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1. Introduction

Ecosystems, as examples of large scale multifaceted systems, require that
a multiplicity of models be developed since a single all encompassing model,
however desirable as a conceptual goal, is not a practical object. By
decomposing questions and modelling objectives into an ordered structure of
elements called experimental frames (Zeigler, 1976a), useful partial models
may be constructed, validated and employed, each one attuned to a particular
experimental frame. Concommitant with the pluralism of such partial models
is the recognition that models are expressible in different formalisms,
each offering conceptual and computational advantages within its domain of
application (Zeigler and Barto, 1977). But now, in addition to the familiar
activities involving construction and validatién of individual models, there
is required a host of organizational activities aimed at integrating the
collection of models into a synergistic whole. Our belief is that the
computer can be programmed to aid in executing these activities to a much

greater degree than it is doing today.

We have recently sketched a theoretical basis for structuring the organization
of partial models (Zeigler, 1977a). In this paper, we illustrate our approach
by considering an ecosystem example in some detail. After briefly reviewing
this approach, we discuss its application to the patch structured universes
employed by Huffaker (1958, 1963) to study predator-prey coexistence. We show
how the approach facilitates the development of mutually supportive detailed and
abstract models that in conjunction, provide both accurate ecological realism
at one extreme and general insight into the essential mechanisms at work,

at the other.



2. The Ecosysten: Questions of Interest and Models

The problem of predator-prey coexistence in patchy environments has
received much theoretical attention of late (Levin 1976, Hassel and May, 1974,
Maynard Smith, 1974). Most of this work has employed the conventional
differential and difference equation formalism but following on suggestions
stressing the importance of discrete processes (Maynard Smith, 1974), we have
shown (Zeigler, 1977b) that the discrete event formalism and assoclated
simulation languages can provide effective comprehensible explanations
predator-prey co-existence. Also, there have been very few atteupts to fit
the theoretical models to labore ory or field data. 1In contrast, our
general approach is illustrated in this case by our development of four
related models, expressed in either the differential equation or discrete
event formalism, and constructed at different levels of abstraction, ranging
from the most detailed level where close comparison of model behavior with
experimental data is possible, to the most abstract where overall properties

are discernable in a relatively simple manner.

The real system to which the modelling is directly addressed is that
of the controlled universes constructed by Huffaker (1958, 1962). Basically,
tnese consist of spatial arrays of oranges (patches) of controllable nutritional
valu', inhabitable by prey and predator mites,and interconnected by migration
pathways of controllable difficulty. Many other discrete food unit

environments fit this general form.

Our most detailed model, the base model, is of the stochastic differential
equation type. 1In it, the local state (situation on each patch) is determined

by a Lotka-Volterra type differential equation governing the joint food, prey



and predator dynamics; the impetus for emigration and the effect of
immigration are logically determined from the local state (food, prey,
predator); and the migration process is of the stochastic random walk varicly.
This model enables us to identify the parameters of the local Lotka-Volterra
dypnamics from data for single patches. It is not feasible for computer
simulation however, and this motivates the construction of a second model
which is both simulateable and amenable to validation against data collected

from universes in which the effect of migration is at issue.

This (second) model is of the stochastic discrete event type and is
simulated in SIMSCRIPT, a well known discrete event language. The model
keeps track of the same state variables as its predecessor but updates them only
at "event times". The tables required for scheduling events and executing the
updates were derived by appropriately partitioning the local state space and
summarizing the Lotka-Volterra trajectories between partition boundaries. (This
required a once-and-for-all simulation of the Lotka-Volterra equations.)
This technique for representing differential equation models in summary

form as discrete eveunt models is quite general (Zeigler, 1977c).

Our third model in the hierarchy is also of the discrete event type. It
is an astraction of its predecessor, in which the local situation is
represented by a small number of discrete states [empty, some prey, etc.] and
the migration processes are also suitably simplified. Since actual population
counts have been discarded, this model cannot make quantitative global
population predictions. The model lends itself however to convenient

parameter study of persistence and the development of patterned interaction.
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Our last lumped model is of the deterministic different equation type.
It describes the global behavior of its predecessor operating under the
so called "random phase-random space" mode (Zeigler, 1977b). The model
yields simple algebraic expressions for the equilibrium distribution of

patch states and thus explains the form of the dependence of persistence on

migration parameters.

3. Organization of Questions and Models

The integration and organiz-.tion of the above models is achieved

within the formal system sugges.ed by Zeigler (1976a, 1977b). The following

is an informal review of the concepts involved.

We distinguish the following elements:

3
(; -- a collection of experimental frames. A frame E Eéi represenis a

restricted set of questions by specifying the restrictions on experimental
access to the real system sufficient to answer them- Such a frame E determines
a collection of data sets gﬂ (E), such that each

3‘EIQB(E) is an a priori possible result of complete data acquisition within

‘ame E .

=
#& -- the real system, is comprised of the specifi~ data that has been,
or would be, collected by experimenting with the system. Thus j;i associates

with each experimental frame E a unique data set R(E) E@(E) .

O/az —= The domain of possible models. These are assumed to be transition

systems which are specifiable at various levels of structure and behavior and

within various stort-hand conventions such as the sequential machines, discrete

event and differential equation formalismsg.



A full description of these basic elements and the concepts
they embody may be found in Zeigler, 1976, Chapters 2 and 11. 1In a
moment, we shall formulate these elements in the context of patch
structured universes and the experiments of Huffaker (1958, 1962)
in particular. Roughly, the "experimental frames" will encode the
various choices of observables (species counts in patches) and
conditions (initial stocking of species, structure of universe) under
which experiments were run. The "real system” is the data collectablc
by making the implied observations under the given conditions.
Finally the "models" are the various distributed and lumped models which
can be postulated to account for the observed data and to predict the

results of future experiments.
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We can imagine an ideal state of affairs in which for each frame
E € a there is a known model M GJ‘{, which "best" answers the questions
posable in E. By "best" we mean that the model can reproduce without erroi
the data set R(E) in a manner which requires the least consumption of
computer resources. Realistically, this ideal is not realizable after a
necessarily finite span of data acquisition. The dynamics of modelling

concern successive approximations to the ideal.

We formulate the problem as follows: At any time t, the data alrcady
acquired in frame E will be some subset‘}{f(E) g& Ekg(E). Many, perhaps
most frames, will not even have oeen considered. Those that have, form the
subset £;t = {Eljzst(E) # ¢}. Similarly, only a small subsetv}tf of the
possible mmdels_/Lﬁ will have been constructed as potential model candidates.

Thus the state of affairs at any time t is reflected in the triple

&, R, Mo

4, Experimental Frames

Let us examine the elements of the triple at time t = June 1961, the
date of the last observation recorded by Huffaker (1962).

There are four main types of experimental frames. As displayed in
Tavle 1, these types are distinguished by the descriptors "global", "local",
"total", and "occupancy'. The ''global" descriptor refers to the fact that
all cells (locations where an orange or a substitute rubber ball may be placed)
in the universe are being observed. 1In contrast, in the "local" condition,
only some subset of the cells are of interest. The "total" descriptor refers
to the fact the quantities of interest in a frame have been totalled to

produce aggregate quantities, so that only those aggregates are observable

in the frame. .inally, the "occupancy" descriptor refers to the fact that a
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frame permits only the observation of discrete occupancy states, such as
whether or not a cell is empty, whether or not a prey colony has been
established on the cell, and whether there are no, few, or many predators
present.

