INCLINATION ANGLE EFFECT OF CARBON FIBERS IN
CEMENTITIOUS COMPOSITES

By Amnon Katz' and Victor C. Li,? Member, ASCE

ABsTRACT: This paper presents an analytic model, which describes the bridging load and fiber stress developed
when an inclined brittle fiber bridges a crack. The coupled effect of fiber bending and axial loading is explicitly
accounted for. The model also considers matrix spalling and concentration of friction load at the point where
the fiber bends over the matrix. With this model, it is possible to test the influence of fiber and matrix
parameters on the bridging load and fiber stress, in order to achieve more efficient use of the fibers. Good
comparison of the model predictions with experimental results of the inclined carbon-fiber test was achieved,
both for the bridging load and the spall length. The model can serve as a useful tool to predict the efficiency

of inclined fibers bridging a matrix crack.

INTRODUCTION

The inclination angle of a fiber bridging a matrix crack has
been shown to have a significant effect on composite prop-
erties. Laws (1971) and Allen (1972) concluded that when a
fiber is inclined toward the load direction, it bears only the
component of load in its direction. Thus, the fiber efficiency
is reduced for inclined fibers.

When a fiber bridges a matrix crack, as shown in Fig. 1,
geometric restrictions lead to fiber bending. Friction concen-
tration at the point at which the fiber exits the matrix increases
the tensile stress in the fiber, leading to a more efficient use
of the fiber. Li et al. (1990) showed this effect by using the
pulley model to describe the angle effect on the pullout be-
havior of ductile fiber. In this model the fiber is simulated as
a flexible rope pulled over a friction pulley. For stiff and
brittle fiber, as the carbon fiber, this analogy may not be
accurate as the fiber does not bend completely over the pulley
due to its high stiffness. In addition, the fiber may break as
a result of stress concentration caused by both the axial load
of pullout and bending of fiber, as shown in Fig. 1.

Aveston et al. (1974) analyzed this problem for glass and
carbon fibers. They concluded that there may be cases where
the bending stress in the fiber is seven or 15 times larger than
the axial load developed in the fiber. They also suggested
that crumbling or yielding of the matrix below the fiber re-
duces the bending stress. However, they did not provide so-
lutions to the extent of crumbling and its effect on the bending
stress. Piggot (1974) considered the case of brittle fibers in a
rigid perfectly plastic matrix. In this model the fiber is con-
sidered to be a flexible string with no bending stiffness, and
the bending of the fiber bridging the crack due to geometric
restrictions (as demonstrated in Fig. 1), was neglected.

Two models were developed by Katz (1992) and Leung and
Li (1992) for modeling the behavior of stiff brittle fiber bridg-
ing over a crack. Katz (1992) adopted the model of Morton
and Groves (1974), who treated the fiber as a cantilevered
beam on an elastic foundation. Morton and Groves assumed
a ductile fiber that yields plastically at the bending point.
Leung and Li (1992) adopted a finite-element approach to
take into account the three-dimensional nature of the physical
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problem, and also included the effect of fiber breakage and
matrix spalling. In all these works, the combined effects of
axial loading and bending of the inclined fiber are taken as
superposition of those generated by fiber axial loading alone
and fiber bending alone.

The present work examines the coupled effect of direct
pullout load accompanied by bending load for fibers bridging
a crack at an angle to the load direction. The analytic model
is still based on the cantilevered beam representation of the
fiber as in Morton and Groves (1974), but takes advantage
of the knowledge of (matrix) foundation stiffness obtained
from the numerical modeling of Leung and Li (1992). In
addition, the phenomena of spalling of the brittle matrix be-
low the fiber (the shaded area in Fig. 1), friction load con-
centration at the bending point, fiber debonding, and break-
age are included in this model. An experimental study on the
pullout mechanisms of inclined fiber was carried out to verify
the model with experiment results.

As a side study, validity of the assumption of small beam
deflection is examined. The results (Appendix I) show that
there may be cases where large deflection of the fiber must
be considered.

