POSTCRACK SCALING RELATIONS FOR FIBER
REINFORCED CEMENTITIOUS COMPOSITES

By Victor C. Li,! Member, ASCE

ABsTRACT: The prepeak and postpeak stress-displacement relations are derived
for the bridging mechanism associated with randomly oriented discontinuous flex-
ible fibers in cement-based composites. The postcrack strength and fracture energy
are examined in light of the scaling micromechanical parameters, including fiber
snubbing coefficient, diameter, aspect ratio, volume fraction, and interface bond
strength. Comparisons of theoretically derived postcracking stress-displacement
relation and pullout fracture energy with experimental data of both steel-fiber and
synthetic-fiber reinforced cementitious composites of widely varying microme-
chanical parametric values suggest that the simple model approximates the bridging
behavior in this type of composite.

INTRODUCTION

Introduction of fibers in a cementitious composite stabilizes microcracks
in the matrix. When microcracks are adequately suppressed from propa-
gation, a pseudostrain-hardening behavior occurs, reflecting the opening of
microcracks distributed over the volume of the body. This type of pseu-
dostrain-hardening behavior in brittle matrix composites is reminiscent of
the strain-hardening behavior in metals, where the origin of strain hardening
is associated with the activation of dislocations and their stabilization due
to entanglement or pinning. A direct benefit of the pseudostrain-hardening
behavior in fiber reinforced cementitious composites (FRCC) is the increase
of critical strain at the first cracking stress, typically defined as the load at
which a certain critical crack enlarges across the complete cross section of
the specimen. Due to energetic reasons, the composite critical strain can
be substantially larger than the matrix critical strain, if properly reinforced.
Increased critical strain enables the material to tolerate larger amounts of
deformation without visible cracking.

If, after first cracking, the fiber and the fiber/matrix interface are both
strong enough to carry the load shed by the matrix, it is possible to induce
what is known as multiple cracking. This happens when the bridging fibers
across the first crack can continue to increase with increase crack opening,
causing other microcracks to spread and form multiple subparallel fracture
planes of the specimen. Multiple cracking is yet another form of psuedostrain
hardening, although the cracks formed are usually large enough not to be
rehealed, and the material then suffers permanent damage.

After multiple cracking, the load is fully born by the fibers, and either
fiber breakage or pullout occurs. For composites with low fiber volume
fractions, this happens immediately following first crack, with no multiple
cracking. Because fiber pullout can be accompanied by significant amount
of energy absorption due to interface frictional work, the fracture energy
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of the composite can be greatly improved. Fiber pullout in FRCC has been
demonstrated by a number of researchers.

One of the early demonstrations of the existence of pseudostrain hard-
ening in the form of increased critical strain and multiple cracking can be
found in the now-classic paper by Aveston et al. (1971), which contains
both theoretical and experimental results. Interest in this class of ‘‘high-
performance cement-based composites’” has been renewed in recent years.
The newer literature (e.g., Bache 1987; Krenchel and Stang 1989; Shah
1990) on this subject embodies novel processing and advanced imaging
technology. Examples of fracture energy increase due to fiber pullout can
be found in many publications [see, e.g., Wecharatana and Shah (1983),
for steel FRCC; and Li and Ward (1989), for polymeric FRCC].

The existence of the aforementioned phenomena is largely controlled by
the collective behavior of fibers bridging across a matrix crack that opens
in response to remote load. For convenience, we shall call the varying
smeared traction across the opening crack the bridging stress-displacement
curve. The rising part of the bridging stress-displacement curve is mainly
associated with the delamination process of the fiber/matrix interface. While
this prepeak part of the curve plays a significant role in governing the
magnitude of the first crack strength, the existence of steady state first-
crack strength [see, e.g. Li (1990); Li and Leung (1991)], and the presence
or absence of multiple cracking, it is unfortunately not directly measurable.
What is measurable at this prepeak loading stage is the composite tensile
property jointly governed by this prepeak stress-displacement curve and the
matrix fracture properties. After composite peak strength, however, the
postpeak bridging stress-displacement curve is directly measured in the com-
posite test, since at this stage, only the fiber (and the interface) determines
the composite behavior.

