OED

-y =
S {s|ses and d(s,y)

-5 - R .
Cy = Sq {ya}, V 0eD. Thus S ¥)_; = C is Cartesian, Cy & S, and

Yz-l is irredundant. This completes

the proof. ]

by Lemma 2.4.1 every X D S-C

Remark
In case S is not Cartesian but is a set difference of two Car-

tesian sets, S = ><:Sa - :X:Cu, where [Sa-Cul > 2, for all ¢ the fol-
0eD 0eDb
lowing observations are in order.

1) For every ye (Sa~Ca) the following hold.
aeD
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S= XS, |S | = m, for all aeD. ID| =n =75
aeD &

m 3 5 6 7 8
Y, | 211 2101 4651 9031 15961

|s] 243 3125 7776 16807 32768
|

5| .868 .672 .598 .537 .487

5

Figure 3.4.2: Relative Size of Yi_l as a Function of m.
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a)&rwayLQmsmhmm|H<n,%gS
y Y oY SRNSURIN
b) for every k < n Yk gﬁS (where XL, Yk are subsets of gzgsu as
defined before).
2) Theorems 3.4.1, 3.4.2 and Proposition 3.4.1 essentially hold

for S as above, except for obvious minor changes. D



CHAPTER 1V

LOCATION INFERENCE

4.1 Introduction

In this chapter we will deal with the problem of location infer-
ence for functions from a structured domain S to a codomain R. It will
be assumed throughout, that all sets involved are finite. Thus S, the
index set D, which S is structured over, and R will be finite sets
(Ir] > 2).

It is often the case, that the function involved is known on some
proper subset of its domain only. This happens for instance, when the
functional values are obtained through experimentation and so practical
limitations on the number of experiments conducted are present.

Given a function f from a subset X of S to R, the "actual" func-
tion £ from S to R (not known) is an extension of f to S.

Relative to a probability space defined, for every location L of
f, we find the probability that L is a location of f. This probability
reflects the confidence we have in L being a location of f.

We will discuss here the properties of confidence function and
its dependence on parameters (location, upper bound on location sizes,
a subset size, etc.).

We will show that for any two irredundant domain subsets X, and

1

X2, where X Q;ZXZ, and any function f from S, confidence in the loca-

1

tion of fIX2 is at least as large as confidence in the location of

105
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fIXl.

It is in this sense, that confidence is nondecreasing.
We will also talk here about an average or expected confidence on
a subset X of S. This will be formally computed as an expected value
of a properly defined random variable on X.
Finally we will describe how to make predictions of f to S or
some proper subset of S, given knowledge of f on a subset X of S. We

will then discuss the relation between the size of the predictive range

and the confidence we have in predictions made.

4.2 Confidence in an Inferred Location

In this section we will define the confidence function. The
probability measure chosen, will be the one making every function from
S to R equally likely. This reflects our assumption that "everything
we have not seen yet" is equally likely to happen.

We will then analyze the most important properties of confidence

function introduced. We will use the notation established in previous

F F
chapters. Let <F(S R)’2 (S’R),P> be a probability space, where 2 (5,R)
’
. F(s,R) _|a
is the power set of F and for every Ag2 , P(A) = - .
(S,R) Fs.n)
3

Definition 4.2.1

Let XC S and let f:X > R. Then for any LC D, any integer ub

such that 0 < ub < IDl

a) CONFfé?%)GEL,ub) = P(actual £eF(q L (€L, ")|actual feEféf;)(-,ub))
b) CONFfé?;)(L,ub) = P(actual feF(S’R)(L,')Iactual feEﬁé?;)(',ub)) D
When ub = n = |D| we will denote CONFfé?%)@EL,n) by

CONF%é%%)Q;L) and similarly CONFfé%;)(L,ub) by CONFEé%;)(L).
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We note that

CONFfé?;)(Q;L) = P(actual ng(S R)(C.L)|actual fth(éxi)) and
CONFféfé)(L) = P(actual feF(S’R)(L)|actual feEfé?é)).

Proposition 4.2.1

Let X C S and let £:X > R. Then for any L C D,

quz’R)(QL’Ub)I i EfS’R)(.,uw # 0
a) CONFfé}’%)(g_L,ub) oy |E(s, ) (U |
\ 0 otherwise
Tantl e s
CONFTE.;},%)(L,ub) - ¢ lE(s r) ¢ > 90) |
\ 0 otherwise

b) In case ub = n and d an Lel(f) such that L DL

E(X) a-idsl=1Posy ) - dxl-1P @)y
CONF(S’R)(QL) = |R] L L

In case ub = n and Lel(¥)

F(X)

(S,R g~ LASI=IP D = dx]-]P )}

CONF )(L) =

Proof

a) It follows directly from Definition 4.2.1 that

CONFf(g;L,ub) = P(actual fEF(Q;L)Iactual fEEf(',ub)).
In case Ef(',ub) = ¢ the above is clearly 0. Otherwise we employ

a well known formula for a conditional probability and
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= £
CONFf(Q;L,ub) _ P(actual»feF (C L) andfactual feE (+,ub)) _
P(actual feE (-,ub))

P(actual feETf(c;L,ub» ) IETf(gL,ub) I/I'Fvl
P(actual feif(-,ub)) |EE(+, ub) L///IFI

The last equality follows directly from the definition of P.

£(X)

Similarly we derive the formula for'CONF(S R)
,R)

(L,ub).

b) It follows directly from part a) that

EF® (]

£(x)
CONF CL) = =
(«w IEf,(X) |

Obviously since there are [S—XI = |Sl-|X| points of S-X, there are

lRllS,—IXI possible extensions of f to S.

It follows from Theorem 3.3.1 that with L as assumed

20 [P =P |

(S,R) (.C. L)l = !R|

|E

There are |RL(S)|—|RL(X)| blocks of Hi in S—COMPL?(X) and |R|
values may be assigned to every such block.

Thus
P -P@ |

CONFf(X)(g;L) = |RI and the final expression

_ IRJISI-IXI |
£(X) .
for CONF (CL) readily follows.

£(X)
(5,R)

tion 3.3.3 and just proven result. O

To compute CONF (L), where Lel(f) we use part a) of Proposi-

Remark

1) We note that for an irredundant subset X of S and any function

£:X > R such that L = L(E) and |L| = ub CONFféX;)(L,ub) = 1,
b}
2) For any two functions fl and fz from X to R, if LeL(fl).and
Lel(E,), CONFfl(X)(L) = covrt2®) (1) nolas. O

(S,R) (S,R)
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Proposition 4.2.1 will be used essentially in the following way.

3
(S,R)

where ub is a given bound on location size, known or assumed a priori.

Having observed f on X, for every Lel(f) we will compute CONF (L,ub),
When |L(£)] > 1 we might choose the location with highest confi-

dence as a location of f and the corresponding confidence gives us

simply an idea as to how good our choice is. When IL(f)I = 1 we are

dealing of course with the unique location of f.

We note that if S is irredundant Eﬁéxé)(L,ub) = 0 when |L| > ub.
b
Also Ef(x) (L,ub) = EE(X) (L) for L with |L| £ ub and arbitrary S.
(8,R) (S,R) -

We will next show that confidence is nondecreasing with the de-
creasing upper bound. This should be intuitively obvious, for as an

upper bound decreases we decrease the number of possible candidates for

our function.

Proposition 4.2.2

Let X C S and let f:X ~ R. Then for any Lel(¥), any ubl, ub,

such that |I| < ub, < ub,
£X) - < (X -
CONF (™ py (Touby) < CONF\ ™0 (T,ub).

Proof
e e F- . F- . E.-
Since |L| Sub, = ub, holds E (L,ubl) = E (L,ubz) = E°(L). Thus
to show the above inequality, we just need to show that
IEf(-,ubl)l 2 IEf(~,ub2)l (see Proposition 4.2.1). ub, 2 ub, implies

that Ef(-,ubz) Q;Ef(-,ubl) and the above inequality clearly holds. O

Our next result will be following. Given any two irredundant

subsets of irredundant S, X1 and X, such that X, C X, and any two func-

tions f1 and f,, where fIEF(Xl,R)’fst(XZ,R)’ and f, = f2|X1 holds,
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the confidence in L(fz) being a location of actual function is at least
as large as confidence in L(fl) being a location of actual function
(provided upper bound condition is met in both cases). So as we go on
experimenting the confidence will never decrease.

Before we state and prove it, we need to establish some auxiliary
results reflecting the relations between cardinalities of projections

on X1 and X2 sets.

Lemma 4.2.1
For any X; C X, C S and any £,L C D, where ig L

[P = [Prx) | 2 [P )] - [Py

Proof
|P£(X2)! - lPﬁ(Xl)[ = ]Pﬁ(xz-{x|x€X2and(Ha yEX s.t. yHﬁx})l =
L
[Pr,- UL o [[x] o (X #eh | = [Pox,-compLy x| = [Prcyp) |
Min2 IA 2
L L
. . - - L =
Similarly, |P (X,)[-|P (x)] = P, (%, COMPLX &N IPL(YL)I.
Since L 2L, YA;Q Y holds and so |P (YA)| 2 IP (Y . But then
[PA(YA)| IP (YA)I implies that |PA(YA)| 2 [P (Y )| which was to be

proved.

Corollary 4.2.1

For any X ,X, C S and any L,L C D, where X C X, and L DL, the
following hold.
a) [s-%,| - |s-x,| 2 (|P()| - |[P.@&)]) - ([Pe(®)] = [Prx) ]
) ([P - [Pr&)DD - (Pp(®)] - [Prx)]) 2
(P = [P &) = (P ()] = [PL&H]
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Proof

a) Since X C X, C 8, [s=X | - [$-X,| = [x,-x | = |x,] - [x,]| =
|PD(X2)| - |PD(X1)|'

By Lemma 4.2.1

|PD(X2)] - |PD(x1)| > IPL(XZ)I - IPL(X1)| holds.
Also by the very same lemma

[Pe(s)] = [Prx )| 2 [PL9)| - [P (X,)

Adding the above inequalities we obtain

1%, [ = 1%, L+ [Pr ] = [P ] 2 [P - [P,
which implies

1,1 = 1% [ 2 AP - [P @)D - (P - [P D),
which was to be shown.

b) We note that the left hand side of the inequality is simply
equal to IPﬁ(Xz)l - |P£(X1)| and similarly the right hand side of the
inequality to IPL(X2)| - IPL(X1)|.

So the inequality of part b) is simply another form of the in-

equality of Lemma 4.2.1. .

We are now ready to state and prove next theorem.

Theorem 4.2.1

Let X ,X,,S be all irredundant, where ¢ # X, C X, C S holds. Let

?2:}(2 -+ R and let fl = f

£1(X,
(8,R)

zlxl. Then with L, = L(fl) and L, = L(fz)

lLl,ub) < CONFfZ(XZ)(LZ,ub) holds for any integer ub,

(1) CONF (S,B)

0 £ ub £ n, provided that if |L1| < ub holds then lel < ub also holds.

Proof

We first note that since X1 and X2 are both irredundant, Ll(; L2.
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If le] > ub then clearly IL2| > ub and both sides of (1) are

equal to 0.