ANALYTIC MODEL

Morton and Groves (1974) proposed that an inclined fiber
bridging a matrix crack (Fig. 1) can be divided into two parts
at the midpoint of the crack by symmetry considerations.
Each part of the fiber is then simulated as an elastic beam
(Fig. 2), partially supported on a foundation (the matrix) and
partially cantilevered out (crack bridging portion).

Geometric considerations require that the deflection 8 and
the cantilevered length /, be related to the crack opening u,
the inclination angle 6, and the fiber diameter d.

6 =05usin®; [ =05dtan® + 0.5ucos® (1,2)

FIG. 1. Bending of An Inclined Fiber Bridging a Crack
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FIG. 3. Deflection and Reaction along Supported Part of Fiber

The analytical model was developed in the following man-
ner: (1) Coupled equations based on the work of Hetenyi
(1946) were obtained for the simple case of an inclined beam
(fiber) on an elastic foundation subject to simultaneous bend-
ing load P and axial load N; (2) the extent of matrix spalling
under the fiber and its effect on the loads were determined;
and (3) the effect of friction concentration at the point of
fiber bending was included in the axial load.

With reference to Fig. 2, the cantilevered part of the beam
is subjected to axial load, N and bending load P. The sup-
ported part is subjected to the axial load N, shear load V,
and bending moment M, transferred from the cantilevered
part. Continuity considerations prescribe the boundary con-
ditions for each part. The supported part can be considered
a semi-infinite beam, since the loads and moment concentrate
at the point where the fiber exits the matrix and decays rapidly
into the embedded length of the fiber (Fig. 3), even for a
short fiber length. For the sake of simplicity, the equations
have been expressed with different x-y axes for each part of
the beam. In what follows, terms with the subscript ¢ refer
to the cantilever part, and terms with a subscript s refer to
the supported part of the beam.

Coupling the solution for the supported part of the beam
was found to have a negligible effect. For typical values of
cementitious matrix and carbon fiber, the coupled equations
of Hetenyi (1946) indicate a change of 2—4% in the bending
load relative to that for the uncoupled case (Appendix II).
Therefore, the coupled solution was applied only for the can-
tilever part of the fiber.

Simple Case of Inclined Fiber

The deflection of the supported part as a result of shear
load V and bending moment M (the shear and bending mo-
ment from the cantilevered part) are (Timoshenko 1976)

¥y, = 2{—&- e~ cos(ix,) 3)

_oMw
Y = k

e [cos(Ax,) — sin(Ax,)] )

where A = 'S;‘/ka’élEf!-; k = matrix foundation stiffness; and
E; and I; = modulus of elasticity and moment of inertia of
the fiber, respectively. The angle of slope, bending moment,
and shear load of the fiber and the reaction from the matrix
can be obtained as the first, second, third, and fourth deriv-
atives of (3) and (4), respectively.

For the cantilevered part of the fiber, the equations were
developed from the following, which describes the bending
moment along the fiber developed from bending load P and
axial load N acting at x, = O:

2,
M = —E;-I,% = —Ny, + Px, (5)

The solution to the differential (5), for the boundary con-
ditions of y. = 0 at x. = 0 yields the equation for the de-
flection of the cantilivered part

P
y. = 2C sinh(mx,) + — x, (6)

where m = VN/EI,.

Here, again, the deflected slope of the fiber, the moment,
and shear load are the first, second, and third derivatives,
respectively, of (6). Eq. (6) shows that increasing the axial
load requires an increase in the bending load in order to
maintain a constant fiber deflection. On the other hand, re-
ducing the axial load increases the deflection to infinity as N
approaches 0. In this case, the deflection becomes too large
and the theory of large deflection must be applied (Appendix
I). In the case of fiber bridging a crack, axial and bending
loads are developed simultaneously, and the risk of very small
axial load relative to the bending load does not exist.

