FRACTURE PROCESSES IN CONCRETE AND FIBER
REINFORCED CEMENTITIOUS COMPOSITES

By Victor C. Li,’ M. ASCE and Erwin Liang®

AesTRacT: This paper discusses the fracture processes of concrete and fiber
reinforced cementitious composites with special focus on the development of
the fracture process zone with respect to the stress-separation constitutive re-
lation of such materials. The suggestion is that the overall mechanical behavior
of a concrete or FRC structure could be strongly influenced by the stress-sep-
aration constitutive relation, which in turn could be altered by engineering the
microstructure of the material, especially in FRC. The process zone length is
found not . - be a material property, but depends on the geometry of the spec-
imen and the loading configurations. All these results are shown explicitly by
a simple numerical model of a center-cracked panel subject to remote edge loading
or to wedge loading on the crack faces. These calculations also provide further
understanding to the validity of certain failure criteria.

INTRODUCTION

In concrete, microcracks in the cement may form as a result of drying
shrinkage. Often, the interface between the aggregates and the cement
matrix forms a weak bond. Using X-ray techniques, Slate (24) found that
bond cracks occur at applied stresses of the order of 30% of the com-
pressive failure stress level in his concrete specimens while matrix cracks
occur at a slightly higher stress level. Diamond and Bentur (6) showed
that the joining of these cracks to form major throughgoing ones takes
a tortuous path, since the cracks often propagate by winding around the
aggregates. Using a scanning electron microscope under carefully con-
trolled compact tension tests, they found that crack “ends” tend to be
branched, often run through cement matrix material and sand grains,
and are often discontinuous. An interpretation of the winding cracks on
the microscopic level is that the failure process of concrete involves the
pulling out of the aggregates from the cement matrix, as the aggregates
generally have a higher strength than either the cement matrix or the
interfacial bond. Presumably, the increased apparent fracture toughness
of concrete over cement paste (see, e.g., Ref. 25) comes from this ag-
gregate “‘pull-out’” or bridging effect. In short strand FRC, the bridging
effect is dominated by the fibers. It is the work to cause fiber pull-out
or breakage that contributes to the significant increase in the ductility of
FRC.

The constitutive relation between increasing (localized) material sep-
aration w and the traction o, carried across the cracking material (e.g.,
in a uniaxial test) will be called the stress-separation curve (or the o-w
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curve). The basic assumption for the existence of the stress-separation
curve is that the diffuse damage in a given material localizes onto a nar-
row zone (or a plane on the continuum scale) due to stress concentration
associated with material inhomogeneity or structural geometry (such as
a notch). The use of a stress-separation relationship rather than a stress-
strain relationship in describing the inelastic deformation in the process
zone is related to the brittle behavior of the cement matrix, which results
in microcracking, and to the bridging effects across a crack plane by ag-
gregates and/or fibers as mentioned above. This is in contrast to the
plastic deformation in a volume of material for ductile metals, which is
better described by a stress-strain relationship. Based on the above brief
description of the physical processes of fracture in concrete and in FRC,
it should be clear that the stress-separation curve must reflect the energy
dissipation connected with pull-out of aggregates and/or fibers, micro-
crack branching, tip blunting by voids, and all other possible energy
absorption mechanisms. In fact, the area under the stress-separation curve
provides a measure of the fracture toughness or the critical energy re-
lease rate (see, e.g., Ref. 22 and Eq. 5). In addition, these mechanisms
should control the shape of the stress-separation curve. For example, in
concrete the average aggregate size and aspect ratio, and the bond strength
between aggregate and cement (which depends on the surface rough-
ness of the aggregates and chemical bonding) should have dominant
effects on the stress-separation curve shape. Similar considerations ap-
ply to the fibers in FRC. It may be expected that fiber types, lengths,
cross-sectional geometry, surface treatment, volume fractions, etc., all
contribute to affect the stress-separation curve. In general, the bridging
action of the fibers in FRC provides a long tail in the stress-separation
curve. These observations suggest that it is possible to engineer the fiber
mechanical and geometrical properties to obtain desirable macroscopic
behavior in FRC through the stress-separation curve. This begs the ques-
tion: How does the stress-separation curve shape influence the behavior
of a concrete or FRC structural component when cracks are involved?

