STEADY-STATE AND MULTIPLE CRACKING OF SHORT
RANDOM FIBER COMPOSITES

By Victor C. Li,' Member, ASCE, and Christopher K. Y. Leung?

ABsTRACT: This paper analyzes the pseudostrain-hardening phenomenon of brit-
tle matrix composites reinforced with discontinuous flexible and randomly distrib-
uted fibers, based on a cohesive crack-mechanics approach. The first crack strength
and strain are derived in terms of fiber, matrix, and interface micromechanical
properties. Conditions for steady-state cracking and multiple cracking are found
to depend on two nondimensionalized parameters that embody all relevant material
micromechanical parameters. The results are therefore quite general and applicable
to a variety of composite-material systems. Phrased in terms of a failure-mechanism
map, various uniaxial load-deformation behaviors for discontinuous fiber compos-
ites can be predicted. The influence of a snubbing effect due to local fiber/matrix
interaction for randomly oriented crack-bridging fibers on the composite properties
is also studied.

INTRODUCTION

In brittle-matrix composites reinforced with continuous fibers, a tensile
failure strain higher than that of the matrix material has been observed at
first crack. In addition, subsequent multiple cracking further extends the
pseudostrain-hardening behavior in the intrinsically brittle matrix. In con-
trast, randomly oriented short-fiber—reinforced composites generally fail in
a tension-softening mode at the initiation of a first crack. The processing
ease, relatively low processing cost, and the isotropic mechanical properties
of short-fiber composites, however, is a significant advantage over contin-
uous reinforcements. A composite employing discontinuous fibers with the
attendant processing advantage of discontinuous-fiber composites, together
with the ductility performance of continuous reinforcements, would be ex-
tremely desirable. It has been pointed out (Aveston and Kelly 1973; Morton
and Grove 1976; Brandt 1985; Li et al. 1990) that fiber/matrix local inter-
actions due to inclined fiber pullout in randomly distributed fiber composites
can produce crack-bridging forces that may partially compensate the well-
known reduction in reinforcement efficiency due to bridging fiber number
and discontinuity loss.

In this paper, we examine the conditions under which such a discontinuous
random-fiber composite may exhibit some of the desirable features of con-
tinuously reinforced composites. These conditions are cast in terms of non-
dimensionalized microstructural parameters. The analysis shows that a single
parameter K, identified as a ratio between crack-tip and fiber-bridging
toughness, determines the transition from a catastrophic failure mode to a
stable failure mode. The presence or absence of multiple cracking is shown
to depend on a combination of K and a nondimensionalized flaw size ¢. A
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mechanism map is devised showing a variety of possible failure modes in
uniaxial tension.

Our approach would be to utilize the influence of fiber reinforcement,
represented as a cohesive traction acting across the crack flanks, as a growing
fracture resistance with crack extension. This toughening effect due to fiber
bridging not only increases the composite first-crack strength, but also leads
to a phenomenon known as steady-state cracking. Steady-state cracking
occurs as a result of the balance between the composite toughness increase
and the stress-intensity-factor increase due to applied load during crack
extension, and is a prerequisite of multiple cracking or pseudostrain hard-
ening. It occurs only if the stress-transfer capability of the reinforcing fibers
is adequate. The analytic development of the theory of steady-state and
multiple cracking in the present work draws heavily on elementary resuits
from fracture mechanics. Broek (1986), for example, provides a nice treat-
ment on the subject.

BRIDGING STRESS-CRACK—~OPENING RELATIONSHIP

The bridging stress-crack—opening relationship (hereafter abbreviated as
the o5-3 curve) results from fibers bridging across a matrix crack. In this
paper, without loss of generality, we adopt a simple model of fiber pullout
with only frictional constraint. That is, fibers are held in the matrix by friction
with little or no elastic interfacial bond. Furthermore, we assume that the
fibers are short enough (or with low enough interfacial friction) that all
fibers will be pulled out without rupture. Consider a single fiber with an
embedded length of /. During frictional debonding, the fiber bridging load
P versus crack opening 3 may be obtained from a shear-lag analysis:

P(3) = w VA + MEED @*  (ford=8y) -ooonrrrrri. (1)

where 3, = (4/°1)/[(1 + m)E,d,] corresponds to the crack opening at which
frictional debonding is completed for a fiber with embedment length of /,
diameter d;, elastic modulus E;, and with an interfacial frictional bond strength
7. In addition n = (V,Ep/(V,,E,), where V, V, = the fiber and matrix
volume fractions, and E;, E,, = the fiber- and matrix-elastic moduli, re-
spectively.

