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ABSTRACT

It is known that for every integer d, there are transition functions
not isomorphically realizable by any net having feedback indegree
(the largest number of wires that any delay receives from other delays
in its feedback loop) less than d. Here we show that, in contrast to the
isomorphic case, every transition function can be homomorphically
realized by nets of feedback indegree not exceeding 2. This is a least
upper bound, since simple nets (i.e., those having feedback indegrees

not exceeding 1) are shown not to be universal in this sense.



A conjecture concerning feedback complexity of logical nets
(sequential machine realizations employing delay elements) was made
by Holland [2] as follows: for any logical net define the feedback
indegree as the largest number of input wires that any delay receives
from other delays in its feedback loop; for each integer d, there is
a transition function which cannot be isomorphically realized by any net
of indegree less than d. This conjecture was shown to be valid
by Zeigler [4,5] and the question then arose as to whether it held
as well for homomorphic realization (i.e., allowing state splitting
memory expansion). In this paper we show that a complexity hierarchy
does not hold in this case. Specifically we show that every transition
function can be homomorphically realized by nets of feedback indegree
not exceeding 2 and this is the least upper bound in the sense that
there are transition functions which cannot be homomorphically realized
by nets of feedback indegree 1.

Logical nets and their representing digraphs were formally defined
in [4] , Essentially the digraph D(A) of a logical net A considers
the delay elements as points and there is a (directed) line from
point a to point B just in case delay B receives an input from the

output of delay a. See for example Figure 1.

For any point o of D(A) let Sa denote the strong component containing a,

s, = {g| there is a path from o to 8 and back in D(A)}, I denotes
the set of points preceeding o in D(A) i.e., the set of delays feeding
delay o in the logical net and FIa = quj Su is the set of wires coming
into o from points in its strong component.

As usual, lIal is the indegree of a and we call |FI althe feedback

indegree of a.



Based on a result of Arden [1],Weiner and Hopcraft [3] show that
a finite set of modules can homomorphically realize any transition
function if, and only if, the set is complete (i.e., can be used to
realize with some delay all finite memory span functions). As they note
that there are complete modules having just two binary input wires
(for example Figure 2) we can conclude that every transition function
can be homomorphically realized by logical nets in which no point
has indegree greater than 2.

Also in order to satisfy the completeness requirement at least
some points must have indegree 2, so that 2 is the least upper bound
on the indegrees of the' nets which are universal in this sense. It

does not follow however that this is the case for feedback indegree,

Since for each point o, ]FIaljj I(J we can conclude that 2 is an upper
bound on the feedback indegree required for universality. But 2 is
not necessarily the least upper bound since it is possible that every
point in a net has feedback indegree 1 but also some have indegree greater than 1.
(Figure 1 is an example.)
Thus it is still possible that simple nets, as defined below,
are universal in the sense that every transition function can be homomorphically
realised by some simple net.
Definition A logical net A is simple if for every pointoeD(A), |FIGI§}.
Thus simple nets consist of cycles (in the graph theoretic sense)
connected together in series-parallel fashion by feedback free circuits
(Fig. 1). We now proceed to demonstrate the limitations on such nets.
First we establish a general theorem which relates the cycle

characteristics of transition functions one of which can simulate the other.



Definition For transition functions Mi:Qi X Si > Qi’ i=1,2, we say

that M2 divides (is simulated by) M1 if there exists Q' g;Ql and maps

G:S2 - SI (the free semigroup generated by Sl), h:Q' ~ Q2 (onto), such

*
that Q' is closed under g(Sz) and for all qeQ', seS

2

h(M,(4,g(s)) = My(h(a) ,5)

(Mle1 X S1 > Ql is the usual extension to SI of Ml’ we write gx = M(q,x).)
M2 is homomorphically realizable by M1 if g maps S2 into S1 in the

above definition.

Definition: M:Q x S » Q contains a cycle if there is a q e Q such that

q = qu = gX X ...X 1)

R —

m times

for some x € S* and positive integer m. Let k be the least positive integer

for which (1) is true. Let the sequence Zl’ 22, ZS’ ces Zkl(x) be the se-

be the sequence of initial substrings of xk, where Zy is the first symbol of
k k

x and Zkl(x) = X .

The sequence of states qu, qZZ, qZS, cees qZkz(x) is called the
cycle of x and clearly consists of the states encountered in journey from
q back to q in the order of encounter. The x-period of this cycle is the
number of states in the subsequence qxl, qxz, qxs, cees qu.

We remark that the cycle of x need not form a cycle in the state
digram of M in the graph theoretic sense i.e., not all qu need be distinct

(although all qx1 are distinct).

We say that M contains a string cycle of string period, p if it

contains a cycle of x for some x ¢ S* which has x-period p.

Theorem: Let Mi: Qi X Si > Qi’ i = 1,2 be finite transition functions such

such that M2 divides M1 with maps h: Qi > Q2, and g: 52 > Si. If for

some X ¢ SE,



= ! 1
qi: qé: oo ql;ll(g()()) q € Ql

is a g(x)-cycle of M1 of g(x)-period m, then h(ql), h(qz), ..., h(q") is

an x-cycle of M, with x-period k dividing m.

