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ABSTRACT: This article proposes a new theory for predicting the crack-bridging performance of random short
fibers involved in cementitious composites. The current theoretical model for estimating crack bridging perfor-
mance of random short fiber reinforced cement composites under tension is limited to specific constituent
properties: friction-dominant fiber-matrix interface and complete fiber pull-out from matrix without rupture. The
new theory extends this model by accounting for two often-encountered features in practice: fiber strength
reduction and rupture in composites, and chemical bond–dominant fiber-matrix interface. The new theory was
verified to capture important characteristics in bridging performance in comparison with composite tensile test
data. As a result, the new theory forms an important foundation for developing high-performance random short
fiber reinforced cement composites.
INTRODUCTION

Crack bridging by fiber has been recognized as one of the
most important fundamental properties governing composite
response. The mechanism of crack bridging has been substan-
tially investigated in the areas of fiber-reinforced plastic (e.g.,
Outwater and Murphy 1970; Takaku and Arridge 1973), metal
(e.g., Kelly and Tyson 1965), ceramics (e.g., Marshall and Cox
1988), and cement (e.g., Shao et al. 1993). Furthermore, crack
bridging has been recognized to even control structural re-
sponse (e.g., Horii and Nanakorn 1993; Naaman and Reinhardt
1995; Stang et al. 1995).

For purposes of composite material engineering and struc-
tural performance design based on composite microstructure
control, it is desirable to relate the crack-bridging stress versus
crack-opening relation (s-d) to fiber, matrix, and interface
properties. This relation is known as ‘‘bridging law’’ and has
been extensively investigated, especially in the area of fiber-
reinforced ceramics (Marshall et al. 1985; Gao et al. 1988;
Hutchinson and Jensen 1990; Bao and Song 1993). However,
these investigations are for composites reinforced with unidi-
rectionally aligned fiber, and bridging law with randomly
aligned short fiber has been little clarified (Bao and Suo 1992).
This has been recently accomplished by Li and Leung (1992)
and Li (1993) but for the special case where flexible fiber pull-
out and friction-dominated interface are assumed. The result-
ing s-d relation has been successfully deployed for the design
of very ductile cementitious composites (Li 1993).

To broaden the range of fibers useful to design random short
fiber reinforced cement composites (RSFRCC), it is desirable
to extend the current theory to handle composites containing
fibers which may break during crack opening in the bridging
process. In addition, some fibers such as polyvinyl alcohol
(PVA) have very high chemical bonding in cementitious com-
posites. While PVA fiber has been recognized as high potential
reinforcement in cementitious composites due to its high
strength, this potential has not yet been fully realized (Aki-
hama et al. 1985; Betterman 1995).

The present paper extends the work of Li and coworkers
(Li and Leung 1992; Li 1993; Maalej et al. 1995) by devel-
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oping a new theory grounded on experimentally observed in-
terface and crack-bridging behavior of PVA fiber. Although the
parametric values used for model validation are based on this
specific fiber, the model itself can be applied to various flexible
polymeric fiber types having the following characteristics: (1)
The fiber-matrix interface debonding is governed by chemical
bond in addition to frictional sliding after debonding; (2) a
crack-bridging fiber may rupture during crack-opening process
when its tensile strength is exceeded; and (3) the fiber tensile
strength may be reduced due to inclined-angle bridging. The
first two characteristics may be found in a variety of fibers,
while the third may be unique to some polymeric fibers. All
three characteristics have been documented in detail for PVA
fibers (Kanda and Li 1998a).

In the following, the crack-bridging stress–displacement re-
lation for a single fiber pulled out with normal and inclined
angle is first derived accounting for chemical bond and fiber
strength reduction due to inclined angle. This single-fiber
stress-displacement relation is then implemented into a com-
posite model that treats fiber orientation and centroidal loca-
tion as statistically random. The resulting crack-bridging
stress–crack-opening displacement relationship is then verified
using uniaxial tensile test data of a PVA fiber composite. Fi-
nally, parametric study of this composite model reveals that
the newly introduced features strongly affect the crack-bridg-
ing performance of composites.

The ultimate purpose of this study is to achieve the design
of very ductile fiber-reinforced cement-based composites,
which show tensile strain capacity attaining several percent
and are called pseudo strain hardening (PSH) composites, by
using high-performance hydrophilic PVA fiber or fibers of sim-
ilar type. The present study lays the foundation for this ulti-
mate goal. This subject is taken up in a companion paper
(Kanda and Li 1998c, in press). As well, better understanding
is achieved for the tensile response of these composites.

CRACK-BRIDGING STRESS–DISPLACEMENT
RELATION

Single-Fiber Stress–Displacement Relationship for
Chemical-Type Interface

Fiber-matrix interfacial shear resistance is generally classi-
fied into two categories, i.e., friction-dominant type and chem-
ical bond–dominant type (Kanda and Li 1998a). The former’s
behavior is governed by a frictional shear stress ti; the latter
type can be described by a chemical bond strength ts in ad-
dition to ti (e.g., Goplaratnam and Shah 1985).