When the fiber is fully debonded, the load-point displacement is mainly
due to that of the fiber end slippage, and (for simplicity) we assume that
the elastic stretching of the fiber can be neglected. This results in a fiber
pullout load versus displacement relation given by

P(®) = mwrld, (1 - w ks Qonw Z8 ) - 2)

The exponential function in (1) and (2) is introduced to account for the
snubbing effect (Li et al. 1990) that amplifies the bridging force due to fiber/
matrix snubbing for a fiber originally inclined at an angle ¢ to the loading
axis. The snubbing coefficient f is specific to a particular pairing of fiber
and matrix. f has been experimentally measured to have a value between
0.5 and 1 for three fiber types in a cement matrix (Li et al. 1990; Li 1992).
The snubbing mechanism is probably a good representation of the actual
behavior for flexible (low modulus and/or small diameter for low bending
stiffness, and high rupture strain) fibers. For brittle fibers with high stiffness,
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a separate analysis performed by Leung and Li (1992) reveals potential fiber
rupture or matrix spalling, rendering the snubbing mechanism unusable.
The effect of fiber inclination on bridging force of fibers affect the resulting
o3-d curve only [(4) next]. The fundamental aspects of the analysis of first-
crack strength and multiple cracking in the subsequent sections of this paper
remains valid even for fiber/matrix systems that do not conform to the
description in (1) and (2).

Li et al. (1991) show that the composite ¢ 4-8 curve can be predicted by
integrating over the contributions of individual fibers crossing a matrix-crack
plane:

b.,—\\ w2
md; Jo-o

Lf/2cosd
os(8) = % . POP@PE dzdd L 3)

where p($) and p(z) = probability-density functions of the orientation angle
and centroidal distance of fibers from the crack plane. For uniform three-
dimensional (3-D) random distributions, p(¢) = sin ¢, and p(z) = 2/L,,
where L, = the fiber length. Deviations from distribution randomness such
as those due to processing/fabrication or deliberate bias introduction in fiber
orientation requires modification of the expressions for p(d) from the sine
function and could easily be incorporated into (3).

At small crack opening, some fibers will undergo debonding [governed
by (1)], while other fibers with short embedment length will undergo slippage
[governed by (2)]. The composite bridging stress may be derived from (3),
and together with (1) and (2), can be expressed in normalized form:

=\ 12 =
L ) d : &
65(0) = g |2 5 = (ford=%8*) .................... 4
where G5 = 04/0, and o, = Vy7(L/d,)/2, and § = d(L;/2). 8% = (27/(1 +
n)E)(L,/d;) corresponds to the maximum attainable value of 8, (normalized
by L#/2) for the fiber with the longest embedment length of L/2. The snub-
bing factor g in (4) is defined in terms of the snubbing coefficient f:

g = A’W'\m AH + md\\wv ....................................... Amv

In (4), higher-order terms of (8/6*) have been dropped. The full expression
and a detailed derivation of (4) and its postpeak tension-softening coun-
terpart, together with comparisons with experimental data, is given in Li
(1992). [In Li (1992) the analysis was carried out for the case where matrix
stiffness is large compared with fiber stiffness and/or where the fiber volume
fraction is low, so that y — 0. By observation, all results from that analysis
can be carried over to the present more general case simply by multiplying
the fiber modulus by the factor (1 + m)]. o, may be interpreted as the
maximum bridging stress when the snubbing mechanism is inactive Gie., f
= 0, 0r g = 1). Eq. (4) is used to compute the prepeak part of the ¢4-8
curve, shown in Fig. 1, for various snubbing coefficients. In general, the
peaks of the 05-8 curves occur at 3 just less than *.

