EFFECT OF FIBER RUPTURE ON TENSILE PROPERTIES OF SHORT
FIBER COMPOSITES
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ABSTRACT: A probabilistic-based micromechanical model has been developed for the postcracking behavior
of a brittle matrix reinforced with short, randomly distributed fibers. The model that predicts the composite-
bridging stress crack-opening displacement (COD) relationship, accounts for fiber pullout, fiber tensile rupture,
and a local frictional effect called snubbing. However, it does not account for fiber bending rupture, and the
possible effect of matrix spalling at the exit points of inclined fibers from the matrix. The model assumes a
fiber/matrix interface that is controlled by a constant frictional bond stress. The model is used to predict the
composite tensile strength and fracture energy. Comparisons of model-predicted bridging stress-COD rela-
tionship with experimental data, where fiber rupture has occurred, show reasonable agreement supporting
the validity of the proposed model. The model is then used to perform a parametric study to evaluate the
effect of the micromechanical parameters on the composite tensile strength and fracture energy. The study
suggests that this model can be used to design the composite for optimum performance.

INTRODUCTION

The problems of cracking and low toughness that brittle
materials show may be overcome by the addition of short,
randomly distributed fibers. The main advantages of adding
fibers to a brittle matrix can be summarized as (1) significant
increase in toughness or energy absorption capacity; (2) pos-
sible increase of ultimate tensile strength and/or strain; and
(3) good crack-width control mechanism. These desirable
characteristics have usually been achieved at relatively low
fiber-volume fractions (less than 5%). However, these ad-
vantages are generally associated with an increase in the over-
all cost of the materials, mainly due to the added cost of fibers
and further material processing. To use the minimum amount
of fibers and achieve maximum performance improvement,
researchers have been developing analytical tools to optimize
the design of these fiber composites.

The posteracking behavior of discontinuous random fiber-
reinforced brittle-matrix composites (DRFRC) can be pre-
dicted by the use of a composite bridging stress-COD (o -3)
relationship. The latter describes the constitutive relationship
between the traction acting across a matrix crack plane and
the separation distance of the crack faces (i.e., COD) in a
singly precracked uniaxial tensile specimen loaded quasi-stat-
ically to complete failure (Li et al. 1987). The -8 relationship
is a fundamental material property that contains information
regarding the composite postcracking strength and fracture
energy. The o.-8 curve consists of an ascending branch called
the prepeak o,.-8 curve and a descending branch called the
postpeak o8 curve (or the tension-softening curve). The
prepeak o-d relationship is one of the important material
properties that govern the composite first cracking strength
and the presence or absence of multiple cracking in the com-
posite (Li and Leung 1992). In a strain-hardening composite,
where a series of parallel cracks develop in a specimen prior
to reaching the peak load [e.g., Krenchel and Hansen (1992)
and Li and Wu (1992)], the prepeak (postcracking) behavior
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can be characterized by a stress-strain curve. The peak of this
curve must coincide with that of the prepeak o3& curve.
Therefore, for strain-hardening materials, the tensile strength
can be predicted by computing the peak of the prepeak o -8
curve. Furthermore, the postpeak composite behavior can be
predicted by computing the postpeak o.-8 curve. For quasi-
brittle materials, where failure occurs by the development of
a single crack, the postcracking behavior can only be de-
scribed by a stress-displacement curve. This curve may or
may not include a portion of the prepeak o.-8 curve depending
on the COD in the middle of the specimen at the time the
first crack spreads through the specimen cross section [more
details can be found in Li and Leung (1992)]. For both ma-
terials, the composite-bridging fracture energy can be pre-
dicted by integrating the area under the ¢.-8 curve.

Assuming a purely frictional fiber/matrix interface and
complete fiber pullout, Visalvanich and Naaman (1983) de-
rived a semiempirical model for the tension-softening curve
in discontinuous randomly distributed steel fiber-reinforced
mortar. With the same assumptions, Li (1992) derived an
analytic model [the fiber pullout model (FPM)] that predicts
the complete ¢.-8 curve for DRFRC, taking into account an
additional frictional effect called the snubbing effect. The
model provided a good prediction for the postcracking strength,
the tension-softening curve, and composite fracture energy
for a number of composites in which the fibers did not rup-
ture. However, discrepancies were observed between the pre-
diction of this model and some experimental measurements,
which suggests the occurrence of fiber rupture (Li and Wu
1992). Fiber rupture has also been experimentally observed
in carbon, glass, polypropylene, stainless steel, and SiC
DRFRC. Li et al. (1991) studied the fracture energy asso-
ciated with fiber bridging in DRFRC taking into account the
effect of fiber tensile rupture.

This paper extends the fiber pullout model by explicitly
accounting for potential fiber tensile rupture. However, the
new model [referred to as the fiber pullout and rupture model
(FPRM)] does not account for fiber bending rupture and the
possible effect of matrix spalling at the exit points of inclined
fibers from the matrix. Moreover, the model does not account
for the possible interaction between neighboring fibers, and
the modification of the relevant matrix properties (e.g., mod-
ulus and packing density) by the addition of fibers, because
these may introduce additional voids in the matrix. These
voids may also affect the fiber/matrix interfacial bond strength.
Preliminary experimental results suggest that the bond strength
deteriorates with increasing the fiber-volume fraction. For
this reason, it is necessary to tailor the microproperties (fiber,
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matrix, and interface properties), such as targeted material
properties (e.g., tensile strength and fracture energy), which
can be achieved by the use of a minimum fiber-volume frac-
tion. In this case, the interaction between neighboring fibers
and the modification of the matrix properties by the presence
of fibers can be significantly reduced.

After experimental validation, the FPRM is then used to
perform a parametric study that evaluates the effect of each
micromechanical parameter on the composite tensile strength
and fracture energy. The results of the parametric study sug-
gest that the model can be used to optimize the design of
DRFRC in terms of composite tensile strength and fracture
energy.

