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ABSTRACT

This paper has established a basis for the formal treatment of modeling
and simulation when continuous time system occur as elements of the basic
simuiation triad (i.e., either the system to be simulated, the model or
the computer doing the simulating is a continuous time system). The
key idea is that of constructively specifying a system in a way analogous
to the use of the one step transition and output functions of the usual
sequential machine formulation. This enables one to develop useful
criteria for determining when one constructively specified system simulates

or models another.



I. INTRODUCTION

Recently, there have bcen a number of efforts toward a framework in
which system models commonly distinguished along a digital-analog axis
could be given unified treatment. Mesarovic [1] and Windeknecht [2],

Zodeh and Desoer [3] have considered abstract formulations of systems
theory. Kalman, Falb and Arbib [4] work with a more structured formulation
which specializes more readily into the sequential machine and optimal
control formalisms commonly employed. Wymore [5] has taken the first

steps in considering the new applications areas made possible by a unified
systems theory. These areas relate to systems containing components of
both the digital and analog variety in which an adequate understanding of
overall system operation can be better gained by treating such components
and their interaction in a unified way.

The utility of such a systems approach is most readily apparent in
the consideration of hybrid computing systems but there are other important
areas of applications such as in the digital simulation of continuous
state models and the design of asynchronous processors.

In this paper, I shall be concerned with the formalization of a relation
existing between two systems whereby the first might be said to be a
"simulation" or "realization" of the second or the second might be said
to be a "model" of the first. The basis for such a development has been
laid in Zeigler and Weinberg [6] and Zeigler [7]. The former paper showed
how the system theoretic concepts of homomorphism and coordinate aggregation
could be usefully applied in actual computer simulation of biological
systems. Zeigler [7] showed how a simulation could be regarded as a triple
(system to be simulated, model, computer) in which a preservation relation

holds between model and system (determining what properties of the system



are to be preserved in the model) at the same time that another prescrvation
holds between model and computer (which governs the manner in which the

model is implemented on the computer). The relations in question were
formalized as structure preserving morphisms (with varying degrees of strength)
and shown to be inclusive of existent notions of modeling and simulation.
Complexity measures relevant to usage of time and space resources of a
simulation were defined and their behavior under structure preserving
morphisms studied with a view toward the construction of models with reduced
complexity.

The entities in a simulation (simulated system, model, computer)
however, were taken to be automata - i.e., essentially discrete time systems,
though continuous state spaces were allowed. The theory developed in this
way presupposes a discretization of time which would be unnatural when
applications to continuous time models and hybrid or analog computers
are‘considered. Thus by extending the notions of "system'" and the class
of structure preserving morphisms which can relate systems, a more adequate
and applicable simulation theory can be developed.

The plan of this paper is as follows:

1) A concept of system is developed which allows both continuous
and discrete time operation. This is essentially based on Arbib's
definition [8) which I feel to be much less clumsy than Wymore's [5].

2) Behavior and function preserving morphisms are defined and studied
for these systems. Behavior and function preserving morphisms are weaker
than the structure preserving morphisms of [7] but are necessary prior
elements in dealing with these stronger preservation concepts. There
is not space in this paper to complete the connection.

3) A notion of constructive specification of systems is developed.



This is a generalization of the usual sequential machine one step transition
structure formulation for discrete time systems. The great advantage
afforded by such a specification is that it makes possible a practical
procedure for constructing a system which will simulate or model another.
This is analogous to the case of sequgntial machineslwhere judgements
concerning the behavioral relations of machines (involving extended operation)
can be determined by examination of the single step transition and output
functions.
Constructive specification of continuous time systems involves

difficulties which do not arise in the discrete time casé. Much of the
paper is devoted to providing reasonable solutions to these problems.

4) Examples are provided which give evidence for the applicability
of the theoretical development. It is shown, for example, how Wymore's [5]
results on the realization of discrete time systems by continuous time systems
and simulation of continuous time systems by discrete time systems are

more easily formulated in this framework.



II. SYSTEMS

2,0 System Definition

A time invariant mathematical system (hereafter called a system when
the context is clear) is a structure
S = <Q,Q,Y,6,\>
where Q is a sét of input segments, Q a nonempty set of states, Y a set of

outputs and
:QxQQ-~+>Q
AQxQ->Y

are the state transition function and output function respectively.
The objects above must satisfy the following axioms:

A.1 Structure of Q

T denotes the underlying time set where T is either the reals R
or the integers I.
X denotes the imput value set.
A.1.1 (w i8 a function on a finite closed interval.)
w € R => there are to,t1
A.1.2 (Closure under Translation)

eT, ty sty and w is a map w:[to,tl] + X.

we Q => for every 1 € T there is an w' € Q such that

m':[t0+r,t1+r] +X
and
w'(t) = w(t-1)

for all t € [t0+'t,t +¢].
w' is said to be a translate of w.

Remark: From here on we do not distinguish between an input segment and
any of its translates. More formally we define the equivalence relation

= on Q where
w = w' <=> @' is a translate of w.

An equivalence class [w] will be represented by any one of its members
as is appropriate. For example, if we are interested in segments starting
"at some time t, and write w we mean that segment in [w] defined on
an interval [to,-].



A. 1.3 (Closure under concatenation)
we @ and w' € @ => there is a segment ww' € Q, where if

w:[to,tl] - X
and
| B
w .[tl,tz] -+ X
then
LI
wo .[to,tz] -+ X

and is given by

ww'(t) = w(t) for t ¢ [to,tl]

w'(t) for t ¢ [tl,tz]

and T = R. For T = I the usual concatenation operation is assumed.

Remark:  With this condition Q becomes a semigroup since as can readily
be verified concatenation is associative.

A.2 Time Invariance

For all w,w' € 2, q € Q
w = w' => §(q,w) = 8(q,w') and A(q,w) = A(q,w').

Remark: This means that 8(q,w) and A(q,w) are uniquely determined once
the state q and any representative w of the equivalence class [w] are
given. As a consequence we adopt the same convention as in A.1.2, i.e.,
we let the context determine the particular translate of w which is of
interest.

This convention makes possible an enormous gain in notational mani-
pulation; c.f., Wymore [5] and Kalman, et al. [4] who do not make use
of this convention. Of course, it relies on a time invariant system
formulation, but this is always possible to achieve by considering T
as a state space component,

A.3 Composition oxr Semigroup Property

For all w,w' € Q, q € Q
§(8(q,w),w")

A(8(q,w),w").

