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Section 1

Decompositions Based on Normal Submonoids

An automaton (or machine) is a triple M = <X, Q, €> where X is
an (input) monoid; Q, a set (of states) and °, a map (Q,X) » Q (called the
operation or action of X on Q) satisfying the conditions:

1. q°l = q for all q € Q, where 1 is the identity of X,

2, qo(xlxz) = (qoxl)ox2 for all q € Q, X1s Xy € X,
In the usual interpretation, X is a free monoid on a set of generators, S
(the input alphabet) and the operation o is obtained by extending to X, the
transition function (Q,S) - Qo1 (As is customary we supress mention of o
where no ambiguity arises.)

The monoid? X/EM of an automaton M = (X, Q> is the quotient monoid of
X modulo the two=sided congruence:

X gy & qox = qoy for all q ¢ Q

i.eq; X/EM is the set of equivalence classes of % under multiplication

[x]ely] = [xy].

A monoid machine is an automaton M[X/Z] = (}, X/5>>where z is a two-

sided congruence on X and [x]°y = [xy] for all x,y ¢ X, It is easily
verified that the monoid of M[X/z] is precisely X/z, (For more on the
relation between monoid machines and "ordinary" machines see [2] and refer-
ences therein.)

Now let K be a submonoid of X (by which we mean 1 ¢ K and x,y ¢ K
implies xy € K). K is said to be normal if xK = Kx for all x e X,
The equivalence

y iff Kx = Ky’

i

1We use here the formulation given in Y, Give'on [1].
2kx = {kx|k ¢ K},



is already a right congruence (for Kx = Ky implies Kxz = Kyz for all z ¢ X)
with equivalence classes [x]., Thus there is a machine

M[X/K] = <X, X/2p >
with operation [x]ey = [xy] for all X,y € X,

It is easily demonstrated that if K is a normal submonoid of X, the
relation EK is a two sided congruence (see [3], Chapter 1 for a detailed
account of semi-group congruences). Thus M[X/K] is a monoid machine‘if K
is normal. In general [x] & Kx for all i € X (since y E x implies
y € Ky = Kx) and it is easily verified that if X is finite, [x] = Kx (for
all x € X) just inlcase Kis a subgroup of*uhits (elements of X having
inverses). In the event [x] = Kx for all‘x € X the normality conditions
can be weakened in the following sense: for M[X/K] to be a monoid machine
it is necessary and sufficient that xK € Kx fpr all x ¢ X, (Proof: use
[1] = K to establish that [x][y] = [xy] iff KxK = Kx iff xK S Kx),

That M[X/K] may be a monoid machine if xK € Kx for some x € X is

demonstrated in the monoid machine:

The monoid is X = {a,bla2 =a, ab = a, b? = 1} where K = {1,b} is
a subgroup. X/, = {K,Ka} where Ka = Kba = {a,ba}, Here ak = {a},

bak = {bal so both aK and baK are strictly included in Ka while X/z, is



multiplicative and M[X/K] a monoid machine,

In order to interconnect automata we shall have to supply them with
outputs, Let M = <X, Q>and Y an (output) monoid, A map Z : (Q,X) + Y
(in which we shall denote Z(q,x) = x4 with the mnemonic that both x and
x3 are strings and x4 is the output string resulting from input x in state
q ) is an admissible output map for M under the conditions:

1. 19 =1 for all q € Q (the 1's refer to identities of X and Y

respectively).

2, (xlxz)q = xix%°x1 for all q € Q, X15%y € X,

The reader may wish to convince himself that an admissible map is a no
memory (or one-state) device (if X, Y are free, condition 2 implies that Z
is fixed once values have been assigned for the generators and for all q € Q
and that Z is length preserving).

Now let M, = (X, Q> and M, = <Y, R> be two machines with Z : (Q,X) > Y
an admissible map for M. The semi-direct product of M, M, via Z is
a machine

M, ® M, = X, QxR

with operation defined by

(q,0)x = (qx,rx})

for all (q,r) ¢ (Q,R) and x ¢ X, It is easily verified that M1 8% M2

satisfies the well-definedness conditions given above,

Diagrammatically, M ® M, is

X YN N y

M 1 MZ

Fig, 2



In order to capture the apparently different configuration

X
X Y
1 ——f o }——f] AR ]
M1 MZ
Fig, 3

we take X to be the submonoid of the product of free monoids TR such that
X = {(xl,x2)|£(x1) = 2(x))} V 1
where £ denotes length in terms of the generators, Make the operation of

M1 independent of XZ’ i.e.,

q(xl,xz) = qx; for all q ¢ Q, (xlgxz) e X
and the output of Z independent of the present value of X1 i.e.,
(xy5 103503 = (xp,x)%8,%"1

for all (xl,xz) e X and generators sl of le §2 of Xzo

Fig, 3 is the configuration inherent in semi~-direct products of semi-
groups and, as we shall see, the independencies imposed may result in un-
necessarily uneconomical decompositions when adapted to machines, The
question of when is the semidirect product of monoid machines again a monoid
machine bears on the relation between semidirect products of monoids and

of machines.