Energy is absorbed in the frictional debonding process. This part of the
fracture energy G, may be estimated by integrating the prepeak stress-crack
opening curve [(4)] with respect to 3 up to 8*. The result is
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FIG. 1. Prepeak Fiber-Bridging Stress versus Crack-Opening Relationship

FirsT-CRACK STRENGTH

The first-crack strength represents the applied tensile stress at which a
matrix crack spreads throughout a cross section of a composite loaded in
tension. In a fiber composite, propagation of a matrix crack is resisted by
matrix toughness as well as by bridging fibers. Aveston et al. (1971) con-
sidered the energy balance in the propagation of a matrix crack in an aligned
continuous fiber reinforced composite under the steady-state condition. This
approach yields a lower bound of the composite critical strain. (The phrase
steady-state cracking is used to describe the spreading of a crack under
nominally constant applied load.) They showed that such a critical strain
can be several times higher than the matrix strain, and could be achieved
with smali-radius fibers held in the matrix by frictional bond. Aveston and
Kelly (1973) considered the case where the fibers are elastically bonded to
the matrix. Budiansky et al. (1986) extended their analyses to the inter-
mediate case between full frictional sliding and no sliding, as well as slightly
elastically bonded but debonding fibers. To include presteady-state cracking
when the first-crack strength must depend on matrix flaw size, Marshall et
al. (1985) and Marshall and Cox (1987) reanalyzed the problem based on
balancing of the stress-intensity factor due to loading, bridging, and matrix-
toughness resistance. A similar technique was employed by Li and Liang
(1986) in deriving the R-curve behavior associated with the bridging-zone
growth in tension-softening materials. To include matrix tension-softening
effect, Shah (1990) adopted a similar approach that directly includes ex-
perimentally measured o4-8 relations for specific fiber/matrix systems. In
the last two references, steady-state cracking was not considered. The afore-
mentioned studies were all conducted for aligned, continuous fiber-rein-
forced composites. Leung and Li (1989) extended the analyses of Marshall
and coworkers to discontinuous aligned-fiber systems.
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The present analysis of first-crack strength in discontinuous random flex-
ible fiber composite is based on the fracture mechanics approach whereby
the bridging action of fibers is treated as cohesive traction acting across the
crack flanks. Balancing of the combined stress-intensity factor due to applied
remote loading K, and that due to fiber bridging behind the crack tip K,
with the crack-tip-fracture toughness Ky, requires:

NAP + NAW = NA:_u ............................................ Aﬂv

For small fiber-volume fraction K,;, can be taken to be simply the matrix
toughness K,,. Otherwise, following Marshall et al. (1985), K., = (E./
E,)K,., since the stress intensity factor scales directly with stress. E, = the
composite elastic modulus and E,,, K,, = the matrix modulus and fracture
toughness, respectively.

For a penny-shaped crack of radius c, the normalized stress-intensity
factor due to ambient tensile loading o is given by

—~ k m
NA = IIP = O e,

- Qo/\mu ™ 7 - (8)
where

2
L.E T

= e

Co 2Key) T6(L = gBp 7 9)

serves as a convenient nondimensioning factor for the crack radius such that
the normalized crack radius ¢ = c/c,. In (9), v = the composite Poisson’s
ratio.

The normalized stress-intensity factor due to fiber bridging may be ob-
tained by integrating the solution for a penny-shape crack loaded by con-
centric distributed pressure at r [see, e.g., Tada et al. (1973)] over the crack
plane

NAWNII”'N m
™

where R = r/cy. The negative sign in (10) is due to the crack-closing effect
of the fiber-bridging stress. In general, the crack opening § is not known a
priori as a function of position R, and evaluation of K typically requires
an iterative process. For simplicity, the crack profile is assumed to take on
the same parabolic shape as if the bridging stresses on the crack flanks are
uniform. (This assumption holds so long as steady-state cracking has not
been reached; see discussion to follow.) Based on numerical analysis, Mar-
shall et al. (1985) showed that this simplification leads to an approximately
20% overestimation of the first-crack strength for continuous fiber com-
wom:om. For the parabolic-shape crack, the normalized crack opening is given
y:

§ = VAL = R oo (11)

The first-crack strength o, may be obtained when (7) is met, and making
use of (4), (8), (10), and (11):

O _
g



where K = (K,,/00 V¢)/gd*, ¢ = V/¢/d*. The first term on the right-hand
side of (12) is the matrix-toughness—induced strength. The second term in
brackets represents the contribution to composite strength due to fiber
bridging. Eq. (12) for the first-crack strength is valid as long as the crack
shape remains parabolic as the bridging zone grows. In reality the fibers in
the center of the crack, where the crack opening is maximum, would be
pulled out with decreasing load subsequent to full frictional debonding along
their lengths after a certain amount of crack growth. If, however, the rising
bridging force during debonding reaches the magnitude of the applied re-
mote load, the crack flanks will flatten out (Marshall and Cox 1987) and
the crack front can continue to propagate at constant load, i.e., a state of
steady crack extension has been created.