This paper presents a theoretical study of the complete (both the ascending
and descending branches) bridging stress-displacement curve (hereafter called
the a5-8 curve) of randomly distributed discontinuous fiber reinforced ce-
mentitious composites. By adopting some simplifying assumptions, closed-
form analytic solutions are derived based on which the scaling laws of the
bridging stress-displacement curve and composite fracture energy are ex-
amined with respect to fiber, matrix, and fiber/matrix interaction (includes
both interface and snubbing, to be discussed later) properties. Comparisons
with experimental data of the postpeak stress-displacement curves and with
composite fracture energy (Visalvanich and Naaman, 1982) for steel FRCC
are also given. Recent data on a polymeric FRCC by Wang et al. (1990)
are likewise shown to be well described by the same scaling laws proposed
here. ’

v~mummr Bridging Stress-Displacement Curve

Consider an isolated fiber loaded at its end with a force P resisted by a
constant frictional bond 7 at its interface along its length € embedded in
concrete. By ignoring the elastic bond, the length of the slip activated zone
where 7 acts on can be calculated based on simple force equilibrium. As
the load P increases, extension of this slip zone occurs. This is generally
described as ‘“‘debonding” but should be understood as the activation of
frictional slip. Displacement 3§ of the fiber-loaded end also increases as a
result of the stretching of the fiber segment along the length of the slip
zone. The relationship between P and 8 may be derived and is given by
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where d; and E, = the fiber diameter and elastic modulus; and S = 2€%1/
E(d, corresponds to the displacement & at which debonding is completed
along the full length of the embedded fiber segment. Appendix I shows that
(1), derivable by assuming a linear stress distribution along the debonded
segment of the fiber, is a good approximation provided that (€/d)(Ed7) is
much smaller than unity.

After debonding reaches the embedded end without rupture, fiber pullout
proceeds and the pullout load decreases. Again, assuming a constant fric-
tional bond and ignoring the elastic stretching of the fiber at this stage, the
pullout force is related to the load point displacement through

P(3) =mrbd, |1 — Am||m|mov for€ =8>8, ................. (2)

Fig. 1 shows the P-3 relationship for fibers of various embedment lengths.
For some fibers, where the interfacial slip resistance depends on the amount
of sliding, (2) would be a gross simplification, and the more detailed analysis
of Li et al. (1991) is recommended.

Egs. (1) and (2) are for fibers pulled out in a direction along the fiber
axis. For nonaligned fibers, which is often the case in randomly distributed
discontinuous FRCC, various studies have indicated an angle effect on the
pullout load P. For flexible (in bending, dependent on elastic stiffness and
fiber diameter) steel and polymeric fibers, Morton and Groves (1976) and
Li et al. (1990b) found an increase of P with angle ¢ of inclination of fiber
to the loading axis. This snubbing effect could be incorporated into the
pullout force by recognizing

8
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FIG. 1. Schematics of Single Fiber Pullout Force P versus Pullout Displacement
3 Relation, for Various Embedded Fiber Lengths ¢. 5* Corresponds to Pullout
Displacement at Peak Load of Fiber with Embedded Length Equal to Half Fiber
Length
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P(3:b) = P(3;b = 0)€f ...t 3)

as originally suggested by Morton and Groves, where f is a snubbing coef-
ficient. Experimental tests of fiber pullout at inclined angles up to 80° suggest
f-values of 0.7 and 0.9 for nylon and polypropylene fibers embedded in a
normal-strength mortar matrix. It may be expected, however, that matrix
yielding or spalling at high fiber angles would tend to limit the snubbing
effect as described in (3).