In this paper, we attempt to study the development of the inelastic
fracture process zone with respect to load level, loading configuration,
structural geometry and most importantly, the constitutive or the stress-
separation relation in the process zone. In turn, the development of the
process zone controls the behavior of the structural component. It also
provides some insight into the adequacy/inadequacy of certain pro-
posed toughness characterization in FRC and in concrete. This study is
based on a numerical analysis of a simple structure—a center-cracked
panel, which is assumed to behave elastically everywhere except inside
the process zone, which follows a prescribed stress-separation relation-
ship. The simple center-cracked panel geometry is chosen because of the
simplicity it allows in the formulation of the numerical analysis. Also,
in the limiting situations where strength criteria or linear elastic fracture
mechanics applies, some analytic solutions are known in very simple
forms. In addition, with slight modifications, certain laboratory experi-
ments could be simulated. Correspondence between experimental re-
sults and our numerical solutions provides confidence in our analytic
and numerical procedures.
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The paper is organized in the following manner: A description of the
problem formulation is first given. Then the material models of the stress-
separation behavior are presented. This is followed by a description of
the development of the fracture process zone and their control by the
o-w curve shape, the loading configuration and by the structural ge-
ometry. These considerations provide the necessary background for dis-
cussions of some implications on fracture characterization of concrete
and FRC.

PROBLEM FORMULATION

Referring to Fig. 1 of a center-cracked panel loaded by a uniform ten-
sile stress o, as shown, and assuming now that the panel width W —
®, stress equilibrium (in the y direction) on the crack line requires that
the stress (yy component) on the crack line

dw(x')
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where ¢ denotes the line of (opening) displacement discontinuity w(x)
and may be recognized as the total crack length. The Green’s function
G(x — x') gives the stress at a point x due to a unit dislocation located
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FIG. 1.—Geometry of Center-Cracked Panel Numerically Modeled In Present Study;
Traction Free Crack (TFC) with Length 2 and Process Zone with Length [, Make
Up Total Crack of Length ¢ )
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at a point x’. The term —[dw(x')/dx']dx' represents the distribution of
dislocations along ¢, and is treated as an unknown to be solved as part
of the solution. A simple interpretation of Eq. 1 is that the stress would
be equal to g, at any point x in a homogeneous plate with no cracks. In
the presence of a crack, the stress is perturbed by the amount repre-
sented in the integral term. The representation of crack openings with
a continuous distribution of edge dislocations follows the work of Bilby
and Eshelby (5) and Rice (22). For a linear elastic body in plane strain,
the Green's function is (see, e.g., Ref. 12):

E 1

Clr—x)=——
(=7 4n(l —v)x —x’

where E = the elastic Young’'s Modulus; and v = the Poisson Ratio. To
complete the problem formulation, appropriate boundary conditions must
be prescribed on the crack of length 2c. On the traction-free part (here-
after called the traction-free crack or TFC with length a), the stress is
simply zero. In the process zone I, where traction transfer exists, neither
the stress nor the opening displacement is known a priori. However,
we assume that material deformation in this zone obeys a certain stress-
separation behavior, a o.-w relationship obtained from experiments.
Available o-w relationships can be found in (9,10,20,21,27,29) for con-
crete and mortar and for some FRC. To illustrate, Fig. 2(a) shows several
experimental o-w curves for steel FRC (after Wecharatana and Shah,
Ref. 29) and Fig. 2(b) shows some typical o-w curves for concrete and
FRC (after Hillerborg, Ref. 11). Thus

for a given material.

The total crack length c responds to the stress field (surrounding the
tip of the total crack), which in turn depends on the applied load and
the geometry of the structure. Hence, a certain cracking criterion is nec-
essary to determine the proper value of [, and ¢ (or any pairings of 4, [,
and c¢) for a given applied load. Following Dugdale (7) and Barenblatt
(1), we assume that the process zone will have a size appropriate to the
surrounding elastic stress field in a way such that the stress will transit
smoothly from outside to inside the process zone. This implies that the
stress singularity assumed in linear elastic fracture mechanics will be
absorbed into the inelastic deformation (the process of decreasing trac-
tion with increasing opening) in the process zone. Furthermore, the ma-
terial ahead of the total crack becomes part of the process zone as soon
as the (ultimate) tensile strength f, is reached. Inside the process zone,
the stress decays from f; to zero at the tip of the traction free crack, the
rate of decay being consistent with the stress-separation behavior. It can
be shown (see Ref. 17 for detail) that this assumed fracture criterion is
also consistent with smooth closing at the tip of the total crack, i.e., dw/
dx|,-. = 0. The fracture criterion is implemented by ensuring that at x
= ¢ the stress intensity factor K, due to the closing traction in the process
zone cancels the stress intensity factor K, induced by the applied load.
Hence
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Rice (22) pointed out that the cohesive zone model described above is
exactly equivalent to the Griffith crack model in the case when the pro-
cess zone size I, is small compared to all other characteristic dimensions
in the structure. Eqs. 1 and 3 form a nonlinear singular integral equation
in w(x) and are supplemented by Eq. 4. A Gauss-Chebyshev integration
formulation (see, e.g., Ref. 8) is used for discretization and integration,
and the Newton-Raphson iteration scheme is used to solve the resulting
set of nonlinear algebraic equations. Full details of the numerical meth-
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odology can be found in Ref. 17. In what follows, after introducing the
stress-separation constitutive models adopted for this study, we discuss
some results and interpretations of several analyses based on the for-
mulation just described.

