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Abstract.

Discrete Event System Specifications (DEVS) formalize the concepts
underlying discrete event simulation languages; More broadly, they
embody the fundamental constraint of digital computer simulation that a
model state can be updated only a finite number of times in a finite’
interval of time. This constraint, together with the fact that in the
cases of paramount interest, the computer is given a network, rather
than a global, system specification, limits the class of systems which
can be faithfully simulated by a digital computer. 1In this paper, we
formulate a notion of DEVS simulation and characterize the class of
systems simulateable in this manner. 1In a subsequenﬁ continuation study,
we shall show how the present formulation embodies both the above ment-
ioned constraints and leads to a network level characterization of digital
simulateability. The given characterization provides a canonical means
of discrete event model construction and an example, drawn from a large

scale simulation study is given to illustrate its applicability.






SYSTEMS SIMULATEABLE BY THE DIGITAL COMPUTER:

Part 1l: Discrete Event Representable Models

Introduction.

A fundamental constraint on digital computer simulation is that the
sequentially acting computer can update a model state only a finite number

of times in a finite interval of model time. .

Discrete time, including automaton, formalisms embody this' constraint
in the form of an assumed underlying fixed time step. Asynchronous model
formalisms relax the latter constraint, but do not explicitly represent the
computer's ability to control the time step size. Discrete event formalisms
(Zeigler, 1976) however, embody a continuous time base and formalize the
scheduling of model updates realizable by discrete event simulation languages
such as SIMSCRIPT, SIMULA, etc. The advantages of such formalisms in terms
of conceptual expression and computafionél efficiency have been previously
noted (Zeigler and Barto, 1977; Hogeweg, 1975; Babich et al, 1975). 1In
this paper, we initiate the characterization of systems simulateable by
discrete event models, which we take to represent the maximum capability of

digital simulation.

To do this, we must recognize that in the cases of paramount interest,
the computer is given only local descriptions and composes these to generate
global behavior. It is the combination of the finite update and local des-
cription constraints that limits the class of systems faithfully simulateable
by digital computer (Zeigler, 1976, Chapter 5). 1In the (present) first part

of this work, we formulate discrete event simulateability from a local peint



of view in such a way as to facilitate the more general netwerk charac-
terization to be given in Part 2. We rely.upon systen theoretic concepts
previously developed (Zeigler, 1976, Chapters 9 & 10). For convenienge,

these are briefly outlined in Appendices 1 and 3.

In particular, the notion of iterative system specification has
been defined in order to characterize the computer's ability to iteratively
generate a model's state and output trajectories, given & decomposition
of its received input segment into.a sequence -of finite length generators.
The discrete -event system specification (DEVS) was developed as a special
case of the iterative specification concept. Roughly, in a DEVS, external
events arrive according to the finite number per finite interval rule.
These cause. the scheduling and rescheduling of internal e€vents: which
effectuate jump-like state transitions. Between successive events,. no.

activity takes place.

Thus the natural DEVS input generators are finite length segmentis
consisting either of no events, or of one event arriving at the beginning

of the segment.

In this paper, we show that under a realistic encoding motien, the
DEVS gencrator sets canonically represent the full class of admissible
generating sets for iterative specification. The encoding of input time
functions into DEVS segments thus involves identifying event times (seg+
mentation points) and event names (characteristics of the enci@éed segmients) .
Moreover, the fact that admissibility is also showﬁ to be neceséary-forf
DEVS encodability, reduces the study of DEVS simulation of arbitrary

systems to that of DEVS simulation of iteratively specifiagbhle systems.



We then proceed to define an appropriate morphism for DEVS
simulation and characterize the class of iterative specifications
gimulateable in this way. Besides giving the necessafy and sufficient
conditions for DEVS simulateability, this characterization.has as a practical
side effect, a canonical procedure for constructing discrete event models

for systems satisfying the prerequisite conditions.

The efficacy of this approach was demonstrated in the design of a
spatially structured ecosystem model (Zeigler, 1977) whose running time
~efficiency brought the study of such systems well within feasible limits
(this feasibility contrasts strongly with the simulation time requirements
of tge original system of differential equations). An example drawn from

this simulation model is given here.