6 (q,uww')
and

A(q,ww')



With w € Q represented by w:[0,7] + X we associate two segments wt]
and w[t for every t e [0,1].
The left segment wy) = wl[o ¢]» i-e., the function w restricted to the

)

subdomain [0,t].

The right segment Wy = wl[t "

A system S = <Q,Q,Y,8,\> is called <nput decomposable if in addition

to A,1-A.3 it satisfies:

A.4 Restriction Closure

we Q and w:0,7] + X ] e Q forall 0 stst'<r.

=> wl [t,'t'

A.5 Consistency

For all q € Q, 6(q,A) = q, where A is any translate of w[O 0]’

the zero length input segment.

2.1 Time Discrete Systems

A discrete time sequential system is a structure M = <X,Q,Y,6M,XM>
where X,Q,Y are nonempty sets of <imputs, states and outputs respectively
and .SM:Q x X +Q, A:Q + Y are the one step transition and output functions
respectively.

This is the usual Moore Machine except that no finiteness restriction
is placed on X,Q,Y.'

We may associate with a discrete time system M a general system SM

as follows:
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Sy = <%Q,Y,8,%

where @ is the translation closure of X+,
g:Q x X* + Q and %:Q x X7 >y
are the extended transition and output function respectively defined by
g(q,é) = 6(q,s) for s € X

v N
§(q,xs) = 8(8(q,x),s) for x e X*,

o, v
and X(q,X) = AM(S(q’x))'

Here X' = {w|w:{1,2,...,n} + X, n=1,2,...}, i.e., the set of all finite
sequences of elements of X. The underlying time set has been assumed
to be the integers I. Note that by the translation closure assumption

each sequence X XpeeoX € X* represents any of its possible translates in

Q.

The reader may verify that SM satisfies the axioms for a time invariant

system,



11

2.2 Time Continuous Systems

Before exemplifying a class of continuous time systems we need the
following concepts:

A system S = (2,Q,Y,68,)) defines trajectories through the state and
output sets as follows:

With each q € Q, w € Q there are associated segments STRAJ

(q,w)’
OTRAJ(q )" Choosing the representative w:[0,7t] -+ X we have
]

STRAJ(q,w):[O,T] > Q

given by STRAJ(q’w)(t) = é(q,wt]) for t ¢ [0,1];

STRAJ(q w) is state trajectory associated with initial state q and input
»

segment w.

Similarly OTRAJ(q’w):[O,T] +~Y

is the output trajectory associated with initial state q and input segment

W,
where OTRAJ(q,w)(t) = A(q,wt]) for t ¢ [0,7].
Remark: It is easy to see that in the same way that w represents its

translates in [uw], STRAJ( w) and OTRAJ( w) also represents translation
equivalence classes. 4 b

A Differential Equation Specified System, DESS is a structure
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b= (2,QY,f,N)

where  is a sct of input scgments satisfying A.1 with T = R
and X&R" for some m » 1

Qs R™ for some n 2 1
YE=RP for some p > 1

and f,N are maps

f:Q x X +>Q
N:Q > Y
Remark: Often D is presented in the form
49 _
e = fa,x)

y(t) = N(q(t)).

A time segment ¢:[0,7] »~ Q is a state trajectory of D if there is an

input segment w € Q and a (starting) state q € Q such that
i) ¢(0) =gq
and do
11) 3¢ (8 = £(2(t),u(t))
for all t € [0,1].

A segment Y:[0,7] ~ Y is an output trajectory of D if there is a
state trajectory ¢:[0,t] =+ Q such that

¥(t) = N(&(t)) for t ¢ [0,7].

A DESS will be said to have unique solutions of given any q € Q, w €

there is a unique state trajectory satisfying i) and ii), call it @,q )"
\q,uw

Uniqueness of ¢ " clearly impli i t iectory Y
q (q,w) Yy 1mpiles uniqueness of output trajectory L‘(q,w)'



13

The following is well known from other approaches:

2.2 Theorem 1:

Given a DESS with unique solutions D = (Q,Q,Y,f,N) we may associate
with D an input decomposable system S, as follows:
SD = (2,Q,Y,6,))
where for q e Q, we Q, t T
S(q,up) = ®(q,uw) (t)
A(q,wt]) = W(q,w)(t)'
Moreover SD represents D in the sense that it generates exactly the

same set of trajectories, i.e., for all q e Q, w € Q

STRAJ = ¢ :
(q,w) (q,w)
and

OTRA (0,0 = ¥(q,u)°

An interesting subclass of the differential equation systems are the
linear (time invariant) systems. A DESS D = (Q,Q,Y,f,N) is Ilinear if
X,Q,Y are vector spaces and f,N are linear transformations given by

f(q,x) = Aq + Bx
N(q) = Cq
‘The underlying differential equation takes the usual form
a = Aq + Bx,
The corresponding systen SD ; (©,3,Y,8,)) has

t

8(a,u,1) = Mt + f M)y eryars
(o]

and A(q,mt]) = Cd(q,mt]).
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III. MODELING AND SIMULATION RELATIONS

3.0 The Essential Difference Betwecei. Discrete and Continuous Time Systems

It is important to note the essential differences between the two

general clas<es of systems just mentioned.
"

in pe sedie . ol macaine case, the transition function 6 is determined

by exten.ing the given one-step transition function 6. Thus given an

input string S1S,e .S and a state q we can compute the trajectory 9590

where q; = q and for i = 1,2,...,n-1, 4,1 = G(qi,si).

This step by step iteration is precisely the idea underlying digital
computer simulation of systems.

More explicitly, given two sequential machine derived systems SM and

S,,, there are a number of criteria available for determining whether S

M! M

simulates SM' or whether SM' is a model of SM' This is done essentially
by examining the one-step transition and output functions (§,A) given in
by the M,M' specifications.

In the continuous time case very few such criteria are unknown. We
are reduced to having to compare the total system descriptions S and S'
to determine whether S can simulate S'.

To seé the import of this, consider the case where we have two DESS's
D and D' and wish to determine whether SD can simulate SD"

are known we can program an analog computer to simulate SD and SD' just as

Since D,D'

knowing M and M' we can program a digital computer to simulate each.
In contrast to the discrete time case however, it is generally unknown
how to use the structure of these programs (or equivalently the functions

f,N) to determine whether S_ can simulate S

D NE This must be done by an

+»A,
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exhaustive generation qnd comparison of their trajectoriec. (The only
exception to this I know of, concerns linear systems where one can determine
behavioral equivalence from the similarity of the matrices A,B,C.)