STEADY-STATE CRACKING

The discussion just presented suggests that steady-state cracking occurs
under two conditions: (1) The stress at the midpoint of the crack o,, must
equal the first crack strength oy; and (2) the crack-opening displacement
at the midpoint of the crack ©,, must be less than the displacement §,
corresponding to the maxima of the bridging stress as expressed in (4).

The first condition implies that the intercept of the 6.(¢) and the 4,,(¢)
curves determines the normalized crack size ¢, at which steady-state cracking
begins. That is, when

=058 = 8, = VO] =G oo (13)
then using (4) and (12) in (13), ¢, i1s defined by

k=_2; W<M|mp O=c=1) ooooiiieii.. (14)

At this stage, the crack propagates at essentially no further increase in load
and a steady-state cracking phenomenon results. The load at steady state
is often called the steady-state first-crack strength &, _

The second condition implies a limiting value of K = K, beyond which
no steady-state cracking can take place. This occurs at ¢, = ¢, = 1. From
(14), K. is found to be 1/(3V) = 0.188. Fig. 2 illustrates the two conditions
of steady-state cracking schematically.  _

For a composite with a K larger than K, the material will fall imme-
diately at the first-crack strength, with fiber pullout spreading from the
center to the outer periphery of the crack. The failure strength in this case
will be determined by (12) and depends on the flaw size é. Although tough-
ened by the presence of fibers, the composite remains essentially notch-
sensitive as in a Griffith material. For a composite with a K smaller than
K., the material will fail at the steady-state strength &, and becomes
independent of flaw sizes, as long as ¢ is larger than ¢, i.e., the composite
becomes notch-insensitive. These ideas are illustrated for a range of K values
in Fig. 3, which shows the first-crack strength plotted as a function of flaw
size, based on (12) and (14). Fig. 4 shows the corresponding value of ¢, as
a function of K. Note that ¢, approaches infinity as K approaches K.

Because of the important role that K plays in governing composite be-
havior, it is useful to examine in a bit more detail the physical meaning
of this parameter. With the help of (6), it can be shown that K can be
rewritten as a ratio of crack-tip fracture-energy—absorption rate G, to the
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FIG. 2. First-Crack Strength and Bridging Stress at Midcrack Position; Conditions
for Steady-State Cracking Requires these Curves to Meet, i.e., K < K,
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FIG. 3. First-Crack Strength Decay with Flaw Size; For IE_._.N Values (above Solid
Black Line), Material Remains Notch-Sensitive; For Low K Values (below Solid
Black Line), Material Becomes Notch-Insensitive in Plateau Region

energy-absorption rate in the fiber-bridging zone G, behind the crack front,
whence:

_ 10 (G,
- | Zup
K= 37m (G2 (15)

This new interpretation of K emphasizes the importance of fiber reinforce-
ment in achieving steady-state cracking (and the potential of subsequent
multiple cracking, to be discussed). Specifically, G, scales linearly with fiber-
volume fraction and the snubbing factor g, to the square of the bond strength,
and to the third power of fiber aspect ratio. Increasing values of these
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FIG. 5. Comparison of Predicted Steady-State Crack Strength Based on Finite
[(14) and (18)] and Long-Fiber Limit [(19)] Considerations

parameters will therefore lead to a reduction in K and enhance steady-state
cracking. .

The interpretation of K in (15) affords additional insight into its critical
value K. The requirement for steady-state cracking may now be rewritten
in the form

G =10Gy, .o (16)
or, using (6)

R (17)

Eqs. (16) and (17) define the minimum bridging fracture energy and fiber-
volume fraction necessary for achieving steady-state cracking. For some
typical FRCs, with parametric values given in Table 1, the critical fiber
volume fractions are found to be in the range of 0.5 t0 4%. Eq. (17) suggests
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TABLE 1. Critical Fiber-Volume Fraction for Various Fiber Types in Ordinary Port-
land Cement Matrix

Fiber Type | E,(GPa) | +(MPa) d, (um) L/d, Ve (%)
(M (2) (3) 4) (5) (6)
Steel 200 7 250 100 36
Glass 80 0.3 12 3,000 0.4
Carbon (pitch) 40 8 15 200 0.6
PP 6 0.7 70 186 2.9

Note: E,, = 20 GPa; G,, = 100 x 10-* MPa-m.

that as the fracture energy of the matrix increases, the fiber-volume fraction
must correspondingly increase in order to maintain steady-state cracking
and keep the composite from becoming notch-sensitive. It is also clear that
smaller fiber diameter, such as that afforded by carbon or glass, makes it
easier to achieve steady-state cracking with smaller fiber-volume fraction
required.