Table 1 also summarizes the kinds of questions associated with each
frame. The "occupancy" frames are the most restricted, Nonetheless they
permit consideration of persistence of predator-prey relations since to
determine whether there are any prey or predators requires only a binawy
categorization (present/not present) for each cell. At the other extreme,
the "global” frames permit observation of detailed spatial distribution of
species. The "total" frames correspond to classical populations in which
spatial structure has been averaged out. It is evident that certain
frames are potentially more informative than others. In a moment, we shall
formally characterize this fact in terms of the "derivability" relation
(Zeigler, 1977a).

The experimental frames EZ are defined in Table 2. Each frame names a
set of variables of interest, called the compare variables, and a set of
variables determining the conditions under which experiments are to be

performed, called the control variables. The most inclusive frame,

global

food,prey,pred specifies as compare variables: food amount, prey, and

predator population counts in each cell. This constitutes a total of 3N
variables where N is the number of cells in the universe. There are no

control variables for this frame. An example
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Description

food amount and population
variables for each cell

food amount and population
variables for a subset of cells
keeping all others zero

Posable Questions Concern:

Spatial characteristics of
predator-prey, prey-food
interaction
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(degree of abstracticm = 1)

food amount and population
variables totalled over all cells

Space averaged population sizes in
predator-prey, balance of prey-food,
interaction (classical lumped
populations)

monocwmnnwvmwowmw

| d
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(degree of abstraction =

Discrete food and population
states for each cell Empty, some
prey, many prey, some predators,
etc.)

Persistence of predator-prey,
balance of prey-food, interactions;
effect of cell geometry

monncvaO%.wHowmw.nOﬁmw

(degree of abstraction = 2)

Totals of cells in the various

states as given in
mooncvwmo%.mwome

Persistence of predator-prey,
balance of prey-food, interactions
under random phase-random

space ronditicns.




Data Sets in Huffaker Universe
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Expariment

Frame, E Sescrintion Associated Data mmnmmw (E) (Table 3)

Food, prey, predator variables missing
for each cell

mwmmwmwwm /pred Food, prey variables for each
»PLTEY/PTec cell in absence of predator missing
wmwowmk red Tood variable for each cell missing (but partial descriptions of
food/prey,pre in absence of prey and predator the orange replenishment schedules
used are given)
-global,total Totals of food, prey and 58, II(A-I), Figs. 9-18
food,prey,pred predator over all cells 63, 11(3,4), Figs. 3,4
63 1-(4,5,6), Fig. 5
global,tctal .
mmooa re \ red Totals of food, prey over all 58, I(A,B,C) Figs. 6, 7, 8
»PTEY/P cells in absence of predator 63, E-2, Fig. 2
mmwwaHMMOﬂmwma Total of food over all cells
Prey,p in the absence of prey and missing

predator




Table 2 (continuad
Frame

local

mmooauvﬂm%uﬁnmm

local

mmooa,ﬁﬁm%\@nmm

local

mmoqa\@nm%vﬁﬂma

Focd,prey,predator variables
for @ subset of cells keeping
all others zero

Food, prey variables for a
subset of cells in absence of
predator

d variable for a subset of
in absence of prey and

Associated Data Sets wwwﬁmv (Table 3)

L

missing

missing

missing (some very incomplete
description of orange quality
and spoilage rates given)

mwmmwwmwmwmwnom Totais of food, prey, predator 58, II A, TFig. 9
’ ’ variables for a subsct of cells 58, IT B, Fig. 10
keeping all others zero 58, ITI C, Fig. 11
mwoomvaommH
food,prey/pred Totals of food, prey variables for a 58, IA, Fig. 6; Initial Parts of:
subset of cells in absence of 58, IB, Fig. 7
predator, keeping all others zero 58, IC, Fig. 8
63, L2, Fig. 2
monncnmno%vmwowmw . . ;
prey,pred Occupancy states of prey and predator 58, II I, vsig. 18
for each cell 63, T1-(2,4), Figs. 3,4

occupancy,global, total

mvﬁm%.wﬂmm

Totals of cells in prey and predator
occupancy states

computable from:

58,
63,

II I, Fig. 18
11-(3,4), Figs. 3,4



Table 3

Data Elements For Huffaker Universes EQ‘t = 1961)

Data Element Key* Description (as given by Huffaker)

58, IA, Fig. 6 Predators Absent, Slmplest Universe, Four Large Arecas
of Food, Grouped at Adjacent, Joined Positions

58, IB, Fig. 7 Predators Absent, Four Large Areas of Food Widely
Dispersed

58, IC, Fig. 8 Predators Absent, 20 Small Areas of Food Alternating

With 20 Positions With No Food

58, IIA, Fig. 9 Predators Present, Simplest Universe, Four Large Arcas
of Food, Grouped at Adjacent Joined Positions

58, IIB, Fig. 10 Predators Present, Eight Large Areas of Food, Grouped
at Adjacent Joined Positions
58, IIC, Fig. 11 Predators Present, Six Whole Oranges as Food, Grouped
at Adjacent Joined Positions
58, 1ID, Fig. 12 Predators Present, Four Large Areasof Food Widely Disperse%
58, IIE, Fig. 13 Predators Present, Eight Large Areas of Food Widely
Dispersed
58, IIF, Figs. 14, 15 Predators Present, 20 Small Areas of Food Alternating
with 20 Foodless Positions
58, 11G, Fig. 16 Predators Present, 40 Small Areas of Food Occupying
All Positions
58, IIH, Fig. 17 Predators Present, 120 Small Areas of Food Occypying Al
: 120 Positions (Barriers to Migration Added)
58, II I, Fig. 18 Predator-Prey Oscillations, 120 Small Areas of Food
Occupying all 120 Positions (Barriers to Migration Added)
63, E-2, Fig. 2 Predators Absent, Complex 3-Shelf Universe, 210 Small
Areas of Food
63,11-(3,4), Figs. 3,4 Predators Present, 3-Shelf Universe, 252 Small Areas of Fo
63, 1-(4,5,6), Fig. 5 Predators Present, Complex 3-Shelf Universe, 252 Larger

Areas of Food

* (58, IA, Fig. 6) denotes that the data set is presented in Fig. 6 and discussed

in Section IA of Huffaker (1958).
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global

of a frame which has a non empty set of control variables is E
food,prey/pred

whose compare variables are all 2N food and prey variables and whose control

variables are all N predator variables.

In a frame with no control variables, compare variables readings are
recorded against time for the duration of any particular experiment (See
Fig. 1). This yields a time function (aloo called a segment, or trajectory)

which we refer to as a data element belonging to the frame. The set of 3ll

such data elements observable in a particular Huffaket Universe is the data
setiii}E) assigned by such a real system to frame E. The set of all such

possible data sets assignab’: by the possible Huffaker Universe is é)KE).

In Table 3, we have listed the data elements recorded by Huffakexr
(1958, 1962). The collection of these data elements constituteéjE;E the
real system data till time t = June 1961. 1In Table 2, we distribute these
data elements among the experimental frames. The data elements asscciated

. . . t i
with a frame E in Table 2 constitute the subsetk(E) ofR(E), namely, the
data acquired until time t in frame E.