The following sections present an approach to this problem within the
system theoretic framework given above. The essential idea is consider
continuous time.systems which have enough of the properties of discrete
time systems to enable the applicatidn structure preserving criteria already

known in the latter area.

3.1 Basic Preservation Relations

We begin by reviewing and generalizing known behavior and function
preserving relations for systems.

The input-output behavior of a system S = <Q,Q,Y,d,A> is the collection
of functions {Bq]qu} where for qeQ,

B+~ Y

q
Bq (w) = A (q:w)

and is given by

for all we Q.

A behavior preserving morphism from S to S' is a triple (hl’hZ’hS)

where

hlzﬂ’ > Q

hZ:Q' + Q

h3:Y - Y!
'such that for all qeQ',

1 = o o
B q' h3 th(q') hl'

Remark: More expansively, let us say that B'q,]Bq (B'q, divides Bq) using

an input encoding map h1 and an output - = ng map h3 if B'q, = h3°8q°hl.

Then the existence of a behavior morpi.s (hj,hj,hs) means that for each

-
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state q'eQ' there is a state qeQ (namely hz(q')) such that B'qvlﬁq using
(hy,hy).
A function preserving morphism (homomorphism) from S to S' is a ;riple

(g,h,k) where

g:at > Q

h:Ql - Q! (onto)

k:y -y
where i, QISQ is closed under g(Q'):

w'eQ',qeQ; => 8(q,g(w'))eQ;
ii) for all qul,w'eQ’

h(8(q,gw"))) = &' (h(q),w")
and

1 - o o
B'hi = X8 &

A behavior morphism will be said to time local if hp:Q' > Q is a

semigroup homomorphism, i.e., for all wl,wzeﬂ', hl(wlwz) = hl(wl)hl(mz).
A function morphism is similarly designated if g:Q' - Q is a semigroup
homomorphism.

Remark: Time local morphisms are desirable since they enable input segments
to be encoded by concatenating encoded subsegments. Their existence

comes much easier for discrete time systems than for continuous time systems,
as we shall see. ‘
3.L1Theorem: The existence of a function morphism from S to S' implies the
existence of a behavior morphism from S to S'.

Proof: Let (g,h,k) be a function morphism from S to S'. Construct a behavior
morphism (hl’hZ’hS) as follows:

Set hl =g

h3 = k,

and define hz:Q' + Q by hz(q') is a designated representative of the inverse
image h™1(q") = {q|h(q) = q'}.

Then h(hz(q')) = q' implies
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ql koth(ql)og

= h

[i1) of function morphism
condition]

B'

3°Bh2 (q')Ohl.

A system S = <Q,Q,Y,8,\> is reduced if for all q1,9,¢Q, Bql = qu => q; = q,.

3L2 Theorem: The existence of a time local behavior morphism from S to S'
implies the existence of a time local function morphism from.S to §' if S
is reduced.

Proof: Let (hl’hZ’hS) be a time local.behavior morphism from S to S'.
Construct a function morphism (g,h,k) as follows:

Set g = hl

k = h3

and define h:Ql + Q' by
a) Q = {qeQ| there is a q'eQ' such that B'q,]Bq using h;,hg}
b) For anl, h(q) = q' <=> B'q,IBq.
Lemma: B8' ,|B =>B', ., , IBd .
— atta T 8@he) g g wh)

Proof: For all wl,wz,eﬂ

B'q,leq => B'q,(wlwz) h3°Bq°hl(wlw2)

=> B'q,(wlwz) = hsqu(hl(wl)hl(wz)) [h1 is a homomorphism]
=> A'(GTq',wlwz) = hsok(q,hl(wl)hl(wz))
=> A'(8'(q',u0,) = heoA(8(a,hy (0)),h) (@)
[composition property]

=> B °hl(w

st @t,up) @2 = 5% qn (0)) M )

> B (gt ,0.) Bs(q,h, (0,))"
1 1Y71

Using the Lemma we see readily that Ql is closed under g(Q') as required.
To show that h is well defined by b), note that if Bq.[ﬁq and B,}..]Bq
we have Bq' = h3°6q°h1 = Bq"' Since S' is reduced q' = q' as is veaguired.

Next we show that (g,h,k) as defined above have the requisite commutative
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properties. From definition b) of h, h(q) = q' => B'q,qu => s'h(q)[sq

as required.
Also by the Lemma,

B st (') 186 (0, g (")

So from definition b) of h

h(d(q,gw"))) = 8'(q",w")

u

§'(h(q),w") as required.

Remark: That the homomorphisms of topological dynamics (e.g., Ura [9])
are special cases of the behavior morphism can be seen as follows:

Let S be an autonomous input decomposable continuous time system,
i.e., X is a singleton set. Since  now consists of all constant value
segments, these segments are uniquely identified by the length of their
associated interval. Thus we may set @ = R; w + w' then represents the
segment ww', §&:Q x @ > Q now satisfies the composition law:

§(q,w + w') = 8§(8(q,w),w') and the consistency law 6§(q,0) = q. Given
two such systems, for time local function morphism (g,h,k) to exist,

g must be a homomorphism of the real additive group R into itself. This
result is the usual homomorphism of topological dynamics except that the
topological structure of the state space may also be preserved.

3.2 Constructive Nature of Discrete Simulation

For time discrete systems the ability to go back and forth between -
transition function descriptions and behavior descriptions can be
significantly strengthened.

Consider time discrete systems M = <X,Q,Y,8,A>. A funetion preserving
morphism from M to M' is a triple (g,h,k) where

g:x' -~ Xx*
h:Ql -+ Q' (onto)
k:y -»Y!'
where QlSEQ'is closed under g(X') and for all seX',qul,(g,h,k) satisfy
h(8(q,8(s))) = 6' (h(a),s))
k(A(q)) = A" (h(q)).

and
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3.2.1 Theorem: Let S S‘, be systems derived from time discrete systems

M’

M and M',
There is a function preserving morphism from M to M' if, and only if,

there is a time local function morphism from SM to SM"
i

Proof: => Let (gM,hM,kM) be a function morphism from M to M'. We construct

a function morphism (g,h,k) from SM to SM’ as follows:

By

Ky

Set h

k

and define g: (X')* » X"

by
g(sisé...sﬁ) = gM(si)gM(sé)...gM(sﬁ)

for all strings sisé...sﬁ in (X")*. g 1is the extension to homomorphism
of semigroups of the function &y defined on the generators. Since (X')¥
is a free semigroup this extension is well-defined [sisé...sﬁ = sgsg...s;
implies n=m and si=s; for all i=1,2,...n].