Proposition 1, Let M[X/EX], M[Y/;V] be monoid machines and

Z: (X/EX,X) -> Y/EY an admissible map such that
u[1] 2y V[1] implies u[x] = V[x]
. Y
for all x, u, ve X, Let M1 1 denote the semi-direct product machine
»
M[X/EX] ®, M[Y/EY] restricted to states accessible from ([1], [1])., Then

M1 1 is a monoid machine,
»



Proof. Define the right congruence on X

u = v iff ([1],[1])u = ([1],[1])v

iff u =, vand ulll 5 A1

¢

Then the map ([x],[x[ll]) + [x] is a machine isomorphism between M1 1 and
»

M[X/z]. Showing that = is also a left congruence completes the proof since

then M[X/z] is a monoid machine and by isomorphism so is Mg
»

But left-sideness of X/z follows from the assumption:

u[ll v(1] implies u[x] v[x]

Y Y

implies x[ll u[x] x[I] V[x]

1]

implies (xu)[ll (xv)[ll

L]

So that for all x ¢ X

[y,

V and u
Y

u £ Vimplies u

S

implies xu = xv and (xu)[1] (xv)[ll

St

Y

11}

implies xu = xv Q.E.D,

Now let X, Y be semi-groups and Z : (X,Y) » Y such that
X X X
1, (ylyz) = ylyz

RN R

2,y
for all Xy X)X, € X, YsY1sYp € Y, Then X @i Y is a semi-group semi-direct
product where

(xp7) (Rps¥p) = (xy%uy ¥, D)

If X,Y are monoids and we wish to preserve (1,1) as right and/or left
identity Qe stipulate that

3a, 1%=1 forall x e X
and/or 3b, y1 =y for ally e Y,

Now in order to interpret the semi-direct product of semi-groups in

terms of machines we are forced to the configuration of Fig. 3 which appears as:



Y
X | M[X] /[JZj M[Y]

The reader familiar with (semi-) group theory may observe that the
independencies involved in this configuration (the fact that Y does not
affect M[X] and X does not directly affect M[Y]) are inherent in the notion
of semi-direct product extensions though mot true of extemsions in general).
Further, conditions 1 and 3a will satisfy the admissibility criterion for
Z, and either of conditions 2 or 3b will assure that the hypothesis of
Proposition 1 holds, Thus as expected, all semi-group semi-direct products
can be interpreted as special cases of machine semi-direct products (preserv-
ing moncid-machinedness) but not converselyc3 This means that it may be
possible to obtain more efficient decompositions by using machine rather
than semi-group semi-direct products. The Wreath product (also a semi-
direct product) decomposition of groups is a case in point, as will be shown.

We now proceed to apply the preceeding ideas to the series-parallel
decomposition of automata, Our approach is both a simplification and general-
ization of certain of the constructions empioyed in the Krohn-Rhodes theory
of decomposition, In particular we generalize the notion of decomposition
by subnormal series to monoids and show how to decompose group machines more
efficiently than can be done using the Wreath product, This latter méthod
was first discovered by R, Bayer (see [4] fbr both the Wreath product and

Bayer's construction) but we show how it pops out of our more general approach,

it

Let K be a submonoid of a monoid X, with = the right congruence define&
above., To each equivalence class [x] we assign a unique representative
x' € [x] (called a leader in group theory), i.e., Xy E Xy iff xi = Xj» Now

every x € X belongs to some [x] € Kx, hence has a representation x = kxx° for

3Because associativity (yxlx2 = (yxzjxl) is required of semi-group, but not
machine products.



some kx € K. We shall assume for simplicity that only one such kx exists.
In the more general case an obvious but more complicated construction is
involved which does not add anything new to the basic idea, We have the
following easy but important lemmas:

Lemma 1. (xy)' = (x'y)' (for all x,y £ X).

Proof, x = x' implies xy = x'y implies (xy)' = (x'y)' Q.E.D.