Table 2 displays some frames as having "missing'' data sets. A frame

global

such as Efood,prey,pred

for which this is true is conceivable, i.e., it is

an element ofE;, but up to time t = 1961, no data has been collected for it

1961)  _global
* “food,prey,pred

Il

. o s t .
i.e., it is not an element of é;( is marked as

"missing" because the food amount at each individual orange is not
recorded in the Huffaker experiments, even though certain aggregate utiliza

are.

Although many of the conceivable frames were actually realized in the
Huffaker experiments, in the current modelling effort we found that the
missing frames often contained information which could have been extremely

helpful. Une of the benefits of representation of experimentation in the
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experimental frame formalism is that certain experiments may be suggested
by the logical structure of frame organization which may turn out to be
crucial in later modelling. These might not have been thought of in an

unstructured experimental approach.

In a frame with control variables specified, the above concepts hold
except that the compare variable readings are recorded only so long as the

control variables remain zero. Thus for example in the class of frames

local

denoted by Efood,prey,pred’

each frame specifies a subset of cellis § such
that the food amount, prey, and predator counts of cells in S are the compare
variables, and all other prey and predator densities are control variables.
Data is collectable within such a frame so long as no prey or predators
establish themselves on oranges other than those in S. When S consists of

a single orange, such data give a picture of the local interaction of food,

prey and predators uncontaminated by colony establishment on other oranges,
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or subsequent remigration from these colonies. VWhile Huffaker
did no experiments with single oranges, the same principle holds
when S is taken as the subset of initially seeded oranges, given Huff{iter's

observation that migration occurs only due to food depletion or over -

Eogulatiog_(indeed, this is the basis of our discrete event models). For

example, see Fig. 1 .

We note that "keeping control variables zero" is a special case of the

“range of validity" specification given by Zeigler (1976, Chap. 11).

4.1. Organization of Frames

The frames in é; are partially ordered by a relation "is derivable
from" or in short " € ". E' < E means that the restrictions on data
acquisition imposed in frame E' are over and above those in frame E .
As a consequence, data collectable in E' can also be deduced from date

collectable in E and questions posable in E' are posable in E as well.

Formalizing one step further, we require an onto mapping from éE}(E)
to §5(E') where mapping D to D' has the interpretation that data set
D' is deriyable from data set D (we write D' < D) by employing the
unique set of operating specified by the pair (E' , E) . Such operations
will in general be information destroying in nature, so that, questions

answerable given D cannot be answered given D' .

Figure 2 displays the "is derivable from" relation in our current

example. Three types of operations are employed in this case to reduce

data sets, one to another - This is apparent in the following definition

given first for frames having no control variables:



Eg]_obal
food,prey,pred Jdocal
‘ “food,prey,pred

Ral
d/Rrey,pred local

~food/prey,pred

glxpal togéi
E
foodyptey,pt 1

(%4
global,total

occupancy,global food/prey,pred
E
food,prey,pred

occupancy
food/prey,pred

J

occupancy,gloval,total
Ffood,prey,pred

Figure 2
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E< E' if:

the compare variables of E are a subset of compare variables of E'

or

the compare variables of E are simple sums of the compare variables of
E',

or

the compare variables of E are obtainable by discretizing the compare
variables of E' (for example, the variable with range {empty,some prey,

maximum prey} is obtainable from the variable "prey count",

or

any composition of the above .

The operation types associated with 1., 2., 3. above are selection,

aggregations,and coarsening, respectively.
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For frames having control variables the definition is
ESE'! if:

a) the compare variables of E may be computed from the compare
variables of E! employing selection s aggregation or coarsening, in any

composition (as above).

b) the control variables of F include those of E', and if there
are any additional control vari. sles in & » they may be computed from
the compare variables of E°' employing selection, aggregation and coarsen-—

ing, in any composition.

In Figure 2 and Table 2, the frames are further organizediinto Plaves.

Frames in the same pPlane are relatable using only the selection operation.

If E < E', then we place E on a lover plane than E' if at least

one aggregation or coarsening operation must be used to derive the variables
of E from those of E' - In fact, the minimal number of such operations
ne.essary to make this derivation is a measure of the distance between planes.

In particular, the distance from the base, or most inclusive, plane to a given

plane is a measure of the degree of abstraction embodied by the latter

plane.
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Note however that the < relation is a partial order so that theie

may be more than one distinct plane with the same degree of abstraction.

Table 1 shows the naturalness of the plane notion in the ecosystem

context by relating the plane of a frame to the kind of question posable

with in it. As expected, the higher the degree of abstraction, the movce

restricted the questions posable. But note that the global/local distinction

does not involve g change in degree of abstraction.

5. Constructed Models

4.t = 1977

Table 4 provides summary descriptions of the models constructed to date
u}%; . The conceptual basis for the Occupancy and Random~Phase-~Space

models has been fully described by Zeigler (1977b). We proceed to describe

our base model and the discrete event lumped model derived from it.

5.1. Base Model

The base model postulates food, prey, predator interaction on an orange in

isolation to be specified by the differential equation:

%: -ux pos(r) ....la)
dx

at = (b pos(r) - d)x - exy ....1b)
dy _ _ . '

dt— dy+cxy ...1(:)

where r is the food amount (measured in fraction of unused orange surface),

X , y are prey and predator population sizes, and pos(r) is 1 if r is

positive and 0 otherwise. The meaning attached to the 6 parameters involved

is given Table 5. The underlying time unit is one day.



Table 4

Models and Brief Description

Model
(Formalism)

Base
(Combined differentizl
equation—-discrete

event; Combined stochastic-
deterministic)

Lumped

(Discrete Event; Combined
Stochastic-deterministic)

Occupancy
(Discrete Event; Combined

Stochastic—~Deterministic)

Random Phase-Space
(Differential Equation;
Deterministic)

Local state (situation on each orange) determined
by Lotka-Volterra type differential equation
governing joint food, prey, and predator dynamics:
impetus for emigration and the effect of
imeigration are logically determined from local
state (food, prey, predator); migration process is
of stochastic random walk wvariety; orange
replacement schedule simulates that

enployed by Huffaker.

Keeps track of same state variables as base model
bt : updates them only at "event" tiwmes. The tabl
required foir scheduling events and executing the
updates were derived from base model local
interaction as discussed in text.

The local situation is represented by a small
number of discrete states (empty, some prey, etc-
and the migration processes are simplified to the
Bernouli trial type.

Derived from Occupancy Model under random phase
~-random space hyothesis. Describes the dynamics
the occupancy probabilities of the discrete state:
when occupancy model is operating in random
phase-random space mode.



Use of Experimental Frames in Identifying Model Parameters

Model Component Parameter

Description

Identified in Experimental Vrame:

Local Interaction Elocal,total
(large population b prey birth rate food{prey/pred
model) "

d prey death rate

u prey food ultilization "

d’ predator death rate local,total
food,prey,prey

c’ predation rate "

cf predation eficiency "

Food Replenishment threshold threshold on prey population ézgilzg?tiiwed
below which orange is 0OG, preyrpsed
replaced

Prey mnigration pyrem prey fraction remalning global,total
after emigration food,prey/pred

pysurvive probability of wigrating "
prey finding a2 cell
meanpysearch mean search time for prey
finding a cell "
pydif. ,pydif, prey diffusivities in horizontal
1 2 . . "
and vertical directions
Pred Migration . Analosous .. _global,total
pdrem nalogo food,prey,pred
pdsurvive to "
meanpdsearch prey "
. "
pddifl,pddlf2

Local Interaction d" predator death probability Eglobal,total

(small population at low prey size food,prey,pred
P y
model)
c" minimum prey required to global,total
initiate predator reproduction food,prey,pred
< fraction of prey used to create Eglobal,tctal

1 predator

food,prey,pred
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Equation la asserts that food utilization is proportional to prey
density (recipient limited interaction) so long as food remains.