From continuity considerations, the angle of slope of the
fiber, ¢, at the edge of the supported part (x, = 0) has to be
equal to the angle of the cantilever part at x, = [. The total
deflection of the two parts is the deflection & needed to deflect
the fiber to the midpoint of the crack, as was expressed in
(1). These conditions are represented by

o, =0) = d(x. =1); ylx,=0)+yx.=0)=3 (7,.8)

The unknown moment M, shear force V, and integration
constant C can be obtained by enforcing these two conditions,
along with moment continuity. As a result, the total deflection
can be expressed as

5 = K.P 9)
where
4\ j g i
K, = s K,N[m cosh(ml) + X\ sinh(ml)] + 2K, sinh(ml) + N
(10)
Ki = —“}(N -~ [m cosh(ml) + X sinh(ml)] — 2Nm cosh(ml)
1

(11)

The axial load N is calculated according to (12) (Li 1992),
assuming that the fiber-matrix bond, 7, is of friction nature
only. When considering the axial load, the pullout length I
should be only the second term in (2), (0.5u cos 0), as the
other term in (2) is related to the part of the fiber that sep-
arates from the matrix on bending (as shown in Fig. 1).
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Iy <lI,

m /% E,d*rl,,

N(ly) = 1 mrLd (1 - %) I, <ly<L (12)

0 Iy>L

where I, = 2L*1/E.d; Iy = 0.5u cos 6; and L = fiber embed-
ment length.

Special attention must be given to the parameter of the
matrix stiffness k& used in the model. This parameter refers
to the matrix deformation under a unit load applied over a
unit length of fiber. This parameter is related to the matrix
modulus of elasticity E,,, but also takes into account the foun-
dation depth variation with the distance along the embedded
fiber length from the matrix crack (see Fig. 1). This three-
dimensional problem was analyzed using the finite-element
method by Leung and Li (1992), who found that the ratio
k/E,, is approximately 0.20 close to the crack and increases
to about .45 far from the crack into the matrix, for the case
of equal fiber and matrix moduli, i.e., E/E,, = 1. The ratio
k/E,, at any point along the fiber increases slightly for fibers
stiffer than the matrix, and does not change much for E o
> 6. For a high fiber modulus, k/E,, was determined to be
0.23 near the crack and equals 0.55 far from the crack. As
the load concentration in the fiber and the matrix is located
along a short length of the fiber from the crack into the matrix
(Fig. 3), an average value of k/E,, = 0.25 will be used in the
following discussion.

There are no experimental values on the stiffness of the
matrix as defined in this case to validate the analytical model,
and it is reasonable to assume that this property must be
determined in a region close to the fiber. This transition-zone
region has been shown to be different from the bulk matrix
in microstructure and properties (Wei et al. 1986; Bentur et
al. 1985). The effect of changes in the matrix properties will
be discussed later.

Matrix Spalling

After solving (9)-(12), all loads and moments can be cal-
culated. Introducing these loads and moments into the fourth
derivatives of (3) and (4) yields the reaction per unit length
from the matrix to the fiber. This reaction, divided by the
fiber diameter, also expresses the pressure of the fiber on the
matrix. Adopting the assumption of Leung and Li (1992),
matrix spalling occurs when this pressure exceeds the matrix
ultimate compressive spalling strength o,, = ¢,,E,,. The com-
pressive spalling strength may be higher than the bulk com-
pressive strength of the matrix because of the small sampling
volume on which the fiber pressure load is applied. The dis-
tance from the crack to the point at which the matrix reaches
its ultimate strength is the spall length. This length is added
to the free length of the fiber, calculated in (2), and the loads
and moments are calculated again for the new geometric con-
ditions. This procedure was repeated until satisfactory con-
vergence was achieved.

Friction Concentration

The concentration of normal load from the matrix toward
the fiber at the bending point leads to a concentration of
friction load, N/, in this region, which increases the axial load
in the fiber. This load can be calculated by integrating the
reaction of the matrix along the fiber R and multiplying it by
the friction coefficient f

N, = fR (13)
As the reaction of the fiber is wavy in shape and decays

1342 / JOURNAL OF ENGINEERING MECHANICS / DECEMBER 1995

rapidly along the fiber (Fig. 3), only the first wave was con-
sidered. The rest of the reaction load along the fiber was
ignored.