K K
Lemma 2, kxy = kxkx'y (for all x,y € K).

Proof, x = kxxU

implies xy = kxx”y

Kekygry (X9

]

kxkxvy(xy)“ using Lemma 1. Q.E.D.

We want to decompose monoid machines with monoid X, To do this it is
convenient to consider machines of the form M[X] = <X, X>° There is little
lost in this, for with a little more care we can obtain the same results for
machines whose input monoid is freely generated by the letters (i.e., the
carrier) of X, which is the more standard formulation.

Theorem 1. Let X be a monoid and K a submonoid of X, There is an iso-
morphism from M[X] into a semi-direct product of M[X/K] and M[K]o

Proof., That the code x +» ([x]pkx) is a one-one representation for
every x € X follows from the fact x = kxx'° Now define the connecting‘map
Z: (X/EKs X) + K to be y[x]'= kx'y for all x,y e X, Checking that Z is
admissible we have 1[x] = kx' = 1 (since x' = 1:x') and

yl[x]y [xxl], using Lemmas 1 and 2,

= k =k k =
X'y, X'y (xy)'y, 2

Now note that for all x,y € X
(Ix,k)y = (Ixdyky D
= (ler)okykyo)
= (],

which shows that every transition x°y - xy is correctly effected. Q.E.D.



We recall that M[X/K] is a monoid machine if K is a normal submonoid.
Just as in the restricted case for groups, we may apply the above procedure
to decompose both M[X/K] and M[K], thus obtaining a "subnormal" series of
monoids and corresponding monoid machines, (Of course, a question of unique-
ness, established for group decomposition, arises.) Decomposition by this
method must halt when a "simple" monoid is reached, A monoid X is simple if
for any normal submonoid K, either X/EK & X or X/EK v 1,

For finite automata, the Krohn-Rhodes theory shows that no new primitives
are introduced in this way (assuming that the "simple" monoids are decomposed
in the standard way). However, decomposition based on normal submonoids,
where possible, is more efficient than that based on the existence of left
ide:als’4 in that it does not require the introduction or reset inputs. For
infinite automata, where the existence of appropriate left ideals and sub-
semigroups is not guaranteed, decomposition based on normal submonoids may
provide an avenue where other procedures fail.

As an example, the monoid of Fig, 1 has classes K = {1,b}, Ka = {a,ba}
such that KacKa = Ka, Choosing representatives of K and Ka as "1'" :dnd '"a"
respectively, we obtain the code between M[X] and M[X/K] ®Z M[K] as

1 « (K,1), b < (K;b), a « (Ka,1), ba +> (Ka,b). The Z map is given by

K| K
y | vl y2
a 1 1
bl b |1

and the monoid machine decomposition is

4For a finite semigroup S, if S is neither cyclic nor left simple then there

exists a proper left ideal TC S, T # S and a proper sub-semigroup VC S,
VN #8S sothat S=TUV, M(S) is then simulated by M(V) with added reset
in series with M(T U1l), See [5] or [6] for details,



K | Ka ‘ 1
X 1|1

K | K | Ka Mz L
Kal| Ka | Ka b b

We note that in the case of X being a group, kx is directly computable
as kX = x(x')'l, and our construction requires only the use of one copy of
M[X/K] and one copy of M[K], The Wreath product construction however also
requires one copy M[X/K] but n copies of M[K] where n = |[X|/|K|. The reason
for this inefficiency, alluded to before, lies in the relation between semi-
direct products of machines and those of monoids. The Wreath product decom-
position on a group X, is a semi-direct product of X/K and n Ki’ a direct

i=1

product of n copies of K, Let (vi, so ey vi, veay vé) be an ordered set of

representatives of the cosets Kvi, sasy Kvi, sasy er'l° The code

X +> (Kx,(QOUkV,XQOQ)) is a one-one map between X and X/K @& K, The Z map
i
is given by
K

) ¥= ok 1y 3ok vy 3ok N
(yxl) X; (vix) X; (vnx)'x1

(kv!x
i

So that

XXI > (Kx,(oookvsxdav)) (leg(ﬁonkv!x coc))
i i71
Kx

> (Kxle,(,n,k see) )

V!xooa)(vaokv'x
i 1

1
> (KXKXI’(aaok aoc)

k
1 t
viX (vix) X;

s99)) o

> (Kxxl,(oaok
1

vixx
(using Lemma 2)
as required. Implementing this as a machine decomposition yields the follow-

ing configuration:

(KoKnvcoK}————————*

|/
A TS \‘L MK

RS
-
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We see that the inefficiency is ¢due to the fact input X is not allowed to pass
to the Z map directly (as in the case in the construction of Theorem 1), To
make up for this an expensive coding is required allowing Z to reconstruct

the necessary information,” All this is due to the restrictions placed on semi-
direct products of monoids which are not necessary for semi-direct products

of machines.