SINGLE-FIBER STRESS-DISPLACEMENT
RELATIONSHIP

In this paper we adopt a simple model of fiber/matrix in-
terface debonding based on a purely frictional strength. In
this model the elastic bond is ignored; therefore, what we
refer to as debonding is the activation of the frictional slip
zone. This activation is assumed to take place at the moment
the fiber is loaded. The validity of this friction-controlled
interface, used in most studies of cement-based fiber com-
posites, has recently been experimentally confirmed by Li
and Chan (1994), at least for steel and brass fibers in a cement
matrix. Consider a single fiber with diameter dy, length L,
elastic modulus E;, tensile strength oy, and an interfacial
frictional bond strength 7. The fiber is bridging a matrix plane
crack as shown in Fig. 1. The elastic modulus of the matrix
is E,, and the fiber volume fraction is V;. During frictional
debonding, the fiber debonding stress o, versus displacement
8 is given by the following relationship (Li and Leung 1992):

o, = [4(1 + n)TE(8/d,)]"?
= (40,/V,)[8/6*]"2, for & =3, (1)

where v = V(E/E,)(1 — V;); o, = V1L /(2d;); & = &/
(Ly/2); 8, = 4U(v/E;)(Uld)/(1 + m); and &% = 2(v/E,)(L,/d,)/
(I + m). In (1), 8, = fiber displacement at which frictional
debonding has reached the end of the embedment length /,
assuming fiber rupture has not occurred. After this stage,
fiber pullout proceeds. The pullout stress-displacement re-
lationship is approximated by the following equation (Li 1992):

o, = (4/d)[l — & + 3]
= (o, V)l + 8*[* = 8], for 8, <8 =1 2)

where [ = I/(L,/2). The preceding two equations hold true
for fibers loaded in a direction along their axis. Randomly
distributed fibers, however, generally do not lie in a direction
normal to the matrix-crack plane. The misalignment between
fiber axis and crack plane normal results in a local frictional
effect called snubbing (Li 1992), which can be incorporated
into the debonding and pullout stresses as follows [Fig. 2(a)]:

o A
¥y = debonding

RRER

FIG. 1. Single Fiber Bridging Plane Crack
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FIG. 2. Fiber Orientation and Snubbing Effect

0,8, @, z) = g, for §=3, (3a)
o8, &, z) = o,e®, for §,=8=1 (3b)

where f = an interface material parameter called the snubbing
friction coefficient. Typical values of f range between 0 and
1. The snubbing coefficient f can be determined for a partic-
ular fiber matrix interface by conducting a series of single
fiber pullout tests at different angles ranging between 0° and
90°, then plotting the maximum load P,,,, versus the angle ®
and fitting this curve to an equation of the form P, =
Pra(® = 0)e/*, where f = fitting parameter. For instance,
such an experiment led to f values of 0.99 and 0.70 for nylon
and polypropylene fibers embedded in a normal-strength
mortar matrix (Li et al. 1990). The fiber centroidal location
z and orientation ® are defined in Fig. 2(b). The embedment
length / can be expressed in terms of the fiber length L, fiber
centroidal location z, and fiber orientation @ as follows:

I = (L/2) — (z/cos @) 4)

In (1)-(3), it was assumed that the stress in the loaded
fiber never reaches its tensile strength o,. However, it is
reasonable to assume that for certain fiber/matrix systems,
the combination of fiber embedment length, diameter, in-
clined angle and interfacial and snubbing friction may lead
to stresses in a number of loaded fibers exceeding their tensile
strength. In this case, those fibers are expected to break.

Consider now a fiber/matrix composite in which potential
fiber rupture can occur. It is assumed that all fibers are iden-
tical and have uniform tensile strength along their length. In
this case, when fiber rupture occurs, it would be at the matrix-
crack plane. Therefore, when a fiber breaks, it no longer
contributes to the composite bridging stress.

The critical embedment length /,, beyond which potential
fiber rupture can occur, is determined by setting the fiber
bridging stress 0,(3,, @, z) equal to oy,. It follows that

l,=L.e/® (5)

where L. = od,/(47). If the snubbing effect was not con-
sidered (f = 0), fibers would rupture if their embedment
length / is greater than L.. Therefore, all fibers having an
embedment length in the range [L,, L,/2] would rupture rather
than pull out. However, due to the snubbing effect, (5) shows
that all fibers for which the embedment length and orientation
belong to a two-dimensional space {/ € [0, L,/2] and ® € [0,
m/2] such that / = L.e~/*} rupture rather than pull out. Based
on its definition, this two-dimensional space (referred to as
fiber-rupture space) is also equal to the following:

S={l€[Le> L2 and ® € [0, /2]
such that [ = L_e~/%} (6)

Consequently, there exists a minimum critical fiber length L,
equal to 2L e /™2 beyond which fiber rupture starts to occur.
Therefore, if the fiber length is less than L,, the fiber-rupture
space § would be empty [Fig. 3(a)] and all fibers would pull
out subsequent to complete debonding. If, on the other hand,
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FIG. 3. Fiber Rupture Space

L, is greater than L,, the fiber-rupture space would be non-
empty and fiber rupture is expected. In the particular case
when the fiber length is greater than L, but less than 2L,
(critical fiber length), the fiber rupture space would be equal
to [Fig. 3(b)] the following:

Sop = {{E[Lee /™ LJ/2] and & € [P, w/2]
such that [ = L.e /%} )]
where
®, = —(Uf)in(L2L) - ®)

Note in this case that all fibers oriented at an angle less than
®, (i.e., 0 = ® = &,) pull out subsequent to complete de-
bonding. When the fiber length is greater than 2L, rupture
can occur for any fiber orientation, provided the embedment
length is greater than the critical embedment length /, [Fig.
3(c)]. When the fiber-rupture space is nonempty, fibers with
an embedment length / and orientation @, which belong to
S, rupture after incomplete debonding. All other fibers are
pulled out subsequent to complete debonding.