The DEVS simulator keeps track of a model's state, but can update it
at only external and internal event times. Internal events are scheduled
according to predicted boundary crossing of model state ﬁrajectories.
Necssary conditions for DEVS simulateability are thus shown to require
autonomous operation of the model between successive external events and

the existence of a partitioning of its state space which enables admissible

segmentation of the state trajectories.

Realistic restrictions on DEVS simulation over and above the essential
finite update constraint, are paralleled in corresponding restrictions on the
DEVS simulateable systems. But the basic principles for converting models

to DEVS form are shown to remain unchanged.

It is of theoretical interest to point out non DEVS simulateable
systems since these establish inherent limitations on digital simulation.

While we have not been able to construct such counter-examples in the
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unrestricted case, we do show here that the integrator (perhaps the

most simple continuous system) is not gimulateable by finite dimensional
discrete event systems. This is a satisfying result in not contradicting
the basic presupposition underlying all numerical methods of differential
equation solution, byt the inability to extend this result to the un-
restricted DEVS case remains a puzzle. It should be noted that non-DEVS
simulateability of the integrator does not imply the same is true for
differential equation systems, which are integrators connected by

instantaneous -functions.

As indicated, the present treatment deals with DEVS simulation at
the system level. The internal-external event distinction which we make
here is however, crucial to the characterization of DEVS simulation at
the network level. At this level, the constraint on local description
of models for computer simulation may be formulated, as will be shown

in Part 2, (Zeigler, In Preparation).



We develop examples of admissibly generated sets which will be useful

in the sequel.

1. Discrete Event Segments {

DEVS

See Appendix 1.

2. Cover Generated Segments

Let { < (X,T) be a semigroup closed under right and left segmentation.
A cover of X 1is a family 7 of blocks (subsets) whose union is X ; 7

is a finite intersection cover if every subset of every block of 1w is

contained in at most a finite number of blocks of

By range (;) we shall mean the set {w(t)/0 <t <2(w)} . For each

subset B of w , define

FB = {w/w € @ , range (w) < B}

i.e., FB is the set of segments w of § , whose values at points in the

interior of dom(w) lie in B . Let rﬂ be the union of the T BE 7

B’

Proposition 1.

F" admissibly generates F“+

Proof. Let 0 =W W W each W, € FTT . Thenbrange (Ei) is included

oree

in at least one B in w . By the finite intersection property, range (Ji)

is included in at most a finite number of sets B ..B in w® . For each

1’ m

i=1,...,m , we claim t*(Bi)==max{t/range (E¥>) S‘Bi} exists. To see this

let s, <s_<s_<... be a sequence with sl==2(m ) such that either

1

a ; e j o, =S, =S, LT .., t>s. does range
1)  for some sJ Sj+l sJ+2 and for no s] g

(wt>) < Bi , Or

b) for all j , s,  _>s. , and range (u ) © B.
J+l ] Sj"i'1> - 1



If a) holds, then Sj =t*(Bi) . Otherwise b) holds and we have a strictly
increasing sequence in a finite interval, dom{w),which must accumulate to

some s from below. We claim s=_2.u.b.{t/range (ZJ ) @B} since for

> - !
t>s , ranqé,(:)-t>) E‘Bi’ [s ig an upper bound on the sequence in b)] and

for t<s' , there is some: t, >t in the sequence, so that

k
w c e (0 < . i w ‘ » is
range (wt$) C range (wtff) c Bi Now 1f range (ws>) E-Bi then there i
some t , 0O0<t<g , such that w(t) € B’i . But then there:is a t' ,
t<t'<s ,.such that range‘(&é,)) E;Bi . a contradiction. Thus t*(Bi)=EL
Now it is easy to show that max{t/wt> € I‘ﬂ} = max {t*(Bi)} . More~

i=1l,...,m

over, I‘Tr is closed under right segmentation, so the conditions of Theorem 1,

Appendix 1, sufficient for admissibility, are satisfied.