Eqs. la and 1b are Lotka-Volterra relations without self-limitation.

We assume, following Huffaker's observations, that prey migrate only when

[ ]

food is exhausted (r first becomes 0). The migration is effected as follaws:

1. When (and if ) food is exhausted; a fraction pyrem of the current prey rcmain

on the orange (and are subject to the dynamics of Eq. 1).

2) Of the migrating prey [(l-pyrom) times current population)], a fraction)

pysurvive, are assumed to actualiy reach a cell (the rest are lost to fhe systen)

3. For each of the migrating individuals, a search time T is sampled from an
g 4 s p

exponential distribution with mean meanpysearch.

4. The cell assigned to the individual is computed by quantizing spatial

coordinatesderived from normal distributions (independent for each

T

dimension) with mean, the current cell location and standard deviation pydif}
agmanm——t | <

(in case of horizental dimensions) or pydif.NT (in case of the vertical
—r‘"‘-‘"“’z S

dimension).

5. After time Ts has elapsed, the individual is added to the population of

he is sent to step 3) for further migration (with probability,l—pysurvive,he

dies).

The migration thus implemented is a random walk with constant probability
of stopping. We postulate our mites to search blindly and "bump into" orange
locations. It is important to note that emigration is not continuous but
occurs only at certain points in the local cycle. We have shown (Zeigler, 1977b)

that continuous migration is unlikely to stabilize a locally unstable system

such as Huffaker's.
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Predator migration is carried out exactly as prey migration with

respective parameters pdrem, pdsurvive, pddifl, RﬂiiEZ with the following
exceptions:
1') Predator migration is initiated when a local maximum in predator
density is reached
5') After time TS has elapsed, the individual is added to the population
of his assigned cell unless the prey population is below eqprey,
the equilibrium prey level computed from Eqs; 1b) and 1c¢).
If the prey population is below eqprey. a small-population stochastie model
takes effect. With probability pdrem', the invading predator remains,
otherwise it is migrated as in step 3). A predator that remains dies with
probability d". If the predator lives, it creates another predator if
there are at least c" prey and cX are used up as a result (where X is the

current prey population size).

The foregoing decision sequence is instantaneously computed and with

TS = 1, the predator(s) are returned to step 5").
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Note that although the small-«population submodel is a stochastic version
of the deterministic Lotka-Volterra model used for large numbers, it may be a
crude summary of the local interaction in these circumstances, thus
optimal settings of the primed parameters may bear little relation to their

deterministic counterparts.

Indeed, our methodology suggests that a second level spatial characteriz--
ation of each orange could be built. Such a model would be tuned to more finely
structured local observations and a siwplified version would replace (or perhaps
turn out to be identical with) o current base submodel. In our general tecym-
inology, no such experimental frame currently belongs to EEF , though one might
be forced to create such a frame, if the current models (in which the small=

population submodel participates) prove unable to match the data gathered within

existing frames. (See Appendix.)

5.2. Discrete Event Lumped Model

Our first lumped model (illustrated in Figure 3) is a discrete event
veision of our base model. The migration is unchanged but the local interaction
is “escribed in summary transition function form obviating the necessity for

step-by-step simulation of the differential equations.

For example, consider the food-prey submodel, Eqs la) and 1b) with

y = 0 . For positive r(0) , it is possible to solve analytically to find
() = r(0) - = (x(t)-x(0)) ...2a)
x(t) = x(0) eat «..2b)

where a = b-d {(u~t prey growth rate).

The time for r to reach 0 is given from Eq. 2 by
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ar(0)

S T A '
L L . ... 3a)

and the prey population at that time is:
x(T) =9-’%Ol+x(0) : ...3b)

The discrete event model keeps track of the values r,x, and y for each cell.
If at some time t , a prey individual migrates to an empty cell with food cmouni
Eq. 3a) with x(0) = land r(0) = r is used to schedule the subsequent emigrati
occur at t + T). When theemigration event occurs, Eq. 3b is used to

update the prey population, and of course, the food amount is set to zero.

The consequent prey die-out is scheduled to occur in clapsed time (1/d}-lu{»( ) p

At every subsequent immigration the cell state is updated. Suppose that.
a time e has elapsed since the last immigration. Then using Eq. 2 with
t = e, and r(0), x(0) being the values at the last update, the correct
state pertaining just before the immigration is computed. To the prey number
so computed we add 1 to account for the immigrating individual and then uge

Eq. 3a) to reschedule the emigration event.

It can be shown that this discrete event algorithm exactly reproduces
the behavior of the base model prey-food interaction. The addition of the
predator is handiéd 1in principlein the same way, except that the scheduling
and update functions cannot be obtained analytically but can be approximated
with a once-and-for-all sampling of the trajectories generated by Eq. 1

(Zeigler, 1977¢). We shall provide a brief description of this process.

Consider the case where prey have colonized an orange but have not yet exh

the food. Then Egqs 1b and lc) reduce to the Lotka-Volterra dynamics and one

easily obtains che equilibrium prey and predator isoclines, namely
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b
bl
i

eqprey = d'/c'

il

y* = eqpred = c/a

These isoclines divide the plane into four regions as shown in Figure 4a).
A typical trajectory initiated by a predator immigration is segmented into

an initial joint growth phase T(l) , a predator growth phase and

o)
a joint decline phase T(B). Generalizing Huffaker's observation to predators, we
postulate that predators emigrate at maximum predator population at the end

of the T(Z) phase on the eqgprey isocline and at the end of the 1(3) phese when
the prey minimum is reached (eitv :r a crash occurs if predators are pumerous cno

or the eqpred isocline is reached). Any prey left are assumed to remain on

orange and subsequently take part in the standard food-prey interaction.

Scheduling and updating for each of these boundary crossings was done
by use of tables generated from a CSMP simulation of Eq. 1 and shown in Figuve 5
These tables are interesting in themselves; to our knowledge, they represent
the first such global study of Lotka Volterra dynamics. The parameter T
shown is the period of the cycle obtained by linearization around the
equilibrium point, T = 27/Y/ad . The time to cross from one boundary to the
anext is approximately T/4 near the equilibrium but declines rapidly as

initial populations increase.

A disadvantage of the generating tables by simulation is that it must be
done potentially anew for each set of parameters. This makes it important

to be able identify the local interaction parameters before all others

(Section 7.1) .

The theoretical basis for discrete event representation of systems is

given by Zeigler (1977c).
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5.3. Occupancy Models

The overall occupancy model is described in Figure 6. As can be seen,
the local description is reduced to asmall number of states (empty, patch
occupied by prey only, etc.) and the local dynamics are reduced to timed
transitions from state to state. The migration component is also simplificd
by specifying neighborhoods for each species (for each cell) and migration is
effected by means of independent Bernouli trials governed by specified
probabilities and conditions at the cells in the neighborhood of a migration-
active cell. (See Zeigler,1977b for a full explanation.) Cell spaces up to
quite large sizes (we have commonly investigated 30 %30 arrays [900 cells])
can readily be simulated in discrete event languages such as SIMSCRIPT.