Since g is a homomorphism as required (g,h,k) will be a time local
function morphism if

R(3(a,g(x"))) = &' (h(q),x")

B'h(q)lsq using g,k.

and

for all qul.x'e(X')"'.
Using induction on #(x') (the length of x') we can readily show that
h(&(q,gM(s))) = §'(h(q),s) for all ssX',_qu1 implies
h(5(,g(x')) = §' (h(a),x')
for all x'e(X')*,qul as required.
Also the closure of Q1 with respect to g(X') readily implies the closure

of Q, with respect to g(X")".



Finally, for all x'e(X')*,qul,

[}

k°83g(x') k(?(qg(x'))) [definition of eq]
= k(A(5(q,g(x")))) [definition of A]

= A'(h(3(q,g(x')))) [definition of function
morphism]

N
= A'(6'(h(q),x')) [definition of function
" rnorphism
= A (h(q),x") [definition of A']
= B'h(q)(x') as required.

<= Let (g,h,k) be a function morphism from SM to SM" We construct a

function morphism (gM,hM,kM) from M to M' as follows:

Set h = hM

and let g :X' » X* be the restriction of g: (X")* + X* to X', i.e.,
g(s') = gM(s') for all s'eX'.

The requisite properties now follow immediately.
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IV. CONSTRUCTIVE SPECIFICATION OF CONTINUQUS SYSTEMS

4.0 Introduction

We see from the Theorems of Section 3 that the ability to determine
whether one system simulates or models another by examining their one
step transition structures depends crucially upon the existence of certain
properties of the input encoding map g:Q' - Q. Namely - 1) g is a semigroup:
homomorphism and 2) Q' is generated by a smaller subset such that g need
only be defined on this subset. In the case of discrete time systems
these conditions are readily satisfiable. However, corresponding constructs
for continuous time systems have been lacking. Thus the task now is to
give a constructive specification for classes of continuous time systems
analogous to that available for discrete time systems.

From here on we restrict attention to state transition system S = <Q,Q,&>
since we shall be interested in function rather than behavior morphisms as

appropriate for modeling and simulation.

4,1 Maximal Length Segmentation

Analogous to the case of discrete time systems we seek a generating
set & for @ with certain useful properties.

Given a subset TEQ where AT we designate by Tt the least set of
segments containing T and closed under concatenation. It is easy to see

that T = O T where 1* = {wlwz...wileeT,j=1,2,...i}.
i=1

T generates Q@ (T is a generating set for Q) if T = Q. Members of
T are called generators or generating elements.
We shall say that W1sWoseeasWy is a decomposition of w € Q by T if

W= WaWeeeel o

172 n
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A set Q. is an admissible set of generators if for all w ¢ QE, if

* = . +
t max {tlwt] € QG} then Wes € Q-

Explanation: Refer to Figure 4.L1where Wee) is the longest generator which

is also a left segment of w. The condition for admissibility is that the

remaining right segment w[t* must be generated by QG'

Examples of admissible sets are given in Section 4.2,

Suppose now that QE = Q, This means that for every element in Q can

be obtained by concatenating a finite number of generators. However, there

may be more than one way to do this. That is, in contrast to the discrete

time case QE is not necessarily a free semigroup. To remedy this situation

we do not try to force uniqueness of compositions but seek conditions
guaranteeing a unique cannonical decomposition of elements of Q in terms

of generators QG' The requirement of admissibility is just such a condition

as we now show:

A decomposition w,,w,,...,w_ of w by Q. is said to be a maximal length
2 n

1’ G
segment (m.%.s.) decomposition if for each i ¢ {1,2,...n} whenever there is

an w' € Q. such that w' is a left segment of w,.w.
G 1 i+l

left segment of w, .

...wn then w' is a

In other words for each i,wi is the longest generator which is also

a left segment of ORI PERTN

4,11 Assertion: If w has a m.%.s. decompositioh by €, it is unique.

G

IR and wi,wé,...wﬁ be m.%.s. decompositions of w.

Then wy is a left segment of wi (since wi is the longest generator which

is also a left segment of w) and vice versa wi is a left segment of w

Proof: Let Wy,

1.
So wy = wi. This establishes the basis for an induction hypothesis:

w, =w! forigjs=>w,, =

w! ., the proof of which is straightforward.
i i j+l j+l :



0 I i
@5 >f9m*->
< w >

Figure 4.1.1 Maximal Length Segmentation.



4.1.2 Theorem: If QG is an admissible set of generators for Q@ then every

w € £ has a unique m.%.s. decomposition by QG.
Proof: Refer to Figure 4.1.2.

L] i = L ] i - Q
Let w € Q. Since QG generates §, w W Woe s oW, for some w, € &,

i=1,2,...n.

We wish to resegment w so as to obtain a m.2.s. decomposition wi,w;,...,w'.

™m
Y

Let us call the points t T the break points of the decomposition

tooty,e e
0’71’ 72°
l,wz,...,wn, 1 e., (.01 --(.0 l] z—m][t ]’ etc'

Let ti be the greatest value of t such that wt] € QG‘ (ti exists

since all segments are defined on closed intervals.)

Then t] is the first break point of the m.L.s. decomposition and
. . . . +
= wti]. Since QG is admissible, w [t' € Q

N ' > > i
ote that t1 > t1 0 since W,

= W and wy # A

1)

Let k be the integer such that t S t) < ter (k=2 in Figure 4.1.2.)

Now w[t, is a proper right segment of w and we proceed to find the
1

break point té and a maximal length segment wé of w[t,. Continuing in this
1
way we generate a sequence t!,t!l which must terminate since if

2,.n-

t, sth <t then t k’ etc.

2+1
Thus, there is an integer m < n such that wl’“Z""’“& is a m.%.s.

decomposition of w. By the Assertion 4.L1,it is unique.
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Figure 4.1.2 Initial segment of m.%.s. decomposition..
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4.2 Admissible Generators

There are morc transparent but also more stringent conditions that
guarantee admissibility.

4.2.1 Proposition: Consider the following conditions:

') (Prefiz property)

Wy € QG and wlwz € QG=> w, = A (no generator is a proper left

segment of another generator).
") No genérator is a proper left or right segment of any ther.
"N QG is closed under right segmentation.
) Q% is closed under both left and right segmentation.