For a composite with fiber volume fraction V}, Li et al. (1991) showed
that the composite o5-3 curve can be predicted by integrating over the
contributions of (only) those individual fibers that cross the matrix crack
plane:

A.«\ /2 (Ly2)cos &
= _f
QQAMV T &.w. =0 -0

POpd)p(z)dzdd ............... ... 4

where p(¢) and p(z) = probability density functions of the orientation angle
and centroidal distance of fibers from the crack plane. For uniform random
distributions, p(¢) = sin ¢, and p(z) = 2/L; (Li et al. 1991).
Using (1)-(3) in (4), we find (Appendix II), in normalized form:
M 172 % }

G5(8) = gl 2 3 3 for§ =8* ... ... (5

where 65 = 05/00, 0o = Vyr(L/d;)/2, and & = d/(L,2). 8% = (/E;)(Lyldy)
corresponds to the maximum attainable (normalized by L/2) value of 8,
for the fiber with the longest embedment length of L/2. The snubbing factor
g is defined in terms of the snubbing coefficient f:

2
= 7f/2
8=7171 7 (4 €™ ) e (6)
For f between 0 and 1, g ranges from 1 to 2.32, as shown in Fig. 2. Eq. (5)
is used to compute the prepeak part of the o 4-8 curve, Fig. 3(a), for various
snubbing coefficient magnitudes. In general, the peaks of the o5-d curves
occur slightly prior to 8*. For 8* << 1, the maximum bridging stress ap-
proximately scales with go,. This also corresponds to the highest value in
the postpeak stress-displacement curve, as shown herein. As discussed in
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FIG. 2. Relationship between Snubbing Factor g to Snubbing Coefficient f
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FIG. 3(a). Relationship between Normalized Bridging Stress and Normalized Crack
Width for Three Different Values of Snubbing Factor and for Prepeak

Li (1990) and Li and Leung (1991), this maximum bridging stress controls
the existence of steady state first cracking and hence the reliability of ma-
terial. The higher this value is, the higher the first crack strength is and the
more reliable the material becomes. From this point of view, it is preferable
to have large values of f, Vi, 7, and L,/d,. This is likely to be the case in
composites like asbestos cement. However, these parameters, which lead
to high bridging stress, also induce the possibility of fiber rupture, and
eliminate any possibility of energy absorption through fiber pullout.

PostPEAK BRIDGING STRESS-DISPLACEMENT RELATION

The postpeak stress-displacement curve can be obtained from (3) and (4).
Full derivation is given in Appendix III. The result is:

G5(8) =g(1 — 82 for1>8>8* ...................... )

where additional terms involving 8* and higher orders have been neglected,
suitable for the case when 8* << 1. Eq. (7) is used to compute the postpeak
part of the o5-8 curve, Fig. 3(b) [note different scales for the crack width
between Figs. 3(a) and 3(b)], for various snubbing coefficients. It is inter-
esting to compare (7) with the semiempirically derived expression for the
postpeak stress-displacement curve of Visalvanich and Naaman (1982):

9O 048 4 ) = Y e . (8)
atV; Wm
f

45



S

Normalized Bridging Stress

0 ! ! L
0 0.2 0.4 0.6 0.8 1

Normalized Crack Width w

FIG. 3(b). Relationship between Normalized Bridging Stress and Normalized Crack
Width for Three Different Values of Snubbing Factor and for Postpeak