+ ) .
Denote Qn==Fn . Then Q"=={w € Qi there exists a finite set

{tl,...,tn} , O=tl<t2.,.tn_'l‘<tn=2(w) , such that for i=1,...,n ,

there is a Bi € m for which w(t) € Bi for ti<'t< t2} . Segments in
Qﬂ are said to be Tm-generated. These trajectories have the property that
they remain in blocks of 1m for non zero durations. A non T7-generated
segment, on the other hand, is infinitely oscillating with respect to

in the sense that for each B € 1 there:is a convergent sequence tl,t t

2073000

such that: m(ti) is not in B for all i , or m(ti) is alternately in B

and not in B

Example. Let (X,T) be (R,R) (R denotes the reals). Let

..b . <b

-2 “bo b

21 1< b,... be a countable sequence of "threshold" or

"quantization" levels. Let 7 be the cover whose blocks are Bi==[bi,bi+l]

(where if the series terminates on the left at bl then B 1= («n,bl] ’

L=

and similarly, for the right). Let @ be the piecewise continuous bounded



segments which are finitely oscillating in the sense that for each
x € range (w) w_l(x) consists of a finite number of isolated points

and/or intervals. Then QW=52

Note that Fn has been defined in reference to a semigroup Q . If

we denote this situation by FN(Q) , then FF(Q) =Fﬁ(X,T) nea .

3. Polynomial and Analytic Generated Segments

For (X,T)=(R,R) , let I be the set of all finite degree polynomials.
Then F+ are the piecewise polynomial segments. Let Cm be the segments
which are differentiable at least to order m , and let Fm==Cm n F+.
Then r* s FO ) Fl = Fz...D r_=T 1is a strictly decreasing chain of admissible
generating set for F+ . Break points in a mgs decomposition by Fm are
points at which polynomial segments of finite degree are patched
together, so that at most the first m~1 derivatives agree. Thus "eyents"

for decomposition by PO are jumps in the function value; by T these are

1
jumps in either function value or in derivative, etc.

Now let T Dbe the set of segments analytic on their domains. Then F+
is the set of piecewise analytic segments; w , 4 and wp € I' implies that
p  is the unique extension of m to <f(w),2(w)+2{u)> and the breakpoints
of a decomposition by TI' are points at which analytic continuation is

impossible. (See Veech, 1967, Chapter 1.)



DEVS_ENCODABILITY OF SEGMENTS
From now on, all segment sets will bevassumed to be closed undsr (right
and left) segmentation.

Let g:Q"'"+Q be an encoding. To avoid triviality, we will require

that g be nto in what follows.

Let QG admissibly generate { . We say that g preserves right

segmentation at-breakpoints if whenever s is the first breakpoint in the

amarch t(g)! T IW g

mls decomposition of glw) then gl(w
By induction on the size of g(w) , ‘it can be seen that the above

property holds for all breakpoints of g(w) if it holds for the first.

We say the g 1is simple if it is invertable and preserves right segment-

ation at breakpoints.

In Appendix 2 we show that under reasonable conditions, invertability
and homomorphism. implies' simplicity, -but the converse is not true. This is
important to note since most of the useful'encodings are not homowmorphisms

but yet tale the weaker form of simplicity.

The following proposition shows that for a segment set to be simply
encodable by an admissibly generated set, it must itself be admissibly

generated.

Proposition 2.

Let. g:2" EiEElSO.Q and let QG admissibly generate §: . Then
T = g—l(QG) admissibly generates Q' . Moreover, if QG is a nontrivial

generating set, so is T
Proof:

Let w € Q' and gl{w) € @ . Let the breakpoints of the mls decompositic
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of g(w) be {tl,t t } . If this set is empty then g(w) € QG

2" "n

so w €T . So assume it is not empty. We show that the set

..l -
{MATCH (tl),...,MATCH 1(tn)} forms the breakpoints for a mls decomposition

of w by T . First, 1 € Q' by left segmentation closure.

“MATCH (t)>

By Lemma A.2, g(mMATCH_l(tl)> = g(w)tl> . Since tl is an mls
breakpoint , g(w)tl> € QG and so wMATCH-l(t1)>E ' . For t:>MATCH‘l(tl).,f
MATCH(t) > t1 (monotonic property) and since wMATCHml(tl)> is a léft
~segment of we, oo we have g(m)tl> is a left segment of g(w)MATCH(t)>
(Lemma A.2). If o, €T , then gl(w) € Q, and t is not an

t> MATCH (t)> G 1

‘mls breakpoint as assumed. Thus MATCH-l(tl) will be the first mls break-

point in the decomposition of w by T provided we can show that such a

decomposition exists. (Note that t1 <2{g(w)) so MATCth(tl) <2{w) and

wMATCH—l(tl)> 1s a proper left segment of w , thus ' is nontrivial if

. P . - ' 1

QG is nontrivial and g is onto.) But 9 MATCH l(tl) € Q' by right
segmentation closure, and g(w<MATCH—1(tl)) = g(w)<t1 since g 1s simple.
We continue the induction for i=2,...,n~1 , in this way, substituting

and bg(w)<t for w and g(w) respectively, thus obtaiping
i

-1
Y MATCH (t,)
-1 . . .
MATCH {tl,...,tn} as breakpoints in the mls decomposition of w by T