The steady-state crack strength may be evaluated from (4) and (11), and
identifying ¢ as ¢,, leads to

G = 8AVE =€) oo (18)

Eqs. (14) and (18) form a pair of parametric equations in ¢,. Fig. 5 shows
the relation between &,, and K. The critical strain €, may then be calculated
from o,/E,, assuming a linear stress-strain relationship up to steady-state
cracking. In the limit when the fiber aspect ratio is large, we expect to
recover the results of the classical ACK theory (Aveston et al. 1971) mod-
ified for the effect of fiber randomness. This is indeed the case when we
drop the higher-order terms of ¢, inside the parentheses of (14) and (18),
so that

G, = waz\m@_a .......................................... (19)
and hence

1/3
e, = |BXEGRE N\ 20)
i EE2rV,,

where r, = the fiber radius, and the matrix fracture energy G,, is related

to Ky, via

G, 1 (1 - v)K3

—_ = = 'uIL .................................
E, E E. o 1)
The ACK theory predicts a critical strain value of
12viry, E "
e B 4 (22)

&
e E.E2rV,,

Egs. (20) and (22) are equivalent if we further recognize that G,, = 2vy,,,
where vy,, = the surface energy. Further, a factor of 2 difference inside the
square bracket may be expected since (20) is derived for a 3-D random fiber
composite while (22) is for the case of continuous aligned-fiber reinforce-
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ment (Aveston et al. 1971, 1974). When the snubbing mechanism is in-
operative as in the case of aligned fibers, g = unity.

The steady-state cracking stress for the long-fiber limit [(19)] is also shown
in Fig. 5. As expected, the difference (dashed line, in percentages) between
this limiting case and the general case of arbitrary fiber length increases
with K. For short-fiber systems with K larger than 0.05, the error in using
(19) exceeds 10%, suggesting that (14) and (18) should be used instead.

Fig. 6 illustrates the influence of fiber diameter on the first-crack strength.
Parametric values of steel fibers of fixed length have been assumed. This
figure clearly demonstrates the advantage of using fibers with smaller di-
ameters in producing a composite with high first-crack strength. Critical
fiber-volume fractions in each case are also indicated, and shown to decrease
with fiber diameter.

MuLTiIPLE CRACKING

For K = K, steady-state cracking is guaranteed. After a first crack is
formed, two scenarios are possible. The fibers bridging across the crack
may not be able to sustain the total load: the sum of the initial load carried
by the fibers just prior to first crack, and the additional load shed by the
matrix. This will lead to fiber pullout. If, however, the fibers were able to
sustain the total load, the fibers would transfer the load back to the matrix
through interfacial shear, eventually leading to the formation of another
crack. This process then repeats itself until a set of periodic subparallel
cracks are formed. Subsequently, additional load could be applied until the
posterack strength g, (the maximum value of the a4-8 curve) is reached.

The presence or absence of multiple cracking is determined by the first-
crack strength, which in turn is dependent on the crack size (see Fig. 2).
The condition for multiple cracking therefore becomes

Q.\AAQV = 00 e e e e e e ANw&v

a 400 _ : _ |
DM.. 350 - EF200 GPa; E =20 GPa; 1=7 MPa V4 2 pm
ht G =100x10"® MPa-m:

300 - m ; |
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FIG. 6. Dependence of First-Crack Strength on Fiber Diameter; for Each Fiber

Diameter, Critical Fiber-Volume Fraction is Marked
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D <y (23b)

which then defines a minimum normalized crack size ¢,,. for which multiple
cracking would occur. Using (12) and (23) in the upper limit:

Va K 4 1
. + w/\o.sn =5 Cme) = Lo (24)

The complete criteria for multiple cracking in a discontinuous random-fiber
composite then becomes