where o = an efficiency factor related to the random distribution and
discontinuous nature of the fibers. In their analysis, the snubbing effect is
not considered, so that if the experimental data reflects this effect, it would
be incorporated into the factor a. The term 0.16 + 1 in (8) does not differ
much from unity especially when the typical amount of scatter in experi-
mental data is taken into consideration. Thus the dependence on crack-
opening displacement of the bridging stress is expressed through the (1 —
8)? term in both (7) and (8). Indeed, Wecharantana and Shah (1983) arrived
at exactly the same (1 — 3)? dependence through empirical fit of steel FRCC
data of Naaman et al. (1974) and Shah et al. (1978). (One set of Visalvanich
and Naaman’s data was also employed in the study of Wecharantana and
Shah.) Unlike (8), where this dependence has been obtained through a
curve-fitting procedure to experimental data, (7) has been derived from the
consideration of the sum total contribution of individual fibers undergoing
slippage as expressed in (2) and (4). Furthermore, the multiplying factor o
is now explicitly expressed as g/2, without any ambiguity of its origin. A
similar form of (7) has been previously derived by Cotterell and Mai (1988),
based on a consideration of “efficiency factor” and expected number of
bridging fibers, although the mechanism of snubbing is not considered there
(and probably could not be included in such a formulation). )

As discussed earlier, the maximum value o, of the bridging stress-di-
placement curve, often referred to as the composite postcrack strength,
scales with ga,, which may be obtained from (7) by setting 8 to zero. That
is

Eq. (9) has also derived by Aveston et al. (1974) for the case when the
snubbing effect is absent (i.e., when g = 1). When o,,./7 is plotted against
the reinforcement index 2V;(L/d;), the result should be a straight line with
slope given by g. This is shown in Fig. 4, which employs data for steel fiber
reinforced mortar, as well as data for spectra (a high-modulus polyethylene)
reinforced normal- and high-strength mortar (Wang et al. 1990). The nor-
malizing values of 7 for steel/mortar interface is chosen as 4 MPa [within
typical experimentally determined range, see, e.g., Bentur and Mindess
(1990) and 1 MPa for the spectra fiber/mortar interface [measured values,
Li et al. (1990b)]. Fig. 4 suggests that for the steel fiber reinforced mortar,
a snubbing friction f of close to unity describes the data well, whereas f is
approximately 0.55 for both spectra/normal-strength mortar and spectra/
high-strength mortar. In contrast, limited data of direct pullout test of nylon
fiber indicate higher value of f in high-strength mortar compared to that in
normal-strength mortar (Li et al. 1990b). The value of f for spectra fiber
should be interpreted with caution due to the limited data points and the
large standard deviation in the data for spectra reinforced normal-strength
mortar. The original data shows significant fluctuations in the postcrack
loads, especially near the peak, presumably due to matrix spalling effects.
These fluctuations impose substantial uncertainty in the value of O, and
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FIG. 4. Normalized Postcrack Strength Plotted Against Reinforcement Index for
Data from Both Steel and Spectra Fibers. Straight Lines are Based on (9). [Steel
Fiber Composite Data from Visalvanich and Naaman (1982); Spectra Fiber Com-
posite Data from Wang et al. (1990)]
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hence the value of f. The accuracy of f is also subject to error in the value
of v employed. ;

With the value of 7 and f chosen, it is possible to plot the 6/g versus 8,
using the five sets of data given by Visalvanich and Naaman (1982) for steel
fiber reinforced mortar. This is shown in Fig. 5, together with the theoretical
curve of (7). The good fit is not surprising, given the excellent match between
(7) and (8), the latter of which has been obtained semiempirically. Each
point in each set of data shown in Fig. 5 represents an average of at least
five repeated tests. A similar comparison is shown in Fig. 6 for the spectra
composites mentioned previously. Each line represents an average of five
tests for the FRCC with the normal-strength mortar matrix and three tests
for that with the high-strength mortar matrix.

ComposITE FRACTURE ENERGY

The fracture energy due to fiber pullout can be computed from

G, = % O B @B o (10)

0

and with o given by (7), it can be shown that

This result is a specialized case of that given by Li et al. (1991), who also
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FIG. 5. Comparison of Theoretically and Experimentally Determined Normalized
Postpeak Stress-Displacement Curves for Steel Fiber Reinforced Cementitious
Composites [Data from Visalvanich and Naaman (1982)]
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FIG. 6. Comparison of Theoretically and Experimentally Determined Normalized
Postpeak Stress-Displacement Curves for Spectra Fiber Reinforced Cementitious
Composites [Data from Wang et al. (1990)]

consider the effect of fiber rupture on G.. Comparison with the “work of
fracture” study on discontinuous aligned fiber composites of Cooper and
Kelly (1970) reveals that the random distribution of fibers reduces the frac-
ture energy by a factor of two, if there is no snubbing effect, i.e.,if g = 1
corresponding to f = 0.