Fig. 3 shows that fibers at 90° could either rupture or pull
out depending on their embedment length. However, in real-
ity, a fiber that is oriented at exactly 90° may not be contrib-
uting at all to the composite bridging stress as it will be lying
tangent to the matrix-crack plane. Because only a small frac-
tion of the bridging fibers should be oriented at 90°, and for
simplicity, the model assumes that fibers oriented at 90° are
contributing fibers.

If a fiber does rupture, this must occur some time during
debonding (8 = 8,), because the fiber bridging stress always
decays during pullout [an exception would be slip hardening
during pullout of some polymeric fibers that experience se-
vere abrasion (Li et al. 1990); this case will not be analyzed
in this paper]. At the particular moment when a fiber breaks,
the COD is at a critical value 8,, which can be determined
by setting the fiber bridging stress o,(8,, @, z) equal to op,.
It follows that

5, = 8. ¥ 9
where
8. = aj,d /41 + m)ET (10)

We can deduce from (9) that fibers oriented at higher incli-
nation angles would rupture before those oriented at lower
inclination angles as the matrix crack opens. When the fiber-

rupture space is equal to Sy, [Fig. 3(b)], fibers oriented at
an inclination angle @, are the last ones to rupture. According
to (9), those fibers rupture at a COD equal to

d.e ¥ = 5 (LJ2L.)* = &* (11)

Interestingly, this COD corresponds to the stage when de-
bonding is completed for those fibers with the longest embed-
ment length (/ = L,/2). Therefore, all surviving fibers will
be in a pullout stage as soon as the COD is greater than 3*.
If, on the other hand, the fiber-rupture space is equal to
[Fig. 3(c)], fibers oriented at a zero inclination angle (and
having [ = [,) are the last ones to rupture. According to (9),
those fibers rupture at a COD equal to 3. Therefore, all
surviving fibers will be in a pullout stage as soon as the COD
is greater than 3,.

The fiber bridging stress-displacement relationship for the
group of fibers that eventually rupture is defined by a step
function, as follows:

0,8, @, 2) = o, U(B.e " — §)el® (12)
where
UBe ¥ —8) =1 for 8=8.e ¥ or &=d. (13q)
U@.e ¥ —3) =0 for 8>08.e ¥ or ®>d,_ (I3b)
and @, = —(1/2f)In(3/3,) (14)
The parameter @, (0 = &, = 7/2), therefore, defines the
angle of the fibers that have ruptured at the COD 8.
COMPOSITE BRIDGING STRESS-DISPLACEMENT
RELATIONSHIP

Li et al. (1991) showed that the composite bridging stress-
COD curve can be approximated by summing the contribu-
tions of the individual fibers bridging the matrix-crack plane,
according to the following equation:

w2 (i._r!ﬁ}cos(l!

o. =V, o5(8, @, 2)p(2)p(P) dz d®  (15)

(1] 1]
where p(z) and p(P) = probability-density functions of the
orientation angle and centroidal distance of fibers from the

matrix-crack plane. For uniform random distribution they are
defined as follows:

p(z) = 2/IL,, for 0=z = (L,/2)cos @ (16)

p(®) = sin®, for 0= =m/2 (17)

by making the change of variable x = (2/L;)(L;/2 — z/cos
®) for z, (15) becomes the following:

w2 [1
o, = (V,/2) J:‘ J;. 04(3, @, x)sin 2 dx dP (18)

Li (1992) showed that, for the particular case when the
fiber length is less than L,, the composite bridging stress-
COD relationship is given by the following:

o, = 0,8[2(8/6%)2 — (8/6%)], for & =28*  (19a)
o, = o,g(1 —8)?, for 8* =8 =1 (19b)
where
g = [2/(4 + A1 + e/ (20)
In this paper, the ¢.-8 relationship is extended for the case
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in which the fiber length is greater than L,, and, therefore,
fiber rupture is expected.

Prepeak Composite Bridging Stress-Displacement
Relationship

The prepeak composite bridging stress-displacement rela-
tionship defines the initial portion of the ¢ -8 curve that ends
when the fiber-rupture process is completed and all intact
fibers are pulling out of the matrix.

L <L <2L,

In this case the fiber-rupture space is equal to Sy, [Fig.
3(b)] and all intact fibers are pulling out of the matrix when
the COD 3§ is equal to 8*. Using (3) and (12) in (18), (21) is
obtained (Appendix I)

o, = 0,8[2(8/6¥)2 — (8/5%)], for S =8.e /" (2la)
0. = o,{g(®)[2(8/6%) — (8/6*)] + ae—f)LZ,

for de/m=5=5* (21b)
where
g(®) = [1/(4 + AU[fsin(2P,) — 2 cos(2D,)]e/* + 2}
(22)
a(t) = [1/(4 + >){[2 cos(2®,) — ¢ sin(2P)]e* + 2e ™2}
(23)
L;=2L,

Here the fiber-rupture space is equal to S [Fig. 3(c)] and
all intact fibers are pulling out of the matrix when the COD
3 is equal to 3. It follows that (Appendix I)

o, = 0,8[2(8/6%)"2 — (8/6*)], for &§ =85/ (24a)
0. = o,{g(®I[2(8/6*)"* ~ (5/6*)] + a(—f)L3},
for S.e/m=8=3, (24b)

Fig. 4 shows the prepeak o.-8 curve for composites with
three different fiber lengths (6 mm, 8 mm, and 12 mm), in
which the micromechanical parameters are close to those of
steel fiber-reinforced cement. In this case the minimum crit-
ical fiber length (L, = 2L.e~/™?) is equal to 3 mm and the
critical fiber length (2L.) is equal to 10.7 mm. This means
that fiber rupture (in addition to fiber pullout) will occur in
any composite where the fiber length is greater than 3 mm.
However, if the fiber length is less than 10.7 mm [case of Fig.
3(b)], fiber rupture will be limited to those fibers with a high
inclination angle (e.g., fibers at 0° will not rupture). When
the fiber length is greater than 10.7 mm [case of Fig. 3(c)],
fiber rupture can occur for any fiber orientation provided that
the embedment length is greater than 5.35 mm (L.). With
this in mind, it is expected that Fig. 4 should reflect an increase

0 0.001 0.002 0.003 0.004 0.005 0.006

S(L2)
FIG. 4. Prepeak o5 Curve for Different Fiber Lengths
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in the proportion of ruptured fibers as the fiber length in-
creases from 6 to 12 mm. Fig. 4 shows that the peak composite
bridging stress o, occurs well before the fiber-rupture process
is completed. It can also be seen that o, increases with in-
creasing fiber length. However, as the fiber length increases,
the composite bridging stress decreases more rapidly there-
after, due to an increase in the proportion of ruptured fibers.