Then ") => ') => Q_ is admissible and "") => "') => Q_ is admissible.

G G

Proof: Left as an exercise for the reader.

4,2.1 Corollary: For discrete time systems M = <X,Q,d> the input symbols

S are admissible generators.
Proof: {w|w:{1}+X} satisfies Proposition 4.2.1'.

4.2.2 Corollary: If Proposition 4.2.1' (the prefix property) holds then

if W1, Woyeee,W is a decomposition of w by QG it is the m.2.s. decomposition.
We now give some examples of admissible sets.
Example 1:  Step Function Inputs

Let a, denote a constant real valued function on a segment of length t,

at:[O,t] + R

a for all t' ¢ [0,t].

where at(t')

Then & = {at]teR,aeR} is an admissible set of generators and generates
the set
* - 1 n (n) -
= {at aly A" eeaty o In =1,2,3...}
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Note that the segments a_ can have arbitrary length hence that essential

t
use is being made of the continuous time base.

That QG is admissible follows from Proposition 4.2.1'".

Figure 4.2.1 shows three distinct decompositions of the same segment.
The decomposition in a) is the m.2&.s. decomposition. Note that there are
infinitely many decompositions but only one m.%.s. decomposition. For
this case of step functions the break points of the m.2.s. decomposition
are just the points at which step changes occur.

Example 2: Pulse inputs

The set 2. = {a_ 0 la#O,t #0} is admissible. This can be determined
G tl tz-tl 1

directly from the definition and does not follow from Proposition 4.2.1.
See Figure 4.2.2,

Counterexample 3:

The set Q. = {a_ 0_ . . |a#0,t.#0}J {a_ 0 b la,b#0} is not
G tl tz-tl 1 tl tz-tl ts—tz
admissible since a_ 0 b is the m.&.s. of a_ 0 b 0, , but
tl tz-tl t3-t2 tl tz-tl t3—t2 t4 t3
0t4_t3 £ QG. See Figure 4.2.3,

Example 3: Fixed Interval Inputs

Let 7 be any interval and let Qégjfﬁ i.e., % is any subset of the
set of all functions with domain T.

Then QG is an admissible generating set since Proposition 4,2.1' is
satisfied.

By Corollary 4.2.2, every decomposition is an m.%.s. decpmposition.

A well known special case is where QG consists of a single segment
w; then QE consists of finite length periodic functions. See Figure 4.2.4.

Example 4: Piecewise Continuous Functions

Let Q; = {w|w: [0,t] ~ R is a continuous function}. Then Q. = {slw is
(V]

a piecewise continuous function with a finite number of discontinuliles)

Soae
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0 Gll

(a)

t

fo i ' I 5
(b)

|

t

ot t3 i, 5
(c)

Figure 4.2.1 Three distinct decompositions of the same

segment. The m.2.s. decomposition is
shown in a), :



Figure 4.2.2 Generator shown in a) and
generated segment shown in b).



Figure 4.2.3 Adding generator shown in 4.2.3
destroys admissibility of generating
set.



VAVAN

Figure 4.2.4 Periodic input segments.,
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That Q. is admissible follows from Proposition 4,2,1"',
Note Example 1 is a special case of Example 4. Many other subsets

of the continuous functions lead to admissible generators.

4.3 Some Properties of Admissible Sets

We shall need the following results later on.

For any decomposition Wy sloyeee, 0 of w by QG let #(w) = n, the number
of generators used.

Let size(w) = n, where n is the number of generators used in the m.%.8.
decomposition of w by ¢

4.3.1 Assertion: size(w) = min{#(w)} where the minimization is over all

decompositions of w by QG.

Proof: Follows from the proof of Theorem 4.1, 2.
The following is a consequence of the fact that segmentation by maximal

length sequences is a '"causal" operation.

4,3.2 Lemma: Let QG be an admissible set.

+
a) If wi,wé,...,wa is a m.%.s. decomposition for w' € Q

G

is the first part of a m.%.s. decomposition for

then for any
W e 9, w',w!, w!

G’ "1°72°° """ n-1
wﬂw"e

b) Conversely, let Wy sWpyeee,B be a m.2.s. decomposition for w € Qé.

+ . . o »
For any left segment wt]e QG the m.%.s, decomposition of wt] is wl’“Z""?”&‘
< ' = .

where t <t <t . andw! wl[tm,t]

Proof: a) Refer to Figure 4.3.1

Clearly the maximal length segmentation of W, ] does not depend on
n-1

w'. [n=3 in the figure.]

The segment w_ = w[t

n ] however may be subsumed by a new m.Z%.s.

n-1’"n
segment when adjoining a left segment of w'",



H
€
‘V

Figure 4.3.1 t3' is the new break point after concatcnating w' with w'.
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b) Refer to Figure 4.3.2, Let m be the integer for which t St< tm+1;
The segmentation of e does not depend on w[t.
m-1
This gives wt]= W Wy s et 00

4.3.3 Proposition:

1 1
w! where u! = wl[tm,t]'

Let Q. be admissible and w € Q+.

G G
a) size(w) 21
b) size(w) =1<=>uw e QG
c) w=ww for wle" € QE => size(w) < size(w') + size(w")
d) w=ow'n for wle" € ﬂé => size(w') < size(m)

Proof: a) A # QG => size(w) > 1

G G
c¢) Refer to Figure 4.3.3.

b) For w € Q. such that w:[0,1] + X, m%X{wtlmt e .} =T,

Let w! wé,...,wé and w",wg,...,wa be m.%.s. decompositions of w'

1’ 1
and w" respectively; then w = wi,...,wé wg,...,wa; (p=4,q=3 in the Figure).
Lemma 4.3.2 a) tells us that wi,wi,...,wﬁ_l begins the m.%.s. decomposition
of w. Since wé € QG and w" € ﬂé, wéwg...wa € QE. Let ;1’;2""’;r be the
s 4 T " N ' = =
m.%.s. decomposition for wpwl...mq. Then wl,wz,...,wp_l Wyyees,0, is the

m.%.s. decomposition of w.
Thus size(w) = p-1+r. But by Assertion 4.3.1, r = size(mﬁwg...wa) < l4q.
So size(w) < p-1 + 1+q = p+q = size(w')+5129(m"). Thus part c) is proved

d) Note that size(w') = p = size(w)+l-r. Now by b) r = size(wé w'") z1.