We are able to study by this means the spatial patterns which are associated
with persistence and extinction as they are governed by the geometry of the space, the’

characteristics of the neighborhoods, and the settings of the other paramecters.

5.4. Random Phase-Space (RPS) Models

The RPS hypothesis assumes that the cells in a given state are uniformly
distributed in both space and phase (elapsed time in the state) at all times.
On the basis of this hypothesis we may derive the differential equation system
shown in Table 6. These equations are simple enough to be solved for
equilibrium isoclines and thus give qualitative information about how
persistence is governed by the various parameters. Here persistence is
judged relative to prespecified extinction levels such that if the prey and

predator occupied cell fractions fall below these levels the system is
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Table 6

Random Phase - Space Model

Let x = fraction of cells in state 1 (some prey)
y = fraction of cells in state 2 (some prey, some predator)
2z = fraction of cells in state 0 (empty, some food)
u = fraction of cells in state J= (empty, no food)
Then
ax o x, P PoNs
dt Ty Tl T2
dy _ _ ¥, 22
= - + —_— u = 1-(xbytz)
dt T T,
2 2
p,N
71 2
where
Tl = GRTl + DECT1 ’ '1'2 = GRT2 + DE‘.CT2

Equilibrium fraction

Equilibrium Relations

nc predator (food,prey/pred)

some predator

(food,prey,pred)
x*(avg. Drey cell) 1-(p.N.) /14T - 1.7 .8yt
11 1 22
*(av red cell) 0 1-(p,N )_1—(p N )_1(]$RT'T !
y*lave. P 11 272) VTR

» 1 4
T il
+p N, T, “(pyNy) Ty

z*(avg. food cell)

-1
(plNl)

-1 -1 -1
F 3
(plNl) +y* pN, T, (plNl) T,

u*(avg. utilization)

1-(x*+z*)

1-(x*+y*+z*)
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assumed to go extinct. Moreover, the equations can be easily simulated to
generate the associated dynamic behavior. The predictions thus made can be
matched against the behavior of the simulated occupancy models, to the
advantage of both model types (see Validation, Sec. 7).

~

. Organization of Models

We display the hierarchy of models in Figure 7. Models are organized in a
manner parallel to that of experimental frames. Model M 1is on the same plane
with model M' if M is a subcomponent of M '. Models of greater degrees
of abstraction (lower level planes) are derived from more refined models by

simplification procedures based on aggregation, coarsening and discrete-

eventization (as discussed in Section 3).

The criterion which justifies the simplification is that the mappings
involved be homomorphisms. We have given extensive expositions of such model
re.iations (Zeigler, 1976a) and their use in organizing models (Zeigler, 1977b).

For an exposition and example in the compartmental ecosystem context see (Zeigler

1976b).



BASE j>>
AEEAN"W. local,total
‘\\\\> \\Q::\\ \\:::\\» \\\\\ \\\\\ food,prey,pred
food prey predator 1oca1-%
replenish- migration migration Jdocal total

. cell . B R S
ment " food,proy [pred

Eglobal
G wdeeding

o e
Eglohal,total

DNANNAANAN

goceupancy

‘%%;;;‘ food,prey,pred

ANV

Eoccupancy,total

OCCUPANCY

RANDOM
HASE-SPACE

Figure 7



21.

5.} Relation of Parameters

Basically a homomorphism between models is a corregpondence between their
state spaces in which corresponding states transit to corresponding states
and yield corresponding outputs. Such a relation usually implies a corres-
pondence between parameter values as well, so that pérameter settings 6f a

lumped model may be completely determined by those of a more refined morphic

preimage.

Indeed, we have given an ex- mple of such a parameter correspondenca in
our derivation of the discrete event lumped model (Section 5.2). The scheduling
and update tables of the discrete event model are parameters — one can treat then
as entities to be arbitrarily adjusted until the desired behavior is achieved. (
the other hand, the morphism, which underlies the construction of the lumped mode

uniquely prescribes these tables for each setting of the local interaction parame

(b,d,u,d',c,c") .

The same concept of parameter correspondence is illustrated in the
parameter complexes appearing in the RPS equations, as determined by the

parameters of the occupancy model. (Table 6).

To complete the chain, we should indicate how the parameters of the
occupancy model are related to those of the more refined discrete event lumped
model. 1In this case, however, a morphism cannot be established to hold strictly
over the complete state spaces of the two models and we must be content with
estimating average parameter value settings, or at least, ranges to which they

can be bounded. We now outline how this may be done.

In Table 7 we provide ranges for the patch life cycle parameters GRTi,DCT

i =1,2 . The derivation is straightforward form Section 5.2. Although the



Table /

Estimation of Occupancy Model Parameters

Range of Values in Terms of
Parameter Lumped Discrete Event Model

Parameter Values

ar
GRT, (Growth Time of Prey Colony) [ o ,i'ln *EQ-]
DCT1 (Decay Time of Prey Colony) [0 ,a'ln e )
GR.T2 (Time to Maximum Predatorxr fo,r/2 1} (T==32L )
Population) vad
DCT (Time to extinction of Predator [O0,7/4 ]
2 . .
Population measured from Maxi-
mum Population Point)
From Fig. 8 with number of saumples
p,N (Effective Prey Colonization = —rg (1 - pyrem) * pysurvive and
11 . u ———
Neighborhood)
random walk parameters
meanpysearch, pydifl, pydif2 .
From Fi%e 8 with number of samples
0
p,N (Effective Predator = 23 . + (1 - pdrem) * pdsurvive
272 . . . c u o
Colonization Neighborhood)
and random walk parameters
meanpdsearch, pddifl, pddif2 .
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migration mechanisms in the lumped and Occupancy models are not directly compar

they can be matched through the notion of effective neighborhood. The effectiv

neighborhood of a species is the expected number of cells colonized in a migrat

episode, given that all cells in the space are colonizable. 1In the occupancy m

this is just piNi for species i . 1In the more refined model, the effective
neighborhood is the expected number of distinct cells accessed in a migration
episode. Figure 8plots the number of distinct cells accessed versus the nutabe
of samples taken from the random walk distribution (with barameters typical in 1
case of extended coexistence). “he maximum number of distinct cells accessed ce
be estimated by noting that the random walk distribution with mean search time
and diffusivity d in one dimension appears (from simulation) to be normally
distributed with standard deviation g = d/T;' - Thus, the number of distinct ce

rises at first in proportion to the number of samples; then it approximates the

number contained within a radius 3g of the active cell as the number of sample
increases to moderate values. (Theoretically it continues to rise very slowly be:

this point.) Now the number of sauples in the migration episode is just the num
migrants and can be bounded above as indicated in Table 7. Combining this numbe;

with Figure 8 yields the effective neighborhood bound.

Finally, we note that yet more refined models can be postulated which
would place constraints on the parameters of the base model. Thus in our base
model, the prey death rate in a patch d , the probability of survival,

pysurvive, and the search time parameter, meanpysearch, are independently

adjustable, If we postulate that a migrant survives only if his lifetime
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exceeds his search time, where these random variables are independent and
exponentially distributed we derive the relation:

1
1+ demean pysearch
i ]

pysurvive = ..4)
SRR

Parameter values obtained after adjustment can be checked against this
relation. Large discrepancy might indicate. dependence of the variables or

give cause to reexamine the model structure and/or parameter settings.
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7. Applicability of Frames to Models

A frame E is applicable to a model M if the compare variables

specified by E are
1) included among the descriptive variables of M
or

2) may be obtained from the descriptive variables of M by aggregation or

coarsening.