Q.E.D.
Applying this result to the case of DEVS segments yields
Theorem 3.
Let g:Q'->Q be a simple encoding. Then T = g_l(F } non-
DEVS DEVS

trivially admissbly generates Q' , and w € T'=g(w) X where

X = g(wt>)(0) for all t € (0,%w)) and T = MATCH(Z (w))

-1
, we have that T =g (T )

Since T admissibly generates DEVS

)
DEVS



admissibly generates Q' by Proposition 2. 10.

Now for w € I' , g(w) = xT € Fx ur . Since g 1is invertable

T = MATCH (2 (w)) , and also g(w ) = glw)

£> (xT)

MATCH (t)> MATCH (t) >~ *MaTCH (t

0.E.D.
The theorem indicates that in a simple encoding into DEVS segments,
the code of a generator w 1is determined by its initial portion no matter
how small we take that portion to be. This leads us to define the relation

on ' , where

5
= 1 ' = f
O = W e 3 t>0) (mt> wt>)
0
which turns out to be an equivalence relation. (Reflexivity and symmetry
are obvious. For transitivity, note that w, = w' and  w' = "
> t> > >
. . o o
implies W, =0l where o = min{t,1} .)
Called the initial segment relation, = partitions segments into equival:
0

classes, each sharing a common initial segment in the limit of small t .
In Appendix 3, we consideér the characterization of this fundamental relation
for interesting segment sets and note the striking connection to analytic

functions.

The degree of coarseness which 5 imposes on a set of generators T
determines a lower bound of information which must be lost in encoding T

into DEVS segments. This 1is evident in the following corollary of Theorem 3.

Corollary 4.

5 EiﬂElE» Define = on § b w = w' e glw=glw")
Let g:Q QDEVSv . 3 , by
. - - ' . — '
Define f on § by w oig w' e (3 t:»o)(q(wt>)(o) q(wt><0))
Then for w , w' € q—l(F )
! DEVS
- 1 - o 1
a W wesy = w' and L{w) = L(w")
g 0.9
b. = =n =
w 5 w 0>
C. Z and r are equivalence relations on g (TDEVS)
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Proof.

Directly from Theorem 3.

0.E.D.

The equivalence relation 059 partitions the generators of Q
!
into classes of segments which are assigned to the same event, so call it

the event relation. The corollary states that £ refines Eg , i.e.,
—_— 0 O

all segments in a block of the initial segment partition are coded as the

same event.
We now show that this refinement is also sufficient for encodability.
Theorem 5.

Let Q@ be admissibly generated by I' . Let = be an equivalence

relation on T refined by

Ottt

Then there is a simple encodlgg ng_*QDEVS(X) where X=[/% , and
g 1is the extension to Q of gzr‘}FDEVS(X) where gf(w)==xT and
x = [w] and T = 2{w) . Call this the standard encoding

Proof.

That ¢ preserves left segmentation is shown by noting that if w is

a left segment of w' , then w w' and so by hypothesis w = w' 1i.e.,

0
[wl = [w'] . Since also 2(w) £2(w') we have g(w) 1is a left segment of
#g(w') . Preservation of left segmentation by ¢ extends to that of g by

induction on the size of w

N

Invertability of g then follows readily from the fact that

2(g(w)) = 2 (w)

To show that g preserves right segmentation at breakpoints, note that

for g(w) = g(wl)...g(wn) we have that g(ml),._.g(mn> is the mls decomposition
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of g(w) (since the range of ¢ does not include T ). Thus

o
Z(g(ml)f=72(w1)) ig the first breakpoint-and q(w)<2(w1) = gxwz)...g&mn) =
gluye--0p ) = g(wd(wl)‘) :

Q.EuD.

Combining Theorems 3 and 5 gives

Theorem 6 (Characterization of Simple DEVS Encodability)

A segment set  is simply encodable onto DEVS segments if, and only

if, it has .a nontrivial admisgsible generating set.
Proof

To encode we may always- use the inital segment equivalence relation as =

in Theorem 5.