So assume 'Ll| < ub and |L2| S ub holds. Then E £1(X, )(-,ub) # ¢

) (s, R)
fs(}li)Z)( ,ub) # ¢. Hence we need to show that

2wy ety

and E

(2)

— > = holds
[ER1(,u) | [Ef2(,ub) |
or equivalently that
£, £,
E (L) £ 2(L,)
(3) | @ | o < | 2 | — holds.
| U ehieD] | U efe D]
~ L ~ L
|Z[=uwb |Z]=ub
L2L, L2L

2

Since L, D L, {T I IZ| = ub and TOL, } D (tl IT| = ub and TDL,}

and so

,,_
i
t=i
=i
in
=
19
=
.!_"hl
n
(3

ERER
|

To prove (3) then it suffices to prove that

) Efrap] [Py
| U shenl | U e
|| =ub || =ub
o1, 21,

From now on we will denote the set {f‘ IT| = uw & ZQLZ} by L.

We note that (4) holds if and only if

Bf (1) 22 (1)

Since Efl.(Ll) = Efl(g L,) and L C L,, clearly Efl(_C_ L,) €

Efl(ng) holds. Also since L, = L(sz), gt (L)) = Ef

(S,R) é,p (-
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To prove (5) then it suffices to show that

|,L)Ef1<c; n| | Jef2 D)
Lel_. > LeL holds
lEfic 1, lEE2(L,) |

We note that for any irredundant subset X of S (irredundant), any
f:X + R and any L,fC_ D

E®cyneE®ei) - ££® ¢ wni)).

Also for any family of finite sets A ,A ,..

.,An
luagl = [a] + (a,l-]a,na,D +
(|A3|‘|A3nA1|—|A3nA2|+|AlﬂA nA3I) + ... holds.

Let Tl,fz, +»L, be an enumeration of L.

Then l%) EFNCT) | = lE T + (IE“(CL )| - IEflo. TNTHD +

(IE €Ty - IE S (E,NT ) - |E 1C @,NT, |+

£, o A
[EEMC @ NT,NT NN + oo = A + 4, +A, +

3 ..., where each Ai is of
the form

fic - £ £,
et | :Zs:;lE ey |+ el

for some index sets Pi and Qi' For every pEPi L

L, & Lpg: L, and for
every qeQ,,L, & LqC_; T, holds. |T|

ub for all i andfi:_)L , V i.

To prove that (6) holds then, it suffices to show that for every i

Pt Dl Z]E )|+ E|E§1(Q Ly |
qeQ.

(7 pePs

IE 1C L,) |

fec T |- 2lefec L) | + e 1]
peP. qeQ;

IE 2CL,)|

We will now show that if Qi # ¢, then for every qeQ
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E1 j?2
|E (c_qu>|>lE @Lq)l

f Tf
ErcLy| sy
We need to show that
IO ISR #) [P )] - [P, )]
q q JRI q q
2 5 .

| lTPLz(S)| - ]PLZ(XI)] | l|PL2(s)| - | Lz(x2)|
R R

|R]

Since L,C L , V qeQ, and X, € X, this follows from part b) of Corol-
q i
lary 4.2.1.

So to prove (7) it suffices to show that for every i

- - -

£ £ £ £
eIy l- LEteu)l [Erety - kL))
pE:Pi P > pEPi p
® _ > _

f f
[E 1€ L) E*CL,)]

holds.
If Pi = ¢,(8) holds by part b) of Corollary 4.2.1. So assume

P, # ¢.

1

We note that since for every pePi, L1C L, C Lp holds,

Efl(g Lp) # ¢ and EfZ(g Lp) # ¢ for V peP,. Thus Z|Ef1(§ LP)I and
peP.
1

f
E IE 2@; Lp)l are both greater than 0. Also as can be easily seen
PEP,
i

both nominators of (8) are non-negative, while both denominators are
strictly greater than O.

If RHS of inequality (8) is equal to 0, then the inequality
clearly holds. So assume it is greater than 0. Then to show that (8)

holds it suffices to show that

oo : k
et - Iﬁzﬁ'E eyl hey

(9) —= - Z — holds.
~ f
lEf?-(QLiH - Z!E 2(C Lp>| lef2C L,)|

pEPi
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We will now show that

ZIE lcL )|

peb, iEf1<c L) |

(10) F holds.
Z]Efz(CL )| IE 2(C L) |
pEP

To show that, it suffices to show that for every p%:Pi

RIS Y
(11) 7 P__ > ¥ is true.
[B2EL)| (L)

But (11) follows immediately from Corollary 4.2.1, since L, g;Lp for
V peP, and X Cx,.

Thus (10) holds and to prove (9) it suffices to show that

et - Ylshic BIEEDYLEYCIRY

p€P pSP
(12) 3
efac T - ZIETZ«ZL )| ZIETNCL )|
pEP pSP

Inequality (12) holds if and only if

o Z|Ef1(CL)[

(c Li) l peP,

2(CL )| ZIE 2(CL )|
peP

holds.

This follows from Corollary 4.2.1. (We show it for every

pePi.) So (1) of Theorem 4.2.1 holds, which was to be proved. a

£(X)

We remark that for X = ¢, CONF
(S,R

)(L,ub) can be interpreted as
an a priori confidence in L being a location of actual f, under given

upper bound condition. We will denote it simply by CONF (Lyub).

(S,R)

We will now show that for an irredundant S and any L C D, any

irredundant subset Y of S, Y # ¢, any function f: Y > R such that



116

£(Y)

L = L(f), CONF (S.R)

)(L,ub) < CONF (L,ub). 1In other words having seen

(S,R
a function from Y with location L may increase our confidence in L, but

will never decrease it.

Proposition 4.2.3

Let X be an irredundant subset of irredundant S. Let f:X - R and
let L = L(f). Then for any ub

£(X)

(1) GONF (s,R

)(L,ub) < CONF )(L,ub)

(S,R

Proof

When X = ¢ (1) clearly holds. So we assume X # ¢.

If ILI > ub, then both sides of (1) are 0 and we are done. So
assume |L| £ ub.

[P g qy @]

lF(-,ub)l

CONF(L,ub) = Since F

(L)CF (CL) and

(S,R) (S,R)

s,p ED!

| LN Y
1| Y s,

ToL HER
oL

F(S,R)("ub) ) u F(S,R) @, CONF(S,R) (L,ub) &

We will denote {Eﬁj DL and ]fl = ub} by L.

Since

- £
CONFf(X)(L,ub) = —in—Q%lL-—
I\JEE®D) |

Lel

to prove (1) of Proposition 4.2.3 it suffices to show that

rewl _Isfo)
Ur@®|  [JEED
Lel Lel

1) | holds.

By analogous argument as in the proof of Theorem 4.2.1 it suffices to
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show that for any ’I\fiEL and any index sets Pi’ Qi where for every
PeEP,, L C Lp_C_ L;, for every qeQ,, L qu C L,

F@p) - Mlrei)l+ Y lrer))

P €Q.
@) PEP, qeQ, >
|F(SL)|
Bf@pl - ) e BIEMELE L)l
PEP, qeQ,
— holds.
Efc ]
We show that for every qui (if Qi # 9)
£
F(C L E(CL
o [P 5 | _<_ )
[Frcw)|  |EfcL)|
IPL (8) ] IPL (S)}-.IPL (x) |
x|l 1 x| ¢ d

) R
LHS 3
of (3) equals {PL(S)’ and RHS of (3) equals | IPL(S) = lpL(X) |
R R

Since Lq 2L,V qui, ]PL x| 2 lPL(X)I and hence (3) holds.
q

Thus to prove (2) it suffices to show that

FeTpl - 2lrcryl  [Eeipl - X lrfen)
p i p
peP, p€Pi
(4) = > holds.

|F(CL)| e 1)

Again it is clear that both nominators in (4) are nonnegative

while both denominators of (4) are positive.

Also Z |F(§ L )l and Z |Ef(_C_ Lp)| are both positive.
1:»&:Pi 1:»&:Pi

We will now show that
2 IFEL))]
peP, |F(S L) |
(5) 2 holds.

Y Efe RTRNI-(35Y
PEPi
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It suffices to show that for every pEPi

6 |f‘(; Lp)| 5 IFEG D]
eyl [efC
IPL ()] IP (s)|
But IRI ° 2 IRl holds
|PL (S)l - lPL @] - |PL(S)| - IPL(X)[
|R| P P |R|
since L 2 L implies |P @] 2 ’P x)|.

So (5) is true and to prove (4) it suffices to show, that

FCIpl- 2 IrEL)l efetyl - ) lef cL)l
p€P pEP

2 = holds.
Y. Irc L)l ZlEf(C.in)l

€
p&:Pi P Pi

@)

(7) holds if and only if

[FET)| IE(CL)I
(8 holds

:E: LF«:'L ) | :Z: [E a:;L )|

pEP p€P

if and only if for every peP

[FC T IE(CL)!

9) holds
[FC L) lEf(Q L)

if and only if
[P (9)] 1% ©®] - % ®]

Rl Y S rl .

e I R C TN T T Rt
E | P P

But since Ei 2L, |Pvf (X)] 2> IPL (X)| and so (10) holds. This
P i p
completes the proof. a
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Remark

We remark that Theorem 4.2.1 holds for arbitrary X ,X, and S
(rather than irredundant) in case ub = n and LleL(fl), LZEL(fz) are
such that L1€; L,.

This follows easily from Corollary 4.2.1 (part a)), since

|PL (S)I - IPLl(Xl)I

£ Rl
CONF (g oy (L)) = and
]R||S| - x|
P (S| - |P. X
; lRll L 1,00
2 -
CONF (& 1y (L) = . C

18! - 1]

We will next show that for any two functions f and g from X to R,
if L(f) € L(g) holds, then confidence in L(f) being a location of actual
function is not greater than confidence in L(é) being its location.

Thus as the complexity of the function increases, so does the confidence.
By complexity we mean here simply the size of the location of the func-
tion.

The above is made precise in the following.

Proposition 4.2.4

Let X be an irredundant subset of irredundant S. Let f and g be
functions from X to R, where L(f) C L(g) holds. Then

£(X)

) CONF(S,B

)(L(f),ub) < CONF%éXQ)(L(é),ub) holds for any integer ub,
b

0 <ub<n, provided that if |L(f)| < ub holds then so does |L(§)| < ub.

Proof

Let L(f) =L, and L(g) = L. If |L,| > ub, then |L,| > ub and
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Thus (1) holds.

both sides of inequality (1) are equal to O.
< ub hold. Then

So we assume that ILll < ub and |L2|
£(X)
I; E(EL)
CONFféX;)(Ll,ub) _ | - |
’ U E® )
T
|L|=ub
L

and

Tl )]

1

t

. 28X
CONF%éxﬁ)(Lz,ub) - | E"& 2){v

~ L
T =ub

LQL2
This follows

Since L, DL, |PL2(S)| - |PL2<X)| > IPLI(S)] - IPLI(X)
= X,. Thus by Corollary 3.3.2

from part a) of Corollary 4.2.1, where X, )

|Ef(x)(Ll)] < |Eg(x)(L2)l.
Since L, 21‘1’ {fITQLl and |f|=ub} 2 {’I?]’i.JQLz and lf|=ub}. Thus

|

EX) > £(X) -~ g(X)
E cCn)| 2 E Ch| = E cT)|.
| l~j €| 2| y €D | = | l (CD) |
~ L ~ L ~.L
|£|=ub !£J=ub kl;ub
L2L, L2L, L2L,
0

So clearly (1) holds, which we were to prove.

We note that if X and S are arbitrary but ub = n, Proposi-

tion 4.2.4 still applies.

y and

k

Remark 1
1

In Lemma 4.2.1 and Corollary 4.2.1, when X, and X, are Y
= m for V qeD) the containment of the

sets respectively;([sa] =
2,
Rather than assume that L 2L

v7
kz
locations is not a necessary condition.

holds it suffices to assume that lil > |L|.