Postpeak Composite Bridging Stress-Displacement
Relationship

The postpeak composite bridging stress-displacement re-
lationship defines the portion of the o8 curve corresponding
to the pullout stage of all surviving fibers in the composite.

L =L,=2L,
Using (3b) in (18), (25) is obtained (Appendix II)
o, = a,[g(®@)(1 = 8)* + b(—f)LZ — 2b(0)L.S + b(f)?],

for §* =8 = Le /= (25a)
0 = 0 [g(@)(1 = 8) + c(=f)LZ = 2c(0)Lb5 + c(f)¥),
for Le /™ =§=<1 (25b)
where
b(r) = [1/(4 + )I{[2 cos(2®,) — t sin(2D,)]e'® + 2¢'™2}
(26)
c(t) = [1(4 + )t sin(2D,) — 2 cos(2D,)]e’
+ [2 cos(2d,) — 1 sin(2d,)]e ™} (27)
®, = —(1/f)In(3/L.) (28)

The angle @, defines the group of fibers (fibers having an
orientation satisfying ®, = ® = 7/2) that have already pulled
out of the matrix at the COD 3.
Li=2L,

In this case (Appendix II)
o. = o, g L2 — 2L 8 + g8, for S, =8=<Le '™ (29%)
o, = o d(—f)L? — 2d(0)L.5 + d(f)8?]

for Ler2<§=<L. (29b)

where
d(t) = [1/(4 + )){[t sin(2®,) — 2 cos(2d,)]e® + 2}  (30)
& = [2(4 + )1 + e/ (31)

Note that the maximum COD is equal to L., the critical
embedment length for fibers oriented in a direction normal
to the matrix-crack plane (® = 0).

Fig. 5 shows the postpeak o8 curve for the same com-
posites as in Fig. 4. This figure shows that the postpeak tensile
strength o, (equal to ¢.[3*] or ¢.[3.] as appropriate) de-
creases with increasing fiber length due to the increase in the
number of ruptured fibers. Note that the composite bridging
stress vanishes at a COD equal to L. (5.35 mm) that is less
than L/2 (6 mm) for the composite with the 12-mm fibers.

Experimental Validation

The material selected for the experimental validation is a
cement reinforced with 2% by volume of Kevlar 49 fibers.
The dimensions and mechanical properties of the fiber used
for reinforcement are given in Table 1. The fiber/matrix in-
terfacial bond strength was measured to be 4.5 MPa by Wang
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Dimensions and Mechanical Properties of Fibers

TABLE 1.
Fiber
E, Oy T d, L, density
(GPa) | (MPa) | (MPa) (pm) {mm) f (g/cm?)
(1) (2) (3) (4) (5) (6) ]
69.8° 33100 4.5 12 12.7 0.6° 1.44
“Source is Wang (1989).
"Assumed.
-
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FIG. 6. Uniaxial Tension Specimen Geometry and Dimensions

FIG. 7. SEM of Ruptured Fibers on Fracture Surface

(1989) using single fibers pullout test. The constituent ma-
terials of the matrix and their mix proportions are as follows:
type 1 portland cement, 1.00; silica fume, 0.10; and super-
plasticizer, 0.02. These were used to form a cement paste
with water/cementitious ratio of 0.27. The measured elastic

modulus of the matrix was 13 GPa.

2.5

FIG. 8. Comparison between Experimentally Measured and Model
Predicted o5 Curve
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FIG. 11. Comparison between Experimentally Measured and Model
Predicted o.-5 Curve when Contribution of Rupturing Fibers Is not
Accounted for

The test is conducted on rectangular uniaxial tension spec-
imens with a cross section of 76 x 13 mm. The specimens
were cast in Plexiglas molds using high-frequency (150 Hz)
vibration to improve the packing of the material and reduce
air entrapment. After casting they were allowed to harden at
room temperature for one day prior to demolding and then
cured in water for five weeks before testing. Two notches
were introduced in each specimen [Fig. 6(a)] to define the
crack plane and better monitor the COD. The COD was
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FIG. 12. Effect of Fiber Length on Composite Tensile Strength

measured using linear variable differential transducers
(LVDTs). As shown in Fig. 6(b), a pair of LVDT holders
were glued on side surfaces of the specimen. The relative
displacement between the fixtures was measured using the
two LVDTs, and the two displacement values were averaged.

Note that for this composite the fiber length is almost three
times longer than the critical fiber length (2L, = 4.4 mm).
This indicates that the specimens were going to fail with a
large fraction of rupturing fibers. Fig. 7 shows a scanning
electron microscope picture of ruptured fibers on a fracture
surface of a tested specimen. The stress-COD curves obtained
from three repeated uniaxial tensile tests are shown in Fig.
8 along with the prediction of the FPRM. A snubbing friction
coefficient of 0.6 (within typical range [0, 1]) was used in the
FPRM calculations. We can see from Fig. 8 that there is a
reasonable agreement between the experimental data and the
theoretical prediction for the postpeak o3 curve. Fig. 9 shows
the complete o,-5 curve as predicted by the FPM and the
FPRM. We can see from this figure that the FPM and the
FPRM predict a composite tensile strength of 70 MPa and
21 MPa, respectively. However, we have measured an av-
erage postcracking strength of only 4.2 MPa.