For a single fiber with friction type interface embedded in
a matrix, the single-fiber bridging stress, sd|friction9 is related to
the crack opening displacement (COD) d, assumed to be twice



FIG. 1. Assumption of Shear Stress Distribution: (a) in Origi-
nal Friction-Only Interface Model; (b) in Chemical Bond and
Friction Interface Model

the fiber displacement at crack plane. This is achieved as a
result of ‘‘shear-lag analysis’’ (Li and Leung 1992), as in the
following formula [an identical expression was derived via
stress-intensity analysis (Marshall et al. 1985)]:

1/2 1/2ˆd d
s | = 4(1 1 h)t E = ld friction i fF S DG S Dˆd d*f i

ˆ ˆfor d # d (d # d )0i 0i (1)

where h = Vf Ef /[(1 2 Vf)Em]; s0i = Vfl/4; = 2d/Lf ; = l/ˆ ˆd d*i
[Ef (1 1 h)]; l = 2ti(Lf /df); and = Vf = fiber volume2ˆ ˆ ˆd d*l .0i i

fraction; Lf = fiber length; l = fiber embedment length; ti =
frictional bond strength; Ef = elastic modulus of fiber; df =
fiber diameter; and Em = elastic modulus of matrix. [Note: All
quantities of have been normarized by the half-fiber length(ˆ )
Lf /2.] Eq. (1) is valid for small d < doi when debonding ter-
minates and fiber end slip commences (debonding stage). In
this model, chemical bond is neglected and the shear stress
distribution is represented only by constant friction ti, as
shown in Fig. 1(a). Furthermore, after fiber end slip initiates
(pull-out stage), the bridging stress sp|friction during pull-out de-
cays with COD d (Li and Leung 1992)

4ti ˆ ˆ ˆs | = (l 1 d 2 d) = l(l 1 d 2 d)p friction 0i 0i
df

ˆ ˆ ˆfor d < d # l(d < d # l )0i 0i (2)

For the interface with both chemical and friction bonds,
shear stress distribution along a fiber is illustrated as in Fig.
1(b). Then, the stress-COD relationships (1) and (2) should be
modified according to the shear stress distribution. Fiber stress
in the debonding stage, sd, and that in the pull-out stage, sp,
are represented as follows (Appendices I and II):

1/2
d̂ 2s = l 1 b (3)d FS D Gd̂*i
ˆ ˆ ˆ ˆs = l [{1 1 2bd*}l 1 d 2 d] (4)p i 0i

where b = sds /l. sds denotes portion of fiber stress sustained
by chemical bond ts, and is defined in (27). It is noted that
(3) and (4) reduce to (1) and (2) when sds = 0, corresponding
to no chemical bond interface.

Eqs. (3) and (4) were derived for the case of straight short
fiber that is aligned with the loading direction and is also per-
pendicular to the propagating crack surface in fiber-reinforced
composites. In the more general case of RSFRCC, fibers will
intersect the propagating crack at different angles. An
obliquely oriented flexible fiber can lead to a higher bridging
force across a matrix crack plane than that of a straightly
aligned fiber, for the same crack opening. This load increase
becomes more significant with inclining angle f between the
fiber and loading axis, and is representable by a snubbing co-
efficient f (Li et al. 1990). The general form of single-fiber
bridging stress was expressed by (Maalej et al. 1995)

ffˆ ˆ ˆs (d, f) = s e for d # d (d # d )b d 0 0
s =b H ffˆ ˆ ˆ ˆs (d, f, l) = s e for d > d (d > d )b p 0 0 (5)

where = d0 denotes COD d at peak fiber stress2ˆ ˆ ˆ ˆd d*[l 1 2bl].0 i

during the debonding stage, whose derivation is shown in Ap-
pendix II.

Apparent Fiber Strength in Composites

Fiber rupture in composites reinforced with unidirectional
continuous fiber has been examined in many research studies
(Kelly and Tyson 1965; Marshall and Cox 1987; Hutchinson
and Jensen 1990). However, fiber rupture for RSFRCCs was
fully clarified neither experimentally nor theoretically. This
phenomenon was quite recently investigated using short fibers
obliquely embedded in cementitious matrices (Kanda and Li
1998a).

It has been reported that the apparent strength of high-
strength hydrophilic PVA fibers embedded in a cementitious
composite tends to be less than the strength reported by man-
ufacturers that is typically obtained from standard tests like
ASTM D 2101-94 (Kanda and Li 1998a). This strength deg-
radation effect was investigated through pull-to-rupture tests,
in which one end of a single fiber is embedded in a matrix
foundation and the other end is pulled to rupture the fiber.
These tests revealed that the strength degradation phenomenon
is probably associated with (1) fiber surface abrasion; (2) spall-
ing of the matrix foundation; and (3) fiber bending, all of
which are intensified with fiber’s inclining angle f. Therefore,
this effect can be phenomenologically represented as a func-
tion of angle f as follows (Kanda and Li 1998a):

n 2f 9fs = s e (6)fu fu

where sfu = apparent fiber strength; = nominal tensilensfu

strength of fiber; and f9 = apparent fiber strength reduction
factor ( f9 > 0). Note that sfu is experimentally obtained by
dividing the apparently sustained load by the sectional area of
a fiber obliquely embedded into matrix, and that denotesnsfu

the strength of an embedded fiber with f = 0, which is lower
than the one obtained by the standard fiber strength tests. Fur-
thermore, f9 is determined by the curve fitting of test results
obtained from specimens with different f. For a PVA fiber,
f9 = 0.3 and = 1,666 MPa were obtained experimentallynsfu

(Kanda and Li 1998a).

Effect of Fiber Rupture on Single-Fiber
Bridging Stress

Apparent fiber strength as well as chemical bond should be
taken into account in a single-fiber bridging model for high-
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FIG. 2. Potential Fiber-Rupture Space Sp

strength hydrophilic fiber composites. These two aspects pro-
mote fiber rupture and influence the mechanical behavior of
the composites. The current study proposes a new bridging
law for the composites that extends the original fiber rupture
pull-out model, FRPM (Maalej et al. 1995), to cover the above
observed phenomena by introducing two additional micro-
mechanical parameters, chemical bond strength ts and appar-
ent fiber-strength reduction factor f 9.