121

This follows from the fact that for any Y and any L,,L, with

k
- y = y
=L Iry, apl = 1P .
Similarly, in Proposition 4.2.4 if X is a Yi set, it suffices to
assume that |L()]| < |L(g)| holds. o
Remark 2

1) We note that for any subset X of S (S not necessarily irredun-
dant) and any function f from X to R, if D is a location of f, then

RX))(D) - 1.

CONF(S,R

First we notice that if Del(f), then D is the unique location of

f. But then this implies that every extension of f to S has location D

and the above statement follows.

2) Given an upper bound ub, ub £ n - 1, and any function f from
v _ EQw)
¥', to R, such that |L(f)| £ ub, CONF(S ;) (L(f),ub) = 1. This follows

from the fact that for any L ;?L(f) such that ILI < ub, E(S g) @ = ¢
(see part e)of Theorem 3.4.2).
3) For any X& S and any f:X > R, any Lel(F),

£F(X)
(S,R)

1

) 157

CONF (L,ub) > » provided |L| < ub.

This follows from Corollary 3.3.2 and the fact that Ef(x)(',ub)§; Ef(X).

Clearly IEf(X)| = ]R[ls—xl. c

We will illustrate the above results by an example.

Example 4.2.1

Let S = {0,1,2}3 and let XI,X2 be following subsets of S.
X1 = {(0,0,0),(l,0,0),(1,1,0),(1,1,1)} and X2 = XlkJ {@2,1,1)} =

X, U {(2,1,1),(1,1,)} =x UC.
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X1 is clearly irredundant as a minimal independent set. X2 is irredun-
dant by Proposition 2.4.4.
a) Consider fl: X, * R, where R = {0,1,2} and fl is defined by a

table of Figure 4.2.1. Then L(fl) = {az}' With ubl = 3 and ub2 =2

£,(x) £ (x) £(x))
|E ({o,},ub )| = |E o, 1] = |E ({o,},ub )| =
[P ()] - P (x)]
|R] E . 33722323
(X)) F(x)| |s-x_|
|E 1 (.,3)| _ |E 1 _ IRl 1 - 327—4 - 23
F ) £ x) (%))
|E -, = [E (€ {o,0, DU E (€ {o,,0,h] =
£,(X (X)) £,(x))
|E (€ {o,0,D| + |E € {o,a,b]| - |E (Clo, D] =
f (X))
3273+ 3°7% 2 3-3(2-3°-1). Thus CONF(S1 R)l (L(E),ub ) = —% = %
’ 3 3
HIC T 3 1
and CONF (L(f),ub.) = = Clearly
(8,R) VU 320351 2.3%1
£y (X))
CONF (¢ py (L(E),ub,) < CONF & 3 (L(E)),ub ).

The above illustrates Proposition 4.2.2.

b) We shall now illustrate Theorem 4.2.1.
Let ub = 2 and let X1’X2 be as above. Further, let fz be an extension

of £, to X, given by Figure 4.2.1.

_ ,(%,)
Then L(f,) = {az}. We compute CONF(S R) ({a,},2).
() [P, ()] - [P, &)
E° T o, = |r] 2 =372-31-3
£, (X,) F.(X.) £ (X))
E5 T C =B T (€ lona |+ [ES P (E lapa,D] -
£,(X,)

5 (o H|=3"%+3"7%-3=33%3%1).



Figure 4.2.1:
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X fl(x)
fo XpPoR
(0,0,0) 0
(1,0,0) 0
(1,1,0) 1
(1,1,1) 1
X ?z(x)
f.: XR
(0,0,0) 0 202
(1,0,0) 0
_(1,1,0) 1
(1,1,1) 1
(2,1,1) 1
X 2, (%)
)i XpoR
(0,0,0) 0
(1,0,0) 1
(1,1,0) 2
(1,1,1) 2

Function Tables of Example 4.2.1.
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£,(X,)

Thus CONF(é R) ({0,},2) = 2 - —L | ‘hile
’ 3(3*+3°-1)  3%+35%-1
fl(xl) 1 fl(xx) =
CONF (¢ £y ({a,},2) = 23 Clearly, CONF 5 gy (L(£}),ub) <
F2(X2) _
CON]?'(S R) (L(fz),ub) holds.

c) We will now illustrate Proposition 4.2.3. We compute

CONF(S R)({az},Z), an a priori confidence that actual function has loca-
3

tion {az}, given that the cardinality of the location of all possible

functions is at most 2.
lF(S,R) (o, ]
IF(S,R) (' 32) l

[P, (5)]
2

CONF(S’R)({QZ},Z) =

IF(S,R>({OL2})| =

”m&“ﬂ”=”mm@“W%M+(Wam@wwwH-
]F(S,R)(Q {ocl})l) + (IF(S,R)(E {o,0, D] - IF(S,R)(g{az})l -
IH&R%QQ%DI+|F®£ﬂg¢”)=

3% + (3%-3%) + (3%-3°-3%41) = 3.3° - 3.3% + 1

3 3
So CONF (¢ of{a,},2) = 3-1 < —3 -1 — <
’ 3-3°-3.3%41  3'0.3%41  37-34373
£ (X.)
l 1 1
= CONF ({a,},2).
2:3°-1 (8,R) 72

d) Finally we will illustrate Proposition 4.2.4. Consider a
function él from X1 to R, as given in Figure 4.2.1.
L(g,) = {o,,0,} Do} = L(fl).

With ub = 2 as was computed in part a) of this example
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(X)) 1
CONF g oy (L(E),ub) = O
5 g, (X,)
g, (X)) [Egl(xl)({al,az})l |E o ({al,az})l
CONF(S R) ({0‘« s O }:2) = = = 1.
, 1’72 - —
g, (X)) g, (X))
| kj E (CD] |E ({a,a b
tgigl,az}
[L]=2
EI(XI) - —g-l(xl) -
So clearly CONF(S,R) (L(f,)ub) < CONF(S,R) (L(gl),ub) holds. O

We will now discuss the notion of average confidence for a subset
X of S. As will become clear later, this is essentially motivated by
the desire of a modeller to choose a domain subset to experiment (or

generate the data) on, based on expected confidence on this subset.

Relative to an upper bound ub, we define the average confidence

X

on an irredundant subset X of irredundant S (denoted by ACONF(S R)(ub))
3

in the following manner.

Given ub, let Zu be a random variable, Z + R, defined

b ub ¥ (s, R)

£|x

by Zub(f) = CONF(S,R)

(L(f|X),ub).
Then

X - = .
ACONF(S,R)(ub) = E(Zub!ub) = ;%;P(flub) Zub(f)'

When ub = |D|, we will denote ACONF%S,R)(ub) by ACONF%S’R),

Proposition 4.2.5

Let X C S, where X and S are irredundant. Let ub be an integer

0 LZub = |D|. Then

(1) ACONF)((S,R)(ub) =( D |Ef(L('f))|)/(_ > 'Ef(.’ub)l

ng(&R) (- ,ub) feF(X’R) (¢ ,ub)

)
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Proof

2) :E:P(flub)-CONFfIX(L(fIX),ub) =
feF

E1XL it %), ub).

CONF

1
'F(S,R)("“b)T fEF ,ub)

s,

We note that every feF(S R)(',ub) is an extension of some
bd

EEF(X,R)(-,ub). Actually, F(S’R)(-,ub) = fep k_) . b)Ef(',ub).
“,pt
Thus IF (-,ub)l = :E: lEf(-,ub) .
(S,R) feF (*,ub)
(X,R) "’

We also note that for every EEF(X R)(-,ub).andfany f,geEf(-,ub),

CONFfIx(L(fIX),ub) = CONFglx(L(g]X),ub). So
vt R m,wy = Y. conFL(®,u)- [EEC- b)) -

feF(S’R)(-,ub) feF(X’R)(',ub)
_ 2 Eadm)
fEF(X,R)(-,ub)

Equality (1) clearly follows. o

We next show that average confidence is nondecreasing with an in-

creasing size of the subset of S.

Proposition 4.2.6

Let Xl,X2 be irredundant subsets of irredundant S, where Xiﬁ; X,

holds. Then for any ub

X X
1 < 2
ACONF(S,R>(ub)_.ACONF(S’R)(ub) holds.

Proof

The above follows immediately since for every feF (¢ ,ub), .

(S,R)
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fx, £|X
CONF  (L(£|X,),ub) £ CONF  *(L(£]X,),ub) by Theorem 4.2.1. 0l

Next, we will give some lower bounds for average confidence. Be-

fore we do that however we prove the following.

Lemma 4.2.2

Let S be Cartesian, S )X:S . Then for any L L C D with

oeD
L, CL,
<
Fes, @01 = 17, @ |-

Proof

Let ]Lll = k. If k=n, thenL, = L, and we are done. So assume

k <n. Also we assume L, S;Lz’
It follows from Theorem 3.4.2, that there is a 1-1 correspondence
h between F

(L ) and F (Ll), where h :

(L) ~>F )
(7, R)

(5, R) (¥, R)

(S R)

is defined by h(f) = f|y§.
L
. _ 2 vy ‘
Since |L2| > ]LII = k, COMPLS (Yk) ;;S. It follows from Remark 3)

after Corollary 3.3.3, that for V feF (L1) there exists an exten-
(Y, ,R)

sion of f to S with location L . This implies that |F (L )| 2
2 (S,R) "2

(L)| 2 |F @w)| = |F
feF (T, (S R) (Yi,R) ! (S,R)

(Y7 ,R) o

(Ll)], which was to

be proved.

Proposition 4.2.7

Let X be an irredundant subset of S = )‘:S , where |D| =

asD
Then

a) ACONF%S R)
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b) for n 2 2 ub and |Sa| =m, V aeD

; ¥z, @1 IE 5, 5.5 D]

|L|—ub

(ub+l)( ) IF(S’R) @)l

where fL is any function in F(X,R)(L) and Lub is an arbitrary subset

ACONF’(‘S py (ub) 2

of D with !Lubl = ub.

Proof
- f - R ,
? Fs,m feFU Bo,m tmeties 1P gy = (B ml [P s
(X,B) _ )
. -z - £ 1wE
since for any f,geF(X R)? 'E(S,EOI = IE(S,R)I'

Further F(X R) k_) F(X R)(L) It follows then from Lemma 4.2.2, that
i Le2?
n
|F(X R)lszn -|F(X’R)(D)| and so that |F(S R)| < |E(S R)| Fiy, R)(D)I 20,
Now ACONF}((S R) ——F~——1——— Z CONF' IX(L(f X)) =
1Fs,n)! £EF (g
..F_.._.. Z conF’ (L(f)) |E | 2————— 1'|Ef| =
Fes, )| fer . 1Fes,m EEF g g (D)
f
1¥(s,n) | i
B ] |F o (D)
So ACONF(S R 2 7 (X,R) — = in
|E I-IF(X’R)(D)!-Z 2

b) Since 'Sal

m for V aeD and S is Cartesian, for any

L»L, € Dwith [L,] = |L,], |F(S’R)(L1)! = !F(S,R)(Lz)l.
For n 2 2ub (g) < (J;) holds for every i < ub. It follows from

just made remarks that
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f|Y2 1 1
CONF(S R)({OL[, W) = = — and
’ 2 2

CONF(S R)({a »0, hH = 1.

For the confidence curve see Figure 4.2.2.