Q.E.D.

We interpret the above results intuitively as follows:

Let @ be the input segment set for a system. We wish to decompose any

given w € @ into segments w.,w RN such that the switching from- wi

1'72
to W1 represents as "event". The criterion for segmentation is that of
obtaining maximal length segments relative to some generator set I' . This

determines the event times (breakpointsof the mls decomposition). The event
names are determined by the initial segments just following each event: time.
Subject to certain constraints (T must be.admissible, and the. event naming
relation. Z must be refined by the initial segment rélation 8 on TV, we

have freedom of choice in the parameters, T andv Z , of the event identific

process.
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SYSTEM STIMULATION BY DISCRETE EVENT MODELS

We wish to characterize the class of systems simulateable by discrete
event systems. We start at the system level, and in Part 2, will apply the
results to the network level formulation of the problem. In Appendix 4, we
show that it is enough to consider the simulation of iterative specifications
by discrete event specifications. We modify slightly the notion of iterative
specification given by Zeigler (1976), (Appendix 3), by replacing the output
set and function by the more general notion of finite intersection cover of

Q@ . This will enable us to more easily deal later with the network case.

An iterative specification G = <T,X,QG,Q,Y,6,W> is DEVS-like

if the following hold:

1. Autonomy between external events:

For all u,u € QG r 9 €0

w I p o= 6(q,wt>) = G(q,ut>) for all t<min{f(w),2(y)}

O it

2. State trajectories are g-generated.

For all w € QG ;r 9 € 0Q
STRAJ " € F:
where Fﬂ = FN(Q,T) .
Condition 1) requires that the system respond indifferently to
generators belonging to the same event class. Roughly, between external
events, the system is insensitive to its input, i.e., functions autonomously,

conditioned only by the nature of the last external event. Thus we shall also

refer to a class [w] of QG/E as an input regime.
0

Condition 2) requires that state trajectories be mls decomposable into

generators determined by n . This requires a finite number of events -
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roughly crnssings of block boundaries - be identifiable in a finite

length state trajectory.

Remark.

Let: the iterative specification induced by DEVS M = <XMJS,ﬂ,%> be

G(M) = <T,X%,T /Q ,8 ,m > where T,X,0

DEVS(X) ™M' ' G" M are defined as

DEVS(X)'QM'GG

in Appendix 3, and T is the-:partition defined by

(s,e) “M (s',e')e=g=g"

for all (s,e),(s,e') € QM
It is readily checked that G(M) 1is DEVS-like.

Let G be an iterative specification and M a DEVS. A pair (g,h)

is a DEVS morphism from G(M) to G if

+
a) g extends to a simple encoding of" QC to

DEVS (X) -

b) (g,h) 1is. a . specification morphism from G(M) to G- (See.Appéndix 3

c) States of M represent block of 7.

For every s € S there is a B, € m such that h(s,e) €iBS for

0<e<%(s)

We say that an iterative specification- G is DEVS simuldteable if

there is a DEVS M and a DEVS morphism:from- G{(M) to G .

We shall prove that the class of DEVS simulateable systems is ‘precisely
the class. of DEVS~like systems. To do:so we shall show how to construct

a DEVS simulation for an. iterative specification with DEVS-like properties.

In what follows;, we shall assume that there is no upper bound on the
lengths of segments any class [w] of QG/E . The case where this is mnot
0

true involves no new principles but is notationally messy. More specifically,

) - ) , +
we define for each class: [w] a representative w - with domain- T =~ such that
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for each t , B£> € [w] and assume w 1is well defined.

Given a DEVS-like specification construct a DEVS M called the

standard simulator of G as follows:

M = <X,S'ﬁ’t> 'l)
where X = QG/S '

S=0Qx X , 2)
%:S—%R; is defined for (q,[w}) € s by

t(q, [w)) = max{tlé(q,wt>) €T} ...3)
-(the first breakpoint in the mls decomposition of STRAJ o )

8=QM x (XU {Q})~»s
is defined for (q,[w]) € S by
and for (q,([w],e) € QM and [u] € X by

fla,lwl e, tul) = (g ), ) ...5)

Let us interpret the elements of the standard simulator.