The friction effect is calculated by adding the friction load
Ny, calculated from (13), to the axial load due to pullout (12).
Increasing the axial load (N) requires an increase in the bend-
ing load (P), to maintain a constant deflection 8, resulting in
an increase of the matrix reaction force and spalling length.
However, the effect of changes in the axial and bending loads
on the spalling length are very small and, after one iteration,
satisfactory convergence was achieved.

Determination of Final Bridging Load and Fiber Stress

After considering the spalling effect and friction effect, the
fiber bridging load is calculated according to

Fiye = Psin® + (N + Npcos 6 (14)

The maximum tensile stress in the fiber due to pullout and
bending was calculated at the point where the fiber exits the
matrix, to determine whether fiber breakage occurs. The ac-
tual point of maximum stress due to bending alone is located
a short distance in the matrix. However, the axial load is
reduced along this distance due to the friction effect, which
compensates for the increase in the bending stress. The change
of the real maximum stress from the stress calculated at the
exit point is very small (less than 5%) and was ignored. The
bending moment at the point the fiber exits the matrix is

M = —2K,PN sinh(ml) (15)
and the maximum tensile stress in the fiber at this point is
Md b 4(N + N)
21, wd?

IMPLICATIONS OF ANALYTIC MODEL

The need for the new model was tested by comparing the
bending stress developed in the fiber for cases of the coupled
and uncoupled solutions of the bending and axial loads. The
main effect of coupling the solution is on the cantilevered
part of the fiber, as the deflection of the supported part is
restrained by the matrix. Therefore, the development of
bending moment at a perfectly (no spalling) cantilevered beam
of various lengths (as the crack opens) was compared for the
two cases.

For this calculation, a carbon fiber with typical geometric
and mechanical properties is assumed. The axial stress in the
fiber were calculated using (12). The deflection of the can-
tilevered beam and its cantilevered length were calculated
according to (1) and (2), respectively. The stress for the cou-
pled solution was calculated by solving (6) for boundary con-
ditions ¢ (x, = /) = 0 and y(x. = [) = 8, and for the
uncoupled case by using simple elastic theory [8 = PI¥/(EL)].
These solutions are schematically presented in Fig. 4. The
calculation as presented does not take into account the pos-
sibility of fiber breakage, matrix deformation, or spalling.

For the uncoupled solution, it is seen that for a small crack
width the bending stress increases rapidly, faster than the
stress developed by the coupled solution. However, as the
crack extends, the bending stress calculated by the uncoupled
solution reduces while the stress calculated by the coupled
solution continues to increase. This phenomenon can be ex-
plained by the nature of the coupled solution. The axial load
induces a moment opposing the direction of the moment com-
ing from the bending load, leading to a lower bending mo-
ment, relative to the case of the uncoupled solution. How-
ever, as the axial load increases for an increase in crack width,
the bending load is also increased to maintain the deflection
d [see (6)], leading to a continuous increase in the bending

(16)

o =0, +o0,=
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FIG. 4. Comparison between Coupled and Uncoupled Solutions
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FIG. 5. Bridging Load versus Crack Width for Different Inclination
Angles

moment. For the uncoupled solution, the bending load reaches
a maximum at the short length of the cantilevered fiber (small
crack width) but reduces for a longer length, leading to a
reduction in the bending moment and fiber stress.

The foregoing analysis shows that using the uncoupled so-
lution may lead to overestimation of the bending stress and
contribution of the bending load to the total bridging load
for small crack width, and to a severe underestimation of
these parameters for a large crack width. However, this dif-
ference should diminish if matrix spalling occurs, since the
free length of the fiber and the moment arm for the bending
force increases, while the moment arm for the axial load
essentially stays the same. Therefore, a somewhat less pro-
nounced coupled effect results. Solutions for a large crack
width may be cut off if the fiber breaks in bending. Fig. 4
should be understood with these considerations in mind.