Figure 7 depicts the "core" of the applicability relation (see also Tables
1 and 5). '"Core" is used here because one can infer applicability to higher

Plane models of frames applicable to lower plane models (Axiom 8; Zeigler, 1977b).

Roughly, if E is applicable to M , then M can potentially answer

the questions of interest in E . M 1is vyalid for Rt in E if M can

t
reproduce :ﬁt (E) , the data collected up to time t in E . Viewed another

way, E applicable to M means that the data ij(E) may be employed to

identify the parameters of M, i.e., the parameters may be adjusted until a best
fit with the data KL (E) is obtained.

7.1. Parameter Identification

As shown in Table 5 the experimental frame and model organizations made
it possible to identify the parameters in a sequential maonner, thus greatly
reducing the search space at each stage. The parameters relating to: local food-

prey interaction, local\food-prey-predator interaction, prey migrationm, predator

migration and finally predator-prey (small-population) interaction were adjusted

in this order.

The test of such a procedure is that reasonable fits to the data are
Obtainable at later stages by holding fixed the parameters identified at earlier
stages. When acceptable agreement at later stages cannot be obtained, this
may indicate that the prerequisite independence assumed for earlier adjusted

parameters does not hold. 1In terms of experimental frames, the control conditions

of a frame may not in fact hold. Indeed, it often
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is implicitly assumed by modellers that certain global interactions can be
ignored in certain circumstances, and this may turn out be unjustifiable. In our

local,total
case, the E ?

frames assume that migration effects have been
nullified, the justification for which lies in Huffaker's verbal

account of migration episodes accompanying the time series data.

If there is reason to doubt that the control conditions of an experimental
frame are not satisfied, a readjustment of parameters may be attempted. To the
extent that such a readjustment is swnll, the decomposition into experimental

frames will have been beneficial.

In the Appendix, we report on the parameters identified in some of the key

experiments and cross compare models in this regard.
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8. Summary
The concepts discussed in the paper are summarized as follows:
é;,ﬁg;,lﬂ{,is the triple of conceivable experimental frames, rcal
system data and possible models, respectively, underlying the modelling
study of the Huffaker universes.
&t = 1961 is the subset of frames for which data had been collected
. t = 1961 v
until 1961. (E) denotes the data collected within frame E
. t = 1977 . . .
until 1961. is the subset of models considered until 1977,

the current time by the present modeller.

E; specifies a (compare,control) variable

An experimental frame E in
pair. A data element of a frame E is a time series of compare variable

values obtained under conditions where control variables are kept at zero

levels.

Frames are partially ordered by the derivability relation; E < E'
means that data elements of E are derivable from those of E' by employing
selection, aggregation and coarsening operations. Each frame may be
assigned a degree of abstraction equal to the minimum number of operations

required to derive it from a fixed most inclusive frame.

Models may similarly be partially ordered by use of morphism relationms.
A homomorphism is a mapping from a refined model to a coarse one which
preserves the transition structures. A homomorphism induces a mapping from

the parameter assignments of the finer model to those of the coarse one.

If a frame E is applicable to a model M, this means that the behavior
generated by M can be interpreted as data within frame E. One interpretation
of this fact is that the real system data collected within E can be employed

to identify the parameters of M.
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9. Discussion

There are a number of levels at which the integrated approach to
modelling illustrated here may be discussed. We briefly consider some

of them.

9.1 Large Scale Multi-Faceted System Modelling

Our formalism has been constructed from a general starting point —
the theory of systems and its specialization to modelling and simulation.
Thus, it is aimed for applicatior to "large scale" systems in general. We
have placed the large scale in quotation marks to signify our belief that

"large scaleness" is a matter of approach rather than of fact. Indeed, a

real system is called large scale precisely when one recognizes that to deal
with it successfully requires the consideration of many factors and aspects.
There are some systems which strikingly have this characteristic — environ-
mental systems, urban systems, etc., that are indeed large scale. But

"micro scale" systems such as the biological cell are equally complex, when
examined in all their facets. Thus we propose the term "multi-faceted" to

connote the systems (viewpoint) we are adressing.

In this paper, we have illustrated our approach in a particular eco-

systew context. But some general points clearly emerge. These are:

Simpler models can give qualitative and sometimes quantitatively accurate

predictions.

The RPS model gives good estimates of average cell occupancy fractions

when its underlying conditions hold. More generally it may give correct
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qualitative relationships (effect of paraweter settings) even when its

quantitative predictions are inaccurate.

Simpler models can be employed to check more complex ones.

If the correspondence between models is known, behaviors of the models

may be compared. This can be employed at:

a) the development stage; if tlie simpler model is known to be correctly
implemented (or does not require simulation), then the logic of the more
complex model can be verified by comparison of model behaviors (this is an

important special case of redundancy use for program verification; Bosworth,

1976) .

b) the prediction stage; the more the predictions of various models
agree, the greater may be the confidence in the predictions. Where serious
disagreements occur , confidence considerations may determine the choice of

which to believe, or lead to the conclusion that more development is necessary.

Complex models can be emoloyed to validate simpler ones.

Conversely, if the correspondence between models is known, a more
refined model whose details are tied to a particular real system can be
used to gain confidence in a more abstract but general model. Thus by valid-
ating our lumped discrete event model against Huffaker's data, and finding
that our corresponding occupancy and RPS models produce matching behavior,
we gain confidence in the abstractions employed to derive the simpler models,
i.e., that patches, rather than individuals, are sufficient entities for
analysis of persistence. Holling et al (1974) has employed a simulation model at
the level of detail of our lumped discrete event model to check out the wider con-

sequences of optimal control policies derived from a simpler analytic model.
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Models may be introduced independently or derived from existing ones.

It may be sometimes advantageous to construct a model from "phenomeno-

logical considerations"

rather than from "first principles". However, when
a homomorphism can be established between a more refined model and such an

ad hoc model, additional advantages of the kind indicated above accrue. 1In
addition, if a base model is available on which to base construction of a

lumped model, constructs may be suggested which would not have come to mind

in a phenomenological approach (Whitehead, 1977).

Needed experiments may be implied by the experimental frame organization.

The logical structure of the experimental frame organization may
suggest conceivable frames in ¢, that have not yet been realized to date
(are not in E;t), and might not be thought of in an unstructured experimental
approach., For example, data on the orange spoilage and prey-food interaction
suggested by frames of the form E

food/prey,pred and Efood,prey/pred 18

missing and would be helpful to model construction and validation.

Model and experimental frame organizations may be extended at all levels.

The multi-faceted system approach explicitly recognizes that model
construction and validation is a never-ending process. For example, as
accuracy demands in some frame increase, it may be found that the current
stock of models is inadequate to meet these demands. This may spur the
formulation of new experimental frames, data acquisition within them and
construction and validation of models which would guide the refinement of
the original models so as to meet the increased accuracy requirements. This
paradigm is illustrated in our finding that gmall-population interaction on a
patch may play a more important role in determining average population levels
than was suspected originally. Development of a credible small~-population

sub-model could be based on a spatial model of the predator-prey interaction
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on a patch developed from data acquired in an appropriately defined
experimental frame. Complexity constraints would prohibit incorporating
such a spatial model directly into our local interaction model and thus
simplifications would be sought perhaps resulting in refinements of the

classical Lotka-Volterra model along lines developed by Hassel et al. (1976).