Wang (1989) studied the chemical stability of different fi-
bers in a cement matrix. According to Wang, Kevlar fibers
are sensitive to the alkaline environment of the cement matrix
and show a drop in strength after aging. In particular, after
66 days of aging in a cement matrix at 22°C and 100% relative
humidity, Kevlar 49 fibers showed a 34% drop in their av-
erage strength. Because our specimens were tested at an age
of 35 days, it is uncertain whether or not the Kevlar fibers
have lost part of their strength. If the values of the fiber
strength and bond strength are correct (leading to L. = ay,dy/
47 = 2.2 mm), then we do not expect to see from the ex-
periment any pullout length greater than 2.2 mm. This was
found to be the case from the experimental data (Fig. 8),
which shows that the composite bridging stress vanishes at an
average COD of about 2.2 mm. The tension-softening be-
havior observed in Fig. 8 is made possible by the pullout
behavior of only the surviving fibers (fibers with an embed-
ment length less than L.e~/*). Eye examinations of the spec-
imen fracture surface showed protruded fibers with a maxi-
mum protrusion length around 2 mm. This confirms the validity
of the fiber strength oy, and the interfacial bond strength 7
used in the FPRM calculations. Therefore, the discrepancy
between the measured postcracking strength and the one pre-
dicted by the FPRM may not be related to a reduction in the
tensile strength of the fibers.

We should note that any prediction given by the proposed
model is only valid after a crack has completely formed across
a specimen. In addition, all bridging fibers are assumed intact
before any loading is applied to the fibers. Therefore, the
discrepancy between the measured postcracking strength (4.2
MPa) and that predicted by the model (21 MPa) could be
related to the model assumption that the fibers will only start
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rupturing after a crack has completely formed across the spec-
imen [along A-A in Fig. 6(a)]. In the actual test, however,
the fibers were probably rupturing as the crack was propa-
gating across the specimen section (Fig. 10). Therefore, after
the crack had completely formed across the specimen, the
surviving fibers become the principle contributors to the com-
posite bridging stress. In addition, we know that if we do not
account for the contribution of the rupturing fibers when
computing the composite bridging stress, we expect to obtain
a lower bound value for the postcracking strength. Fig. 11,
which shows a comparison between the experimentally mea-
sured and the model-predicted o.-5 curve when the contri-
bution of the rupturing fibers is not accounted for, indicates
that this is indeed the case. In Appendix III we derive an
expression for the contribution of rupturing fibers, which is
subtracted from the prepeak composite bridging stress to ob-
tain the initial part (8 = 3, of the full-line curve shown in
Fig. 11. The postpeak part is the same as the one shown in
Fig. 8. Fig. 11 shows also that the predicted postcracking
strength (3.5 MPa) is fairly close to that experimentally mea-
sured (4.2 MPa). This evidence seems to support the expla-
nation for the discrepancy between the postcracking strength
predicted by the FPRM (21 MPa) and that experimentally
measured (4.2 MPa).

For a given fiber tensile strength and interfacial bond
strength, the magnitude of the postpeak tensile strength o,
depends on the assumed snubbing friction coefficient. In the
absence of an independently determined value, an assumed
snubbing friction coefficient of 0.6 seems to represent well
the experimental data.

COMPOSITE TENSILE STRENGTH

The composite tensile strength refers to the peak composite
bridging stress o,. Although (21) and (24) cannot be solved
analytically for the composite tensile strength, it is possible
to obtain a numerical solution that can be accurately (error
<1%) approximated by the following normalized equation:

6., = mm, — L1 (32)
where
Gow = 0. /V 04 (33)
m, = (1/125) + (19/80)e~ ¥ (34)
m, = (gldm,)e /2 + /™2 (35)
L= LJ2L, (36)

Eq. (32) was obtained by fitting the numerical data to an
equation of the form y = m,(m, — x~'), where x = L/(2L.)
and m, and m, = constants. This was done for every value
of fin the set {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0}
Then the m, values were fitted to a function of the form y
= a + be“. Note that (32) is only valid when the fiber length
is greater than L,. For the case when Ly is less than L,, (194)
evaluated at 8* gives the following equation for the composite
tensile strength:

6. = (gL, (37)

The m, equation was obtained by equating (32) and (37) at
the limit value L, = L, (i.e., x = e /™?).

The dotted line in Fig. 12 shows the variation of normalized
composite tensile strength as a function of normalized fiber
length as given by (37) and the numerical solution for o,
for a snubbing coefficient of 0.8. The solid line shows the &,
— L, curve as given by (32). It can be seen from Fig. 12 that
(32) gives a very good approximation for the composite tensile



strength. This is also the case for other snubbing coefficients
in the range of 0-1 (not shown in this paper).

COMPOSITE FRACTURE ENERGY

The composite bridging fracture energy G, can be com-
puted in two alternative ways: either by integrating the area
under the ¢.-8 curve (Li 1992), or by summing the energy
contributions of the individual fibers that bridge the matrix
crack plane (Li et al. 1991). Due to the complexity of inte-
gration, the first alternative does not yield an analytic solution
for G,. Therefore, the second alternative will be used.

Li et al. (1991) showed that the composite bridging fracture
energy can be computed by the use of the following equation:

cos 1(2:.-‘1,j- ]

L2
G, = (V,A)) L L G,(L f. d,, ®)

‘Uz = [(L/2) — L cos ®ip(P)p(z) d® dz (38)

where G,(l, f, d;, ®), the energy absorption for a single fiber
of embedment length / pulled out at an angle @, is given by
the following:

Gyl f. d,, ®) = (w/2)d,tl%* (39)

As written, (38) cannot be evaluated analytically. However,
based on the same idea leading to (38), the composite bridging
fracture energy can be computed analytically by the use of
the following equation:

w2 (L 2cosd
G. = (V//A) ,[» J:J G.(L. f, d;. @)

“UlL.e "™ — 1]p(z)p(P) dz dP (40)

by making the change of variable x = (2/L;)(L;/2 — zlcos
@) for z, (40) becomes

w2 [l
G. = G,L f f xe/*U(x)sin 20 dx dd  (41)

where
G, = ViLld, (42)
U) = 1. for x=<L.er (43a)
Ux) =0, for x> Le/® (43b)

Integration of (41) yields the following analytic solution for
the composite fracture energy (Appendix IV):

G, = (13)gL;, for L, <L, (44q)
G, = (13)[g(®,)L2 + h(®,)L; '], for L,=L,<2L,
(44b)
G, = (113)g.L; ', for L,=2L, (44c)
where
G, = G.IG, (45)
h(®,) = [12(1 + fA))(f sin 2d, + cos 2P, )e ¥ + e /7]
(46)
g = [12(1 + fA)[1 + e '] (47)

Note that the energy absorbed by the bridging fibers during
debonding is negligibly small and was not accounted for in
(44).