Energy is absorbed in the debonding process. This part of the fracture
energy may be estimated by integrating the prepeak stress-displacement
curve (5) with respect to 8 up to d*. The result is

5 L\
= = =
Comparison with (11) indicates that this part of the fracture energy is neg-
ligibly small, of the order of 6* of the postpeak pullout fracture energy.

Eq. (11) suggests that the fracture energy scales with the square of fiber
length, as for the case of aligned fiber composites, assuming no fiber rupture
occurs. In the studies by Visalvanich and Naaman (1982) and Wang et al.
(1990), this assumption seems to be justified as they reported the dominant
mode of failure being fiber pullout. Fig. 7 shows a plot of normalized G,
against (L//d;) for the data given by Visalvanich and Naaman for steel fiber
reinforced mortar. The theoretical curve of (11) is also shown. To include
the spectra fiber reinforced mortar data, we replot Fig. 7 on a log-log scale
such that the slope of the line log| G /(gVd;7/12)] versus log[L//d;] should
have a value of 2, according to (11). This is shown in Fig. 8, together with
the experimental data for both steel and spectra fiber composites.
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FIG. 7. Comparison of Theoretically and Experimentally Determined Normalized
Fracture Energy for Steel Fiber Reinforced Cementitious Composites [Data from
Visalvanich and Naaman (1982)]

FuRTHER ANALYSES AND CONCLUDING REMARKS

The prepeak stress-displacement curve, the postpeak stress-displacement
curve, and their corresponding fracture energy associated with the interface
delamination and pullout processes are analyzed for discontinuous flexible
fiber reinforced cementitious composites. The scaling laws for each of these
quantities are given in terms of measurable fiber, matrix, interface, and
snubbing parameters. Comparisons with experimental data for steel fiber
and spectra fiber reinforced cementitious composites appear to confirm the
validity of the theoretical treatment. )

The postcrack strength [(9)] and the fracture energy [(11)] both scale with
gr. This suggests that the snubbing factor may be regarded as an effective
enhancement of the bond strength. For fibers with length less than the
critical length, this synergism between snubbing and interface bond does
increase the postcrack strength and the fracture energy. This combined
multiplicative (as opposed to additive) effect could be taken advantage of
when inadequate fiber/matrix bonding occurs, or when fiber lengths are
limited by processing requirements to length much below the critical length.
However, the optimal fiber length is given by

deo
~ 13
L, dgr (13)
so that the optimal fracture energy is
1 Vd,o?
~ L 14
G,p 18 gr (14)
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FIG. 8. Comparison of Theoretically and Experimentally Determined Normalized
Fracture Energy for Spectra Fiber Reinforced Cementitious Composites [Data from
Wang et al. (1990)]

Eqgs. (9) and (14) indicate that g7 becomes now a tradeoff parameter between
postcrack strength and optimal fracture energy. This means that if postcrack
strength needs to be optimized when designing for pseudostrain hardening,
for example, then a high g7 is desirable. However, this will reduce the
optimal fracture energy as expressed in (14), due to increasing amount of
mﬂﬁ rupture. A detail analysis of the fracture energy, where fiber pullout
and fiber rupture can simultaneously occur, is given in Li et al. (1991).

It is interesting to note that the optimal fracture energy scales with the
fiber diameter, whereas the postcrack strength scales inversely with the fiber
diameter. This implies that small fiber diameter is desirable for pseudostrain
hardening, whereas large fiber diameter is desirable for high energy ab-
sorption.