STRESS-SEPARATION CONsTITUTIVE MODELS

Two stress-separation constitutive models, shown in Figs. 3(a-b), are
used in the analyses. Focus is placed on the effects of the shape of the
stress-separation curves on the development of the process zone, and
on the overall structural behavior of the center-cracked panel. Model 1
is a linear straight line descending from the tensile strength f; at zero
material separation to zero stress at the critical separation w, . This linear
decay model has been used by Hillerborg (11). Model 2 has a rapid drop

o
n\mn
1
Model 1
0
wm =1 - 3846 mm:
t ch
0 1 1 1 L
0 2 4 6 8
(a) / 4
w/ nn: {x 107%)
d.
n\mw
Model 2
H 3
0. 0.05946 _
2% = 0.36 | + 268.88-267798 §- [ x 1073
t s\n0:+~.uqxwo ch

(®) i,

x Hof

h

FIG. 3.—Stress-Separation Constitutive Models Used for Numerical Analysis in
this Study; Both Models Have Same G. and f, but Shapes Are Quite Different with
Very Small Critical Separation Distance w. for: (8) Model 1, and Much Larger w,
for (b) Model 2
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in traction transfer o. with separation w, followed by a long tail (large
w,). This model has been used by Ingraffea and Gerstle (13). In general,
FRC has large w, values since w, in FRC may be taken as half the fiber
lengths (29). Of course, the appropriate model to use in a given analysis
is the one which best describes the material under consideration. In this
paper, we treat them as two contrasting cases, in the sense that for a
given tensile strength f; and a given critical energy release rate G,, Model
1 has a much smaller critical material separation w, when compared to
Model 2. We note in passing that G, is given by the area under the
stress-separation curve (22), i.e.,

G, = % o(wdw ... U 5)

As material properties, we have chosen f, = 2.0 N/mm?, G, = 0.039 N/
mm, E = 21,500 N/mm? and v = 0.18 as typical values for concrete.
This choice of f; and G, gives w. = 0.028 mm for Model 1 and w. = 0.127
mm (approximated in calculations) for Model 2. The range of w, falls
into the range of observed values for concrete in direct tension tests
(10,20,21) and in compact tension tests (16), although the w. value is
often poorly determined in direct tension tests (e.g., Ref. 10). We define
a material characteristic length Iy, = EG./f?. For the above values of E,
G, and f, for concrete, 5 = 107 mm. Typical values of [, for glass fiber
reinforced mortar is 0.5-3 m and for steel fiber reinforced concrete is 2—
20 m (11). Hillerborg (11) suggested the use of l; to normalize all di-
mensions of structures. We have used it to normalize all length dimen-
sions including the separation distance w. [This corrects an error in a
previous paper by the first writer (16) who attributed the normalization
of w by Iy, to Hillerborg (11).] While l;, has no direct physical interpre-
tation, Rice (23) showed that the process zone length is approximately
proportional to Iy . All stress quantities are normalized with respect to
f; in presenting results of numerical analyses.

DeveLoPMENT OF FRACTURE PROCESS ZONE

We study the development of the process zone with respect to three
different controlling factors: the stress-separation constitutive behavior,
the loading configuration, and the geometrical size. Where appropriate,
comparisons to published experimental or numerical results are made.
Implications to some proposed characterization of fracture toughness in
concrete and FRC are suggested in the following section. The discussion
in this section refers to Figs. 4-9. Three cases are analyzed, the remote
uniformly loaded panels with Model 1 and Model 2 are labeled RU1 and
RU2 in these figures, and the center wedge loaded panel with Model 2
has been labeled CL2.