PARAMETRIC STUDY

The purpose of the parametric study is to evaluate the effect
of each micromechanical parameter (fiber length, fiber di-
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FIG. 13. Effect of Fiber Length on Composite Tensile Strength
and Fracture Energy

TABLE 2. Summary of Parametric Study for Optimum o, and G

Parameter Peak stress Fracture energy
(1) () (3)

Fiber diameter: d, 1 o, unaffected G. 1
Bond strength: = 1 o, unaffected G. |
Fiber strength: oy, 1 o, T G. 1
Snubbing friction: f 1 o 4 G. |

ameter, fiber strength, bond strength, and snubbing coeffi-
cient) on the composite tensile strength and fracture energy.
Fig. 13 shows the effect of the fiber length on the composite
tensile strength and fracture energy. This figure indicates that
the composite tensile strength keeps increasing with increas-
ing fiber length; however, the fracture energy increases ini-
tially as a function of fiber length, reaches a maximum value,
and then starts to decrease. Therefore, there exists an opti-
mum combination of tensile strength and fracture energy.
This combination occurs at an optimum fiber length about
1.4L, (for a snubbing coefficient of 0.8), beyond which an
increase in the fiber length slightly increases the tensile strength
but significantly reduces the fracture energy. When the snub-
bing coefficient f is zero, the optimum fiber length would be
equal to 2L.. As the snubbing friction coefficient increases,
the optimum fiber length decreases from 2L toward L,.
Table 2 summarizes the results of the parametric study. In
this table, o, and G, refer to the composite tensile strength
and fracture energy corresponding to the optimum fiber length.
The table shows, in particular, that the composite tensile
strength at the optimum fiber length is unaffected when the
fiber diameter or the bond strength are changed. To verify
this point, consider the following example: Fig. 13, a nor-
malized curve that only depends on f, indicates that for f
equal to 0.8 the normalized optimum fiber length is equal to
approximately 0.7 (or L, = 1.4L. = 0.350y,d,/7), and the
normalized tensile strength is approximately equal to 0.23 (or
o, = 0.23V,0;,). When the bond strength is doubled, the
optimum fiber length is reduced by 50%, but the normalized
fiber length remains unchanged and so does o,,. This could
also be seen from (32). Because L,/(2L.) remains equal to
0.7, 0,,/(V;0p) remains equal to 0.23. Physically, this is also
reasonable. Increasing the bond strength and reducing the
fiber length will result in two competing effects. The first
tends to increase the strength, and the second tends to de-
crease it. In addition, Table 2 shows that the composite frac-
ture energy can be enhanced by increasing the fiber diameter
and/or decreasing the bond strength. In either case, the op-
timum fiber length will be increased. However, if the opti-
mum fiber length is to be used in a composite, material pro-
cessing can become laborious as longer fibers are generally
more difficult to process. Furthermore, Table 2 shows that
the tensile strength and fracture energy can both be increased
by reducing the snubbing effect and/or increasing the fiber
strength. In the latter case, the optimum fiber length will also
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be increased. Fig. 13 and Table 2 can be used to design DRFRC
for optimum performance.

For any conventional fiber-reinforced composite, it is pos-
sible to alter the micromechanical parameters such that the
composite can show a better performance in terms of tensile
strength and fracture energy. Whether the composite can be
made to achieve its optimum properties depends on the fea-
sible range of the micromechanical parameters, given the state
of technology. For instance, fiber length can be easily cus-
tomized and controlled. However, material processing can
become a problem when long fibers are required for optimum
performance. Furthermore, the fiber/matrix interfacial bond
strength can be adjusted through, for instance, surface mod-
ification and/or mechanical crimping (Wang et al. 1991).

For any fiber/matrix system, Fig. 13 suggests that the fiber
length should be neither greater than the critical fiber length
2L nor less than the minimum critical fiber length L, for an
efficient composite. Therefore, it can be concluded that the
Kevlar composite, for which the fiber length is greater than
5L., is not efficient. The properties of this composite can be
further improved by decreasing the fiber length. This can be
understood by looking at the example shown in Fig. 5. There,
it is shown that by decreasing the fiber length from 12 mm
to 8 mm, the postpeak tensile strength (o,,,) and the fracture
energy (area under the o.-8 curve) increased. This is due to
the reduction in the fraction of ruptured fibers. Furthermore,
decreasing the fiber length is particularly useful for the Kevlar
fiber composite as the rupturing fibers do not seem to sig-
nificantly contribute to postcracking strength. Alternatively,
the composite properties can be improved by one or a com-
bination of the following: (1) increase the fiber tensile strength;
(2) increase the fiber diameter; (3) reduce the bond strength;
and (4) reduce the snubbing coefficient. All of these alter-
natives amount to increasing the optimum fiber length. If
these alternatives are possible, the used fiber length of 12
mm will become at some point the optimum fiber length.