Originally intact fiber population at the opening crack plane
in composites decreases with increasing COD d or fiber bridg-
ing stress sb due to fiber rupture. This phenomenon should be
mathematically represented to establish the new bridging law.
Understanding the phenomenon is facilitated by employing fi-
ber-rupture spaces (FRS) with two dimensions, angle f and
embedment length l. FRS represents the condition of fiber rup-
ture and the population of ruptured fiber in terms of (l, f)
combination. Two kinds of FRS are considered, i.e., potential
FRS, Sp, and current FRS, Sc. The boundaries of these two
FRSs are determined by micromechanics parameters of com-
posite systems. The first FRS, Sp, is illustrated in Fig. 2, where
fibers with (l, f) combinations inside the Sp space are expected
to fail by rupture or remain bridging a crack without being
pulled out. The boundary between Sp and the intact fiber space
is defined as the critical length lu, the minimum embedment
length leading to fiber rupture. The lu decreases with increase
of inclining angle f since fiber bridging stress sb increases
with f due to the snubbing effect. Therefore, higher f results
in increasing possibility of fiber rupture. The lu is derived by
equating sd at rupture to maximum single fiber bridging stress
smax (at completion of debonding) defined by (29). The sd at
rupture is obtained by setting bridging stress sb in (5) equal
to fiber strength sfu in (6)

2( f1f 9)fˆ ˆl (f) = L [e 2 j] (7)u ci

where L̂ci = and j = sds/ The becomes identicaln n ˆ(s /l) s . lfu fu u

to the one defined in the original FRPM when f 9 = j = 0 as
shown in Fig. 2. Furthermore, Fig. 2 shows that lu is signifi-
cantly reduced by the effects of f 9 and j compared with the
original one, thereby resulting in a much larger rupture space.
The lu attains the minimum value (Lr/2) at f = p/2 and the
maximum (Lc) at f = 0. These extremes are defined using (7):

L̂r 2( f1f 9)p/2ˆ= L [e 2 j] (8)ci2

ˆ ˆL = L (1 2 j) (9)c ci

For a given fiber with maximum embedment length of Lf /2,
there exists the minimum angle below which fiber rupture
never occurs. This angle is defined as the potential fiber-rup-
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FIG. 3. Current Fiber-Rupture Space Sc

ture angle fb (Fig. 2), so that only fibers lying at an inclination
angle higher than fb have the potential to rupture. fb is ob-
tained by setting lu in (7) equal to Lf /2

p
for L < Lf r2
1 1

f = 2 ln 1 j for L < L < 2Lb r f cS Dˆf 1 f 9 LciH
0 for 2L < Lc f (10)

Finally, the potential fiber-rupture space Sp (shaded region, Fig.
2) can be expressed as

L L pr f
S = l [ , , f [ f , l $ l (11)p b uH F G F G I J2 2 2

The second rupture space, Sc, represents the degree of fiber
rupture at any COD d during crack opening, and is depicted
in Fig. 3. The Sc starts from empty and expands with increase
of d so as to eventually coincide with the potential rupture
space Sp. This conveys that fibers having large embedment
length, and oriented at a high angle to the loading axis, fail
first as the composite crack opens. The Sc is bounded by in-
clining angle fc, below which no fiber rupture occurs at certain
d. fc is named current rupture angle and expressed as follows
(Appendix III):

ˆf (d)c

p p
for d < d f =u S D2 2

ˆ1 d 1 p2= 2 ln 1 j for d f = # d # du ueFS D G S D2ˆˆH 2( f 1 f 9) 2d* Li ci

f for d < db ue (12)

du(f = p/2) corresponds to minimum COD at which fibers
oriented at f = p/2 first rupture, while due denotes COD when
debonding stage is completed (see Appendix III). The Sc is
then expressed with a formula similar to Sp

L L pr f
S = l [ , , f [ f , l $ l (13)c c uH F G F GI J2 2 2

Besides the ruptured fibers, those completely pulled out of
a matrix at a given d should be distinguished, since they no
longer contribute to bridging crack planes. For these fibers,
complete fiber pull-out space Se is introduced. After debonding
is completed, surviving fibers are limited in embedment length
to less than lu since, due to rupture, fibers with l > lu are no
longer intact. Thereafter, all the intact fibers with f are com-



pletely pulled out of a matrix when d reaches lu(f). This angle
fa is derived by setting lu in (7) to d

For Lr # Lf # 2Lc:

p Lrfor d #
2 2

ˆ1 d L Lr fˆf (d) = 2 ln 1 j for < d <a F Gˆ( f 1 f 9) L 2 2ci

Lf
f for d =b 2 (14a)

For 2Lc < Lf :

p Lrfor d #
2 2

ˆ1 d Lrˆf (d) = 2 ln 1 j for < d < La cF Gˆ( f 1 f 9) L 2ciH
f for d = Lb c

(14b)

Similar to fc in (12), fa starts from p/2 and eventually reaches
fb defined by (10) as d increases. The above formulas show
that fiber bridging is terminated at d = Lf /2 for Lr < Lf < 2Lc

or at d = Lc for 2Lc < Lf . The complete pull-out space Se is
then expressed

L Lf f
S = l [ 0, , f [ [0, f ]i0 # l # d < l [ 0, ,e bH F G J H F G2 2

p p
f [ f , f # f #b aF GI J2 2 (15)

Based on the preceding discussion, the single-fiber bridging
model expressed by (5) is finally modified as follows:

ffs e for (d, f, l ) ∉ Sd c
for d # d0H

0 for (d, f, l ) [ Scˆ ˆs (d, f, l ) =b ffs e for (d, f, l ) ∉ SH p e
for d > d0H

0 for (d, f, l ) [ Se (16)

It should be noted that nominal fiber strength is assumed
deterministic in this study whereas the rupture strength of
polymeric fiber is better being treated statistically. However,
no test data are currently available to determine variability of
nominal fiber strength, and the variability investigation is be-
yond the scope of this article. Such investigation and the sub-
sequent statistical fiber strength treatment for crack-bridging
theory should be undertaken in future studies.