Vel
b) We will now compute ACONF IES R) for each of the Yl}: sets.
1
We recall that ACONF)({S O CTF T ZCONFfIX(L(f)) =
| (s, R)l fer

£ £ (X
Z IF(X R)(L)I lE |CONF (L) =

'F(S R)I LCD

1
1Fes,» | LCD
from X to R with location L.

|F (L) |- e L(L) |, where f  is an arbitrary function
(X, R) L

Yy 1 2 1
ACONF,? = — (|F @P|'1=—=—
(S,R) 28 | (Yy R) | )8 57
oLy ol-1+ (3)le -
ACONF(g oy = =5 (IF -1+ (] o r ({oc Dl lE 1({a hHi +

2 (Y15R)

3 |F ({ }>|-|E§{“1’“2}( )| + |F (D)l-iEEDI)

2 e} ¥/, R) '
1°? 1?

We compute

£,
IF( , e b= =2 and [E 1({a,])] =
Yl,
|p 624
P o oo b| =2 Q0% g 5 @I2F D] -
(¥),R) ) (¥, R) (Y] ,R)
2 _ 2 - 2.2 = 8-6—2and|1~:{°‘1’°‘2({a,a})| "3 20,
Finally,
y
LRI T , @I8lF  {aDISE  ayhe,) -
(Y{,R) (Y1,R) \Y,l, R) (¥},R)

2" = 2-3.2-32=16-14 = 2 and |EDI=2"‘“=16.
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Thus
aconry =L b 321 4 322 4 2.16) = — . 52 = 28
(s,R) 8 8 7
2 2 2
vY
Similarly we compute ACONF(é R)" To do so, we first compute all
]
the necessary elements. _
2 fa
|F g (o, D] =2"-2=2and [E "o, h] =1
(Yz’R)
|F (oo ] =2" -2 -2.2=16-6=10 and
(¥),R)
f
& @%) iy 0 n] =1
Finally, -
7 ! fD
|F (| =2"-2-32-310=128-38=90 and |E | = 2. So
(Y7,R)
ned 1 218 _ 109
ACONF,2 . = - (2:1 + 3:2-1 + 3-10-1 + 90-2) = === = =<
(S,R) 23 28 27

The values of average confidence are tabulated in Figure 4.2.2.

4.3 Prediction Range and Correctness

On the basis of knowledge of the function on a proper subset X of
S, we would like to make further predictions of the function.

In this section we will discuss the manner in which such predic-
tions are made, the range of predictions and their correctness.

Suppose then that a function f from X to R is given, where X is a
subset of S. For every location L of f, we will predict f to the set

COMPLE(X). We shall denote this set in the prediction-making context

by EXPL?éX%)(i) and call it the explanatory range of f relative to L.
? — -—
We will denote the set (EXPLf(X) (L)-X) by PREDf(X) (L) and call it the
(S,R) (S,R)

predictive range of f relative to L.
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£]Yy 1 1
CONF(é’f{)({al’az}) = 28‘7 = '2— and
CONF(S R)({al,u b o= 1.

For the confidence curve see Figure 4.2.2.

vy
b) We will now compute ACONF IZS R) for each of the Yi sets.
b
1
We recall that ACONF)({S R STF T ZCONFfIX(L(f)) =
Fis,p| £

£ £ (X
Z |F(X’R)(L)|°|E | CONF (L) =

f
——— L - . .
|F(S R)I L§D!F(X’R) (L) |-|E ~“(L)|, where f, is an arbitrary function

from X to R with location L.

y 1 2 1
ACONFSES R =—(|F (®)]1===—=
2 (Y),R) 27 2
) 1 £

£
ACONT, L =—-——(|F (¢)|-1+<3)|F o, D] 1
(S, R) ), AN [ oy D]+

3 -f{a 20y } ED
<2)IF(YY R)({al’o‘z})HE SRS CRTR M lF( }1” )(D)I.IE -
We compute _ |
IF(YT{,m({a bl = = 2 and lEf I({a, D] = 1
|F ({a o D] = ZIP{QI’%}(Y}I’)] - |F (9)|-2|F ({al})l =
w,n 7, R) v,
2> - 2-22=8-6=2and |E {al’“z}({al,a | =2""7° = 2.

Finally,

y
|F ]| = 21l _ |F () |-3|F ({a,H[-3]F ({a,,a,}) =
(Y,R) (Y],R) (¥,R) (¥],R)

2" - 2-3.2-32=16-14 = 2 and |ED|=2°"’=16.
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Thus
1
ACONFY¥ = — (2 + 321 4 3:2:2 + 2.16) = 1. 52 = 26
(S,R) 8 8 7
2 2 2
vy
Similarly we compute ACONF(g R)" To do so, we first compute all
’
the necessary elements. _
£
ol
|F g (o, H] =2 -2=2anda |E '({o,b] =1
¥ ({o,,a. | =2"-2-2.2=16-6 =10 and
y 1772
(Yz,R)
f
Finally, _
7 fD
|F (D) =2"-2-3:2-3.10=128-38=290 and |[E °| = 2. So
(Y7,R)
o4 1 218 _ 109
ACONF, 2 == (2°1+ 3:2:1 + 3-10°1 + 90:2) = == = ==,
(S,R) 9® 58 57

The values of average confidence are tabulated in Figure 4.2.2.

4.3 Prediction Range and Correctness

On the basis of knowledge of the function on a proper subset X of
S, we would like to make further predictions of the function.

In this section we will discuss the manner in which such predic-
tions are made, the range of predictions and their correctness.

Suppose then that a function f from X to R is given, where X is a
subset of S. TFor every location L of f, we will predict f to the set
COMPLE(X). We shall denote this set in the prediction-making context

iéxi)(i) and call it the explanatory range of f relative to L.
b

£(X) [16.9)
(S,R) (5,R)

predictive range of f relative to L.

by EXPL

We will denote the set (EXPL

(L)-X) by PRED (L) and call it the
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s f(s)
| X
(0,000 | 0 ! AONF (s )
y 1_
(1,0, | o i) 57
y 26
y 109
(1,1,0) 1 Y, =
(0,0,1) 0 S 1
1
(1,0,1) 0
£ly)
(0,1.1) 1 k y
CONF (g 1y (L(flyk ))
(1,1,1) 1
51
54
57
€
y
(ISI'IXI) - (!PL(fIYi)(S)I - !PL(fIYi)(Yk)D

Figure 4.2.2: Tables and Functions of Example 4.2.2.
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Let f and L be as described. Let %i denote the predicted function

on EX{L%é?%

COMPLg(X), namely for every yeCOMPLé(X), fi(y) = F(x), where xe€X is such

)(i). Then we define %i to be the unique extension of f to

that xﬂiy. (See Lemma 3.3.1 and Corollary 3.3.3.) Clearly fi X = f.

Remark

1) We note that if COMPLE(X) = X, PREDf(X))(i) = ¢ and so we make

(S,R

no new predictions. This happens for example when L

D.
2) For any two functions f and g from X to R and any il,fz such

= By T oo = £(X) g(X)
that L,el(f), L2€L(g), where L, Q;Lz holds, PRFD(S,R) (s, R

L L
This follows directly from the fact that COMPLSI(X) 2 COMPLsz(X).

(L,) DPRED )(iz).
3) We note that COMPLE(X) is the largest subset Z of S with the
property, that for all feEﬁS R)(f), fIZ is unique.
b
This follows directly from Proposition 3.3.3 and Theorem 3.3.1,

provided |R| 2 2. O

£(X)
(S,R)

that all predictions were made correctly (when L was "chosen" to make

In the sequel we will denote by PCONF (L) the probability

them) and call it the predictive confidence.

More precisely

(X)) = _ . fX) - _ f
PCONF(S,R)(L) = P((actual function flEXPL(S,R)(LZ) lefeE )
Similarly, when an upper bound ub is given PCONFféX;)(i,ub) =

bl
P((actual function f|EXPLE(X) (L)) = - | actual feE?' (+,ub)).
(S,R) L (s,R)" °

In the next proposition we find an expression for

£F(X)

(S,R)(i’ub)'

PCONF
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Proposition 4.3.1

Let X be a subset of S and let f:X - R, where fEF(X R)(-,ub).
Then for any Lel(f) and any integer ub, 0 < ub £ n,
£-(Y)
X)) - (B g,z )|
a) PCONF (L,ub) = 2
(S,R) T
122X (-, ub)]
(8,R) " °
- X)) -
where Y EXPL(S,R)(L)'
b) If ub = n
¥ - 1
peonrt P (D) =
|PRED(S,R)(L)[

|R|
Proof

a) Since fEF(X R)(“,ub), Ef(X)(-,ub) # ¢ and we are not dividing
3

by 0. (See Gorollary 3.3.2.)

£(X)
(S,R)

definition, when the formula for conditional probability is employed.

The expression for PCONF (L,ub) follows directly from its

b) It follows from part a) that

A

f"'(Y) _ 'f'(X) .
pconrt ® (T - Y | x| I8! IEXPT j @l i 1

£ |S]-1X v

X | IR| lRlIEXPLf(X)(L)’_le
1 1
= , which was to be proved. o
£F(X) - _ ) -

IR]IEXPL (L)-X| IRIIPRED @) |

It can be easily seen from Proposition 4.3.1 that the relation
between the number of predictions made and the confidence in the made
predictions is reversely proportional. That is, the more we predict

the smaller the certainty, that we are correct in our predictions.



136

We note that if actual function f from S to R has a location i,

then gi as described above is the correct prediction of f to

FX) -
(s,n) W

When actual f has a location L, where L.Q L holds, however, we

EXPL

are assured of the correctness of our predictions to the set

£(X)
(S,R

predictions are correct, follows directly from Lemma 3.3.1.

COMPLE(X), rather than EXPL )(i). That at least those among our

We will call the set COMPLE(X) in this context the validity range

of T with respect to L and denote it by VALféX%)(L).
. _ . £(X) )
We will show that for a Cartesian S, VAL(S R)(L) is the largest
9
. £(X) .
subset Z of S with the property, that for every feE(S R)(L), £lz is
’

equal to the prediction by f.

Proposition 4.3.2

Let X be an irredundant subset of S = XSa, where lsul 2 2, VoeD.
a€eD

Let f:X - R, where !RI 22 and let L = L(¥). Then for any L DL,

COMPLE(X) is the largest subset Z of COMPLg(X) with the property, that

£(X)

for every fEE(S,R

), fIZ = f- Z, where f- is the prediction of F to
) L L

COMTIE(X).

If L =1 or COMPLE(X) = COMPLE(X), the proposition is clearly
true. So we assume that COMPLE(X);; COMPLg(X) holds.
It follows directly from Lemma 3.3.1 that Z)D COMPLE(X). We want

to show that Z = COMPLE(X). Suppose that 2 ;}COMPL;(X). We show that

then d a function geEf(X)(L), such that g|Z # filz, thus contradicting
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the properties of Z.
Let peZ-COMPLg(X). (Clearly Z Q;COMPLE(X), since this is the set
we make predictions to.)

We shall distinguish two cases: L = ¢ and L # ¢.

a) L=0. So COMPLIS‘(X) =S,

Then %i is constant on COMPLg(X), say %i(x) = ¢ for V xECOMPLg(X). We

define g on S in the following way. TFor every xE:[p]H , g(x) =d # c.

(Remember that ]R| 2 2.) For all other x in S, g(x) = %—(x) = c.

=

Clearly g|z # %LIZ’ since g(p) = d # EL(p) = c. (Since

L

We need to show that geEf(X)(L). Clearly Hi < Hg. Since S is Cartesian

peS—COMPLg(X), [pl; C S-COMPLS(X) and so g|COMPLS(X) - fiICOMPLé(X).)

N S S
and ISa],— 2,V aeD, for every acl d an xaes s.t. XaHL—ap but xdWLp.