4.3.2 Proposition:

Suppose Proposition 4,2,1°', the prefix property holds. Then if
wi,wé,...,wﬁ is a m.%.s. decomposition for w' and “Y-@gw'--»“; is a m.4.s.

decomposition for w" then mi,wé,...,wa,wg,...,w; is a m.%.s. decomposition



Figure 4.3.2 Since t,<t<tg, the m.L.s. decomposition process

does not alter the break points T, and .



=W —»le= W == @) —dle= = —— Y} —>— >

Figure 4.3.3 Size(w) < Size(w') + Size(w")
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 for w'w".

Proof: Immediate from the discussion of Proposition 4.3.3.

4.4 Constructive Specification

We shall want to define a one-segment transition function 8.:Q x 2~ Q

in such a way that it can consistently be extended to We proceed as

+
G
follows:

Given a set Q of segments, a segment u (not necessarily in Q) is a
right remnant if for some w € @, wy € Q.

A constructive specification is a structure G = <QG,Q,GG>

where QG is a set of generators

Q is a nonempty set (of states)

and GG:Q X Q. > Q is the one-segment transition function.

G

QG must satisfy the axioms:

C.1 Admissibility

QG is an admissible set of generators

C.2 Closure with respect to right remnants

¥ a right remnant w.r.t. QG =>u € QG

GG must satisfy the axiom:
C.3 Internal composition

For all w,w' € QG

ww' € QG => GG(q,ww') = GG(GG(q,m),w') for all q € Q.

Remark: If Qg has the prefix property then C.2 is vacuously satisfied since
there are no right remnants. .

On the other hand, if Q. is closed with respect to right segmentation
than C.2 is (more than) satisfied.

Remark: Although they look similar, C.l and C.2 are indepcndent axioms.
—
In tact one can show:
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4.4,1 Proposition:

Let 8 be closed under right remnants, ﬂG is admissible if, and only
if, QE is closed under right remnants.

Proof: Left for the reader.

Remark: Given a system S = <Q,Q,68> we can generate constructive specifications
as follows. Let Q. be any subset of Q which satisfies C.1 and C.2. Let
GG be § restricted to QG’ i.e,, set GG(q,w) = §(q,w) for all q € Q, w e QG’

Since § satisfies the composition axiom A,3, 6, will automatically satisfy
C.3. Actually, if S is derived from a DESS w1§h unxque solutions we need
only solve the differential equation for the segments in RG to obtaxn

GG satisfying C.3.

Example: Step Responses of Linear First Order Lag System

- Consider G = <QG,Q,GG>
where
a9 = {atlteR,asR}
Q=R
and
GG:Q X QG +Q
is given by - -
GG(q,at) = qe t/T+a-ae t/T.
Since QG is closed under right segmentation it is both admissible and
closed under right remnants., Since 6. is derived from a DESS with unique

G
solutions it is internally decomposable. Thus G is a constructive specification.

4,4,.1 Theorem:

Given a constructive specification G = <QG,Q,6 > we can associate

with it a system S = <9+,Q,6> where 6:Q x Q + Q is defined as follows:

G
For we @, q¢ Q §(q,w) = 5GCst)3
for w ¢ QE’ q €Q 8(q,w) = 6(66(q,m1),m2...wn))
where UTLYRRRIT R is the m.2.s. decomposition of w by Q..

Note that Wopligyeos,t is the mfz.s. decomposition for usz.mn.
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Proof: Since GG is assumed to be time invariant, 6 will be time invariant.

That GG is well-defined follows from the uniqueness of the m.%.s. decom-
position. Thus we need only show that the composition property obtains,
i.e., we must show that &(q,w'w") = 6(8(q,w")w") for all w',w" ¢ Qé. We

proceed by induction on max{size(w'), size(w"}}.

Basis: Max{size(w'), size(w")} = 1.
By'Proposition 4.3.2 a), b) size(w') = size(w") =1 and wlw" € QG.
Now by 4.3.2 ¢c) size(w'w") < size(w') + size(w")
< 2.
If size(w'w") = 1 then w'w" € QG (by 4.3.2 a)) and by the internal

composition of GG we have

§(q,w'w") SG(q,w'm")
6G (GG (q’w' ) ,w")

6(6(q,w'),w").

If size(w'w") = 2, refer to Figure 4.4.1.

Let m;$ be the m.%.s. decomposition for w'uw'" and let w = w'y, so that

bw = w"., Since w'm € Q. and w' € Q,, u is a right remnant and by C.1,

G G’
HE QG.
Now,
§(8(q,w'),w") = 85(8,(q,0"),u") CHEE
= 85 (85(q,0"),u0) [b" = no]

= 85(86(85(a,01),1),8) [uo e 0]

= 85 (85(q,u"w),0)) [w'h € 2]
= 85055 (a,@),u) [0'n = T]
= 8.(q,du) [@,0 € 2]

= 10
GG(q,w w“).
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For the induction step, assume §(q,w'w") = 6(8(q,wjw")) for

max{size(w'), size(w")} s n. Let w = w'w" where max{size(w'),size(w")} = n+l.

Refer to Figure 4.4,2,

Let wl,wz,...,wp be the m.%.s. decomposition for,w' where p s n+l,

Let Eb begin the m.%.s. decomposition for w, w" and let w be the associated

P

right segment, i.e., wpw" = Ebﬁ. By Prop. 4.3.3c, 1+size(3) € size(w")

size(w) ¢ size(w") < n+l,

Let mb = wpu; then since u is a right remnant u € Q

6(6(q,w'),u")

[}

é (6 (q)wlwz‘ . 'wp_lmp) :w"))
= G(G(G(Qowl-oomp_l):wp)sw"))

8(8(8(ayuy-eewy_1),0,),46))

6(5(5(Qow1'°°wp-1)'“p“)’;)
I CICRTRR R A )

= 6(6 (q.wlon .wp-lmp) ’;)

2 G(q,wl...wl')_lﬁpz{l:

= &(q,w'w").