Composite Bridging Stress-COD Relation

A bridging law has been developed for RSFRCCs by intro-
ducing the stochastic approach by Li and Leung (1992). They
derived composite bridging stress sc-d relation for the short
fiber composites, which (assuming the composites involve no
fiber rupture) was expressed by the following formula (Maalej
et al. 1995):

p/2 1
Vf ˆ ˆ ˆs = s (d, f, l )sin 2f dl df (17)c bE E2 0 0
To account for fiber rupture and chemical bond, (17) is mod-
ified as (18) and (19) by employing (16)

ˆf 1 f lc c 0
Vf f ff fˆ ˆs = s e sin 2f dl df 1 s e sin 2f dl dfc d pHE E E E2 ˆ ˆ0 l 0 d0

ˆp/2 lu

ff ˆ1 s e sin 2f dl df for 0 # d < dp ueE E J
ˆf dc (18)

ˆf 1 f lb a u
Vf f ff fˆ ˆs = s e sin 2f dl df 1 s e sin 2f dl dfc p pHE E E E J2 ˆ ˆ0 d f db

Lffor d # d # min , Lue cS D2 (19)

where = 2b 1 1 b2]1/2. The d < d0 in (16) corre-ˆ ˆ ˆl [(d/d*)0 i

ponds to in (18) and (19). The sc-d relation representedˆ ˆl > l0

by (18) is defined as the debonding stage, and that by (19) is
called the pull-out stage. These stages are demarcated by due,
where the debonding process of all fibers is terminated (ex-
pression of due is described in Appendix III). By evaluating
integrals in the above formulas, the sc-d relation is derived as
(see Appendix IV for detail)

For Lr < Lf < 2Lc:

sc =

p p
s dC G , f for 0 # d # d f =0i A uS D S D2 2

dC G(f , f ) 1 C A(f , 2 f 2 2 f 9)A c d B2 cs0i H J
1 C A(f , 2 f 9) 1 C A(f , f )d B3 c d B4 c

p
for d f = < d # d*u S D2

C G(f , f ) 1 C A(f , 2 f 2 2 f 9)p C b p B2 b
s0i H J1 C A(f , 2 f 9) 1 C A(f , f )p B3 b p B4 b

Lrfor d* < d #
2

C G(f , f ) 1 C B(f , f , 2 f 2 2 f 9)p C b p B2 b a
s0i H J1 C B(f , f , 2 f 9) 1 C B(f , f , f )p B3 b a p B4 b a

L Lr ffor < d #
2 2 (20)

For Lf > 2Lc:

sc =

p p
s dC G , f for 0 # d # d f =0i A uS D S D2 2

C G(f , f ) 1 C A(f , 2 f 2 2 f 9)d A c d B2 c
s0i H J1 C A(f , 2 f 9) 1 C A(f , f )d B3 c d B4 c

p
for d f = < d # du cS D2

p p p
s C G , 2 f 22 f 9 1 C G , 2 f 9 1 C G , f0i p B2 p B3 p B4H S D S D S DJ2 2 2

Lr
for d < d #c

2

s { C G(f , 2 f 2 2 f 9) 1 C G(f , 2 f 9) 1 C G(f , f )}0i p B2 a p B3 a p B4 a

L Lr f
for < d #

2 2 (21)

where
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d̂ 2g = 1 bS D
d̂*i

1/2 2 2 2 2 2ˆ ˆ ˆC = 2g 1 2g 1 b , C = L , C = 22L j, C = L j ,d A d B2 ci d B3 ci d B4 ci

C = 1d C

1/2 2 1/2 2ˆ ˆ ˆC = 2g 1 2g 1 b 2 2dg 1 2db 1 dp A

2 2 ˆˆ ˆ ˆC = L , C = 22L j 2 2dLp B2 ci p B3 ci ci

2 2 2 2ˆ ˆ ˆ ˆˆ ˆC = L j 1 2dL j 1 d , C = 1 2 2d 1 dp B4 ci ci p C

1
afG(f, a) = {e [a sin 2f 2 2 cos 2f] 1 2}2a 1 4

1 pa/2afA(f, a) = {e [2 cos 2f 2 a sin 2f] 1 2e }2a 1 4

1 af2B(f , f , a) = {e [a sin 2f 2 2 cos 2f ]1 2 2 22a 1 4

af11 e [2 cos 2f 2 a sin 2f ]}1 1

Eqs. (20) and (21) show that the proposed bridging law con-
sists of several micromechanical parameters such as g, b, and
j. Considering the expressions for these parameters described
earlier, this bridging law can be represented in a normalized
form by employing normalized bridging stress and nor-s̄c

malized COD as follows:d̂,

nE s sf ds fu ¯s̄ = func , , , f, f 9, d (22)c S Dl l l

where = 4sc/(VfEf ) and = (1 1 h) Eq. (22) shows that¯ ˆs̄ d d.c

the normalized bridging stress is fully determined by six fun-
damental micromechanical parameters. The original FRPM is
recovered if sds/l and f9 are set to zero. l is an interface
friction related parameter defined under (1).