Thus by our definition of g, for every oeL,d X, s.t. xuﬂi_ap but
g(xu) # g(p). This implies that for every ael, Hi—a % Hg and thus L is
the location of g, which was to be proved.

b) L # ¢. So |n§| 2 2.
Let p be as above, i.e. peZ—COMPLg(X). Again we will construct a g from
S to R, such that geEE(X)(L), but g|Z # fi|2.

Actually it suffices to construct an h:COMPLE(X) -+ R such that
L(h) = L but h|z # fi|Z. Then an existence of g as above follows from
Corollary 3.3.2.

Since pECOMPLE(X), A xeX s.t. xﬂip. Since |Hf| 2 2 d an weX s.t.
f(w) # £(x). This clearly implies that wﬂix, since L = L(f). So wﬂip.

Now since S is Cartesian and |Sal > 2, for every ocl-L d an xaes

!
s.t. xaHL—up but xdﬂip. We note that all such x 's are related to

each other and to p by Hi' With x as above (xHip), all xa's are also



138

Hi related to x, and none of the xa's is Hi related to w. It follows
then that all xa's as above are in COMPLE(X).
We define h to be the following function.

For V YECOMPLE(X) - [P]H » h(y) = Ei(}') and for V Y€[P]H » h(y) = £(w).
L L

We need to show that heEf(X) = » in other words that th = f. But

(COMPL?(X),R)

since péCOMPLIS'(X), [pl, N COMPLI(X) = ¢, = [pl. N X = ¢. Thus for
L 8 HL

V yeX, h(y) = fi(y) = f(y), which shows that h|X = f.
Finally, we have to show that L = L(h). Clearly HL < Hh' (We

recall that L = L(f;) and so T = L(n|coMPLE(D)-[p]} ).
L
- _
LR2L20 S ol - (p]. )
S iy

Also since h is an extension of f, L(h) 3 L. To show L = L(h) then,

it suffices to show that for every oeL-L, d xaeCOMPLé'(X) s.t. xan P
L-~o

but h(xa) # h(p). Now h(p) = f(w). With xd's as before
h(xa) = fi(xu) = f£(x) # f(w), which completes the proof.

For the illustration of the above proof refer to Figure 4.3.1. O

In the following example we will illustrate that the number of

predictions made is ambivalent with the size of X.

Example 4.3.1

. , ~ y y '
a) Consider S Cartesian and Ll = L, ; D. Then XL1 ; XLZ. For

9* Thus

any f from S, L(f|X ) C L and L(f y)5_’:_L
)(Ll - 1 XLZ

L(£|x] ) L(£|x) )

COMPL 1 (x{l) = COMPL, 2 (x{z) = S. But this implies that
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s=cnmm§m)

COMPLE(X)

N

£(x) #F(w) )X

) = f(w)

4 i1

\"/9""0,,'4 7//4 [X°‘1]nL

2 HL

b) L# ¢

Figure 4.3.1: Tllustration of the Proof of Proposition 4.3.2.




140

£|x) g £lx/ y
PRED T(L(E PRED 2(L(f .
| @R NI R SR

b) Consider S = {0,1,2}® and
X, = {(0,0,0):(1,0,0);(1,1,0),(1,1,1)} > X, = XllJ {(2,1,1)}.

Both X1 and X2 are irredundant.

Let f be a function from S to R = {0,1,2} with Hf = Hi . Let
1

£, = £]X, and £, = £|X,. Then L(E) = L(£,)) = {a }.

It can be easily verified that

f f
2 _ 1
PRED g oy ({o}) = PRED ¢ o ({0, ) U {(2,0,0),(2,0,1),(2,0,2),(2,1,0),
(2,1,2),(2,2,0),(2,2,1),(2,2,2) }.
Thus _

f2 fl
[PRED “({a b | X |PRED ({a h].

The example then clearly illustrates the above assertion.



CHAPTER V

APPLICATIONS TO DISCRETE TIME SYSTEMS

5.1 1Introduction

In this chapter we will deal with functions from structured
domains, whose codomains have been also structured. We will define a
concept of structured model (partial model) of such a function (system).

We will be seeking reduced models only. Those models are minimal
in a sense to be made precise later.

In general, there are many possible reduced structure assignments
for a function. When a function domain is irredundant however, the
uniqueness of such an assignment will result.

Similarly as in Chapter IV we will discuss here concepts of con-
fidence, average confidence, predictive confidence, etc.

We will derive the expressions for the above, in case of a Car-
tesian codomain.

We will apply all the results to finite autonomous discrete time
systems. In this case the domain and codomain sets are same and equal
to the structured state space of the system. The functions in-
volved will be the state transition functions.

For those systems we will discuss several strategies, which a
modeller might follow during the experimental (modelling) process. The
one chosen will depend on his objectives and a priori information

available about the system being modelled.

141



142

5.2 Structured Functions

We shall first give the definition of a structured function in

terms of locations of its components.

Definition 5.2.1 ([Z1])

Let S and S' be structured sets, where SC >K:S and S'C :K: Sh.
bed ¥ BeD' g

A function f:S =+ S' is structured by an indexed family of functions

{£,]£,:P_ (S) » S%, I,C D,BeD'}, if f = )X: f-P_ .
B'"B Ig B> B BeD! B Iy a

We will fefer to a family {IBIBED'} as above as a structure of f.

In general a function f can be structured in many ways leading to
different structures of f. TFor example {IBIBED'}, where IB = D for all
BeD' is always a structure of f. We simply define for every BeD'

fB:S > Sé to be the function fB(S) = P -f(s).

B
A function f is structured in the sense of Definition 5.2.1 if
for every BeD' and every seS the diagram of Figure 5.2.1 commutes.
In structuring the function we will try to find those structures,
which are minimal in the following sense. If {IBIBED'} is such a

structure, then for any other structure {LBISED'} of §, if L,CI, then

B8
LB=IB’ VBeD'. We will call those structures reduced.

More formally,

Definition 5.2.2 ([zZ1])

A function f with domain S,S C ;X:Sa, is in reduced form if D is
aeD

a location of f. .

Definition 5.2.3 ([Z1])

A structured function f:S »+ 8', f = is in reduced form

£.°P
BeD!' 8 IB
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if every fB is in reduced form.

We note that a structured function f is in reduced form if IB is

a location of fB’ where {IBIBED'} is a structure of f. We will then

call {IBIBGD'} a reduced structure of f.
When S is irredundant, every structured f has a unique reduced
structure. This structure is given by IB = L(PB-f), for all B in D'.
In case S is not irredundant, but {IBIBeD'} is reduced,

IBeL(PB-f), for every BeD'.

We will illustrate the above concepts for a transition function

of a discrete time system.

Example 5.2.1

Consider s = {(0,0,0,0),(1,0,0,0),(1,1,0,0),(1,1,1,0),(1,1,1,1)}
and 6 on S to be an identity on §, i.e. §(s) = s for all seS. S is
clearly irredundant since it is a minimal independent set.

As can be easily verified the unique reduced structure of § is

i = = I = and I = .
given by Ial {al}, Iaz {az}, o, {a,} a, {au}

We will demonstrate two nonreduced ways of structuring &.
a) Consider 6& as given in Figure 5.2.2 a).

i
Clearly ¢ = ;K:ﬁa -PI , Where
i i o

1

Im1 = {al,uz} and Iai = {ui}, for i = 2,3,4. This structure is not

reduced since L(Sal) = {0,}G {al,az} .

b) Consider Ga as given in Figure 5.2.2 b).
i

» where

Again it is easy to check that § = )X: 6& -PI
1 i

a,
i
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s Pr (s)
r
f§ Y fB
£(s) — .
PB Peof(s) = fBOPI (s)
Figure 5.2.1: Diagram of a Structured Function.
X §  (x) X § (x)
ay ay
0,0) 0 (0,0) 0
(1,0) 1 (1,0) 0
(1,1) 1 (1,1 1
60‘. (Poz. (s)) = Pa. (s) aa. (Poz‘. (s)) = Pa. (s)
i i i i i i
fori=2,3,4 for i =1,2,3
a) b)
(0,0,0,0)
(1,1,1,1) O'
(1,1,1,0) (1,0,0,0)
( ) LLoO O
Figure 5.2.2: TIllustration of Example 5.2.1.
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Iai = {ai}, for i = 1,2,3 and IOL‘+ = {a1’au}' This structure is not
reduced since L(@ah) = {aq}g; {al,aq}.

5.3 Structured Partial Models

We consider here the family F of all function from S to S',

(s,8")

where S and S' are structured sets.

We will refer to {S,S',f) as a system, where fcF We shall

(s,8")°

now explain what is meant by a partial (structured) model of {S,S',f).

Definition 5.3.1

Given a system (S,S',f), (SI,S;,f> is a partial model of <5,S',f)

if
a) S1 Cs
b) 8! =5
¢) f:5, > s! 0

We will refer to <SI,S;,§> as a model of <5,S',f> just in case

S, = 8. We will seek partial models with f = f[Sl.

Definition 5.3.2

S.,8',f) is a structured partial model of <5,S',f) if {S.,S8', £
11 1°°1

is a partial model of {S,S',f) and if f is a structured function. O

We will then refer to a structure of f as a partial model struc-

ture (structure of a partial model).

We are going to seek reduced structured partial models, namely
partial models of the form (SI,S',f>, where f is in reduced form.

The notation we will use here is‘analogous to the one introduced

in Chapters 3 and 4. Thus with S and S' as described before and f a
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function from some subset X of S to S'

Eféxé,) denotes the set of all extensions f of f
’

to S s.t. fEF(S,S')

féxé )({L }BED"') denotes the set of all extensions f of f to S,

such that LBEL(PB'f)

féxé )(C:{L ) denotes the set of all fEEfé?é,) s.t. for all
BeD' A an Lg C Lg with LBEL(PB-f).
Efé?;')(.’{ubB}BeD'> denotes the set of all fEEfé?;') s.t. for every

B @ an Loel(Pyef) with ]LB! < ubg.

Similarly, F ({L,} PREDE(X) ({L,}

x5 Fex,sm) hglgent ) (s,s")* B Ben' )
etc. are defined. Again sometimes the notation will be shortened, when

the intent is clear.
As in Chapter 4 we define a probability space

F(S S') IAI
’ ,P>, where for every AcF iv» PA) = ——m88 .,

The various concepts introduced previously can be readily ex-

<F(S,S'>’2

tended to structured functions, relative to just introduced probability

space. Thus we will define confidence in the following way.

Definition 5.3.3

Let X CS and let f:X > S'. Then for any family L = {L,}, _,,
= B BeD

where LB C D, for all BeD', and any family of integers UB = {ubB}

BSD',
where 0 < ubB < o]
£(X) _ ) X .
CONF(S,S.)(L,UB) = P(actual feF(S’S,)(L, )| actual fEE(S’S,)( ,UB)). O

When ubB =n = IDI holds for all B, we will denote

£(X) £(X)

CONF(S’S, (s,s')(L)'

)(L,UB) by CONF
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Proposition 5.3.1

Let X& S and let £:X > S'. Then for any family

= . ! i = 1
L {LG}BED"IB C D, V Ped', and any family UB {UbB}BED' of integers,
0 < ub, < |p], }
EEX (L, um) | -

(s,8") e nE(X)

X if E o ary(*5UB) # ¢
CONF v (L,UB) = (s,8")*

(s,s") p
0 otherwise
Proof
Almost identical to the proof of Proposition 4.2.1. o

Remark

1) We note that for an irredundant subset X of S and any function

T(X)

": 1 = p '_ =
E:X > S' such that Ly = L(Pg-®) and |Lg] ubg, CONF (g g

({LB},{ubB}) is

equal to either 0 or 1.