[w' = W Woe e s p-lmp]’
[size(ml...m _1) s$n
and size(wp) = 1]

(o = w"]
| [wpv e ]
[35 = wpu]

[size(ml...wp_l) <n

‘and size (5‘) = 1]

The next to the last line relies on the easily proved Lemma: If

W1sW2see+pUy is the m.L.s. decomposition for w then for i € {1,2,...,n-1}

6(6(q,m1w2...wi)wi’1...wn) = §(q,w)



o ' bl W -
, M—/—L—>
< &-) 94‘&3—9

Figure 4.4.1 The case, size (w'w") = 2.



i
” w.' >‘< wu commm——
X -§<r¢upr><7ux>¢———— o ——>

Figure 4.4.2 The case, max{size(w'), size(w")} = n+l.
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V. MORPHISMS FOR CONSTRUCTIVELY SPECIFIED SYSTEMS

5.0 Definitions

With the foregoing definition of constructively specified systems,
we are ready to formulate a notion of simulation which retains the essential
character of the discrete time idea.
A function morphism from G = <QG,Q,5G> to G' = <Qé,Q',6é> is a pair
(g,h) where |
g:aL QE
h:Q1 + Q' (onto)
and i) Q1_§Q is closed under g(Q(';)
1) h@ya,8(")) = 8L M@,u")

for all w' € Qé, q € Ql'

v + . +
Remark: SG.Q X QG + Q is 6G extended to QG

Theorem 4.4.2. Actually, to determine whether ii) holds we need only

by the m.%.s. definition of

extend GG to segments in g(Qé). If g is "size preserving", i.e., g(Qé)SEQG

then GG need not be extended at all.

A function morphiem from S; to S} is a pair (2,7) such that

g: (%f >

G
EEQI > Q! (onto)

where i) Q€Q is closed under E((né)*)

and ii) h(6(q,g ")) = &' (h(q),w").
for all q € Qs w' € (Qé)+.
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Generalizing Theorem 3.2.1 we have:

5.0.1 Theorem: There is a function morphism from G to G' if, and only if,

there is a function morphism from SG to SG"

Proof: => Let (g,h) be a function morphism from G to G'. We donstruct
a function morphism (g,h) from SG to Sé as follows:
Seth = h

+

and define g:(23)" » o} by T

i

glop)glwy) vo glu)
where Wy alosens )@ is the m.%.s. decomposition of w ¢ QE.

First note that § is well defined because of the uniqueness of the
m.2.s. decomposition.

We use induction on size(w') to show that for all q € Q1

R(8(q,gw")) = &' (h(q),w").

Basis: size(w') =1 =>w' ¢ Q4. Thus g(w') = g(w) and the equality is

just that given.
Assume the equality holds for all w' such that size(w') = n.
Let size(w') = n+l, and let w',wé,...,wﬁ+l be the m.%.s. decomposition

for w'.

R(S(a,g 0]y . 0!, 1)) = B(8(q,8(w]...w)gw!,))) [definition of g]

1]

EIS(G(q,EIwi...wﬁ),g(w£+1))'[composition,of 81

8" (W(8(q,g(w].. 0i)),ul 1) [size(w] ;)=1]

= 6'(6(F(q),wi...wr'l),wn+l) [‘size(.w'l...w;l)=n]

6'(qu),wi...wﬁmﬁ+l) , [composition qf 6']
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That Qi is closed under g(Q')+ now follows readily from its assumed
closure under g(Qé).

This establishes the forward direction. The reverse direction is
immediate.
Remark: In the foregoing theorem g is not necessarily a semigroup homomorphism
of (Qé)+ to Qé. In general, we cannot expect g(ww') = EIw)EIm‘) since
the m.%.s. decomposition for ww' is not simply the concatenation of those

of w and w'.

For example, let Q = {at]tsR,aeR} and let g:Q, + Q. be defined for

some a,b,ceR where b # ¢ by

g(at) "-bt for t € [0,1]

ct fort>1

Then g(a 5,2 () = g(a; ;) = g(a; 1) = ¢ 4
while
ga Jgla ¢) = g(a gl ¢) =D b g =by

5.0.1 Proposition: EE(Q&)+ - QE is a homomorphism <=> g(uww') = g2@)gw")

for all w,w' € (Qé)+ such that ww' € Q

1
.

G
Proof: Entirely énalagous to that of Theorem 4.4.2.

5.0.1 Corollary: If Prefix Property holds for Qé,'g is a homomorphism.

5.0.2 Corollary: If the right and left segmentation closure holds then g

is a homomorphism <=> g(ww') = gw)g(w') for all w,w' € Qé such that
ww' € Qé.

We shall now give evidence of the applicability of these concepts by

considering some illustrative problems arising in modeling and simulation.
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5.1 Time and Amplitude Scaling for Continuous Time Systems

a) Time scale change

Let G = <QG,Q,GG> be specified as follows:
QG = {wlw is a real valued continuous function defined on a finite

closed interval}

Q=R
6G:Q'x QG + Q is given by
aG(q’wT]) =,¢(q’w)(T)
for all wT] € QG.
- o) =
Here (q,w)(o) q

and d
&i¢(q,w)(t) = f(@cq’w)(t),w(t)) for t ¢ dom w.

The underlying DESS, D = (QG,Q,f)‘is'assumed to have unique solutionms.

Since QG is closed under right segmentation C.l'and C.2 are satisfigd.

Also, since the underlying DESS has unique solutions we have C.3 satisfied
(see the Remark following Proposition 4.4.1) thus G is a constructive

specification.

Let G' = <Qé,Q,6é> bevspecified by

Qé = QG

Q' =R
6.:Q' x Q% + Q'
is given by G G
Gé(stT}) = Q'(q’w)(T)

for all wT]e QG'
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Here ¢'(q,w)(0) = q
and

1d ., et
sa? (q,w) (t) = £(¢ (q, ) (t),w(t)) for t e [0,1].

By the same argument, SG' is a system. Its rate of operation, however,

is ¢ times that of SG where ¢ is a positive real number.

5.1.1 Theorem:  (g,h) is a time local function morphism from G to G' where

h:Q + Q' is the identity map
and

oLl
g.QG - QG

iven b _
sy 800,71 = Bo,01)

where mto,or](t) = w[O’T](t/c) for t.e [0,01]

Proof: = Since in this case Ql = Q it is closed under g(Qé). And since h

is the identity map we need only show that for all q € Q, w[o 7] € Qé;
. )

G(Qag(w[O’T])) = 5'(Qaw[0’T])
Equivalently for all t e R,

i.e., 6(q’EEO,cT]) ) 6'(q‘w[0,T])

*@® O = ¥ g™
&T = o

i.e.,

where Tc(t) = ot for all t e R,

!