In case K is normal submonoid of a monoid X but coincides with the

K
identity (x,y € X implies x E y iff x = y) it is still possible to obtain the

coarser two sided congruence : defined for all x,y € X by

R

X =y iff there are kl,k2 € K such that klx = kzy°

X

We ‘leave it to the reader to verify that é is indeed a congruence or see
[2] and that E refines E, Using = we can obta;h a decomposition of M[X]
which, however, requiré; feedbackj'a subject treated in a coming report.
Roughly this is because every x is completely specified by two (rather than
one) elements of K in addition to its representative and the next value ef one
of these can be computed only with knowledge of all three quantities, Because

the construction is rather messy, we relegate its discussion to the Appendix.

5Note that Z satisfies the associativity requirement.by inducing permuta-
tions on the vector ",(kV U kV x) which contains all the necessary
1

information to compute the transition.



APPENDIX

Let X be a monoid, K a normal submonoid of X and the congruence
defined above, Let x' denote the unique representative of [x] in X/=,
Then every x ¢ X satisfies at least one equation of the form
™ 0
2.X kxx
for some %_,k_ ¢ K.
x’7x
Let K(x) = {(2,, kx)lzxx = k.x'}. We shall impose the condition that
if x,y (x #7y) are in the same class, their associated sets K(x), K(y) are
disjoint, viz,
*) x E y and x # y implies K(x)/\ K(y) =& for all x,y ¢ X,
Lemma 3. (2 k ) e K(x) implies (2 z(xy)' 'y) e K(xy)
where z(xy) is some element in K depending on x and y, and kx'y is a right
member of some (2_, ) e K(x'y).

x'y’ x Yy
Proof, Since K is normal (xK = Kx for all x ¢ X) the equation

x y X'y = x y’LO

has a solution 2, € K, By definition (of K(x'y))

0

v = '
ery®'Y = Ky (3)

(using Lemma 1), So
x'Y20 = kxoYCXY)'
implying
g
implying
= ]
22 kxkx.y(xy)
(using the definition of K(x)) implying
f
Fuc i Kk Y(XY)
(again using the normality of K) implying

(2 %

< (xpy)’kxkx'y) e K(xy). Q.E.D,

11
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Theorem 3. Let K be a normal submonoid of a monoid X such that
condition *) holds. M[X] is a homomorphic image of a submachine of a semi-
direct composition of M[X/E] = X X/E‘>, M[K], and Mf[K] (where Mf denote
a machine with feedback, see definition 1, Section 2),

Proof. The required composition is diagrammed as

X _ > l |
| M[X/E] N M[K] : 22\ M[K]

k L
X X

N

The relevant submachine will have state set

Q= {([x],2,,k)[[x] € X/Z: (k) € K(x) 1.
The connecting map Z1 s (X, X/E) + K is defined by

[x] _
y = kx'y
for all y € X, [x] ¢ X/E where k X'y is arbitrarily chosen but fixed right

member of some (& _, x' ) € K(x'y). The map Z2 : (X, X/E, K, K) - K is

x'y’
defined by
([x] 2k .
4 (xy)
for ally ¢ X, ([x],kx,lx) e Q where z(xy) may be computed as in Lemma 3,
i.e., (2 g(xy)’kxkx y) € Kxy., The operation of the machine will now be
,k.)
([x],2k Dy = ([xly, 2y (T hekd iy 1
= 2
([xy], z(xy)n y)
= (Ixy)atyys kxy)
where (zxy xy) = (& x (xy)' x X y) e K(xy).

It is now obvious that the identification
([x];zx:kx) » X

is a homomorphism onto M[X]. The condition *) guarantees that no ambiguity



13

arises, i.e.,
x # y implies ([x],k ;2 ) # ([y],l},gky)o

Note that although feedback is required around the last M[K], no resets
have been added to it so that its monoid has not been enlarged nor has it
been made to act merely as a dzlay.