Typical carbon fiber and cement matrix parameters were
introduced into the equations of the complete coupled so-
lution [(9)—(12)] for the discussion in the next section. The
following parameters were kept constant while the effect of
changing the other parameters was studied: fiber diameter d
= 15pm, L = 3mm, k/E,, = 0.25,¢,, = 0.2%, 7t = 1 MPa,
and f = 0.5.

In general, both the bridging load and the fiber stress in-
crease as the crack opens [for I < [, defined in (12)], as can
be seen in Figs. 5 and 6, respectively. The bridging load
decreases as the angle increases, as shown in Fig. 5, mainly
due to the effect of the angle on the axial load [N cos 0 in
(14)], which decreases as the angle increases. The bending
load is low, relative to the axial load, and does not affect the
bridging load much, although its component in (14) increases
with the angle. This load, however, has a strong effect on the
bending stress, which increases as the angle increases. Gen-
erally, the fiber stress increases with the angle for a given
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FIG. 6. Fiber Tensile Stress versus Crack Width for Different In-
clination Angles
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FIG. 8. Effectof Bond Strength on Bridging Load and Fiber Stress
as Crack Opens

crack width. However, the bending load is affected by many
parameters, such as the axial load it needs to balance to
maintain the deflection 8 [(6)], spalling length, and other
geometrical and material parameters. Therefore, there may
be cases where fiber stress does not increase with the angle
or decreases slightly, as shown in Fig. 6 for 75°.

The effect of changes in the fiber modulus of elasticity is
presented in Fig. 7, for fiber inclined at 45°. A low modulus
of 75 GPa is represented by the solid line and a high modulus
of 300 GPa is represented by the dashed line. The matrix
modulus of elasticity is 30 GPa and the compressive strength
is 60 MPa. For convenience, both the bridging load and the
fiber tensile stress were plotted on the same chart. The con-
tribution of fiber bending to the bridging load can be clearly
seen on the curves of the bridging load. For the case of pullout
only, this curve is of descending portion after the pullout load
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FIG. 11. Typical Load-Displacement Curve of Two-Part Specimen
Test (Fiber Angle = 45°)

reaches its peak, marked by arrows on the curves of the
bending load in Fig. 7. By including the bending effect, a
slight increase can be seen in the region after the pullout
peak, resulting from a continuous increase in the bending
load. Fiber stress increases more rapidly for the high modulus
fiber because of the increase in bending rigidity, leading to
possible failure of the fiber at the smaller crack width, for a
given strength. This analysis is valid for fibers of the same
strength capacity. However, a lower modulus is generally
accompanied by a lower tensile stress capacity; therefore, low
modulus fiber may break before reaching the point where the
higher bridging stress develops, so each case is dealt with
separately.

Fig. 8 represents the effect of change in bond strength on
fiber stress and bridging load, computed for high modulus
fibers (£, = 300 GPa). Two bond values were assumed: 1
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MPa is represented by the solid line, and 4 MPa is represented
by the dashed line. Here too, the pullout resistance has the
strongest effect on the bridging load, while both pullout and
bending resistance affect the fiber stress. Although the higher
bond strength leads to a remarkable increase in the bridging
load for a given crack width, fiber breakage due to high fiber
stress will occur at a smaller crack width, leading to a smaller
effect of the improved bond. Assuming a fiber tensile strength
of 2,000 MPa (represented by the thin dotted line in Fig. 8),
the critical crack width for fiber breakage is approximately
0.8 and 0.4 fiber diameters for bond strengths of 1 and 4 MPa,
respectively. As the critical crack width is reduced when the
bond is increased, the full potential of increasing the bond is
not utilized, as indicated in the figure.