The external event set X is the set of "events" determined by the
initial segment relation; a typical "event" is an equivalence class (or its

name) f[w] € 8 /= (line 1 ).
G o

The sequential state set S consists of all pairs (g, [w]) where
q 1s a state of G the simulated model G and [w] is an externai event.
The pair (q,[w]) will be employed by the standard simulator to keep tréck
of the state of G , q at the time of the last change in regime and the

current regime {w] (line 2 ). Thus M "knows" the state of G and its
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input regime at all times.

The time advance function determines: for each sequential state
(q, [w]) the time until the next internal event; +4(q,[w]) is the time
it would take the system G to reach a 1© block boundary from state gq

operating under input regime [w] (line 3 ).

The internal event transition function determines for each sequential
state (g, [w]) the sequential state pertaining just after the next internal
event: the new remembered is the state (on a T block
boundary) G would have reached from state g in time #(g,[w]) under
input regime [w] , the new remembered regime is that which would be seen

by G when reaching this boundary (line 4 ).

The external event transition function determines for each sequential
state (g, [w]) and elapsed time e , O0<e<%(q,[w]) , the sequential
state pertaining just after a change in regimes to [p}] occurs after
having been in regime [w] a time e : the new remembered state
is the state G would have reached in these circumstances and the new

remembered event is just [V]

We shall now show that the standard simulator is well defined and

simulates G

Proposition 7.

The standard simulation M of a DEVS-like specificatiom G 1is &
legitimate DEVS . Moreover, there is DEVS morphism from G(M) to G .

Proof

~ = , +
Define STRAJ — also denoted §(q,w) with domain TO by

P W

STRAJ —(t) = 6(q,w) () =
q,w

’
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14

Then STRAJq = represents the state trajectory associated with state
g € QO under input regime [w] . This is so, since‘fof any t>0 and

® and

any w' € [w] of length greater or equal to t , we have w 6 >

by autonomy (condition 1)) 6(q,wt>) = 6(q,wt>) .

Since state trajectories are m-generated (condition 2)), STRAJq "
14
has a mls decomposition by T (Proposition 1) and its first breakpoint
m .

is thus well defined and identical to the definition of %(q,[w];é is

now easily seen to be well defined.

Now define a mapping h:gh-+Q by

q if e=0
hiq, [w},e) = { _
6(q,we>) otherwise
for all (q,[wl,e) € QM . We shall presently employ h as the state
mapping in the DEVS simulation of G . For this we require the following
Lemma 7

The standard simulator M is legitimate. Moreover, for w € QG 9 €9Q
h 6 14 7 2 = ’
( G(q [w],0 ¢Q(m)) §{q,w)

where § is the single segment transition function

¢ " “ppvs (x) T

belonging to the iterative specification G(M)

Proof

The proof proceeds by induction on the length of the mls decomposition

of state trajectories by Fﬂ . The proposition for interger n is

P(n) = [('Vq € Q)(Vw € QG)(the mls decomposition of STRAJq N by

Fﬂ has length n = = n and

mq,[m],O,Z(m)

h(dG(q,{m],O,¢l(w)) = §(q,w) J
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Here is the step counting function (Appendix 3). Showing

mq,[w],O,l(w)
that P(n) is true for all n amounts to proving the lemma.

The proof of P(0) and P(n) = P(n+l) is a straightforward use of
the explicit definition of GG (ibid) and the fact that if w.,...,w

1 n+l

is an mls decomposition of length n+l , then w

2,.,.,wn is an mls

decomposition of length n

Q.E.D.

Now define a candidate morphism (4,h) from G(M) to G where h
is as just defined and ¢ is standard encoding of G to DEVS (X) given
by
g (w) = xT where x = [w] and T = £(w)
+
. 5 ] simple e i Q Q
Then by Theorem , ¢4 extends to a simple encoding of G to DEVS (X)

Thus condition a) of the requirement for DEVS morphism is satisfied. For

the specification morphism of condition b), we have for (g, lu),e) € @ ,

M
and w € QG
h(GG(q’ [ul rel»g (w))
= h(GG(q,[u],e,[w]Q(w))) (definition of ¢ )
= h(GG(S(q,[u],e,[w],0,¢£(w))) {definition of GG

= h(csGuS(q,Ee)).,.[m],o-,qbZ (definition of &)

W)’
= §(5(q,u _),w) (lemma. 7)

e~

= §(h(qg, [ul,e),w) (definition of h )

as required for specification morphism.