K< K oo (25a)
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FIG. 7. Failure-Mechanism Map; Shaded Region (Low K-high ¢ Combination) Gives
Pseudostrain-Hardening Tensile Behavior

2256



Crack A ’ * Crack 8
Polyethylene 0.6% Steel 1.73%
=z -~
a 1)
- £
3 1
=2.57 £1.251
o @
2 @
23 =
& g
= [
U T 0 1
. 3 3 0 8 16
Specimen Extension (mm) Average Strain x 103
1.2
c
K
Crack w
g ¢
@ <
2 ]
0.6 2
® [
3 5
=
Polypropylene 5% Glass 8.2%
0 T 0 T
0 25 5 0 6 12
Specimen Extension (mm) Strain x 10-3

FIG. 8. Experimental Stress-Deformation Curves for Various Cementitious Com-
posites Showing Different Modes of Failure Corresponding to those Indicated in
Different Regions of Failure-Mechanism Map of Fig. 7: (a) Spectra Polyethylene
FRC [after Green (1989)]; (b) Steel FRC [after Shah et al. (1979)]; (c) Polypropylene
FRC [after Bagott (1983)]; (d) Glass FRC [after Ali et al. (1975)]

These conditions for multiple cracking, together with that for steady-state
cracking, are conveniently summarized in the failure mechanism K-¢ map
shown in Fig. 7. The expected load-deformation behavior for various K-¢
combinations are also schematically illustrated in the inserts of Fig. 7. Below
the K, line, K-¢ combinations to the right of the ¢, curve will lead to steady-
state cracking at constant stress ogs followed by multiple cracking until the
applied load has risen to o,. For composites with K-¢ combinations to the
left of the ¢, curve, the first-cracking strength can be much higher than
gy, but first crack will be followed by a sudden drop in load-bearing capacity,
with a subsequent rise to o, before final softening as a single crack enlarges.
For composites with K-¢ combinations that fall between the ¢,,. and ¢, curves,
multiple cracking could be accompanied by an initial load drop, then by a
rising load.

Above the K, line, no steady-state or multiple cracking can occur. The
material will fail catastrophically like a Griffith-type material, even though
the first-crack strength and the fracture toughness of the composite would
still be higher than that of the matrix material. For ¢ = ¢, (¢, = 1), if the
specimen cross-sectional size s is small, there is a possibility that by the time
the first crack spread to the edge of the specimen, the crack opening in the
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Estimated K-¢ and Expected Tensile Failure Modes for Four FRCs

TABLE 2
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2Assumed values.

bAssumed effective flaw size.




middle would still be smaller than 8*, so that a small rise in load is possible
prior to full crack separation. This happens if s/2 < ¢32. In all cases an
R-curve behavior may be expected due to fiber pullout.

The various types of tensile failure behavior depicted in Fig. 7 have been
reported in the literature. Some examples are given in Fig. 8 for steel-fiber—
reinforced concrete (Shah et al. 1979), Spectra ( a high-modulus polyeth-
ylene) fiber-reinforced high-strength concrete (Green 1989), polypropylene
fiber-reinforced mortar (Baggot 1983) and glass-fiber—reinforced ordinary
portland cement (Ali et al. 1975). Information on fiber and matrix properties
can be found in Table 2. Computed values of K, ¢, ¢,,., ¢, and c,, as well
as the expected tensile-failure mode for each material are also given in Table
2. Several parameters including the matrix toughness or fracture energy,
the bond strength, and the initial flaw size are not given in the references
and have to be estimated. Constraints for these estimates are provided by
the measured matrix tensile strength and the composite first-crack strength
for the given fiber-volume fraction. In the case of Spectra FRC, the reported
low-composite strength (lower than the matrix strength) demands a very
large “‘effective” flaw size, suggesting that poor workability led to large flaw
size, with potential crack-crack interaction effect. )

For Spectra FRC, the K value of 0.65 is higher than the K, value of
0.188. This implies that the composite will not be adequately reinforced to
exhibit steady-state and multiple cracking. The specimen half-width s/2 (25
mm) is smaller than the computed ¢, value (246 mm). From Fig. 7, this
material is expected to fail in mode A. For the steel FRC, the K value of
0.91 is again larger than K. However, the specimen half-width s/2 (100
mm) is higher than the calculated ¢, (71 mm) for this material, so that
according to Fig. 7, the material is expected to fail in mode B. For the
polypropylene FRC, the K value of 0.0016 falls below K.y, and therefore
have the potential to undergo steady-state and multiple cracking. However,
its ¢ value (0.018) falls between ¢,,. (0.011) and ¢, (0.02), so that an initial
load drop at first cracking is expected prior to multiple cracking. This cor-
responds to failure mode C, according to Fig. 7. For the glass FRC, the K
value of 0.00027 falls below K, and its ¢ value of 0.0055 is just higher
than the ¢, value of 0.0053. Hence this material should undergo steady-state
and multiple cracking, with a failure mode of D.