The change in matrix properties affects the bridging load
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FIG. 14. ESEM Micrographs of Specimens for Fibers Inclined at: (a) 15° (b) 30°; (c) 45°; (d) 60°; (e) Ductile Fiber Incline at 30°
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and fiber stress in two ways: (1) Increase of the matrix stiffness
k reduces matrix deformation and increases the bending stress;
and (2) generally, an increase in the matrix modulus is ac-
companied by an increase in the strength of the matrix, which
may change the spalling length of the matrix, leading to an
additional effect on the fiber stress development. A relation
of E = Vo is generally accepted for cementitious materials
(Soroka 1979).

For the example in Fig. 9, matrix modulus of 30 GPa and
strength of 60 MPa were compared with matrix modulus of

20 GPa and strength of 27 MPa, for low modulus fibers (E;

= 75 GPa). Fig. 9 shows that changing the matrix properties
does not change the bridging load significantly, as this load
is mainly affected by the pullout resistance, which is not in-
fluenced by the matrix properties but more by the fiber and
bond properties. However, based on experimental studies by
Katz and Li (1994), it is reasonable to assume that increasing
the matrix properties will also improve the bond strength.
The main effect of changing the matrix properties is on the
bending stress that develops in the fiber. Fig. 9 shows that a
fiber embedded in a weak and low modulus matrix suffers
lower tensile stress than fiber embedded in a strong matrix.
Thus, the fiber can survive at a larger crack width and can
support more bridging loads.

This conclusion stands in good agreement with the results
of Katz and Bentur (1994), which observed strength reduction
in carbon fiber-reinforced cement composites when the ma-
trix became denser by the effect of time or by using silica
fume.

EXPERIMENTAL STUDY

A limited experimental study was carried out using an ex-
perimental thick carbon fiber (d = 46 pm) prepared by Con-
oco Inc., Ponca City, Oklahoma. The setup consisted of two
fibers arranged at an angle 0 to the load direction in a cement
matrix, as shown in Fig. 10. Each part of the cement matrix
was cast separately on subsequent days and a thin layer of
oil was applied on the first mix prior to the second cast, in
order to minimize the bond between the two parts. The spec-
imen was glued to the testing machine and direct tension was
applied. This setup provides balance of the horizontal loads
of the two fibers, leaving only the bridging load to be effec-
tive.

Due to the extremely brittle nature of the carbon fibers,
the use of typical commercial carbon fibers was impractical
as these fibers tend to break while setting the mold or during
casting. The fiber strength and modulus of elasticity were
estimated (A. Kazmer, personal communications, June, 1994)
as 930 MPa and 175 GPa, respectively. The cement matrix
was Type III cement paste, with a water to cement ratio of
(.5. Specimens were kept in a humid environment until test-
ing day, seven days after the second cast. Test results are
based on at least five specimens.

The inclination angle was 15°, 30°, 45°, 60°, and 75°. How-
ever, the formation of the cement matrix around the fibers
at high angles was not perfect, especially for the 75° specimen,
because of the very thin cement layer above the fibers in the
half-specimen cast first. This layer, which affects the fiber
bending stress, is strongly influenced by bleeding, shrinkage,
and other weaknesses of the cement paste. Therefore, results
of the 75° specimens are not included here.

A typical load-displacement curve for fibers inclined at 45°
is presented in Fig. 11. The first peak in the curve is associated
with the remaining bond between the two parts of the matrix
specimen. The second peak is the maximum bridging load
when one of the two fibers breaks. The other fiber breaks
subsequently at a lower load, reflected by the third low peak
in the test curve.

1346 / JOURNAL OF ENGINEERING MECHANICS / DECEMBER 1995

To simulate these inclined bridging fiber experiments, fiber
data along with the matrix properties of £,, = 30 GPa and
g,, = 60 MPa and bond strength of 0.5 MPa, were introduced
into the model described earlier. The results are presented
in Fig. 12(a) for the bridging load, Fig. 12(b) for the fiber
stress, and Fig. 12(c) for the spalling length. The horizontal
dotted line in 12(b) represents the fiber strength as measured
for this fiber. At this stress the fiber breaks; this corresponds
to w/d = 0.20-0.28, as shown in Fig. 12(b). The maximum
bridging load in the tests was predicted by determining the
bridging load at the crack width corresponding to fiber break-
age [Fig. 12(a)]. For 30°, as an example, the model predicts
a bridging load of ~0.58 N for a single fiber, which is close
to half the measured value (1.28 N) for two fibers tested in
the experimental work.