PREDICTING IMPORTANT
COMPOSITE CHARACTERISTICS

Experimental Program and Focused Characteristics

The proposed theory enables us to predict properties critical
for PSH composite design. The peak composite bridging stress
speak and corresponding COD dpeak, which form peak point in
sc-d relation, are focused as the important composite proper-
ties for composite design. This is because that PSH composites
can be realized when the complementary energy of sc-d curve
exceeds the fracture toughness of the matrix (Marshall and
Cox 1988; Li 1993), and this complementary energy seems to
294 / JOURNAL OF ENGINEERING MECHANICS / MARCH 1999
TABLE 1. Matrix Mix Proportion

Cement
(1)

Sand
(2)

Water
(3)

Super plasticizer
(4)

Viscous agent
(5)

1.0 0.40 0.45 0.02 0.002

have a strong correlation with the peak properties. Hence,
these important properties, speak and dpeak, are compared with
experimental data, and this comparison is aimed at supporting
the validity of the proposed theory.

For this comparison purpose, uniaxial tensile tests were con-
ducted with a PVA fiber composite, whose matrix mix pro-
portion is summarized in Table 1. The composite was designed
to show multiple cracking and resulting PSH behavior. The
composite design procedure is described in a companion paper
(Kanda and Li 1998c, in press). A 2% volume fraction of PVA
fiber having 40 mm diameter and 12 mm length was used. The
fiber mechanical properties can be found in Table 2. This fiber
system is found to have chemical-dominant fiber-matrix inter-
face properties, ti ' 2 and ts ' 30 MPa (Kanda and Li 1998a).
In contrast, polyethylene (PE) fiber has practically no chemical
bond. Furthermore, the PVA fiber composite will involve fiber
rupture due to the very high bond strengths combined with
relatively low fiber strength ' 800 MPa), as shown inn(sfu

Table 2. Two tensile test specimens were tested, whose ge-
ometry is shown in Fig. 4. The specimens have an 80-mm-
long center portion, which was used as the gauge length for
tensile strain measurement employing two LVDTs. The other
loading condition was described in greater detail elsewhere
(Akihama et al. 1982). In addition, COD was closely examined
for all the generated multiple cracks after failure using optical
microscope (3 400 magnification). The mean value is referred
to as the mean postmortem COD Postmortem COD wastestd .peak

confirmed to represent CODs at the end of multiple cracking
sequence (‘‘ultimate state,’’ hereafter), where tension softening
initiates (Kanda and Li 1998b). This is because crack closure
was found insignificant even after complete unloading (less
than 10%). The detailed procedure of this examination was
explained in Kanda and Li (1998b).

This peak point should correspond to composite peak stress
and the mean postmortem COD observed in uniaxialtest tests dpeak peak

tensile tests. For PSH composites with multiple cracks, it was
indicated that the sc-d relations vary from crack to crack due
to statistical variability of micromechanics parameters for fi-
ber, fiber-matrix interface, and matrix (Kanda and Li 1998b).
Nevertheless, the theoretical prediction of peak stress, speak,
appears to correspond to peak stress observation in test, testspeak

(Kanda 1998). The dpeak was also demonstrated to correspond
to although the postmortem COD was found to have atestd ,peak

wide distribution range (Kanda and Li 1998b).
TABLE 2. Constitutive Parameters for Composite

Constituent
(1)

Micromechanical parameter
(2)

40 mm-PVA
composite

(3)

14 mm-PVA
composite

(4)

Polyethylene
compositeb

(5)

Fiber Fiber length Lf (mm) 12 6 12.7
Fiber diameter df (mm) 0.040 0.014 0.038
Fiber elastic modulus Ef (GPa) 21.8 60 117
Nominal fiber strength (MPa)ns fu 806a 1,666a 2,400
Fiber volume fraction Vf (%) 2 1.5 2

Matrix Matrix elastic modulus Em (GPa) 23 23 23
Fiber/matrix interface Friction bond strength ti (MPa) 2.21a 4.35a 0.7

Chemical bond strength ts (MPa) 31.3a 33.6a —
Snubbing coefficient f 0.5c 0.5c 0.8
Fiber strength reduction factor f 9 0.3c 0.3a —

aAfter Kanda and Li (1998a).
bAfter Li et al. (1995).
cAssumed.



FIG. 4. Tensile Specimen Geometry

FIG. 6. Multiple Cracking Developed in Specimen

FIG. 5. Tensile Stress-Strain Relation in Test

Experimental Result in Comparison with Theory

The adopted composite showed PSH behavior with multiple
cracking. The measured tensile stress-strain relation (Fig. 5)
shows remarkable strain capacity over 1%. The averaged

is 3.09 MPa. The high strain capacity is attributed totestspeak

multiple cracking, which is represented by fine cracks perpen-
dicular to the loading axis shown in Fig. 6. Microscope in-
vestigation was conducted to measure the postmortem COD
(Fig. 7), the distribution of which is summarized in Fig. 8. The
postmortem COD varies from less than 10 mm to over 70 mm,
while many cracks have COD less than 40 mm. A mean value
of 22 mm was determined for Similar postmortem CODtestd .peak

variation was reported for a PE fiber composite (Kanda and
Li 1998b).

Theoretical sc-d relation was calculated using (21) and the
composite’s micromechanics parameters tabulated in column
3 of Table 2. No data are currently available for this compos-
ite’s fiber strength reduction factor f9 and snubbing coefficient
f among the parameters in Table 2. As in this table, f 9 = 0.3
FIG. 7. Crack Investigation under Microscope (3400 Magnifi-
cation)

FIG. 8. Distribution of Postmortem Crack Opening Displace-
ment

was adopted using data for a similar PVA fiber with a different
diameter (14 mm) (Kanda and Li 1998a). Furthermore, f = 0.5
was assumed as the lower bound of reported values for poly-
meric fiber with cement matrix, e.g., 0.5–0.8 for PE fiber (e.g.,
Li et al. 1995), 1.0 for nylon fiber, 0.7 for polypropylene fiber
(Li et al. 1990), and 0.6 for Aramid fiber (Maalej et al. 1995).
Only Aramid fiber is considered to have a notable chemical
bond due to its hydrophilic surface chemistry, among these
fiber types (Kanda and Li 1998a). The reason for adopting a
low bound value for PVA fiber is that that snubbing effect is
essentially to increase apparent frictional bond strength, rather
than chemical bond strength. Hence the snubbing effect may
become less significant for stronger chemical bond–dominant
interfaces like PVA fibers.