2) For arbitrary X and S if L is a structure of f, f:X + S' and

(%) £
(s,s’ @s,s") P

holds. O

UB is such that 'LB! < ubB for all LB€L, then E )(L,UB) = E

Roughly speaking, we showed in Chapter 4 that in case of non-
structured codomain, confidence in structure of functional restrictions
had an important property of being nondecreasing with an increasing
domain size.

When we deal however with structured functions the above property
is in general not necessarily preserved. As a matter of fact structure
preserving extensions do not always exist in the structured case, as
they do in the nonstructured one. Therefore as we go on experimenting

and construct a sequence of partial models, our confidence in the
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structure of a "later" partial model may be smaller than in the struc-
ture of an earlier one. As we will prove later the mentioned property
will hold however, when S' is Cartesian.

This is made more precise by the following example.

Example 5.3.1

Consider S = {0,1}3 - {0,1,1}. S is irredundant but not Carte-
sian,

Let X, and X, be the following subsets of §:
X, = {(0,0,0),(1,0,0),(1,1,0)} and X, = X, U {(1,1,1),(0,1,0),(1,0,1) }.
X, is irredundant, since R}3(Xl) = {0} is constant and P{al’az}(xl) is
irredundant. We will now prove irredundance of Xz' X2 can be written
as the following union:
X2 = {(0,1,0),(1,0,1)} {¢0,0,0),(1,0,0),(1,1,0),(1,1,1)} = ZILJ Z,-
We first note that for every aeD d an xa322 s.t. XaHa(O’l’o)' Also
for every o0eD 3 an xugzz s.t. xana(l,o,l). Since Z2 is irredundant

(as a minimal independent set), II. U Hb = T holds on ZI!J Z, for all

Dl 2

D1’D2g D with D, N D, = ¢.
To prove irredundance of Xz’ we still have to show that for any

X X .
€D, any Dl,Dzwith Dlﬂ D2 = {a}, H{é}sl'%f U l'LDz This follows easily

by inspection, since Z, is irredundant. So X2 is irredundant. We note
that § = X, U {(0,0,1) }.

Let S' =S, D' = D and let %2 be a function from X2 to S given by
the table of Figure 5.3.1. We will denote by fl the restriction of Ez

to X Then L(F&

l-fl) = {o}s L(Paz-%l) = {a,} and L(Paa-fi) = ¢.

Thus L, = {{al},{az},¢} is the reduced structure of fl. One of the

10

structure preserving extensions of fl to S is given by g, of
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X Fz(x)

p
(0,0,0) 0,1,0)
(1,0,0) (1,1,0)
{ (1,1,0) (1,0,0)

X
2
1,1,1) (1,0,1)
(0,1,0) (0,0,0)
\ (1,0,1) (1,1,1)
a)
S gl
(0,0,0) (0,1,0)
(1,0,0) (1,1,0)
(1,1,0) (1,0,0)
(1,1,1) (1,0,0)
(0,1,0) (0,0,0)
(1,0,1) (1,1,0)
(0,0,1) (0,1,0)
b)

Figure 5.3.1: Tables of Functions of Example 5.3.1.
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Figure 5.3.1. It can be readily verified that the reduced structure of
g, is indeed equal to that of fl and g S > S.

We find the reduced structure of fz to be L2 = {{al},{az},{aa}}.
There is just one possibility of extending ?2 to S, while preserving the
structure: namely to map (0,0,1) into (0,1,1). But (0,1,1) is not in

S and so there is no structure preserving extension of Ez to S. Thus

£ (:xl) £,(X,)

CONF & 1 (4.sh L = 0. 0

(Ly) > 0 while CONF

For the remaining part of this section we assume that S' Cartesian.
This assumption is a very important one, for we show that in this case
we may carry over our results from the nonstructured case. To do so we
first prove the following: given any subset X of S and any function f,
f:X ~ S', the number of extensions of f to S with a given structure {LB}
is the product of the number of extensions to S of PB'E with location

LB’ taken over all B in D'.

Proposition 5.3.2

Let SC >K:Sa be irredundant, S' = ;Xi S and let f be an arbi-
0D BED'
trary function, f:X + S', where XC S. Then for any {LB}BED’ s.t.

Leﬁ; D, V B, and any {UbB}BED'

(P -£) (X)
f(X)
({Lg, {ub })—XE (L,,ub,).
B(s,s") ARG
Proof
1) Let feEE(X) ({L_},{ub.}). Then clearly P *f is a function
(8,s") B’8B B
from X to P,(S') = S!. Also L.elL(P,-f). £ = ;KC P +f and obviously
PB'f is an extension of PB-f. Clearly A fBeL(PB-f) with |£B| < ubB.
PB-f(X)
So for V BeDd', Pg'fEE(S,Sé) (LB’ubB)’ which implies that



P F(X)
fe)K: E (Lgsubp).
BeD' (S Sg) B B
€D B P
F(X)
2) We will now show that for every fegzng(S’qB) (LB,ubB),
F(X)
feh(s 5t )({LB},{ubB}). i
PB-f(X)
f= é:%'fs, where fBEE(S,Sé) (LB,ubB). So clearly PB'f = fB and
L, = L(P,-f) holds. f,|X =P, f =>f|x = (>( f )IX >< (£,]%) =
>K: (P f) = . Also since §' = ;Xi S' f:S > 8'. So
BeD' BeD!
fEEié?é')({LB}’{UbB})’ which completes the proof.

With the result of Proposition 5.3.2 in hand we will now show
that confidence in a structured case can be expressed as a product of

"component" confidences.

Corollary 5.3.1

Let S be irredundant, S C::X:S and let S' = :XQ S' Let XC S
a€eD BeD'

and let f:X > S', where {LB}BED' is a reduced structure of f.

Then for any {ubB}B D'

(Pg ) (%)

(1) CONFE(X) ({L by {ub H = TT CONF (LB,ubB).

(5,5") g s, 54)

Proof

(See Proposition 5.3.1.)

£F(X)

a) E(S,S

,)(',{ubB}) =0& A £S5+ 8" s.t. £f|X=F and for

V BeD' ¥ an iBEL(PB'f) with Iiel < ubB. It follows from Proposi-

P T(X)
tion 5.3.2 then, that d BeD' s.t. A f.cE 3 vy (*,ub,). But this im-
B (S,SB) g

(LB’UbB) = 0. Thus (1) holds in

ParE(X)
plies that d a BeD' s.t. CONF '
(S’SB)
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this case.
= P, T(X)
£(X) g’
b) For E(S,S')( {ub }) # ¢, (S SB) (*,ubB) # ¢ holds and
¥ ’E%(X)v ({L,},{ub })I
conrE ) ({1}, {ub,}) = (S8 " 7B B
(5,8")" "8 B (%)
, (S g' )( ’{Ub })[
PB-?(X)
BED.IE(S,Sé) (LB’“bB)I PB.E(X)
= CONF(S ) (Ls,ubB).
*{—‘- I P f(X) [ BeD' *7B
E (-,ub,)

This follows again from Proposition 5.3.2. (Note that

T . - - i -
E(S,S,)( ,{ubB}) = {£|£f|X = F and IL(P £)| < ubg, V B} =
\J e g = U (XE (Lgr1)) =
(5,8") "B v (5,8%) 8’
{LB}BeD' L@}S cpt BED B
]LB{-ub [L,ifubB
P.-f
[4 B . .
B>€<D' (p I:(S,SL',))(LB' )I >€§.E(S SB) ’ubB)') t
B
[LBISUbB
Remark
In case IubB! = |D| = n for all ReD', and {LB} is a structure of f
£(X) _ o-{s]=1P )Y - (Jx]-|P, O} Ol
CONF(S’S,)({LB}) = !_T:‘SB’ Lg L .
D
Theorem 5.3.1
Let S Q;;Kis be irredundant and let S' = :X< S' Then the
aep & BeD'

following hold.
a) Let XC S and let £:X > S'. Then for any {iB}BeD' s.t.

fBEL(PB'f), vV B, if {ubé} and {ubé} are such that
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IEB, < ubé < ubé holds for V B

£(X)
(s,s

= 1 £(X) = 2
CONF ,)({LBJ,{ubB}) < CONF(S,S,)({LB},{ubB}).

b) Let X,,X, be irredundant subsets of S, where ¢ # X, € X, holds.

c)

d)

a)
b)

c)

Let §2:X2 + §' and let fl = lexl. Then with

L1 = {L(PB-fl)}BeD, and L2 = {L(pB.EZ)}BED'

CONF

IA

fl(Xl)(L ,UB) coNFfZ(XZ)(L ,UB) holds for any
1 2

(s,s") (s,s")
. . = S 5 .
family of integers UB {UbB}BED' s.t. 0 ubB n, provided

- f < T
that if ]L(PB £)] s ubg holds then IL(PB £ < ubg holds.
Let X be an irredundant subset of S. Let f:X * S' and let

L = {L(PB-f)} Then for any UB = {UbB}

BeD'”

£(X)

<
CONFkS’S,fL,ub) S CONF(S,S'

)(L,UB).

Let X be an irredundant subset of S. Let f and g be functions
from X to S', where L(PB-f)€; L(PB~§) holds for all ReD'. Let
Lf and Lé denote the reduced structures of f and g respec-

tively. Then

B o o < conB® (1
CONF(S,S,)(Lf,UB) s CONF(S,S')(Lg’UB) holds for any
family UB = {ubB}, provided that if [L(PB-f){ < ubB then
éL(PB'é)[ £ ubB, holds for V RBeD'.

Follows directly from Propositions 4.2.2 and 5.3.2.
Follows directly from Theorem 4.2.1 and Proposition 5.3.2.
Follows directly from Proposition 4.2.3 by applying Proposi-

tion 5.3.2.

d) Follows from Propositions 4.2.4 and 5.3.2. O
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In case of structured functions we define an average confidence
for an irredundant subset X of S in an analogous way to that of Chap-

ter 4. Thus for UB = {ubB}BED'

ZUB is a random variable, > TR, defined by

2uiF(s,s")

£]x

ZUB(f) = CONF(S,S')

(STR(fIX),UB), where STR(fIX) denotes the reduced

structure of fIX. (This structure is unique, since X is irredundant.)

Then ACONF%S’S,)(UB) = E(Zy,|uB) = :E: P(f|UB) -z

fEF(S,S')

It turns out that average confidence can also be expressed as a

UB(f).

product of "component" average confidences.

Proposition 5.3.3

Let S §;>X<Sa be irredundant and let X be an irredundant subset

aeD
of S. Further let §'= :Xi S,. Then for any UB = {ub,}, _,
ACONF?S,S,)(UB) = g;l:ACONFﬁs’Sé)(ubB).

Proof

It follows from the definition that

ACON (S,S')(UB) =

! £]x
CONF, .~ yy ({L(P,  £]X) },UB) =
,F(S,s.)(-,UB)I feF(S’S.)(-,UB) (s,s") B
P -£|X
1 ( :E: ]-T CONF(S,SJ)(L(PB'fIX)’ ubB)) =
;;I,IF(S,Sé)("“bg)} feF (g gry(*»UB) BeD 8

1

J;lv lF(SsSé) (ubR)l fBEF(S,SB‘)(UbB) BED'
V Ren’

a )
CONF(S,Sé)(L(fBlX),ubB) -
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1 f,]x
1T r (ub,) ! 2 CONF 5 51 (L(E ) b)) -
BeD' s, S | BeD fgeF (s s v ) B

1 fle

@ CONF (¢ <1
Al fa(s,55) 09 ’

QD' ACONF(S’S )(ub : O

E (L(fBIX),ubB))) =

ReD (s,s

We are now ready to show that results of Propositions 4.2.5 and

4.2.6 carry over to the structured case with obvious modifications.