Control of Process Zone Development by o.-w Curve.—Fig. 4(a) shows
the calculated overall load-deformation behavior of the center-cracked
panel shown in Fig. 3. Deformation is measured as crack opening dis-
placement (COD/2) at x = 0. The analysis assumes an initial (half) notch
length g, = 127 mm = 1.2l and W = =, The two curves are for the
two different constitutive models described in Fig. 3. Clearly Model 1
allows the structure to reach a higher peak load (at 0.47f,), about one
and a half times that of Model 2 (at 0.3f,). At the same time the de-
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FIG. 4.—(a) Normalized Load Applied at Remote Edges of the Center Cracked Panel
versus Normalized Opening Displacement at Crack Center, for Model 1 (RU1) and
for Model 2 (RU2). Distinctive Behavior between RU1 and RU2 Is Mainly Contrib-
uted by Difference in w. Values between Model 1 and Model 2; (b) Same as Part
a, with New Curve for Model 2 but with a Wedge Load Applied to Crack Faces
(CL2); Demonstrates Influence on Development of Process Zone by Loading Con-
figuration

scending branch is much sharper in the load-deformation curve for Model
1 than that for Model 2. These behaviors make the structure seemingly
stronger (with higher tensile strength) but more brittle for Model 1. This
result is particularly interesting in view of the fact that the only differ-
ence in these models lies in the shape of the stress-separation curve,
while all material parameters, including the critical energy release rate
G, remain the same.

As a check on our calculations, the parameters used in Model 2 has
been chosen to correspond to those of Ingraffea and Gerstle (13) who
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FIG. 5.—Crack Face Profiles (Only One-Quarter Shown Due to Symmetry with Re-
spect to Both Axis). Horlzontal Dotted Line Iis Value of w,. Its Intersection with
Crack Proflles Indicates Tip of Traction Free Crack: (a) For RU1 at Different Values
of Remote.Load o, ; and (b) for RU2

did a similar analysis (based on their model D) using the finite element
method as the numerical tool. We found that the COD at x = 0 at peak
load are within 1% of each calculation, while the peak load itself has
some discrepancies amounting to about 15% (lower in our calculated
result). Although Ingraffea and Gerstle used a panel width less than four
times the longest total crack length in their analysis to approximate a
panel of infinite width (and height), the error (if any) should have low-
ered his calculated peak load, as we shall explain in a later section of
this paper. Other possibilities influencing the calculation accuracy are
the fineness of his mesh or our discretization, and the stiffness of the
elements near the crack line in the mesh. The discrepancy may also be
related to the use of quarter-point singular elements at the initial notch
tip in Ref. 13, which may have an important influence on the maximum
load achievable. This discrepancy does not affect our conclusion regard-
ing the influence of the shape of the o-w curve on the structural be-
havior.

To appreciate the cause of the o-w shape influence on the structural
behavior, it is necessary to investigate the growth of the process zone
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in response to applied loads for the two models. Following Ref. 13, we
show the (half) crack opening displacement at various load stages in
Figs. 5(a-b). In these figures, the horizontal dash line indicates the crit-
ical material separation w.. Thus the intersections of this line and the
crack opening profiles are the locations of the tip of the traction free
crack (TFC). For each Model, there is relatively little growth of the pro-
cess zone prior to peak load, as shown by the shortest crack profile in
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Figs. 5(a—b). The expanding crack profiles correspond to decreasing equi-
librium load levels on the descending branch of the load-deformation
curve [Fig. 4(a)]. For Model 1 just below peak load (at 0.45 f:), extension
of the TFC occurs, with very little further change in the length of the
process zone size, i.e., the crack tip region simply translates to the right,
as can be seen in Fig. 5(1). In contrast, the extension of the total crack
in Model 2 occurs with an extension of the process zone, while the TFC
length does not change until the load decreases to 0.14 f, . The last crack
profile before TFC extension is shown by the curve labeled (o,/f, =) 0.124
in Fig. 5(b) for Model 2. The peak loads and the TFC extension loads for
the two models are indicated in Fig. 4(a). Thus high strength is prohib-
ited for Model 2 because of the early extensive growth of the process
zone, which is somewhat analogous to the large scale plastic deforma-
tion in a ductile metal sheet.

Fig. 6 summarizes the growth of the process zone as a function of the
TFC length. Again, for Model 1 (symbols (), a small steady state process
zone length (0.714) is reached with very little TFC growth. For Model
2 (symbols +), the process zone size in fact over-extends itself before
decreasing to a high steady-state value (11.21) accompanied by TFC
growth. This same phenomenon for Model 2 is also found by Ingraffea
and Gerstle (13). For further illustration, we show in Fig. 7 the opening
displacements in the process zone at steady state. Model 1 (RU1) has a
much smaller but sharper opening process zone while Model 2 (RU2)
has a much larger but more gradual opening process zone. The obser-
vation just presented suggests that the process zone size is strongly in-
fluenced by the material model (the stress-separation behavior) in the
process zone. However, it should be pointed out that the process zone
growth also responds to the loading configurations (to be discussed next).