For composites where the ultimate tensile strength is higher than the
postcrack strength, there is a possibility of an underestimation of o, of the
bridging stress-displacement curve. This can be illustrated schematically for
the FRCC specimen in Fig. 9. Three stages of progressive uniaxial loading
are shown. Their corresponding stages of bridging stress displacement at
the midcrack point and of the measured composite stress-deformation curves,
are also indicated in Fig. 10. Two scenarios are possible. In the first scenario
[Fig. 10(a)], the first stage (a) shows the most critical microcrack stabilized
by bridging fibers at a stress level below o,., and with maximum crack
opening 8, smaller than 8*. The second stage (b) shows the same crack
with maximum crack opening 8; beyond 8*, and with remote load at the
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FIG. 9. Three Stages of Progressive Tensile Fallure, Corresponding to (a) Micro-
crack Stabilized by Fiber Bridging at Load below First Crack Strength; and (b)
Crack Becomes Unstable at First Crack Strength; and (c) Postmatrix Cracking with
Load Carried Completely by Fibers Only
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FIG. 10. Three Stages of Failure Indicated in Fig. 9 and Their Corresponding o ;-
5 Curve and Remote Load-Deformation Curves for Composite with (a) First Crack
Strength Higher than o, and 5, > 5* and (b) First Crack Strength Lower than o,

and 5, < d*

first crack strength, this crack grows indefinitely across the complete cross
section of the specimen. This is presumably accompanied by the crack flat-
tening out to a uniform opening at 8c = 35, resulting in the postcrack
configuration, stage (c). Subsequently, the measured composite stress-de-
formation relationship traces the pullout portion of the bridging stress-
displacement curve. This scenario suggests that the measured postcrack
strength could represent a lower bound of the true value, i.e., the peak of
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the g5-8 curve. In the second scenario [Fig. 10(b)], the microcrack becomes
unstable at stage (b), with 8, < 8*, and followed immediately by first
cracking. In this case the postcracking part of the composite stress-defor-
mation curve will trace part of the ascending branch and the complete
descending pullout branch of the bridging stress-displacement curve, and
the true peak of the o5-8 curve (at 8. > 8;) will be revealed. A more
detailed discussion of possible tensile failure modes in fiber reinforced ce-
mentitious composites is given in Li and Leung (1991).

If the measured stress-deformation curve is as depicted in Fig. 10(a), as
is most likely the case in the steel FRCC with low fiber volume fraction
(<2%), care must be taken in the interpretation of the postcracking strength.
If the measured value underestimates the true value of o, for the steel
FRCC, it would mean that the value of f would be even larger than 1 as
discussed previously in relation to Fig. 4.

Other sources of errors in the previous results and data interpretation
include fiber/matrix interaction mechanisms not accounted for in the present
analysis. These include fiber plastic bending, matrix spalling, and slip-de-
pendent fiber/matrix interface shear resistance. In spite of these shortcom-
ings, the scaling laws proposed in this paper presumably incorporate the
major features of the physics of fiber bridging and are probably adequate
for use in the engineering design of tensile properties of FRCC.
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APPENDIX |. JUSTIFICATION OF APPROXIMATE ANALYSIS OF PuLLOUT
OF A SINGLE FIBER

For the problem of an elastic fiber embedded in a stiff matrix and pulled
with an axial force P at its end x = £, where ¢ is the embedded length, the
slippage s(x), axial strain (x), and axial force F(x) at any point x along
the length of the fiber is governed by

s(x) = s(0) + b ) X+ (15)
e(x) = ﬂ%@ FIX) oo (16)
2@uh§$:+&§§.:..:: .................... .7

where F(x = ¢) = P; and x is measured from the embedded end of the
fiber. These equations may be solved to obtain the peak load (when full
debonding occurs)



the displacement of the loaded end at peak load

d:E 47¢
= — — —
Bpeak tf. exp 4E, 1 € (19)
and the axial strain
47€ x
= —=] -1 ...... B 20

For (£/d;)/(Eg/v) << 1, the axial strain may be linearized and the load P
and displacement & can then be related through (1). Because (E//7) is typ-
ically two to three orders of magnitude larger than (€/d;) for discontinuous
fibers, the error introduced by this linearization process is typically less than
1%. In arriving at (1), it should be noted that the elasticity of the matrix
is ignored in favor of the deformability of the fiber. This is strictly correct
only in the case of low fiber volume fraction and moderate elastic contrast
between fiber and matrix moduli. These assumptions are generally reason-
able for most fiber reinforced concrete.