2
Conversely, if Ays Gy +ovs qu(x) = q is a x-cycle of M2 with x-period

k then there exists a E(x)-cycle in
-1 -1 -1 .
h (ql) h (qz) ... h 7(q) in Ml

with E(x)—period m > 0 a multiple of k.
Proof: -+ Consider the subsequence of the given E(x)-cycle of MI:
N n 2 N m
q'gx), q'[g(x)]", ..., q'[g(xX)]" = q'

Let H(q') = q. Noting that

h(M, (q',[g())]*

he o', Ee)

M,(h(q'),x")

MZ(q,xi)

]

We see that the given subsequence maps under h to a sequence

1 2 m
gx", gx , ..., gx =q
in M2. Not all states in this sequence need be distinct. Let k the least
integer for which qu = q. Then we readily establish that qu = q iff

m=k2%, for some integer % > 0. The reverse direction is immediate. In the

forward direction, we can always write m = k& + n where %, n are integers,

>0, 0<n<k. Then q = qu = qu2+n

qxn, but k is the smallest integer

with the property qu =g, n =0, and hence m = k&.



Thus

2 k
X, X ,¢e009 qX = ¢

is a subsequence of an x-cycle which thus has x-period k dividing m.

Consider the subsequence of the x-cycle of M2: gx, qxz, vees qu = q.

Then the blocks h-l(qx), h_l(qxz),...,h_l(q) of m, -are all distinct

(since gx, qxz, cons qu are all distinct). ( m, is the partition in-

h
duced by h.)

Let Z = g(x). We note first that for all i > O,

¢ e b lgxh) » q'z e i,

This is so since
q' € h-l(qxl) implies h(q') = qx

. i
implies h(Ml(q',g(x)) = M, (qx",x)
implies q'g(x) ¢ h—l(qx1+l).

Now let 4 be a fixed state in h-l(q). From the preceding facts

we can construct a sequence
2 i
qpZs GpZ s cees QgZ e
in Ml’ such that for all j > 0O

ij+1

-1 jk+2
eh e h " (qx), q4Z

-1 2
eh "(qx7), ...,

ik -1, k
qOZJ eh "(gx =q).

Since!h_l(q) is finite, not all qOZJk can denote distinct states.

Let n, > 0 be the least integer such that



for some integer x > n,. Let n, be the least such integer Xx, i.e.,

n. k n2k

Then

n.k n k+l nzk nlk
qOZ s qOZ s vees qOZ = qOZ
is a subsequente of a g(x) = Z-cycle in Mllhaving g(x)-period (nz-nl)k,

a non-zero multiple of k.

To show that all states in this sequence are distinct (hence establish-
ing the claim) note that

zjk+i #q zj'k+i'

9 0

for any i # i', 0 < i, i' < k, as these elements belong to distinct blocks

of m i.e.,

jk+i -1, i
qp2" " & 7 (ax™)
and
S tk+i! -1 3t
qOZJ Y en (qx1 ).
Thus set i = i' and ny <j<j'< n,. If
Jk+i _ j'k+i
Q% " = qyl
then
n,1 (3'-j+n,)k
27 _ 2
42~ = 92

and hence that

nko o [ny-(5-31k
a2 .

£
(=}
~N
u"



But n, is the least integer for which this is true so j-j' = 0 and
j = j', a contradiction.

Since homomorphism is a special case of division we can state:

Corollary 2:

For finite transition functions, Ml’ MZ’ if M, is a homomorphic

image of M, then the string period of any string cycle in M1 is a non-

1

zero multiple of the string period of its homomorphic image. Every

string cycle in M2 is the homomorphic image of a string cycle in Ml‘

We apply this result to simple nets by extending a result of Holland [2].

Theorem 3 (Holland)

Let M: @Q X S + Q be isomorphically realized by a logical net A
whose representing digraph D(A) is simple. For every x € S* the period
of any cycle of x in M divides 22 l.c.m. (%(x),b) where a, b are integers
characteristic of A, Equivalently, the x-period of any x-cycle must
divide

l.c.m(2(x),b) b

_ .8
2 o (x) = 2 g.c.d(k(x),b)

(L.c.m = least common multiple, g.c.d = greatest common divisor.)
Using Corollary 2 we extend this result to homomorphic realization:

Theorem 4: Let M: Q@ X S + Q be homomorphically realized by a logical

net A whose representing digraph is simple. For every x ¢ S* the x-period
b

of any x-cycle in M must divide 22 ]
g.c.d(2(x),b)




Proof: Since A is finite, by Corollary 2, given an x-cycle in M there
is an x-cycle in the transition function M, of A. Also the x-period

of the x-cycle in M divides the x-period of the x-cycle in My
b

a
turn divides 2 by Theorem 3.
g.c.d. (lex),b)

which in

Corollarz 5

Let M\iQ xS +Q, |S|§2, be such that there exists qeQ and seS
such that for all xeS* M(q,x) = q, if, and only if, the number of

occurences of s in x is a non-zero multiple of j, a positive
integer, (M is a modulo j counter). If M is homomorphically realizable

by a logical net whose representing digraph is simple, j is a power of 2.

Proof: Pick x = sy where yeS* contains no occurances of s and &(x)
is a non-zero multiple of b (in Theorem 3 ). Then there is an x-cycle

in M with x-period j. But by Theorem 3 this x-period must divide

a b = 28
g.c.d(e(x),b) ’

hence j divides 22,

Corollary6: There are transition functions, M which cannot be homomorphically

realized by any logical net whose representing digraph is simple,

Proof: The modulo three counter is an example of sugh a finite transi-
tion function.

In sum, we have shown that the least upper bound on the feedback
indegree is 2 for nets which can homomorphically realize any transition
function. This involved shdwing that simple nets are not universal
in this sense. The question of whether simple nets are universal in
the sense that they can simulate (allowing rate slow dow) every transition

function is still open (unfortunatecly, Theorem 1 cannot be applied in this case).
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