Additional comparison of test results with the analytical
model for other inclination angles is presented in Fig. 13. The
results show very good agreement with the model. The pre-
dicted values are slightly lower than the experimental results,
probably as a result of some weakening of the matrix near
the fiber as described earlier. The good comparison of the
model with the test results indicates that this model can serve
as a useful tool to predict the behavior of random-oriented
brittle fibers in cementitious composites.

Spalling of the matrix, which affects the bending stress in
the fiber. can be seen in Fig. 14. These photographs were
taken by an environmental scanning electron microscope
(ESEM) from the surface of the lower specimen. and show
fibers inclined at 15° through 60°. The mode and extent of
damage to the matrix appears different for the different an-
gles. At 15°, the extent of damage looks small and seems
more like local crushing of the matrix. For the 60° case, the
damage extends for a longer distance and appears more like
shear failure of the matrix. This indicates that better modeling
of the matrix is needed in order to calculate the stress in the
fiber correctly.

The differences between the action of brittle fiber and duc-
tile fiber in bridging a crack can be seen by comparing Figs.
14(b) and 14(e). Fig. 14(b) shows brittle carbon fiber after
the test, and Fig. 14(e) shows ductile fiber (spectra, a high
modulus polyethylene fiber with similar diameter). The ex-
tent of damage to the matrix in the ductile fiber was more
localized and the fiber did not break. Instead, the polymer
fiber deformed plastically (probably with local compressive
buckling) at the exit point, and continued to support the loads
across the crack. On the other hand, carbon fiber caused more
extensive damage to the surrounding paste, and the fiber
broke down when it reached its ultimate strength. These con-
trasts explain why, for polymeric fibers, the snubbing model
described by Li et al. (1990), which predicts increasing bridg-
ing load with higher inclined angles, works so well. However,
for brittle fibers like most carbon fibers, the extensive local
matrix crushing and fiber bending failure may cause a bridging
load reduction with an inclination angle. as revealed by the
experiments reported here and predicted by the aforemen-
tioned model.

The spalling length was estimated based on the observa-
tions of the specimen surface in Fig. 14, giving a spalling
length of approximately 4-6 fiber diameters for angle changes
from 15° to 60°, respectively. These results also stand in good
agreement with the model predictions represented in Fig.
12(c), qualitatively verifying the validity of the model.

CONCLUSIONS

An analytic model was developed to describe the bridging
load and fiber stress in an inclined brittle fiber bridging a
matrix crack, for different fiber and matrix parameters. Com-
parison of the coupled solution of bending and axial load with



the uncoupled solution suggests the possibility of overesti-
mation and underestimation of the bending stress for small
and large crack widths, respectively. However, the difference
between the coupled and uncoupled solution at a large crack
width is tempered by the matrix spalling and fiber breakage.
At any rate, a more accurate account of the fiber stress and
bridging load for a brittle fiber bridging across a brittle matrix
crack was offered by the coupled model described in this
paper.

The bridging load was found to be affected mainly by the
development of the axial load from fiber pullout. Increase in
the fiber modulus or fiber-matrix bond strength results in a
higher bridging load for a given crack width. The bending
stress, which leads to fiber rupture in brittle fibers, is affected
by the fiber modulus and fiber-matrix bond strength along
with the effect of matrix parameters. An increase in the fiber
modulus, bond strength, or matrix modulus raised the fiber
stress for a given crack width, and resulted in fiber failure at
a smaller crack width for a given fiber strength, leading to a
lower bridging load than expected from the improvement in
these material properties.