AppPeENDIX . DERIVATION OF PREPEAK STRESS-DISPLACEMENT
REeLATION (5)

When normalized by oy, (4) may be rewritten in the form

/2 cos ¢

G5(8) = ||||~w\||l P@)sinddz' ddb ................ 1)
ZL) g2
T d

b=0Jz'=0

where z’ = z/(L,/2). For the prepeak stress-displacement curve (i.e., § <
3*), there are two contributions from individual fibers (see Fig. 1). For those
fibers located or oriented in such a way as to have a long embedded length
£, their major contributions are through fiber debonding, as described by
(1). For the other fibers, their major contributions are through fiber slip-
page, as described by (2). Fibers in the first group passes into the second
group as d increases. For the first group of fibers, it is important to recognize
that (1) holds as long as

2

201 2v (Ly  z
Ed, Ed;\2 cosd

d< =

where the embedded length € has been re-expressed in terms of the fiber
length L, the centroidal location z, and orientation ¢ of the particular fiber.
After transformation and normalization, this becomes

< Zp0S P L e e (23)
where
m. & 172
=1-|{ZNFZ)s| .............. e (24)
T/ \Ly
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Thus, for this group of fibers, the contribution to the bridging stress is given
by

w b=0 Jz2 =0

_ m /2 z0c0s ¢ .
55(3)|acbona = ——— \ P@®)sin b dz' db .......... (25)
2
d; 4

T
with P(3) given by (1). The upper integration limit for z’ in (25) ensures

that only those fibers not fully debonded are counted in this contribution.
For the second group of fibers, slippage occurs, and (2) holds as long as

L z
S <d=¢ = e e 2
o <d=¢ 2 cos ¢ (26)
or
208 d < 2/ = (1 — B)COS D o oviii e 27

Thus for this group of fibers, the contribution to the bridging stress is given
by

&=0 Jz'=z0cos ¢
L

_ 8 w2 ((1-8)cos & )
5(8) |stipping = —— \— P@®)sin b dz’' db ....... (28)
2
d, %

wT

with P() given by (2). The lower integration limit for 2’ in (28) ensures
that only those fibers fully debonded are counted in this contribution, and
the upper integration limit ensures that those fibers that have fully slipped
out of the matrix play no further role in the bridging stress.

By combining these two contributions by any given 8§ < 8*, i.e.

QWAWV = QNA%V_QGUO-—Q + Q@AMVwm:vabw ........................... AN@V
we obtain

- 172 = 172 -
e o 2 5 4(8 5 <
65(8) = g MNIWM*mw.TN m Iw m Im for & = &*
.......................................................... (30)

and, for §* << 1, the bridging stress-displacement relationship can be re-
duced to the simplified form in (5).

AprpENDIX lIl. DERIVATION OF POSTPEAK STRESS-DISPLACEMENT
RELATION (7)

We recognize that for 3 > 8*, all fibers would be slipping. Again, starting
from (4), or (21), and eliminating all fibers that have fully slipped out from
the matrix, the bridging stress may be written as

_ 8
QmAmV = L h,uo
LY

d; 4

/2

(1—8)cos ¢
% . P@)sinddzdé ... (31)

T
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where the fiber bridging force is given by (2). Evaluation of this integral
gives

G58) =g |1 - 82 + wm*a Y T (32)

Because §* << 1, the second term may be dropped without loss of accuracy,
and (7) results.
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