Theorem 5.3.2

Let S C ><Sa be irredundant and let S' = >< S' Then the
0ED BED'

following hold.
a) Let X be an irredundant subset of S and let UB = {UbB}BeD'
be given. Then

ACON (S,S')(UB) =

(- 2 )l (s,5") (STR(E) I)/( )E-fs,s.)(gUB)),

F .
EF(X,S')( »UB fEF(X g )
where STR(f) is the reduced structure of f.
b) Let XI,X2 be irredundant subsets of S, where XXC; X2 holds.

Then for any UB = {ubB}BED'

X,
ACONF(g g )(UB) < ACONF(q g )(UB).

Proof
a) The proof of this is analogous to the proof of Proposi-
tion 4.2.5, when Corollary 5.3.1 is applied.

b) Follows directly from Propositions 4.2.6 and 5.3.3. 0
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The bounds for average confidence function can be readily computed
on the basis of Propositions 4.2.7 and 5.3.3.

The important property of average confidence, which we were able
to prove is its monotonicity with increasing data set size.

Thus as we enlarge our experimental domain subsets, the trend will

be to increase our average confidence.

We now turn to the topic of prediction making in structured case.
Suppose that we know the actual function f on X, a proper subset of S.
We would like to predict as much of f on S-X as possible. We do not
want to do it randomly, but use the information we already have about f
as a basis for our predictions. We will proceed in the following way.

If f is the restriction of f to X and L = {fB} is a reduced struc-

- ~ L
ture of f, we will define a function fL from (ﬁw COMPLSB(X) to S' in the
AL /\L /\L BSD' -
following way: f = :X( fB’ where f8 is the unique extension of PB-f
- BSD' '

L
to (F} COMPL B(X) with location L,. (See Lemma 3.3.1 and Corol-
BeD' X ;

lary 3.3.3.) Since S' is Cartesian fL is well defined. fL is our pre-

L
diction of f to (’\ COMPLSB(X) and it satisfies the following heuristic:
BeD'

1) Any guess at f ought to agree with the observed portion of

£ (2Hx = D).

2) Any guess at f ought to have a structure so far estimated for
- AL
L.el(P,.£7)).
£ (Lg <8 ))
3) We are justified in guessing at point in S just when our guess
is uniquely determined by imposing requirements 1) and 2), i.e. when

our guess is constrained by so-far-acquired data.

L

SB(X) is the largest subset of S with

We note that (ﬁw COMPL
BeD'
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L
property 3. This follows from the fact that COMPLSB(X) is the largest
P.-f
8 f

subset ZB of S s.t. for every fBEE(S,S

é)(iB), fB|ZB ii unique. (See
i
gection 4 of Chapter 4.) We will refer to (h\ COMPL "~ (X) as an

_gen _
explanatory range of f, denoted by EXPLféxé,)(L). EXPLféX;,)(L)—X is
£ (X . :
denoted by PRED(é%é,)(L). PCONF(é’;,)({LB},{ubB}) is defined analo-

gously as in Chapter 4.

We remark that our prediction making approach is quite different
from the usual one. The main difference being the concept of predictive
range. In usual view of predictions no distinction is possible between
points at which prediction is systematically determined by acquired data
as opposed to points, at which prediction is not truly constrained by

the data.

Proposition 5.3.4

Let ss;,;Xis and S' = ;X< Sy  Further let X be a subset of S
o v B
oeD BeD

=, . - )
and let f:X -+ S', where fSF(X,S')( ,UB).

Then for any structure {iB}BED' of f
£(Y)
T — IE 1 (,UB)l
a) pCONFL®) (T },uB) = —(S,8") , where
|E(S,S')(.’UB)I

Y = EXPLfS S')({EB}) and f is a unique extension of f to Y
]

with a structure {EB}.

b) If ubB = n, for all ReD'

£©(x) -
E() PR 5y (gD

PCONF(S,S,)({fB}) = |s']



Proof

Identical to that of Proposition 4.3.1. ]

We thus showed that the greater the predictive range the (expo-
nentially) smaller the probability of being correct. But note that
every misprediction on the predictive range is informative--it invali-
dates the hypothesis that the actual f has structure {iB}, and so
forces us to increase at least one component location (in case X is

irredundant).

5.4 Strategies for Experimentation

In this section we will apply our results to finite autonomous
discrete time systems. Those systems are time invariant systems of the
form {8, ), where S is a state space of the system and § its state
transition function (a map on S). A system ¢S,8) evolves in discrete
time, so that for any state s and any time t, §(s) represents the state
of the system at a next time step. Such a system is a special case of
a system of section 5.3 (because the domain and codomain sets are same,
S =28").

The interpretation of a partial model of {S,$) and structured
partial model of ¢5,8) are clear.

We will propose here several strategies, which a modeller might
follow during the experimental process. They are divided into non-
adaptive and adaptive classes. In non-adaptive strategies the seguence
of test sets is fixed and experimentation consists of transition acqui-
sition for the successive sets until a given structural confidence level

is achieved. For this purpose we employ YK (or XZ) sets because of



their desirable properties, in particular the computational ones. The

disadvantage of the Yi sets is their exponential growth, which limits
the feasibility of their use to relatively small k. The YY sets may

k

still be useful however, since models with relatively small interaction
are sought in applications.

In adaptive strategies, the sequence of test sets is determined
on the basis of prior experimentation. Here the problem of generating
a minimal irredundant set, which includes a given set arises. Although
no fully satisfactory solution has been obtained, we shall assume that
given a subset X, it is feasible to generate a 'reasonably" small irre-
dundant set containing X (actually an irredundant subset of X would also
work in the following strategies).

We assume now that any data point can be generated for the system
being modelled. This for example can be achieved, when many identical
copies of the system are available. This also will be the case, when
an expression or a formula for transition function generation is avail-
able, but actual generation is done on demand by a computer program.

Or simply, when all data has been collected and stored in memory in a
form suitable for table look up.

The existence of feasible algorithms for location determination
is also assumed. Some initial thought has revealed that these algo-
rithms are strongly dependent on the order of coordinate testing. It
will be important to investigate the computational aspects of this
process before implementation of the suggested strategies is attempted.

We assume that the state set of our system is Cartesian.

The following strategy is non-adaptive. It employs once-and-for

all computation.
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Strategz 1

We assume the desired structural confidence level C is given,
For k = 1,2,...,n~-1 we compute a minimum confidence on Yz,mk. We then

find a minimum k, for which m 2 C holds.

We note that the {mk} can be computed once-and-for-all, and a
change in C will simply result in a different miminum k. All the compu-
tations are done prior to any experimentation. If a k as above exists,
we generate the Y{ data and whatever the reduced structure of our par-
tial model, the confidence in it will be high enough.

In another variant, upper bound information on location sizes is
assumed given. This further increases feasibility (since m will be
higher for every k) and makes system identification with confidence 1
possible.

The following strategy is non-adaptive. It employs a stopping

rule based on achieved confidence.

Strategz 2

Again we are given a structural confidence level-C to be achieved.
We start with YZ, find the reduced structure of the partial model and
compute the confidence in it. If this is high enough (that is at least
as large as C) we stop. At this point we know the system structure with
given confidence. If the confidence is not high enough we go to YZ and
repeat the process.

In case Yz—l does not give us high enough confidence we may use
any superset of it for structure and confidence computation. This is
possible because every superset of Yz—l is irredundant (see Remark fol-

lowing Corollary 3.4.2). Hopefully the required level of confidence is



16l

achieved before the entire state space has been covered.

We note that strategy 2 may be applicable even when strategy 1 is

not. Of course, if Yi data need to be generated for strategy 2 and
2

Yz for strategy 1, then YZ c Yi will hold (assuming equal specified C
1 2 1

values). A variant of this strategy employs average structural confi-
dence to guide us in an initial choice of k (here we always start with

k = 1). Although this might lead to unnecessarily large Yi in our par-

ticular case, we may avoid several iteration steps (recomputation of
partial models and confidences in their reduced structure).

The following strategy will lead to finding the system structure,
when an upper bound on its complexity is given (smaller than the car-

dinality of the index set).

Strategy 3

We assume that all locations are smaller than or equal to k in
size, where 1 £ k £ n-1, and we want to find them.

Version 1

y

We generate Yk

data and find a partial model structure. This is
a structure of our model. Also the state transition function of our
system can be identified if necessary.

Version 2

y

In this version, rather than generate the entire Yk

set we proceed

in the following way.

n

Let LI,L .,Lj be some enumeration of <k> subsets of D with

2’00

cardinality k.

We set La = ¢, for all o in D. For i = l,...,(E) we do the fol-

lowing.
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For every o in D we compute L(Pa-gi), where 6i is the transition
function on X{i. We set L, = LaiJ L(Pa’gi). If ILal = k, we set
D =D-0 and go to the next & in D. If a) D= ¢ or b) i = (E) we are
done with {La} the desired model structure. If not we go to the next
i and repeat the process.

Version 3

We assume an enumeration Ll,Lz,...,L, as in version 2. Let

Z, = 9. For i = 1""’(2) we do the following.

= y
2 =2 VX
i
For every 0€eD we compute La = L(Pa'éi), wnere Gi is a transition func-
tion on Z,.
i
If ILa] =k, set D = D~0 and go to the next ¢ in D. If a) D = ¢
or b) i = (E) we are done with {La} the reduced structure of §. Else

we go to the next i and repeat the process.

What enables us to find locations in this manner is the fact, that
Ty Uy 3 Ty
L(SlXth) cee XLj) = E:{L(GIXLi). (Proposition 3.2.3.)

While all the versions of strategy 3 lead to finding the reduced
model structure, in the last two versions we might not have to generate
the entire Y{ set. This might for example happen when L(PG-S) are all
same and have cardinality k.

The essential difference between versions 2 and 3 is, that while
in the latter we are finding locations on the union of X{' sets, in the

i
former we are taking the unions of corresponding locations. Efficiency
of version 3 is strongly dependent on enumeration assumed. In version 2

a number of points to be compared at every step is step independent,

which is not true in version 3.



163

Version 2 seems to be more efficient than version 3.

The next strategy is adaptive in the sense that we do not proceed

in a fixed way with data generation (as was the case till now).

Strategy 4

A desired structural confidence level-C is given. We start with
an arbitrary subset X, of S. We construct a Y1 = IR(XI) - a minimal
irredundant superset of X, and generate data for it. We then perform
structure and confidence computations on Y,. 1If the confidence is high
enough we are done. 1If not we pick an arbitrary subset Z, of points of

S (outside of Yl). We set X2 = YllJ Z, and repeat the process.

At every stage we may use increment sets-Zi with same cardinality,
say p, or vary the size at every set generation.

In a variant of the above strategy we do not attempt to construct
irredundant sets at every stage. In this case however, all possible
minimal structures may have to be computed. Moreover if c, denotes a

maximal confidence on Xi’ we are not assured that c,

2 .
i+l ci holds

The following strategy is adaptive and is analogous to the usual
cycle of testing and modification often used in scientific modelling.

We will employ here our predictive concept.