Finally, we observe that condition *) is equivalent to requiring certain
left cancellation properties hold with respect to K,

ProBosition:1 *) holds if, and only if, for all x,y € X, k ¢ K,

y and kx = ky implies x = y,

[7=m

Proof., Suppose x # y, x =y and (£,k) € K(x) "\ K(y). Then QX = kx' and

w=m

2x = kx so 2x = Ly implies x = y a contradiction.
Conversely, suppose x E y, x # y, and kx = ky for some k € K, By

normality, find some 20 e K such that

kx = xzoo
= ¢
Then lxx kxx
. . i ,
implies Zxxzo = kx? £0
3 3 = [
implies zka = kxx L9
i i = x!
implies lxkx kx' Ly
(again using normality).
But also fiky = kxz(@)xﬂ
SO (lxkgkxzé) e K(x) N\ K(y) and *) does not hold. Q.E.D,

IThe observation and proof of this proposition are due to Stewart Bainbridge.
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‘‘Restricted Data’’ is included. Marking is to be in accord-
ance with appropriate security regulations.

2b. GROUP: Automatic downgrading is specified in DoD Di-
rective 5200.10 and Armed Forces Industrial Manual, Enter
the group number. Also, when applicable, show that optional
markings have been used for Group 3 and Group 4 as author-
ized.

3. REPORT TITLE: Enter the complete report title in all
capital letters. Titles in all cases should be unclassified.
If a meaningful title cannot be selected without classifica-
tion, show title classification in all capitals in parenthesis
immediately following the title.

4. DESCRIPTIVE NOTES: If appropriate, enter the type of
report, e.g., interim, progress, summary, annual, or final,
Give the inclusive dates when a specific reporting period is
covered.

5. AUTHOR(S): Enter the name(s) of author(s) as shown on
or in the report. Enter last name, first name, middle initial,
If wmilitary, show rank and branch of service. The name of
the principal author is an absolute minimum requirement.

6. REPORT DATZ: Enter the date of the report as day,
month, year; or month, year. If more than one date appears
on the report, use date of publication,

7a. TOTAL NUMBER OF PAGES: The total page count
should follow normal pagination procedures, i.e., enter the
number of pages containing information.

7b. NUMBER OF REFERENCES: Enter the total number of
references cited in the report.

8a. CONTRACT OR GRANT NUMBER: If appropriate, enter
the applicable number of the contract or grant under which
the report was written.

8b, 8, & 8d. PROJECT NUMBER: Enter the appropriate
military department identification, such as project number,
subproject number, system numbers, task number, etc,

9a. ORIGINATOR'’S REPORT NUMBER(S): Enter the offi-
cial report number by which the document will be identified
and controlled by the originating activity. This number must
be unique to this report.

9b. OTHER REPORT NUMBER(S): If the report has been

assigned any other repcrt numbers (either by the originatar
or by the sponsor), also enter this number(s).

10, AVAILABILITY/LIMITATION NOTICES: Enter any lim-

itations on further dissemination of the report, other than those

imposed by security classification, using standard statements
such as:

(1) *“‘Qualified requesters may obtain copies of this
report from DDC.”’

(2) ‘“Foreign announcement and dissemination of this
report by DDC is not authorized,”’

(3) ‘“U. S. Government agencies may obtain copies of
this report directly from DDC. Other qualified DDC
users shall request through

(4) *“‘U. S. military agencies may obtain copies of this
report directly from DDC. Other qualified users
shall request through

”
.

(5) *‘All distribution of this report is controlled Qual-
ified DDC users shall request through

"
)

If the report has been furnished to the Office of Technical
Seryices, Department of Commerce, for sale to the public, indi-
cate this fact and enter the price, if known.

11, SUPPLEMENTARY NOTES: Use for additional explana-
tory notes.

12. SPONSORING MILITARY ACTIVITY: Enter the name of
the departmental project office or laboratory sponsoring (pay~
ing for) the research and development. Include address.

13. ABSTRACT: Enter an abstract giving a brief and factual
summary of the document indicative of the report, even though
it may also appear elsewhere in the body of the technical re-

port. If additional space is required, a continuation sheet shall’
be attached.

It is highly desirable that the abstract of classified reports
be unclassified. Each paragraph of the abstract shall end with
an indication of the military security classification of the in-
formation in the paragraph, represented as (TS). (S). (C). or (U)

There is no limitation on the length of the abstract. How-

ever, the suggested length is from 150 to 225 words.

14. KEY WORDS: Key words are technically meaningful terms
or short phrases that characterize a report and may be used as
index entries for cataloging the report. Key words must be
selected so that no security classification is required. Identi-
fiers, such as equipment mode! designation, trade name, military
project code name, geographic location, may be used as key
words but will be followed by an indication of technical con-
text. The assignment of links, rules, and weights is optional.
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