The steady-state process zone size (I,),; may be estimated by assuming
K, = K. = VG.E in Eq. 4 and assuming that o.(x) vary linearly from f,
to 0 in the process zone. This procedure was first used by Palmer and
Rice (19) who studied the ““slip-weakening” process in consolidated clay
slopes under shear deformation. Thus

=5 (5)5) ;
W= (T ) oo ©)

Evaluation of Eq. 6 gives (I,)s/lcn = 0.9. This is remarkably accurate for
Model 1 but misses by an order of magnitude when applied to Model
2. Clearly the problem lies in the assumption of a linear variation of o,
in the process zone. This assumption is adequate for a material with a
linear stress-separation curve but is inadequate for a material with a stress-
separation curve as shown in Fig. 3(b).

Control of Process Zone Growth by Loading Configuration.—To in-
vestigate the influence of loading configuration on the development of
the process zone, we use the same center-cracked panel structure shown
in Fig. 1, but with loading applied locally at the center of the crack line
x = 0 (Case CL2). This is equivalent to a point wedge load forcing the
crack face to open. The resulting load-deformation relationship is shown
in (symbols ©) Fig. 4(b), which also includes that for Model 1 and 2 for
remote loading for comparison purposes. The o, values for CL2 are de-
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fined as the wedge load divided by the total crack length 2c. The figure
shows that, with all material parameter and structural geometry the same
(as for RU2), the center loaded panel structure reaches a peak load at a
much larger COD and a more gradual descending branch. Traction free
crack growth occurs at 0.33 f;, when the process zone length is still ex-
tending (Fig. 6, symbols ©). The steady-state process zone length
(8.1l4) is lower than that for the remotely loaded configuration. This
can also be seen in Fig. 7 (compare CL2 profile to RU2 profile). Clearly
the process zone development is responding to the stress fields that drives
the process zone and the TFC extension. The wedge load causes the
crack face to open up while a compressive stress may be induced by
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bending ahead of the process zone which keeps it from extending. This
combined action results in a smaller process zone length than that for
remote loading, and a monotonically increasing process zone size as
shown in Fig. 6. This comparison illustrates the fact that in general the
development of the process zone and its steady-state size in concrete or
FRC is not a material property, but rather depends on the loading con-
figuration (and on the structural geometry).

The center-cracked panel loaded at the center as just described should
qualitatively simulate the loading of a compact tension specimen. Ma-
jumdar and Walton (18) reported that in compact tension tests of as-
bestos cement by Lenain and Bunsell (15), three distinct stages of crack
growth were observed: “(1) Creation of a zone of microcracks in front
of the visible crack, (2) growth of this zone together with slow stable
crack growth and (3) extension of the principle crack while the size of
the microcrack zone remains constant.” This is exactly what Fig. 6 (sym-
bol ©) suggests.

In another experimental program, Kobayashi et al. (14) carried out some
wedge loaded compact tension tests on concrete specimens. Employing
a replica technique, they claimed to be able to measure the growing crack
lengths accurately. Fig. 8(a) shows some of their experimental results.
For comparison, Fig. 8(b) shows the data replotted from Fig. 6 in the
form of traction free crack length versus total crack length. The increas-
ing slope with total crack length for the presently simulated center loaded
panel solution [symbol < in Fig. 8(b)] qualitatively reproduces that of
the experimental data by Kobayashi et al. while the curve for the remote
uniformly loaded case [symbol + in Fig. 8(b)] appears to be quite dif-
ferent. Given the above discussions of the control of the process zone
development by the surrounding stress field, this correspondence should
be expected. However, no attempt is made for a detail comparison, since
the constitutive tension softening relation for the material used in the
above mentioned experimental test is not known to us. Also our nu-
merical simulation is for a panel of infinite width, while the compact
tension specimens have finite widths.

Control of Process Zone by Structural Geometry.—A simple way of
introducing geometric effects is by considering a center-cracked panel
with finite width W. In this case, the Green’s function in Eq. 1 is given
by (see, e.g., Ref. 4)

(&)
cos | —
E W

Gl = %) = @

4wl - v) Aﬂxv . Aﬂx\v
sin[— ] —sin | —
w w

and the calculation proceeds as before. This formulation is based on the
symmetry of an extended panel with periodic collinear cracks. The in-
duced normal stresses acting on the side-walls (amounting to a few per-
cent error) are ignored. Further details are contained in Liang (17).