CONCLUSIONS

In this paper, a micromechanical model for the composite
bridging stress-COD relationship that accounts for fiber pull-
out and tensile rupture was presented. The model accounts
for a local frictional effect called snubbing; however, it does
not account for fiber-bending rupture and the possible effect
of matrix spalling at the exit points of inclined fibers from
the matrix. The model assumes a fiber/matrix interface that
is controlled by a constant frictional bond stress. The post-
peak o.-5 curve predicted by the new model is in good agree-
ment with the one measured for a Kevlar fiber-reinforced
cement in which fiber rupture has occurred. The model yielded
analytical expressions for the composite tensile strength and
fracture energy and produced a tool for designing DRFRC
for optimum performance. Using this model, the behavior of
the composite can be controlled through the microstructural
properties. Therefore, the composite can be designed to achieve
(1) the highest fracture energy; (2) the highest tensile strength;
(3) the highest flexural strength (as this can be related to the
o.-5 relationship); and (4) a compromise between the pre-
ceding three properties that fits a particular engineering ap-
plication. However, there are practical and theoretical limi-
tations to this model. First, fibers are generally supplied at
discrete sizes. Second, the processing technique might restrict
the fiber length to a certain maximum limit so that fibers with
optimum length become difficult if not impossible to handle.
Third, this model is more applicable to fibers having a high
Weibull modulus, m (e.g., for steel fibers m = 100). Fibers
with a low Weibull modulus (e.g., for carbon fibers m = 10)
will not necessarily rupture at the matrix-crack plane. For
these fibers, therefore, the strength distribution should be
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accounted for in the model. If the fibers are brittle, bending
rupture will also need to be included in a composite model.
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APPENDIX I. DERIVATION OF PFIEPEAK
o.~-8 RELATIONSHIP

L =L =2,

The prepeak composite bridging stress is composed of three
contributions from individual fibers. For those fibers having
an embedment length / greater than L.e~/®, their contribu-
tion is through fiber debonding. Each one of these fibers starts
debonding as the load is applied and eventually breaks at a
COD equal to 8.e~%®. After rupture, the contribution of that
fiber to o is discounted. For the second group of fibers, their
contribution is also through fiber debonding. Fibers in the
second group pass into a third group as & increases. The
contribution of the fibers in the third group is through fiber
pullout.

For the first group: [ = [, = x = [,. Because the first group
contains only those fibers that eventually rupture, it is nec-
essary that & = ®,. Using (12) in (18), (48) is obtained as
follows: :

w2 1
o = (V,/2) J:bb L o,U(d.e " ¥* — 3)e/* sin 20 dx dP
(48)

substituting U(5.e~¥® — 8) in (48), the following equation
is obtained:

@ 1
oo = (V,12) L ﬁ o,e’® sin 20 dx d (49)

Contribution of fibers of the second group is composed of
the contribution of those fibers that are oriented in such a
way (0 = & = &,) that they do not rupture (regardless of
their embedment length) as well as the other fibers that have
an embedment length short enough (I < ,) that they did not
rupture. Fibers of the second group eventually pull out. Dur-
ing debonding, it is necessary that 8 = 8, > x = x,, where
x, = (8/6%)2, therefore

oy 1
g = (Vi2) {J; ' J; o,e/? sin 20 dx dP

w2 [,
+ f f o e/ sin 24 dx dP
Py Sy (5{))

The lower limits for x in (50) insures that only those fibers
not fully debonded are counted in this contribution. The up-
per limit for x in the second term on the right hand side of
(50) insures that only those fibers that are eventually going
to pull out (rather than rupture) are accounted for in this
contribution. Because x, = [,, (50) becomes

@, [1
o, = (V/2) {j" J;” o, e/ sin 20 dx d®

@ (i,
+ f j oye/® sin 20 dx dtb}
Py Jxg (5])




Fibers of the second group that have debonded pass into
the third group. During pullout, 8 =/ = x = 8, thus

it Xy
0s = (V,12) { j _ "L 0,/ sin 20 dx d

+ J f o,e/® sin 24 dx a'CD}

», Ji (52)
The lower limits for x in (52) insures that only the fibers that
have not fully pulled out are accounted for in this contribu-
tion. Using the fact the for those fibers oriented at an angle
greater than @,, the embedment length / should be less than
the critical embedment length /, and (52) can be rewritten as
follows:

0‘. Xy
o = (Vil2) { L , L o,/ sin 2® dx dP

w2 (i,
+ j f a,e! sin 2 dx dcb}
@, Ji (53)

Combining all terms, the following equation is obtained:
D, (1
o, = (V,/2) {J J‘ o,e’ sin 20 dx d®
0 X,
P (x,
+ I J; o,e’™ sin 2 dx dP
0

w2 i,
+ f j a,e/ sin 24 dx d‘b}
o Ji

(54)
For 8 = §.e /™ and &, = w/2, (54) becomes
w2 [
a. = (V,/2) {J; £ o,ef® sin 20 dx dP
w2 Ay

+ L L a,e/® sin 2 dx dd)} (55)
Evaluation of (55) gives
o, = a,g[2(8/8%)12 — (§/6%) — (4/3)8*(8/6%)>2

+ 8 — (2/3)8*8%) (56)
For §.e /™ = & = 8*, (54) gives
o, = o, {g(®I2(8/6%)2 — (§/8%) — (4/3)5%(5/6%)>

+ 8 — (213)6*8] + a(—f)L2 — 2a(0)LD

+ a(f)[1 — (2/3)8%5]5% + (2/3)a(—2f)L3%6*} (57)

For §* << 1 (which is generally the case), the prepeak o8
relationship can be reduced to the simplified form in (21).

Ly=2L,

In this case, the angle @, is equal to zero. Therefore, fiber
rupture can occur for any fiber orientation, provided the
embedment length / is greater than the critical embedment
length /,. Furthermore, the fiber rupture process ends at a
COD equal to &, rather than &*. Following the same analysis
given earlier for @, equal to zero, the same expressions for
o, as given by (54)—(57) are obtained.