An example of refinement at the other extreme of abstraction is given
by the incorporation by Gurney and Nisbet (1977) of fluctuation terms in
the RPS model which enables it to predict equilibrium fluctuation magnitudes

from steady state population levels.

9.2 Ecosystem Modelling

In this paper we have illustrated our large scale multi-faceted approach
in a highly restricted ecosystem context. Having dealt only with two species
and 3 trophic levels, we have only scratched the surface of the possibilities
and problems that would arise in dealing with a realistic ecosystem. Yet
extension of the experimental frames on the same plane of abstraction to
many species would simply involve the specification of frames by pairsg

(A,B) where A is the
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subset of species to be observed (whose descriptive variables are tho compare
variables), and B is the subset of species where influence is to be minimized

(whose descriptive variables form control variables).

A sublattice of frames represents the trophic structure of the ecosysien
such that (A ,B) is in the sublattice if, and only if, the A species are
found at lower trophic levels than any of the B species. Competitive and

cooperative stuctures may be similarly represented.

In the same vein, we have hinted at more than one level of patch decompos
Indeed, the spatial structure m ; have a natural hierarchy, where patches
isolated at one level of analysis are subordinated in larger patches at a highe
level. Isolation of patches signified by frames bearing the “local" descriptor
would then be possible at many levels, and the frame characterization would

reflect this hierarchical structure.

Finally, ordering of frames according to plane of abstraction is clearly
extendable to many degrees of abstraction, representing many possible simplifi-
cation and aggregation procedures. Aggregations in time may result in successi:
alternate planes of differential equation and discrete event models. Aggregatic
over trophic levels and/or over patch hierarchy levels are possible. Compartme:
alization of species according to spatial and functional criteria is yet anothes

source of abstraction-frame construction.

Parallel to such an experimental frame structure would be the organizatior

of models intended to answer questions within various applicable frames.



32.

9.3 Modelling of Patch Structured Predator-Prey Universes

We have shown in particular, how the organizations of frames and
models look in the highly restricted universes of Huffaker. Yet these
universes are rich enough to enable non trivial multilevel, multiformalism
model construction and validation. Thereby we have illustrated that there
are advantages to integrated modelling, even in restricted contexts more or

less amenable to conventional treatment.
Some tentative conclusions concerning predator-prey. coexistence are:

Predators and prey can coexist indefinitely in patchy environments where, in
homogenous environments the relation would quickly go extinct. The necessary

characteristics of patchy environments are:

a) largely isolated patches — population exchange is small but non

negligible,

b) patch life cycle insensitive to emigration and to immigration

except at certain key points (prey colonization, predator take-over}),
¢) large number of patches.

According to our base model, in the Huffaker Universes large numbers
nigrate , so small population exchange can be achieved only by making migration
hazardous; the effect of emigration on the native life cycle is small since
emigration occurs only at certain key points; and the effect of immigration is

small because of exponential prey growth after colonization and rapid extinction

after predator take-over.

Gurney and Nisbet (1977), suggest a model in which a) and b) hold, but
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emigration is possible throughout the cycle. Despite this discordance with

Huffaker's observations, their model can be made to fit the persistence cases

; ] occupancy, total
as viewed in the E P 7> frame (means and standard derivations of

occupancy counts). Indeed, their model assumes the random phase — space mode
of operation, and under these conditions, their model equations are isomorphic
with our RPS equations (modulo fluctuation terms and inessential extra states),
Our cross comparison of models (Appendix %) suggests that the RPS mode can not
be maintained with the number of patches employed by Huffaker, so that even
though a RPS model can fit the data, it may not represent any base model which
also does so. Two kinds of tests of the Gurney-Nesbit model are suggested in
the spirit of the multimodel approach: a) construction and test of a base

model satisfying their assumptions, b) conducting critical experiments to

distinguish the alternative mechanisms.
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APPENDIX

Some Results on Estimated Parameters

and Model Cross—Comparison

It is beyond the scope of this paper to describe the complete results
of simulation studies of the constructed models. We shall describe, however,
the results relevaunt to the model reproduction of predator-prey coexistence
as observed in the (one) 1958 universe which manifested this phenomenon.
In general, all of our models are capable of qualitatively explaining the
observed persistence, and our more refined models are able to give quite

close quantitative agreement as well.

We proceed to describe the results of the identification procedure

outlined in Section 7.1. Refer also to Table 5.

A.1 Local Food-Prey Interaction

The parameter settings b = 0.55 day_l, d = 0.33 day_1 and u = 1.3 x 10"5

(fraction of orange surface per day) wereestimated by employing the initial

local,total

part of data element 58, IB, Fig. 7 (in frame Efood,prey/pred

). The quantities
initial prey size, initial orange surface exposed, maximum prey size, time
elapsed to maximum prey were employed in Eq. 2 to estimate a(=b-d) and uj;

the slope of decay from maximum prey size was used to estimate d.

4

At the above settings, the maximum prey size on an orange is u/ax~ 2 x 10
mites per orange equivalent (so for example a 1/10 exposed orange area camn

support 2000 preys at the perigee of growth).

A.2 Local Food-Predator-Prey Interaction

The parameter settings d' = 0.30 day—l, c = 0.05 day—l and ¢' = 0.006 day—l

local,total

were estimated employing data element 58, IIA,Fig. 9 (in frame Efood,prey,pred .

Employing a CSMP simulation of Eq. la,b,c) we adjusted the parameters a', c and



¢' so as to fit as closely as possible the prey and predator curves in Fig. 9

(Huffaker, 1958).

With the estimated parameters, we have the equilibrium prey and predator

levels as 50 and 5 mites on a patch, respectively.

A.3 Prey Migration

The data necessary for identifying prey migration parameters in the
absence of predators is available only for the hazard free universes in the
Huffaker 1958 study and the complex universe of the 1963 study, but not for
the 1958 universe in which pr y-predator coexistence was achieved. Ymploying

hazard free universe data sets 58, IB, Fig. 7 and 58, IC, Fig. 8 (in frame

global,total

food prey/pred) we adjusted the parameters pyrem, pysurvive, meanpysearch,
>

and EXdifl of our discrete event lumped model so as to have the SIMSCRIPT
generated curves match the data curves as closely as possible in maximum
prey produced and number of prey maxima produced in the experimental interval

Estimates obtained were pyrem = 0.9, pysurvive = 0.9, meanpysearch = 0.1 days

Ezdifl = 20. Employing the data set 63 E-2 Fig. 2 for the prey-food inter-
action in the complex 1963 universe, we estimated in the same manner that

pyrem = 0.9, pysurvive = 0.5, meanpysearch = 13 days, Eydifl = 0.3 and

pzdif2 = 0.15. Thus as expected prey mites in the complex universe take
nuch longer on the average (13 versus 0.1 days) to cover much less distance
(/13 x 0.3~ 1.0 versus V0.1 x 204= 6.0, see Section 7) than they do in the

hazard free cases.

A.4 Predator Migration

Predator migration parameters pdrem, pdsurvive, meanpdsearch, and pddif.
were adjusted in the discrete event lumped model so as to fit as closely as
possible th data element 58 II I, Fig. 18 representing the 1958 universe

in which coexistence was established. The settings of the prey migration



parameters were those determined from the complex 1963 universe just described.
(Subsequent trials with deviations from these settings did not significantly
improve the results.) The predator migration parameters were initially set
equal to those of the prey and a fairly broad neighborhood of parameter

assignments centered on the initial settings was investigated.