Fig. 9 shows the load-deformation curve for three different ratios of
initial crack length to panel width (a,/W) using Model 1. The top-most
curve (4,/W = 0) retraces that in Fig. 4(a) where the panel width has
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FIG. 9.—Influence of Geometry (Free Edge) on Load-Deformation Behavior for RU1

been assumed to be infinite. The lower two curves are for panel widths
of four times and twice the initial crack length (assumed a, = 127 mm
or 1.214). Clearly as the free edge of the plate is sensed by the ap-
proaching crack, the structure behaves more compliantly and also de-
creases in load carrying capacity. The shape of the unloading branch for
a,/W = 0.5 also suggests the possibility of an unstable “‘pop-through.”
Again, these structural behaviors are related to the development of the
process zones, which in turn are influenced by the structural geometry,
in this case, the presence of a free edge.

IMPLICATIONS ON FRACTURE CHARACTERIZATION

The preceding discussions on the development of the process zone
and the associated influence on structural behavior provides some in-
sight on the appropriateness of some proposed characterizations of frac-
ture resistance in concrete and in FRC. The present analysis explicitly
accounts for the presence of a process zone undergoing inelastic defor-
mation described by a stress-separation curve and therefore constitutes
a nonlinear fracture analysis. In special limiting cases, the resulting pre-
dictions based on such an analysis should correspond to that based on
linear elastic fracture mechanics, or that based on strength concepts. Where
the special limiting conditions are not met, the nonlinear analysis must
be used to provide an accurate description of the fracture process. This
corresponds to what Bazant (2) called the size effect law.

It is interesting to consider the tensile load carrying capacity of a struc-
tural member (or that of a laboratory specimen). In the ideal case where
no crack exists in the structure, the maximum stress corresponding to
the peak load should be exactly equal to the tensile strength f,. In the
case where a large crack exists (large here is in reference to process zone
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size), LEFM applies since the small scale yielding condition is satisfied.
This means that the crack tip is dominated by a K-field (i.e., a stress
field whose intensity is characterized by a stress intensity factor K)), and
the load carrying capacity is determined by the crack size and the frac-
ture toughness (K) of the material, which results in a maximum applied
stress smaller than f,. This is often termed “brittle fracture.” Between
these two limiting conditions, the process zone is of comparable size
with the traction free crack length and its presence must be explicitly
accounted for. Fig. 11 summarizes these situations for the center-cracked
panel structure (with W = «). In this figure, the normalized maximum
applied stress (o,/f;) achievable corresponding to the peak load is plot-
ted against a normalized initial notch length measure (Viw/7:4,). Pre-
diction of peak load based on strength criteria is shown as the horizontal
dash line. Prediction based on LEFM is shown as the other dash line
with a slope of unity. The calculated peak load based on the present
nonlinear analysis is shown as the solid lines for each of the two stress-
separation models. The aforementioned limiting situations can be seen
on the lower left corner and the upper right-hand corner of the plot.
The use of 4, as a measure of crack size is justified by the fact that very
little real (traction-free) crack extension occurs prior to peak load (see,
e.g., Fig. 6) and hence 4, may be regarded as approximately the actual
traction-free crack length at peak load.

Comparing between the two models, Model 1 appears to allow a larger
range of validity for LEFM and also seem to approach the strength cri-
teria easier (at larger value of 4,) in comparison to Model 2. The reason,
of course, lies in the fact that Model 2 produces a larger process zone
due to its larger value of w, . This suggests that for material of the type
Model 2 represents, it is more likely that a nonlinear analysis is required,
everything being the same. Since G, has the same value for both models,
and hence the same value for Iy, this analysis reveals w. as an inde-
pendent parameter controlling the validity of LEFM applications. For ex-
ample, it has been proposed that for LEFM to be valid (see, e.g., Ref.
11), the beam depth 4 in a 3-point bend test should satisfy the criterion
d > 10-151,, for concrete. Fig. 10 suggests that for concrete and FRC,
LEFM validity requires d > o(w.) I, where a is an increasing function
of w. . The exact dependence of a on w, can be obtained from a nonlinear
analysis as carried out in this paper. Although it might be expected that
qualitatively, the plot of Fig. 10 is rather universal, the exact details of
the solid curves must depend on the particular geometry of the structure
or specimen, as well as on the loading configuration, due to the depen-
dence of the process zone development on these parameters as ex-
plained in the previous paragraphs.