APPENDIX Il. DERIVATION OF POSTPEAK
o.~5 RELATIONSHIP

L =L=2L,

For 8 = &*, all fibers would be slipping. However, some
fibers were ruptured and they should be discounted when
computing the composite bridging stress. The postpeak com-
posite bridging stress is composed of the contribution of those
fibers from the third group defined in Appendix I. The com-
posite bridging stress may then be written as follows:

By, 1
. = (V,/2) [jn J; o,e/® sin 20 dx dd

i 2 f‘,
+ f f o,e/® sin 20 dx a'cl)}
Py B (58)

The lower limits for x in (58) insure that only the fibers that
have not fully pulled out are accounted for in this contribu-
tion. The upper limit for x in the second term on the right-
hand side of (58) insures that only those fibers that did not
break are counted in this contribution. Using the fact that for
those fibers oriented at an angle greater than @, the embed-
ment length / should be less than the critical embedment
length /,, (58) becomes

@y, (1
o. = (V,/2) {L L o,e/® sin 20 dx dP

@, (I,
+ f f a,e/* sin 24 dx dtb}
Py &

(39)

For3* =8 < L.e /™2 and ®, = w/2, (59) gives
o = o,{g(@,)[(1 — 8)* + (213)5*(1 — &]

+ b(—=f)L2 = 2b(0)L.8 + b(f)(1 — (2/3)5%8)8?

+ (23)b(—2f)[28*} (60)
For L.e~/™2 = § = L,/2, (59) gives
o, = o,{g(@)[(1 — 8y + (2/3)5*(1 — &)

+ (=)L = 2¢()LS + c(f)(1 = (2/3)6%8)8?

+ (213)e( —2f)L36%) (61)

For §* << 1, the postpeak o,-d relationship can be reduced
to the simplified form in (25).
L,=2L,

In this case the postpeak o -3 relationship can be obtained
simply by substituting zero for &, in (60)-(61).

For 8, = & = L.e /™2, (60) gives

o, = o,[g. L2 — 208 + g(1 — (2/3)8%8)8* + (2/3)g.L35*)

(62)
For L.e /™2 = § = L_, (61) gives
o. = o [d(=f)L2 - 2d(0)L5
+ d(f)(1 — (2/3)8%8)82 + (2/3)d(—2f)L36*] (63)

Note that (63) vanishes at a COD equal to L.. For §* <<
1, the postpeak o8 relationship can be reduced to the <
plified form in (29).
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APPENDIX lll. DERIVATION OF PREPEAK
0.-0 RELATIONSHIP WITHOUT ACCOUNTING FOR
CONTRIBUTION OF RUPTURING FIBERS

To discount the contribution of the rupturing fibers from
the composite bridging stress, o, which was defined in (49),
should be subtracted from o as express in (56) for & = §.¢ /™,
and (57) for 3.e /" = 3 = §, (where §, = 8* for L, = L, =
2L, and 8, = 8, for L, = 2L,).

L=L=2L
For 8 = §.e /™, . = «/2. Evaluation of (49) gives
o0 = 20,(8/6%)2({[1 + cosP,)2L, — k(®,, w/2)) (64)

where
k(u, v) = [L/(4 + 2N[f sin(2u) — 2 cos(2u)]e
+ [2 cos(2v) — fsin(2v)]e’} : (635)

For 8. /™ = § = &*, evaluation of (49) gives
0o = 20,(8/6*)2({[cos(2®,) — cos(2D,))2L. — k(®,, ®.))
(66)
Lr = 2Lt:

In this case, ®, = 0. For 8 = 3.e =™, &, = 7/2. Evaluation
of (49) gives

o, = 20,(8/6%)2[g — L] (67)
For .~/ = § = §,, evaluation of (49) gives
0o = 20,(5/6%)2({[cos(2®,) — 1]2}L, — k(0, ®))) (68)
APPENDIX IV. DERIVATION OF COMPOSITE
FRACTURE ENERGY
L=L,=2L,

The composite bridging fracture energy is composed of the
contribution of those fibers from the third group defined in
Appendix I. Therefore, (41) may be written as follows:

@, [1
G. =G, L} [J; L x%e/® sin 2& dx dP
w2 [,
+ I f x2%e/* sin 20 dx d(b]
o, Jo : (69)
The upper limit for x in the second term on the right-hand
side of (69) insures that only those fibers that did not break
are counted in this contribution. Evaluation of (69) yields
(44b).
Lf = Lr
In this case the composite bridging fracture energy can be
computed by substituting w/2 for @, in (69)
2 1
G. = G,L; J; fn x%e/® sin 2® dx dP (70)
Evaluation of (70) yields (44a).

L,=2L,

In this case the composite bridging fracture energy can be
computed by substituting zero for @, in (69)
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w2 f“
G. = G,L} ‘[, J; x2e'® sin 2@ dx d® (71)
Evaluation of (71) yields (44c).
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APPENDIX VI. NOTATION

The following symbols are used in this paper:

d, = fiber diameter;
E; = fiber-elastic modulus;

E,, = matrix-elastic modulus;
f = snubbing friction coefficient;
G. = composite fracture energy;

L. = critical embedment length for fiber inclined at ® = 0;
2L, = critical fiber length;
L, = fiber length;
L, = minimum critical fiber length;
! = fiber embedment length;
I, = critical embedment length;
p(®) = probability density function of fiber inclination angle;
p(z) = probability density function of fiber centroidal distance;
§ = fiber rupture space;
Se» = fiber rupture space when L, = L, = 2L ;
t = dummy variable that takes the values of —2f, —f, 0,
and f;
= fiber volume fraction;
z = fiber centroidal location;
& = crack opening displacement (COD);
* = COD at which frictional debonding reaches end of long-
est embedment length [ = L//2;
8. = critical COD for fiber inclined at ® = 0;
8, = COD at which frictional debonding reaches end of
embedment length /;
8, = critical COD;



o, =

(F,

il

T

P

Il

fiber bridging stress;
composite bridging stress;
composite tensile strength;
fiber debonding stress;
fiber tensile strength;

fiber pullout stress;

o

S a

postpeak tensile strength: o [8%] or ¢.[3,.] as appro-
priate;

= interfacial frictional bond strength; and

fiber inclination angle with respect to direction normal
to matrix crack plane.
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