It was found that coexistence is robust in this neighborhoud in that most.
simulation runs ended with both predators and preys still around. However,
it did not seem possible to achieve very close quantitative agrcement. We
noticed that the predator occupied cell fraction was too small and this seemed
to be due to the fact that in our original model, predators invading patches
of low prey density (less than egprey) were always returned immediately for
continued migration. It thus appeared that predator invasion of low density
patches was a significant process and we accordingly modified our smalle
population submodel to its current form. With this modification we were able
to bring the statistics shown in Table A.l generated by the simulation quite
close to those of the data., Although the averages agree quite well, the model
overestimates the prey maximum considerably, which may point to 2 further
needed modification. (In analogy with the predictions of a Lotka-Volterra
model, the overshot could be the sensitive result of too low an initial
predator population, and thus not an intrinsic model shortcoming.) The best

fit parameter settings are indicated in Table A.1l.

In Table A.2, the same data is analyzed from the cell occupancy point

of view (frame Eoccupancy,total)

food,prey,pred *° [Note the model in question is the lumped
b4 3

discrete event model not the occupancy model; the occupancy states can be

computed from the finer population count information. ]



rable A.1

Comparison of Data and Lumped Discrete Event Behavior in

rame Eglobal,totul

F food,prey,pre

d [the Case of Predator-Prey

Coexistence, 58 IIL I, Fig. 8]

Density Data Model*
maximum prey missing 460d+

(predators absent)

average prey missing 2400
(predators absent)

maximum prey 2000 3500
average prey 900 730
maximum predators 50 46
average predators 12 13

+all densities quoted in mites per orange equivalent (Huffaker, 1958).

*Parameter assignments are:

b = 0.55 day " pyrem = 0.9 pdrem' = 0.3
d = 0.30 day " pysurvive = 0.35 d" = 0.0
u=1.3x lO—-5 meanpysearch = 13 days c" = 10.0
d'= 0.30 day " pydif, = 0.3 c =0.0

c = 0,05 day'-1

c'= .005 day'—l pdrem = 0.6

pdsurvive = 0.5
meanpdsearch = 14 days

pddif, = 0.2

—1




Table A.2

Comparison of Data and Lumped Discrete Event Model Behavior

. .occupancy, total
in Frame E P b

food,prey,pred
Cell occupancy Data Model
+ "
average prey cell (state 1) 17 28
average pred. cell (state 2)++ 11 15
*
standard deviation/prey cell 16 19
standard deviation/pred. cell 11 11

+a prey cell is a cell occupied by at least some prey but no predator

a predator cell is a cell occupied by at least some predator

*
measures the amplitude of oscillation considered as a fluctuation

about the average (Gurney and Nesbit, 1977)



As can be seen, the statistics from model and data are remarkably close,
save for considerable overestimation in the average prey cell count. This

is understandable in view of the maximum prey population overestimation.

It should be noted that the average occupancy counts are not necessarily
correlated with the average population counts. As we have noted, the somewha
independent occupancy perspective was uscful in diagnosing s shortcoming of

the model.

A.5 Occupancy and RPS Models

Employing the parameter values oi Table A.l, we can determine correspond
parameter values for the Occupancy model; using the relations of Table 7.
In order to explore the behavior of the occupancy model in this space, we
fixed all but the migration parameters at the extremes of their ranges and
sampled the model behavior for allowable assignments of the latter parameters
Employing the equilibrium relations in Table 6, we can uniquely determine the
effective neighborhoods plNl and p2N2 of the RPS model rcquired to reproduce
the occupancy averages of the data (58, 1T I, Fig. 8) shown in Table A.2.
As shown in Table A.3, these are within but at the lower end of the ranges
computed from Table 7. However, simulation of the occupancy model with
these parameter settings resulted in quick elimination of the prey. Only
wnen the effective prey neighborhood was considerably increased and the
effective predator neighborhood considerably decreased was coexistence
obtained in 10 x 10 cell array. (Halving the predator neigborhood was
sufficient for coexistence in a 30 x 30 cell array. The 100 cell array is
more representative of the 120 cell 1958 universe.) The effective neighborhc
obtained in the way are still within the ranges computed from Table 7.
However, the occupancy averages obtained from the occupancy model for both

predator and prey in these cases tend to exceed those of the lumped discrete



Table A.3

Cross~Comparison of Model Behavior in Frame Egccupancy,total
food,prey,pred
Effective Prey Effective Predatox Occupancy+ RPS+
Neighborhood Neighborhood __Model Model
avg. avg. avg. avg.
prey pred. " prey pred.
PlNl PZNZ cell cell cell cell
e[0,25] €[{0,12]
4 8 10 » 10
extinct 17 17
30 x 30
extinct
4 4 10 x 10
extinct
30 x 30
L4 5 30 18
24 24 10 x 10
60 28 48 50
*
Data 17 11 17 11
*
Lumped Discrete Event 28 15 28 15
Tother parameter values: /GRTl = 20 days, DCT1 = 20 days, GRT2 = 5 days,
DCT, = 2 days, RT = 44 days

*
From Table A.2



event model and the real system data.

In sum, this between model comparison scems to indicate that the
random-phase condition is only approximately being satisfied in the lumped
discrete event model and the real system. While the occupancy and RPS
models predict that coexistence is possible within the allowed parameter
space, they do not do very well in predicting the observed occupancy cell

averages unless the number of cells is considerably increased.



CAPTIONS

l < -
Figure 1. A data element of a frame EglOba , total

food,prey/pred T° shown in Fig. 1b)

(redrawn from Fig. 8, Huffaker, 1958). The universe consists of fouxn
oranges embedded in an array of rubber balls (oranges are the darkened

circles in Fig. la). The hatched initial portion of Fig. 1b) is the

local,total

data element belonging to the frame Efood,prey/pred

where the subset
referred to by the "local” designation is the set of oranges indicated

in Fig. la).

Figure 2. Experimental frames organized according to planes of abstraction.
Degree of abstraction increases from top to bottom. Nodes represent
frames and lines (implicitly directed from top to bottom) represent the

derivability relation.

Figure 3. Discrete-event representation of the base model. The discrete
states are: E(empty,no food), ER(empty,food replenished),
PREY (prey colony established), PREY'(prey colony at maximum size),
PRED(predators invaded), MAXPD(predator Folony at maximum size).
Scheduling times are: GRT(growth time of prey colony), PYPECT(decay
time of prey colony), MAXPYT(time to reach maximum prey size after
predator invasion), PAXPDT(time to reach maximum predator population
from maximum prey population) and JOINTDECT(time from maximum predator

to end of cycle).

Figure 4. Typical trajectories in the prey-predator (x,y) plane with food

r >0 (Fig. 4a) and r = 0 (Fig. 4b).

Figure 5. State update and scheduling curves obtained by simulation of

Eq. 1. Symbols shown are keyed to Fig. 4.



Figure 6. The occupancy model. Discrete states are: O(empty,food

replenished), 1l(some prey), 2(some predator), E(empty,no food).

Figure 7. The organization of models,Qét B 1977. Also shown are the

experimental frames applicable to the various models.

Figure 8. The cumulative number of cells hit versus the number of samples
from the random walk distribution with parameters typical in the case
of extended predator-prey persistence. The numbers pd and py indicate
upper bounds on the numbers of predators and preys emigrating in a

migration episode as estimatel in Table 7.