For condition c¢) requiring states of M to represent blocks of = ,
we have that for every (q,[w]) € S and 0<e<s%(q,[wl)

hig, lwl,e) = 8(q,u_)

But by definition of <+(q,[w]) , there is a.block B of 7 such that
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§(qw ) €B for 0<e<t(q,[w]) (by definition of mls decomposition by

e,

Fﬂ , ®(glw]) 1is the maximum T for which there is a block B such

that STRAJq 5 is in B during (0,t) ).

Thus (g,h) 1is a DEVS morphism from the legitimate simulator M to
G as claimed in the theorem.

0.E.D.

We now show that the necessary condition for DEVS simulateability is

DEVS~likeness.

Proposition 8

Let (g,h) be a DEVS morphism from a DEVS specification G(M) tao an

iterative specification G . Then G 1is DEVS-like.
Proof
We shall need the following more general observation:

Lemma 9

Let (g4,h) be a specification morphism from G to G . Then for

11 ' € Q
a w,u G

w = 8(g,w) = 6§(q,u) for all g € Q

g

Proof
Let w ; R (i.e., dw) = 4W)

Since h is onto, for each q € Q@ , there is a E € 5. such that h(E§==q.

Then

it

§(h(q),w) = h(§(q,4(w))

h(8(q,dM))

= §(h(q),u)

Q.E.D.
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¢4 of a DEVS morphism extends to a simple encoding, we have

Since
= E L. = §{u) and
from Corollary 4 that u 3 P o w orq ¢ and (w) !
w I u=w = U . Thus we have from the lemma 7
0 09
wZ ¥ and 2w = () = 8lq,w) = d(qmw

O i

or equivalently

= S(q,ut>) for t<min{f(w),2(u)}

w I M »é(q,mD)

0
W tle) = R D)

t
v
[@R1}]
-+
\"4

Thus the autonomy condition (1) of DEVS-likeness is satisfied.

Since h 1is onto, for any q € Q , there is (s,e) € QM such that
h{s,e) = g . Since the DEVS M is DEVS-like, any state trajectory
STRAJ is 7. ~generated (by the Remark following the DEVS-like
s,e, 4 (w) M
definition). STRAJ_ 4 (w) is thus a composition of finite number of segments
AN

such that each segment is characterized by a constant s and e ,
O<eg<&(s) . Since by conditions a) and b) of the DEVS morphism, ¢

is an invertable, it is readily shown that STRAJ is a composition

h(s,e) ,w
of a finite number of segments, each being pointwise mappings under h of
the constant s segments (domains being matched up by the MATCH function
induced by ¢4 ). (Appendix 3). By condition «c¢) of DEVS morphism, each
such segment maps to a generator in I' | Thus STRAJ is composed of
ki h(s,e) ,w
a finite number of segments from F“ , i.e., is m-generated. Since this is
true for all possible pairs q € Q , w € QG , condition 2) for the DEVS-

likeness is established.

Q.E.D.
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Summarizing Propositions 6 and 8.
Theorem 9 (Characterization of DEVS simulateable systems)

An iterative specification G is DEVS simulateable if, and only if,

it is DEVS-like.
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REALISTIC DEVS SIMULATION

Until now, our characterization of computer simulateability has only
encorporated the "finite number of computation instants in a finite
interval" constraint. This is because the DEVS concept formalizes
precisely this, and only this, notion. Various constraints c¢an be im-
posed on the DEVS structure and on the DEVS morphism which reflect further
"realistic" limitations on computer simulation. We shall discuss two

possibilites involving finite dimensional and finite state censtraints.

The finite dimension restriction requires that all spaces employed
in the simulation be finite dimensional. Many simulation models constructed
independently of discrete event theory satisfy this restriction and their
representation b; DEVS would also be finite dimensional. The finite
state constrainf requires that all spaces, except that of the clock, be
finite. This can be viewed as a further restriction on the finite

dimensional class.

The effect of these constraints is to narrow the class of simulateable
systems in an easily understood manner. In fact, we can modify the
definition of DEVS-like systems accordingly and maintain the equivalence

of the two concepts.