CONCLUSIONS

The conditions for steady-state and multiple cracking for a 3-D randomly
distributed discontinuous fiber-reinforced composite have been analyzed.
It is found that a single nondimensional parameter, interpretable as the ratio
of crack tip to crack-bridging fracture energy, determines whether steady-
state cracking can be achieved. This leads to a minimum or critical fiber-
volume fraction [(17)], expressible in terms of micromechanical parameters,
for occurrence of steady-state cracking. Since steady-state cracking is clearly
a precondition for pseudostrain hardening, it is now possible to consider
engineering of cementitious composites using (17) in order to attain ductile
tensile behavior. For example, the tailoring of 7/E,, L/d;, and G,,/g7d; may
lead to reduced critical fiber-volume fraction in order to enhance steady-
state cracking while reducing cost (assuming the normal situation of fiber
cost higher than matrix cost) and improving processing ease. More specif-
ically, doubling the aspect ratio through L, implies a significant reduction
of 87.5% of fibers needed to achieve the same effect. Furthermore, if ¢, is
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made smaller than fabrication flaw sizes, then a notch-insensitive behavior
sets in, resulting in a composite with high reliability.

Steady-state cracking is accompanied by a higher first-cracking strength
and strain. It is shown in this paper that these quantities can again be related
to microstructural parameters, which could be tailored for pseudostrain-
hardening enhancement. Although the failure strength is less than that for
a continuous system as expected, the present study indicates that its mag-
nitude can be enhanced by a snubbing effect associated with inclined bridging
(flexible) fibers.

For multiple cracking to occur, the present analysis reveals that a ¢,,.,
defined by (24), must be smaller than the fabrication flaw size. Because ¢,,.
is relatable to K (see Fig. 7), (24) may be used to engineer a composite
containing discontinuous fibers for multiple cracking. Furthermore, it is
found that the K-¢ combination determines the various types of tensile
failure behavior, all of which have been reported in the literature. Because
the K-¢ mechanism map (Fig. 7) is expressed in nondimensional form, it
can be utilized for pseudostrain-hardening design of any discontinuous ran-
dom-fiber—reinforced composites, so long as the essential micromechanical
?:m:_w mechanisms are well described by those assumed in the present
model.

Finally, it should be noted that all calculations performed in this paper
are based on a composite modulus E,_ that relates to the fiber and matrix
moduli, and fiber-volume fraction by the classical rule of mixture. This
simple relation gives an upper bound to the actual composite modulus, which
is expected to depend on fiber-aspect ratio as well. More accurate (but more
complicated) expressions of E, can be found in Tandon and Weng (1986)
and Wakashima and Tsukamoto (1991). Except for high fiber-volume frac-
tion (more than 10%) the errors introduced (in, e.g., oy and V§™) have
been found to be within 10%.

APPENDIX I: P-5 RELATION FOR BRIDGING FIBER

The P-3 relation may be obtained from a shear-lag analysis as carried out
in Leung and Li (1991a). For the fiber displacement (at the location of the
matrix-crack plane) relative to the matrix deformation, they derived the
following relationship between the fiber stress ¢, and the displacement u
at the matrix-crack plane:

*
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w_ 00 o (L) o
no G £|\7 BV B, e (26)

where 7, = the elastic-bond strength; r, = the fiber radius; R* = effective
radius of the matrix cylinder containing the fiber; G = the matrix shear
modulus; ¢, (=P/nr}) = the fiber traction at the location of the matrix-
crack plane; and L, = the debond length. The other terms are already
defined in the text. The first term in (26) originates from elastic-stress
transfer of the bonded fiber segment, and is generally small compared to
the other terms in (26). Ignoring this term leads to
2
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Leung and Li also derived the fiber traction as a function of debond length:

2 (L) 1 cosh z + 2 (%) sinh Z
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where Z = p (L; — L,)/rs; o = V;E/E;; and p* = 2GE./[V,,E, E;log (R*/
)]

In the main body of this paper we have assumed weak adhesion between
the fiber and the matrix, so that 7, = 7. The first term in (28) is much larger
than the second provided that

Ly 1
re P

which is generally satisfied as soon as the debond length is larger than about
10 fiber diameters. Using these assumptions and for moderately small fiber-
volume fraction so that o << 1, (28) may be simplified to the following:

2T w
— llxx (30)
o, = ()

(27) and (30) form a pair of equations where P and u are related para-
metrically through the debond length L,. When combined, they form:

Eq. (32) is identical to a result derived by Marshall et al. (1985) using a
different approach. The assumptions that went into deriving (32) are con-
sistent with that used by Aveston et al. (1971), who obtained the critical
composite strain given in (22). If elastic-stress transfer needs to be accounted
for, or that the fiber/matrix adhesion is strong enough to raise 7, much above
7, or that high fiber-volume fraction and/or stiffness is used, (26) and (28)
provide a more accurate description of the relationship between P and u.
A modified version of (28) (Leung and Li 1991) accounts for the possibility
of debonding occurring at the embedded fiber end after some debonding
from the crack-plane end. However, an iterative procedure is needed to
obtain the P-u relationship for the two-way debonding process, too com-
plicated to use for the purpose of this paper. Moreover, Leung and Li
showed that for weakly bonded fibers, the one-way debonding theory adopted
in the present work is accurate up to 90% of the peak pull-out load.

For a fiber bridging a matrix crack, debonding occurs on embedded seg-
ments on both sides of the crack so that the crack opening & = 2u. The
required P(3) relation is then given by:
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P(d) = w,\A.iH FMEAITS o (33)

When a fiber is making an angle 0 to the normal of a crack, it can be

wroi: that the fiber-bridging force for a certain crack opening § is given
y:

VA F nEdio
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P@d) = O (34)

where the exponential function e® accounts for the snubbing effect while
the term m (1 — e” cos 8) in the denominator accounts for matrix defor-
mation due to the force acting on the matrix at the exit point of the fiber
(Where snubbing occurs). If (34) is used together with (3) to compute the
composite o5 — 3 relation, a simple analytical expression [such as (4)] can
no longer be obtained. The first-crack strength as well as the criteria for
steady-state cracking and multiple cracking are then no longer expressible
in simple forms that provide insights into the relative effects of various
parameters on composite behavior. A simplified form of (34) is therefore
desirable. For most composite systems with flexible fibers, the value of m
is small (usually less than 0.1). The snubbing coefficient f also rarely exceeds
unity. For such cases, neglecting the term m (1 — e/ cos 8) will only introduce
a slight error of less than 5% to the composite o5 — 3 relation. Therefore,
for the analyses in the text, we drop the denominator in (34) to obtain:

P(d) = w}\c FEdITo eP (35)

For high fiber-volume fraction, say 10%, coupled with high value of f, say
1, (34) must be used in place of (35).
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ArpenDIX lil. NoTtATiON
The following symbols are used in this paper:

crack radius;

minimum crack size for which multiple cracking would occur;
crack radius when maximum bridging stress is reached at crack
center;

¢, = crack radius at transition to steady-state crack propagation;

fiber diameter;

sﬁ
o 8 O
o

S
I
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composite elastic modulus;

fiber-elastic modulus;

matrix-elastic modulus;

snubbing coefficient;

energy-absorption rate in fiber-bridging zone behind crack front;
crack-tip fracture energy-absorption rate;

snubbing factor;

stress-intensity factor due to fiber bridging behind crack tip;
stress-intensity factor due to applied remote loading;
matrix-fracture toughness;

crack-tip—fracture toughness;

fiber length;

fiber-embedment length;

probability-density function of fiber-orientation angle with respect
to loading direction;

probability-density function of fiber-centroidal distance from crack-
plane critical strain;

crack-opening displacement at midpoint of crack;

crack opening at which frictional debonding is completed;
crack-opening displacement corresponding to maxima of bridging
stress;

steady-state crack strain;

composite bridging stress;

first-crack strength;

peak bridging stress when g = 1;

steady-state crack strength; and

interfacial frictional bond strength.