Strategz 5

We start with a small irredundant subset X1 of S (this could be a
minimal set of Proposition 2.3.2). At cycle i, we find the reduced
structure, STRi, of § on Xi' (§ is the transition function observed

on Xi')
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Starting at an arbitrary state in Xi we generate a trajectory em-
ploying 8 until either a) a predicted state along the trajectory does
not match the corresponding experimental state or b) we reach a state
in which 8 is undefined (8 is the prediction of our transition function)
or which has been previously visited (indicating a cycle has been en-
tered into). In case a), we add the states generated along the trajec-—
tory until mismatch, to Xi and set the new Xi+l to a minimal irredundant
set containing Xi and the added data, then we start cycle i + 1. 1In
case b) we select a new point in Xi to initiate trajectory generation
and start cycle i again.

As long as we remain in cycle i the structural confidence is

increasing. This follows from Remark following Proposition 4.2.3. If

we wish, we can stop when a prespecified confidence level has been
tNXQ
(8,5)

to a minimal irredundant set properly containing

achieved. If we exhaust PRED (STRi) before attaining this confi-

dence, we set Xi

5(X,)

i .
Xi\J PRED(S,S)(STRi)' We then start cycle i + 1.

+1

Now note that the sets XI,XZ,... form an increasing nested se-
quence so structural confidence is nondecreasing in this process.

Since the structural confidence cannot stabilize at a "false
peak', it must eventually increase to any preset level. Alternatively,
we can employ the heuristic rule: stop when the structural confidence

computed does not change for a "long enough time".
A variant of this strategy does not employ § for a trajectory
S(X,)
generation. Rather we pick subsets of PRED(S é)(STRi) for comparison

of our predictions and experimental values.
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Notice that in the above strategy we employ our predictive concept
to orient experimentation towards tests of the hypothesis: '"the actual
system has the same influencer set as our partial model". Every mispre-
diction is informative in the sense of requiring an extension of at
least one influence set.

Finally, suppose that a modeller is interested in determining
whether there exists a structured model of the system in j-class, i.e.
such that every influencer set is smaller than or equal to j in cardi-
nality (j £ n). The necessary and sufficient conditions for excluding
such a class on the basis of partial experimentation are not available.
This results from the fact, that adding even one data point to a set
may considerably enlarge location sizes.

We will explain next a strategy for excluding j-class of models

(the sufficient conditions for such an exclusion).

Strategy 6

We start with an arbitrary irredundant subset X of S. We find a
partial reduced model of the system. If this model is not in j-class
there is no system model in this class. Otherwise for every o in D do

the following. With {La} a reduced structure of a partial model, make

L P - 5(X)

the prediction ga of Pa'é to COMPLSG(X) = PRED, 2

(5,5,) (La)U X. Let

Ly = {L|LED, |L| = 3, and L 2L}, For every L in L , we form
L
COMPLS(X). If for every LeLa there exists a point of disagreement in

L
COMPLS(X) between the predictions and experimental data, lL(Pa'd)l > j
and we stop. The model in j-class has been excluded. (This follows

directly from Proposition 4.3.2.) If not set D = D-o and go to next o.
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If D = ¢ and the j-class model has not been excluded yet, we may
try the same method on a larger subset of S. (In the process though,

our confidence in existence of a model in j-class has increased.)

The above strategies do not exhaust all the possibilities. There
are many variants of them involving minor modifications. However, we
feel they illustrate the spirit, in which the theory developed can be

used to aid the experimental process.



CHAPTER VI

CONCLUSIONS

6.1 Summary

In this study we considered the problem of modelling autonomous
discrete time systems with structured state spaces, on the basis of
partial data; special emphasis was placed on structure inference and
identification.

We first developed the theory of coordinatizations of abstract
sets. We pointed out the importance of irredundant coordinatizations
and their ramifications for modelling enterprise. Ways of irredundant
set generation and criteria for irredundance were set forth.

We then studied properties of functions with structured domains.
In particular the relation between locations of function restrictions
to a sequence of nested subsets of a function domain has been explored.
Also the construction of extensions with given locations has been
studied: a method for their enumeration was given.

Ways of constructing special Cartesian domain subsets have been
proposed to be used for structure identification. The computational
properties of those subsets and their relative sizes have been dis-
cussed.

A notion of structured partial models has been formalized and
several measures of model performance introduced. Structural confi-

dence, predictive range and predictive confidence for a partial model
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were defined and their properties and dependence on parameters analyzed.
Furthermore, we showed how to compute the above measures. A methodology
for predicting state-transitions not yet observed was proposed, whereby
predictions are constrained by so-far-acquired data.

Finally, based on the theory developed, a number of strategies
for experimentation was proposed. Their advantages and drawbacks were

discussed at some length.

6.2 Suggestions for Further Research

Several topics for further research emerge from this study. Con-
siderable amount of work remains to be done in the area of algorithms
for location determination. It is of interest to investigate their
complexity as well as various computational trade-offs between multiple
location determination and irredundant set generation.

To this end one has to seek an algorithm for a minimal irredun-
dant superset generation. Since the solution of the above will most
certainly depend on the type of coordinatization involved, the hierarchy
of coordinatizations should be further investigated. More specifically,
new sufficient conditions for moving up the hierarchy should be sought.

Also more research is needed to elucidate the relationships be-
tween properties of a coordinatized set X and corresponding properties
of its graph-theoretic representation.

Once all of the above is accomplished,the development of an inter-
active computer package to aid modelling efforts would become feasible.

Finally, we suggest that the theory and methodology developed can

be extended to I/0, nondeterministic and stochastic systems.



APPENDIX A
TRREDUNDANCE OF CERTAIN R SUBSETS

In general the result of Example 2.2.4 cannot be extended to hold
for a convex subset with a nonempty interior. This is illustrated by

the following example.

Example A.1

Consider S a subset of IR? as in Figure A.1 a). Then S is clearly
convex and Int(S) # ¢. But S is not irredundant. This follows easily,
since for the point p of S as indicated in Figure A.1l a),

[p] ¢ = [p] S={pL Clearly then, run #I. O
. o, o

II 1 2

We will show however that every subset Sn of’mp, where

n
8§ = {(pl,...,pn)lpi 20, Vi, ;g;pi < 1} is irredundant.

Lemma A.1
n

Let Sn = {(pl,...,pn)lpi 20, Vi, and ;g;pi £1, PiEE{}‘

Then Bnd(Sn) {(pl,...,pn)lfii s.t. p; = 0 or :§;pi = 1}.

1:
Proof
We will identify the Int(Sn) and Bnd(Sn).

n
1}.

Let F = {(pl,...,pn)l q1is.t. P, = 0 or £ Py

We will show that Bnd(Sn) = F.

First we show that F Q}Bnd(Sn). We will use here the Euclidean
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n
1
metric on [Rn, namely d(x,y) = (E ;(xi—yi)z)i, where
i=1

x= (x)" andy=(y)"
1=1 i=1

Let x%€F be given. To prove that xeBnd(Sn) we need to show that
for every ¢ > 0, 4 a ps:]Rn s.t. d(x,p) < &, but p¢Sn.

Choose any ¢ > 0. Let € be any positive number s.t. € < €.

a) dan i, s.t. x, = 0, say io' Let p be a point defined by

X i# i,

py = . Then pio < 0 and so clearly ptSn.
- i=1,
Also d(p,®) = ((-9D% = £ <. So xeBnd(S).

n
b) ’,ﬁ i s.t. x, = 0, but zxi = 1 holds. Pick any i,, 1 = i, < n.
l=

X, ia‘i0

Let p be a point defined by P; =

n
Then 2p. = Zx, +¢e¢=1+¢>1. So pfS. But d(p,x) = £ < e
=1t =1t

Thus xeBnd(Sn) .
So F C Bnd(Sn). To show that Bnd(Sn) C F, it suffices to show

n
that every point xeSn s.t. X, # 0 for all i and X, 1 is an

i=1
interior point of Sn'
Let x as above be given. To show ernt(Sn) we need to show that
de>0s.t. {pldlp,x) <€} C 5 .

Let € > 0 be such that X, - g > 0 and x5 + g; < 1. For every i,

such € clearly exists. Let £>0 be such that i:xi + nf€ < 1. Since
i=1

in < 1, such an £ exists.
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Finally, let € = min(minﬁi,g). Then X, - € > 0 and X, + € <1
n i
holds for all i and :E:xi + ne < 1 holds. With £ so chosen we show that
i=1

{p|d(p,x) < g} g;sn. Let p be such that d(p,x) < €. This clearly im-

plies that ]xi—pil <g, Vi, i.e. that X, - €<<pi < X, + € and thus that

j1 n
Py >0, Vi. Also i};ipi < iz_;(xiﬂ:)

A

1. So clearly pESn. We showed

then that if x¢F, ernt(Sn) and so F Bnd(%g. We also showed here that

Int(S) # ¢. a

We are now ready to prove that Sn is irredundant.

Proposition A.1l

n
Let S _ = {(pl,...,pn)|pi 2 0 and :E:pi < 1}. Then S is an irre-
i=1

dundant subset of m?.

We note that Sn is convex and Int(Sn) # ¢ is also convex. Thus
Int(Sn) is irredundant. (This was proved for any open convex set in
R".)

1) Induction base

n=2. We show that § = {(pl,pz)[p1 20,p,20andp +p, <1}
is irredundant. This is clear from Figure A.1l.b), since for every
point p of S - {p!,p?,p3} 4 an ernt(Sz) s.t. pHalx or pHazx holds and
Int(Sz) is irredundant.

2) Induction hypothesis

We assume that Sn—l is irredundant (n 2 3) and show that this

implies irredundance of Sn'
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L P
I
i S
|
)
!
L Otl
S 1s convex, Int(S) # ¢, but S is not irredundant
a)
a
2 A
o
plﬂa x1 s pZHa x2 s pSHOL x2
1 2 2

A convex set 82 is irredundant

b)

Figure A.1: Irredundance of Convex Subsets of rRz,



173

Let D ,D, be arbitrary subsets of D s.t. D, N D, # D and

- b
D, J D, = D. We have to show that HDlﬂDz UDIU HDZ.

Let x,yeSn be such that xII We want to show, that

»,ND,”"
. U I y.
Dl DZ

n - _ A A
a) 3 an 1 eD, 11 D, s.t. Xio yio 0. Then X,¥€8 5 S - S

where PD—io (Sn) = Sn-l and Pio(sn) = 0. But Sn— is irredundant by

1

induction hypothesis, which in turn implies irredundance of én' So

xHDIU HDzy holds.
b) 4 1eD, 1D, s.t. x, =y, =0, i.e. x, =y, >0, for VieD, (] D,.

If z X, = E : y. = 1 holds then y, = x, = 0 for all i€D-D, N D,
. i i i i
1eD1ﬂD2 ieD, N D,

and x = y, in which case we are done.

So we need to consider only x,y with xII y such that

D,ND,

§:x,= z:y,<1andx.=y.>0,Vi€DﬁD.
. i, i i i 1 2
ieD,ND, ied,N D,

For such x and y however, d a p,welnt(S_) s.t. xI[_ U HD p and
n D, 2
WIIDIU ]'IDzy. This then implies that pH_DlnDzw, and so that
pHD U ]'[D w.
1 2
We will show that p and w as described exist.

For x as above, d a set of numbers €5 such that

n
g = 0 for ViaD1 n D2, X, + e, > 0, Vi, and iz—;_(xi+€i) < 1. That

ei's as above exist can be verified in more detail by the reader. With

X, ieD, Zs + € 1ED—D2
Zi = and p; = ,
Xy + €5 ieD-D, zs ieD,
XHD z and zHD p hold. Further, peInt(Sn). Similarly we show that a w
1 2
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as above exists. (We note that the case D, N D, = ¢ falls into the
last category.)

So Sn is irredundant, which completes the proof.
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