It appears to be a popular notion that the peak load corresponds to a
certain critical state associated with “crack propagation.” This is appar-
ently true for ideally brittle material where LEFM applies because the
peak load in this case corresponds to a critical stress intensity factor equal
to the fracture toughness. Even when LEFM is recognized not to be valid,
the peak load has still been associated with a certain critical state and a
critical effective crack length which accounts for the presence of the pro-
cess zone (28). We shall examine whether this is a sensible approach.
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For a given initial notch length 4,, it is possible to calculate a corre-
sponding peak load, as shown in Fig. 10. It is also possible, at peak load,
to calculate the energy release rate G by computing the J-integral using
a contour surrounding the process zone, since (e.g., Ref. 22):

G=)-- % a9 20

The result of G (normalized by G.) is plotted as a function of the peak
load in Fig. 11, again for the two material models. For small a, (lower
right corner of figure), the peak load again reaches the tensile strength
indicating the validity of the strength criteria, and the energy release rate
G is only a small fraction of G, at peak load. For large 4, (upper left-hand
corner of figure), the peak load is only a small fraction of the tensile
strength but the energy release rate reaches G, indicating the validity
of LEFM. In between these two limits, however, and especially for Model
2, the energy release rate at peak load can be substantially below G, .
Thus, the process zone continues to grow after peak load without ex-
tension of the real (traction free) crack for Model 2, as was indicated in
Figs. 4(4) and 6. To understand this phenomenon, consider a given 4, .
At peak load, the process zone length for Model 2 is much longer than
for Model 1 (see Fig. 6). This implies that the stress at the TFC tip for
Model 1 is much more focused and therefore provide a higher traction
free crack driving force, while the driving force for Model 2 at peak load
may be much lower than G. . In view of the preceding discussion, it may
be erroneous to associate the peak load with a failure or fracture load
for a material with stress-separation behavior representable by Model 2.

Is it meaningful to compute the fracture toughness by applying LEFM
based on the peak load and an effective (traction-free) crack length? Pre-
sumably an effective crack length is used: (1) To correct for the presence
of the process zone; and (2) to overcome the practical difficulty of lo-
cating the “crack tip” as explained in the introduction of this paper. A
common procedure to obtain the effective crack length g, is to measure
experimentally the crack mouth opening displacement (e.g., the CMOD
in a 3-point bend test specimen) at peak load o, . Then

B = F(Gy CMOD, ) e eeeeeeee e ©)

where the function f is based on an elastic analysis of the particular spec-
imen geometry. For the center-cracked panel under uniform remote load

(Fig. 1), this function is simply

BX o . ®)

where CMOD, = half the crack opening at the center. That is, CMOD,
= COD/2 shown in Fig. 4(a) at peak load. (Here, we have numerically
simulated the experiment.) Applying LEFM, it is possible to calculate
the stress intensity factor or the energy release rate at peak load, i.e.,

Gy = {0y /@) e v v e e @11
Again the function g depends on the particular specimen geometry and
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could be found from fracture handbooks (such as Ref. 26). For the cen-
ter-cracked panel

wg,CMOD,

G =—"—"7
2

The idea is to associate G, with the critical energy release rate G.. The
validity of such an association appears to depend on the details of the
stress-separation curve. Referring to Fig. 4(a), and using numerical val-
ues quoted earlier (following discussion of Eq. 5), Model 1 has CMOD,
= 0.02 mm and o, = 1.308 N/mm? which gives 4, = 169 mm and G, =
0.041 N/mm according to Egs. 10 and 12. These results suggest that an
effective extension of 37 mm of traction free crack length has occurred
at peak load. The calculated value of G, is within 5% error from the
actual G, value (0.039 N/mm). Note that a direct application of LEFM
using the initial notch length 4, = 127 mm would have given G, = 0.031
N/mm, which is more than 20% less than G.. For Model 2, CMOD, =
0.014 mm and ¢, = 0.834 N/mm’, which gives 4, = 186.0 mm and G, =
0.019 N/mm. Thus the critical energy release rate would be underesti-
mated by more than 50%. According to the foregoing discussion, it would
appear that the correction procedure applied to LEFM by means of an
effective crack length is appropriate to material of Model 1 type and def-
initely not appropriate to material of Model 2 type for which w, is large.

SUMMARY AND CONCLUSIONS

This paper analyzes the fracture processes of concrete and fiber rein-
forced cementitious composites by means of a simple numerical model
which explicitly accounts for the inelastic deformation in the fracture
process zone. The development of the process zone is studied with re-
spect to the stress-separation constitutive behavior, the loading config-
uration and the structural geometry. The analysis provides a framework
for understanding the transition of a strength-based failure criterion to
a linear elastic brittle crack failure criterion (i.e., LEFM). In between these
limiting situations a nonlinear analysis becomes a necessity to properly
describe fracture resistance of such materials. The size scalé of process
zones is such that typical laboratory specimens fall short of the small
scale yielding condition for LEFM validity. Analyses in this paper lead
to the following conclusions:

1. The use of LEFM for crack analysis in concrete and FRC structures
are generally invalid unless all relevant structural dimensions 4 are much
larger than the steady-state process zone size. For a material represent-
able by Model 2, (I,)ss = 1014 (Fig. 6). This implies d >> 1 m for a con-
crete with ls, = 100 mm, and d >> 20-200 m for a steel FRC with I, =
2-20 m (11). These inequalities are necessary for the small scale yielding
conditions (ssy) in LEFM to be satisfied. If ssy is not satisfied, then the
stress-separation curve must be used as a fundamental material property
in predicting crack formation and extension. Also apart from G, the
shape of the stress separation curve plays an important role in deter-
mining the behavior of the structure, as shown in Fig. 4(a).
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2. Attempts to simplify the characterization of fracture resistance, par-
ticularly those that are based on the association of crack growth with
the peak load may be laid on questionable foundations. Even if an ef-
fective crack length is used to account for the presence of the process
zone, the analysis may suffer significant inaccuracy, especially for ma-
terials with large w,, such as in FRC.

3. While the stress-separation curve should be regarded as an impor-
tant fundamental material property, the process zone length [,, even in
a steady state, is not a material property. Rather, I, depends on the load-
ing configuration and the structural geometry.

The analyses in this paper demonstrate the importance of the shape
(not only the G.) of the stress-separation curve in controlling the overall
structural behavior, when the process zone size is not negligible com-
pared to structural dimensions. It may be possible to take advantage of
this by designing the microstructure of the material to obtain desirable
macroscopic mechanical properties through engineering the stress-sep-
aration curve. In FRC, this might be achieved by optimization of the
fiber type, geometry and volume fractions. The commercial availability
of large variety of fiber types and processing techniques increasingly im-
proves the viability of such a procedure. However, much more research
in the micromechanics modeling of the stress-separation curve will be
needed. This appears to be an important research topic in advancing the
fiber cementitious composite technology.

Much of the analysis results and conclusions stated here also apply to
materials other than concrete or FRC. For example, the crazing phenom-
enon in some structural plastics and the bridging processes in some fiber
epoxies would produce an inelastic process zone like that discussed in
this paper. There is a need to characterize the fracture resistance of such
materials through the experimental determination of their stress-sepa-
ration curves.
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ATTENUATION OF SHOCKS
BY VISCOELASTIC SUPPORT

By Marek Elzanowski' and Marcelo Epstein,” M. ASCE

AsstRACT: The method of singular surfaces was used in a recent paper to de-
velop a numerical procedure for calculating the growth and decay of the am-
plitude of shock waves propagating into a one-dimensional nonlinearly elastic
body. Here we extend this approach to estimate the influence of such external
effects as elastic support and viscous friction on the propagation of shocks. We
conclude that even in the case of a homogeneous linearly elastic material these
external effects account for some attenuation of the amplitude of the shock and/
or the secondary waves. Further analysis of a nonlinear elastic material readily
shows that an increase in the viscosity produces, among other things, a slower
growth of the shock amplitude and that for some critical value it will even start
with a decay. Numerical examples illustrate the applicability of the technique
in the case of a homogeneous nonlinear elastic body subjected to external vis-
cous friction.

INTRODUCTION

In a recent article (2), we have proposed a numerical procedure for
calculating the decay or growth of the amplitude of a strong shock prop-
agating into a one-dimensional nonlinearly elastic medium. The basis for
the method is the formulation and subsequent approximate solution of
an infinite system of ordinary differential equations governing the speed
of propagation of the shock, its amplitude and the amplitudes of the
subsidiary weak waves traveling with the shock. In formulating this sys-
tem use was made of the so-called iterated compatibility conditions pro-
vided by the singular surface approach (1), as opposed to attempting
the global solution of the hyperbolic system of conservation laws (3)
where, except for particularly simple initial conditions, the global solu-
tion is not available. On the other hand, it is often the case that only
the events taking place at the wave front are of any practical significance
and, as shown through numerical examples in Ref. 2, the proposed al-
gorithm readily provides such an information. It should be noted, how-
ever, that the extension of the algorithm for two- and three-dimensional
problems is extremely difficult.

In the present work, we extend the approach of Ref. 2 to include the
influence of external effects of the nature of elastic supports and/or vis-
cous friction as provided, for instance, by the soil surrounding a foun-
dation pile. From the physical point of view these effects will account
for some attenuation of the amplitude of the shock and/or the secondary
waves even in the case of a homogeneous linearly elastic material, where,
in the absence of these extra constraints, the shock and its host of weaker
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