‘@m T Vg T

To show this we prove that @-Tc satisfies the differential equation

and

for o',
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p (9750 () ='% d%ot)Q(Ot); Qé%El

=%

1
o

o

Integrating the differential cquation satisfied by ¢'yields

o(t) = q + i f(e(t'),w(t"))dt!

0
. ) rot _
Thus oy LA JC £o(t"),a(t"))dt")
= f(¢(ot),w(ot))
= £(0°T_(1),0(t))
SO
%c%: (@-T ) (t) = £(0-T_(t),u(t)).
Also, ¢+T_(0) = ¢(0) = q
SO <I>.TO' => o'

by uniqueness of solutions.
Finally, since QG is closed under right and left segmentation it is

such that ww' € Q..

enough to show that g(ww') = glw)g(w') for all w,w' € & G

G.

But it is easily seen that ww' = w w' as required.

b) Amplitude Scale Change

5.1.2 Theorem: Let G, G' above be such that f'(q,x) = afz(q/a,b) for fixed

a,b ¢ R. Then (g,h) is a time local function morphism from G to G' where
h:Q + Q' and g:Qé - QG are given by

h(q) = aq

gw) = w/b
where w/b(t) = w(t)/b for all t ¢ dom w.

Proof: An exercize for the reader.

5.2 Sinulation of Continuous Time Systems by Discrete Time Systens

Let G = <QG,Q,GG>, G' = <Qé,Q',5é> be discrete and continucus time
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constructive specifications respectively. Let (g,h) be a functiqn morphism
from G to G'. -Theh g:Qé - QE.

Thus g is a mapping from functions with real domains into functions
with integer domains; i.e., g must encode a continuous wave into a discrete
one. Let @} = {w'|w':[0,7] ~ R}; then in general Q. must have the

G

cardinalitility of Qé if a function preserving relation is to hold.
Clearly this is impractical and it is interesting to examine cases
where QG need be no more numerous than the real numbers.

Example 1: Sampled Equispaced Step Functions (Figure 5.3.1)

D
]

¢={alaeRrl
{ala € R}

toJ
"

g:Qé > QG given by g(ah) = a

Example 2: Sampled Arbitrarily Spaced Step Functions (Figure 5.3.2)

Lo
]

{atlt e R,a ¢ R}

QO
n

{(a,t) |t € R,a € R}

g:Qé

> 9 given by g(a) = (a,t)
Example 3: Band and Time Limited Waves
Let {eili=1,2,...,n} be a finite set of functions ei:T + R. For

example {ei} might be a truncated Fourier series, Tchebychev polynomials,

etc.
‘Then,
n
Q) = {wjw= 2 c;e; for some c, e R, i=1,2,...,n}
i=1
QG = R
and g:Qé > Qé is given by

n
gw) = Cy€yeeeCy ifws= E c.e



Figure 5,3.1 Sampled Equispaced Step Functions

C Co
b g be
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b e
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. L | | ] — O < o ot -
O h 2h 3hdh h 1 23 4 5



b | (b,t st )
g
—_—
- c (@) - slets
— i 1 s
o t2 t3 O 1 2 2

Figure 5.3.2 Sampled Variable Spaced Step Functions
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This describes a common situation in specch generation wherc discrete
sequences of paramcters characterizing a speech wave form are fed to a

speech production device.

5.4 Realization of Discrete Time Systems by Continuous Time Systems

With the formalism developed it is possible to characterize explicitly
and simply the realization of discrete time systems by continuous time
systems. The following shows how a two-state, two-input sequential machine
may be realized by a set-reset flipflop with instantaneous feedback. The :
example may be readilylextended to arbitrary finite state sequential
machines and is presented as only one possible model for such realizations.

The flipflop will be modelled as a DESS D = (R,Q,f) where

Q= {atla e R,t € R}’
Q=RXxR
and
f:QxR~>Q
is given by
-q,-sgn(q,)+Z(sgn(q,),x)
f(!'ql]’x) - 1 v 1
[?2 T | -q,-sgn(q;)-Z(sgn(q;),X)
Here sgn(q) =1 if q 2 0
=-11if q <0

and Z:{1,-1} x R » {1,-1,0} is such that Z(x,0) = 0 for x ¢ {1,-1},
Figure 5.4.1 displays an analog model of this network.

It can be readily shown that D has unique solutions. Moreover, there
are positive numbers o and p (related to the system time constant t) such

that for any input of the form xoOp,



4
A4

Figure 5.4.1 A set-reset flip flop realization
of a two-state scquontiil wwching.
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a(ql.qz,xOOO) Op)(0+o)

% «
ql’qZ’ G

(Z(sgn(qy),x),-Z(sgn(q;),X)

Here x ¢ {1,-1}. 1In other words, the final state of the flipflop
after a pulse of width o followed by a p-length quiesceﬁce ig completely
determined by the polarities of the initial state and pulée. |

5.4.1 Theorem: Let G' = <{1,-1},{1,-1},8'> be a discrete time sequential

machine. There is a continuous time constructive specification G
such that G' is a time local function morphic image of G (i.e., G realizes
G')o
Proof: Let G = <QG,Q,6G> be obtained by extraction from'the flipflop
DESS above. Specifically, let

9 = {1dop,-1oop}
Q=RxR
and let

SG:Q X QG +Q

be defined by
86((a1,95),%,0) = (Z(sgn(q;),x),-2(sgn(q;),x))

Z(y,x) = 6'(y,x)

where

for all y,x ¢ {1,-1}.
Since QG has the prefix property C.1 and C.2 are satisfied and C.3
is vacuously satisfied.
For the function morphism (g,h) from G to G' let
g:{1,-1} » {1009,-1009} be given by g(x) = x,0 .
Let Q; = {(1,-1),(-1,1)} € R x R and define h:Q; ~ Q' by
h(y,-y) = y fory e {1,-1}.

The reader may verify that Q; is closed under {1Gop,-1dop},



41

Next for (y,-y) € Q1

h(8;((y,-y),e(x)))

h(8((r,-¥),%,0.))

= h(Z(sgn(y),x),-Z(sgn(y),x))

= Z(y,x)

= 8 (y,%)

= §'(h(y,-y),x).
Finally, since G' is a disérete time system g is extendable to a semigroup
homomorphism of {1,-1}" to'{loop,-lcop}+.

Remark: By expanding Q, to the set Q = {x_0 |x s'{l;-l},t1,t2 e R}

G tl tz-tl

one can study the degradation of the sequential machine realization when

badly timed pulses are used.
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