The model was compared with an experimental study of
inclined large diameter carbon fibers in a cement matrix.
Reasonable comparisons of model predictions with experi-
mental results, both for the bridging load and the matrix spall
length, were achieved. Therefore, the model can serve as a
useful tool to analyze the efficiency of inclined brittle fibers
in composite postcracking properties.
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APPENDIX I. LARGE DEFLECTION ’

As shown in Fig. 1, the deflection of the fiber may be large.
The small deflection theory may not be applicable to the
solution when the deflection is large, and will result in an
overestimation of the bending loads. In this case, a large
deflection must be considered. This problem is more likely
to occur in the cantilevered part of the fiber, as the deflection
of the supported part is restricted by the matrix. Therefore,
in the following we only treat the case of large deflection in
the cantilever part of the beam.

For large deflection of a cantilever beam, the exact solution
of the equation of the deflection curve was solved by Gare
and Timoshenko (1984). The exact relation between the
bending load to the vertical deflection of the fiber end, 3, is
expressed as

4E,I,
T\ pPL?

[E(®) — E(g, )] 17)

[h‘l Ea,

where E;, = modulus of elasticity of the fiber; I; = moment
of inertia of the fiber; E(g) = complete elliptic integral of

the second type; E(g, ) = incomplete integral of the second
type; g = V(I + sin $)/2; a = arcsin 1/(gVv2); and & =
angle of slope of the fiber.

The solution to this equation is presented in Fig. 15 along
with the solution for small deflection.

Fig. 15 shows that large deflection of the fiber may lead to
a severe error in the calculations based on the small deflection
theory. There is a difference of 10% for the calculated de-
flection according to the two methods at PI%El = 1.0. This
value was introduced to the small deflection model with typ-
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FIG. 15. Predicted Vertical Deflection of Cantilever Beam Sub-
jected to Concentrated Load at End, Based on Small- and Large-
Deflection Theory [after Gare and Timoshenko (1984)]

ical fiber parameters. For high modulus carbon fibers, such
as the typical pan type, the critical crack width at which large
deflection must be considered is 8, 6, and 5 fiber diameters
for fibers inclined at 45°, 60°, and 75°, respectively. For low
modulus fiber, such as the pitch type, the crack width is 5,
4, and 3.7 fiber diameters for 45°, 60°, and 75°, respectively.
It seems that as the crack opens beyond these limits, the
deflection of the fiber is considered large. When calculating
the bending stress for these regions of crack width, the theory
of large deflection may be needed.

APPENDIX Il. COUPLED SOLUTION FOR
SUPPORTED PART OF FIBER

For a beam laid on a continuous foundation subjected to
axial load N, bending load P, or bending moment M, the
following were proposed by Hetenyi (1946) for the deflection
line

Rleiion. E o S
y.((P‘! N) T Bk (30.2 s Bg) € [2 B COS(Bx_‘.)
+ (o — B)sin(Bx,)] (18)
Y, N) = 2L S e on[B cos(B) + @ sin(Br)

E,I, 3a® — B?) B
(19)

where A = WkAEd; o = VNKIAE + NIAEI; B =

VNKIAE,I, — N/AEL; and k = foundation stiffness.

If the axial load is small relative to the fiber stiffness, a =
B, and the equations assume the form as in the bending case
only, regardless of the axial load effect. This occurs when

N [k
—_— < [ 0
4EI, AE1; (20)

The maximum axial load that can be developed in the fiber
is defined by the fiber ultimate strength, N = o,md*/4, and
(20) becomes

[kE,
1 << |—= (21)
&2

Y mof

Introducing typical values of pan- and pitch-type carbon
fibers (E; = 300 and 50 GPa and o, = 3,000 and 700 MPa,
respectively) into (21) yields a value of 10 and 18, respec-
tively, for the right-hand side of (21). These values under-
estimate the real values as the axial load never reaches the
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ultimate strength of the fiber because of the bending loads,
which develop simultaneously. The results indicate that for
commonly used carbon fibers, the calculation can be done
neglecting the effect of the coupled solution on the supported
part of the fiber.
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