The resulting theoretical prediction for the peak bridging
performance was found to almost agree with test data. The
employed parameters led to Lc = 3.31 mm via (9), and there-
fore Lf = 12 mm >2Lc is satisfied for the investigated com-
posite. Hence (21) can be adopted instead of (20), and the
theoretical sc-d curve was then calculated as indicated in Fig.
9. This theoretical prediction has a peak at d = 0.0148 mm
and sc = 3.51 MPa, which are reasonably consistent with the
test results of = 0.022 mm and = 3.09 MPa, consid-test testd speak peak

ering significant statistical variation in individual cracks’ post-
mortem COD as demonstrated in Fig. 8. As a result, this com-
parison provides limited support for the proposed theory in
evaluating important characteristics of high-performance hy-
drophilic-fiber-reinforced composites.
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FIG. 9. Comparison of sc-d Relation between Theory and Test
Result

FIG. 10. Effect of Chemical Bond Strength on Normalized
Stress-COD Relation (E f /l = 50; = 2; f = 0.5; f 9 = 0.3)ns /lfu

PARAMETRIC STUDY

The presented relation is governed by the micro-¯s̄ 2 dc

mechanical parameters shown in (22). The influence of the
newly introduced nondimensional quantities sds/l, andns /l,fu

f9 is illustrated through parametric studies, which employ re-
alistic values of the micromechanical parameters. These pa-
rameters for the primary composite system used in this study
(Ef /l = 50, sds/l = 0.125, = 2, f = 0.5, and f9 = 0.3)ns /lfu

were determined by adopting the intermediate properties be-
tween those of three composite systems, the 40 mm-PVA fiber
composite in this study, a 14 mm-PVA fiber composite (Kanda
and Li 1998a,c), and a polyethylene fiber composite (Li et al.
1995) summarized in Table 2, since these three composites
may represent extremes. The 40 mm-PVA fiber system has
very high bond strengths but low fiber aspect ratio Lf /df ('
300) and fiber strength as aforementioned. The 14 mm-nsfu

PVA fiber system has extremely high bond strengths (ti ' 4
and ts ' 30 MPa) and high Lf /df (' 430) but medium ('nsfu

1,650 MPa). The PE fiber system has very high (' 2,400nsfu

MPa), but low bond strengths (ti ' 0.5 and ts # 0.5 MPa)
and Lf /df (' 330).

The effects of the first micromechanical parameter, sds/l,
are depicted in Fig. 10. The sds/l can be regarded as a measure
of the chemical to frictional bond ratio (for a given fiber aspect
ratio). In this figure, the peak point of curve was ex-¯s̄ -dc

pressed as This figure illustrates that peak stress¯(s̄ , d ).peak peak

increases but COD at the peak stress decreases with¯s̄ dpeak peak

increase of chemical bond strength, which shows solid circles
for the peak points Furthermore, composite stress¯(s̄ , d ).peak peak

= 0) increases with chemical bond strength, and its non-¯s̄ (dc

zero value is a result of neglecting elastic deformation of the
matrix foundation in (23). This assumption is valid because
the matrix deformation is negligibly small, as explained in
Appendix I. These effects lead to a significant reduction in the
complementary energy of the sc-d curves as can be geomet-
rically deduced from Fig. 10. Because the complementary en-
ergy is one of the most important properties for PSH com-
posite design, this issue is discussed in more detail in the
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FIG. 11. Effect of Nominal Fiber Strength on Normalized
Stress-COD Relation (E f /l = 50; sds /l = 0.125; f = 0.5; f 9 = 0.3)

FIG. 12. Effect of Fiber Strength Reduction Factor on Normal-
ized Stress-COD Relation (E f /l = 50; sds /l = 0.125; = 2; f =ns /lfu

0.5)

companion paper (Kanda and Li 1998c). The effects of the
second micromechanical parameter, are illustrated inns /l,fu

Fig. 11, which shows that both and increase with¯s̄ dpeak peak

The opposite trend to Fig. 11 is observed in Fig. 12, whichns .fu

illustrates the effects of the third parameter f 9. Fig. 12 shows
that both and decrease with increase of f9, which¯s̄ dpeak peak

negatively affects the bridging performance of composites.
These parametric studies revealed that the magnitude of the

newly introduced parameters remarkably affect the bridging
performance prediction. This implies that neglecting these pa-
rameters is not acceptable, as it leads to inaccurate evaluation
of composite performance. Furthermore, the ultimate goal of
this study—to design PSH composite with high-performance
hydrophilic fiber—may be achieved by tailoring the magni-
tude of these parameters.

CONCLUSIONS

This study is aimed at developing a comprehensive bridging
law (relation between crack-bridging stress due to fiber, sc,
and crack opening displacement d), focusing on cementitious
composites containing high-strength polymeric fibers with a
hydrophilic surface nature, such as PVA fibers. The new theory
accounts for two new features: (1) chemical dominant bond
property and (2) fiber strength reduction and rupture in com-
posite, and extends a preexisting crack bridging law to cover
a broader range of fiber types. As a result, three new micro-
mechanical parameters—chemical bond strength ts, nominal
fiber strength and fiber strength reduction factor f 9—arens ,fu

introduced into the sc-d relation.
The new bridging law as found capable of predicting a com-

posite’s important crack bridging characteristics, i.e., the peak
bridging stress speak and corresponding COD dpeak. This was
confirmed in comparison with uniaxial tensile test data em-
ploying a PVA fiber composite. The speak and dpeak were ex-
perimentally obtained from recorded stress-strain relation and
postmortem COD measurements. Consistency in theory pre-
diction and experimental observation for speak and dpeak pro-



vides confidence in using the proposed bridging model, which
appears quite useful in pseudo strain hardening (PSH) com-
posite design.

Furthermore, parametric studies of the resulting bridging
law revealed that the newly accounted fiber and interface pa-
rameters significantly affect bridging performance, which
should be reflected in PSH composite design procedures. The
completion of this design goal contributes to additional con-
fidence in the validity of the bridging model described in this
article. The detailed investigation for this goal is described in
a companion paper (Kanda and Li 1998c).

APPENDIX I. SINGLE-FIBER STRESS-COD
RELATION ON DEBONDING PROCESS

Chemical-type interface can be accounted for in the rela-
tionship between single-fiber bridging stress at exit point from
the matrix, sd, and crack-opening displacement, d, based on
the model by Li and Leung (1992). Through experiments,
Kanda and Li (1998a) have confirmed this model as capable
of representing interface properties of hydrophilic fibers. The
sd-d relationship was expressed as

2
2Ld

t Ei c S Ddfd s 2Ld d= 2 (23)S D S Dd E d E V Ef f f f m m

where Ld = debonding length; Ec = elastic modulus of com-
posite; Vm = volume fraction of matrix; Em = elastic modulus
of matrix; ti = frictional bond strength; df = fiber diameter;
and Ef = elastic modulus of fiber. Furthermore, fiber stress was
expressed as a function of debonding length, by assuming that
deponding proceeds as ts is overcome and chemical bond is
replaced with friction represented ti

2L td s2 t cosh Z 1 2 sinh ZiF S D S D Gd rf

s = (24)d (1 2 a)cosh Z 1 a

where Z = 2r(Lf 2 Ld)/df, a = VfEf /Ec, r2 = 2GcEc/[Vm Em Ef

log(2R*/df)]. R* = effective radius of matrix cylinder contain-
ing fiber; ts = chemical bond strength; and Gc = shear modulus
of composite. Budiansky et al. (1986) derived as log(2R*/df)
= 2[2 log Vf 1 Vm(3 2 Vf)]/ in the above. Assuming Z2(4V )m

>> 0 may be appropriate except for the final stage of debond-
ing, resulting in

tanh Z > 1 (25)

Eq. (24) can be further simplified by considering a << 1 and
employing (25)

2L td s2 t 1 2iF S D S DGd rf

s = (26)d (1 2 a)

Eliminating Ld with (23) and (26) leads to

2 2 1/2s = {s 1 s } (27)d di ds

where sdi [ [4(1 1 h)Efti(d/df)]
1/2 and sds [ [2(1 1 h)(ts/r).

The first term of the right-hand side of (27) represents the
contribution of friction bond, and the second term represents
that of chemical bond, to resisting load on the fiber.

The Ldpeak is defined here as the debonding length at which
fiber stress reaches maximum. Beyond Ldpeak, load drops un-
stably if the fiber has strong chemical interface bond. This
mechanism was examined in detail by Leung and Li (1991).
The assumption represented by (25), on which the derivation
of (26) is based, holds as long as the Ldpeak is close to the
FIG. 13. Influence of Chemical Bond Strength on Single-Fiber
Stress

embedment length l. This assumption is not valid if a fiber-
matrix system has much higher chemical bond strength than
frictional bond strength. However, even for the PVA fiber with
extremely strong chemical bond strength, as shown in Table
1, calculation with (26) showed Ldpeak/l = 0.9 with peak fiber
stress overestimated by 5% relative to that of the exact ex-
pression (24). Therefore, this assumption is considered valid
in the practical range of fiber-matrix systems. The following,
a normalized form of (27), is expressed as (28)9, and normal-
ized single fiber stress sd/ti is shown for different bond
strength ratio ts/ti in Fig. 13:

2 1/22s E d 4(1 1 h) td f s= 4(1 1 h) 1 (28)H S D S D S D J2t t d r ti i f i

Fig. 13 illustrates the stress increasing effect of chemical bond
strength. Furthermore, it shows sd/ti > 0 at d = 0 when ts/ti

> 0. This is resulted by neglecting elastic deformation of ma-
trix foundation in the derivation of (23), whose contribution
is usually much smaller than that of the two terms in (23) (Li
and Leung 1992). Hence only the negligible deformation d
exists prior to overcoming the chemical bond.

By suitable normalization, (27) is finally expressed in the
form of (3).

APPENDIX II. SINGLE-FIBER STRESS-COD
RELATION ON PULL-OUT PROCESS

Eq. (26) gives the single-fiber maximum stress smax when
debonding length Ld is equal to embedment length l, which
corresponds to a full debonding state along the fiber embed-
ment length. The smax might be approximated as follows by
assuming 1 2 a ' 1 (appropriate for low Vf << 1 with poly-
meric fibers which have relatively lower elastic modulus) in
(26)

4 l
s = s 1 (pd t l) = s 1 4t (29)max ds f i ds iS D S D2pd df f

d0, the displacement at smax, can be derived by equating (29)
to (27)

sds2ˆ ˆ ˆ ˆ*d = d l 1 2 l (30)0 i F S D Gl

The in (2) corresponds to when sds = 0 is assumed.ˆ ˆd d0i 0

Substituting in (2) by using in (30), (4) for sp is derived.ˆ ˆd d0i 0

APPENDIX III. CURRENT FIBER-RUPTURE ANGLE

During debonding process, single-fiber bridging stress sb is
expressed as a function of inclining angle f and COD d as
shown in (5). Hence, COD du, at which sb attains fiber-rupture
strength sfu, depends on f as follows [using (6)]:
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22( f1f 9)f 2ˆ ˆd (f) = d [e 2 j ] (31)u ci

where = Then current fiber-rupture angle fc, below2ˆˆ ˆ*d d L .ci i ci

which fiber rupture has not yet occurred at certain COD d, is
obtained by equating d to du in (31)

ˆ1 d 1 2ˆf (d) = 2 ln 1 j (32)c FS D G2ˆˆ2( f 1 f 9) L*d cii

The fc takes constant p/2 before fiber rupture starts at d =
du(f = p/2), and decreases with increase of COD d as shown
by (32). Then, it is eventually reduced to fb at d = due (due

denotes the COD when the debonding process of each fiber is
terminated). All population of fibers proceeds to the pull-out
process beyond due, which is calculated with the following
formula:

ˆ ˆ ˆ*d* = d (l = 1) = d [1 1 2b] for L < L < 2L0 i r f cd̂ = (33)ue 2Hˆ ˆ ˆd = d (f = 0) = d [1 2 j ] for 2L < Lc u ci c fc

Finally, fc is expressed in the form of (12) by employing the
above discussion.

APPENDIX IV. BRIDGING STRESS-COD RELATION
FOR COMPOSITES

The debonding stage represented by (18) is divided into two
substages at the COD when fiber rupture is initiated (du(f =
p/2)). Before fiber rupture starts, the integrals in (18) are eval-
uated by using (3), (4), (7), (10), and (12). Considering fc =
p/2 prior to rupture initiation, this calculation results in the
next formula for any fiber length

p p
s = s C G , f for 0 # d # d f = (34)c 0i A uS D S D2 2

where CA = 2 g1/2b2 1 2 g 1 2g1/23/2 3ˆ ˆ ˆ* * *{2/3d g 2d 4/3d bi i i

1 b2 2 1 2 1 2 After fi-1/2 3 2 2ˆ ˆ ˆ ˆ ˆ ˆ ˆ* *2dg 2db 2/3d d d 2d d b}.i i

ber rupture initiates, (18) gives the following results:

For Lr # Lf # 2Lc:

C G(f , f )A cs = sc 0i H1 C A(f , 22 f 2 3 f 9) 1 C A(f , 2f 2 2 f 9)B1 c B2 c

p
for d f = # d # d*uJ S D1 C A(f , 2f 9) 1 C A(f , f ) 2B3 c B4 c

(35)

For Lf > 2Lc:

C G(f , f )A cs = sc 0i H1 C A(f , 22 f 2 3 f 9) 1 C A(f , 2f 2 2 f 9)B1 c B2 c

p
for d f = # d # du cJ S D1 C A(f , 2f 9) 1 C A(f , f ) 2B3 c B4 c

(36)

where CB1 = CB2 = (1 1 2 CB3 =3 2 3ˆ ˆ ˆˆ ˆ ˆ* * *2/3d L ; 2bd )L 2d L j;i ci i ci i ci

2 2(1 1 2 and CB4 = (1 13 2 2ˆ ˆ ˆˆ ˆ ˆ* *2d L j 2bd )L j 2dL ;i ci i ci ci

2 1 2 1 (1 22 2 3 3 3ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ* * *2bd )L j 2/3d L j 2dL j 2/3d di ci i ci ci i
2ˆ ˆ*2bd )d .i

Similar to the debonding stage, the pull-out stage is divided
into two substages at the COD when complete fiber pull-out
initiates (= Lr/2). For the first substage, the integral in (19) is
calculated in the same manner as (18) by utilizing (3), (4), (7),
(10), and (14). Considering fa = p/2 for d < Lr/2, this cal-
culation yields the next formula

For Lr # Lf # 2Lc:

C G(f , f )C bs = sc 0i H1 C A(f , 22 f 2 3 f 9) 1 C A(f , 2f 2 2 f 9)B1 b B2 b

Lrfor d* # d #J1 C A(f , 2f 9) 1 C A(f , f ) 2B3 b B4 b (37)
298 / JOURNAL OF ENGINEERING MECHANICS / MARCH 1999
For Lf > 2Lc:

p p
s = s C G , 22 f 2 3 f 9 1 C G , 2f 2 2 f 9c 0i B1 B2H S D S D2 2

p p Lr
1 C G , 2f 9 1 C G , f for d # d #B3 B4 cS D S DJ2 2 2 (38)

where CC = 1 (1 1 2 2 1 (1 23ˆ ˆ ˆ ˆ* * *2/3d 2bd ) 2d 2/3d di i i

The second substage starts when the COD reaches2ˆ ˆ*2bd )d .i

Lr/2, and is represented by the following formula derived from
(19):

For Lr # Lf # 2Lc:

C G(f , f ) 1 C B(f , f , 22 f 2 3 f 9)C b B1 b as = sc 0i H1 C B(f , f , 2f 2 2 f 9) 1 C B(f , f , 2f 9)B2 b a B3 b a

L Lr ffor # d #J1 C B(f , f , f ) 2 2B4 b a (39)

For Lf > 2Lc:

s = s {C G(f , 22 f 2 3 f 9) 1 C G(f , 2f 2 2 f 9)c 0i B1 a B2 a

Lr
1 C G(f , 2f 9) 1 C G(f , f )} for # d # LB3 a B4 a c2 (40)

<< 1 and << 1 can be assumed for debonding stage.ˆ ˆ*d di

<< 1 is also true for pull-out stage. Hence, (34)–(40) areˆ*di

simplified as in (20) and (21) by neglecting higher-order terms.
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