We shall be able to point out limitations in DEVS simulateability when
the above finiteness conditions are applied. 1In contrast, in the unrestricted

case, we have not been able to construct examples of non-simulateable systems.
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FINITE DIMENSION DEVS SIMULATION

A DEVS M = <X,S5,%,6> 1s finite dimensional if the external event

set X and sequential state set S are finite dimensional linear spaces.

We convert @ into a linear space by pointwise addition, treating

DEVS (X)

¢ as zero in the obvious way.

An iterative specification G is finite dimension DEVS simulateable

if there is a finite dimensional DEVS M and a DEVS morphism (g4,h) from

G(M) to G for which ¢ 1is a linear map (this presumes QG is a linear

space) .

An iterative specification G = <T,X,QG,Q,6,“> is finite dimension

DEVS-like if:

1. Autonomy with respect to an equivalence on QG
There is a finite dimensional linear equivalence I on QG (i.e.,

QG/E is a finite dimensional linear space) such that for all w,d € QG '

q€o9Q

=
3
€
1
g =

= 5(q,wt>) = 6(q,ut>) for all t<min{2(w),2 ()}

Qi

(In particular, refines = and QG/E is a factor space of QC/E ).

0 0

and

2. State trajectories are m-generated (unchanged from DEVS-like definition).
Theorem 10 (Characterization of finite dimension DEVS simulateability).

An iterative specification is finite dimension DEVS simulateable if,

and only if, it is finite dimension DEVS-like.

Proof (=)

Let (4,h) be a DEVS morphism from M = <X,S,§,4> to G . As in
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Proposition 8, we find that for all w,u € QG ,

Wigig M0 g Mo - Slauw,) = Slan,)
for all tgmin{g(w)e(w)} and gq € Q and also since % is linear, so
is Oéﬁ: . Thus the autonomy condition 1 1is satisfied with = ‘taken
to be = , noting that § / = is isomorphic to X
0,4 G 0,

Let G be finite dimension DEVS~like. We construct the standard
simulator M employing = instead of % . "Thus X = QG/E is finite
dimensional and S = Q x X is.finite dimensional, as required. We define
a candidate morphism' (g,h) as in Proposition &, except that ¢ is
defined using = rather than % . Since 2 is linear, it is easily

shown: that ¢ is linear. All other aspects of the proof that (g,h)

a DEVS morphism: remain unchanged. ,
0.E.D.

We can demonstrate that there are systems which are not finite
dimensional DEVS simulateable although the same question for unrestricted

DEVS simulateability remains open.

Say that a system S = <T,X,Q,9,8,7> is (finite dimensiocon)

simulateable if there is a (finite. dimensional) DEVS' M and a system

morphism (g,h) from SG(M) to S such that g 1is a simple (linear)

encoding.
Theorem 11

There are systems which are not finite dimension DEVS simulateable.

In particular, the integrator is not finite dimension DEVS simulateable.

Proof

Let S be finite dimension simulateable via morphism (g,h) . Then

there is an iterative specification’ G of S is DEVS simulateable (Theorem A0,
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Appendix 4).
I . .
The generator set QG =g (PDEVS) is a linear subspace of 0 (since
FDEVS is a linear subspace of QDEVS amd g 1is linear). Moreover, the

restriction o = g/QG is linear. Thus if S 1is finite dimension DEVS

simulateable, so is G finite dimensional DEVS simulateable. By Theorem 10,

there is a finite dimensional equivalence = on QG which is refined

by 8 - In particular, if Q is the set of piecewise analyti¢ segments,

then by Theorem A.5 of Appendix 5, = is infinite dimensional on Q
) G

O

=To) 5 strictly refines = . Thus there is an w € QG such that w is
analytic and not identically zero, i.e. w Z0 , for which w = 0 By
z .

autonomy it is also necessary that for all q € Q , ﬁ(q,wt ) = 6{q,0 )
> ’ t>

for all t<%(w) . In particular, if S represents an integrator, then

t
6(q,wt>) = q + fw(t')dt' . If w . is analytic and not identically zero, then
: 0
t .
fw(t')dt' is also no zero for all t <dom{(w) . But 6(0,0t>) is
O .

1]

5(O,wt>)

clearly always zero, thus yielding a contradiction.

Since piecewise analytic implies piecewise continuous, the same conclusion

applies in the case that  1is piecewise continuous.

Q.E.D.

Remark

The integrator is unrestricted DEVS simulateable for the choice = the
piecewise (finite degree) polynomial segments, and T = any guantizatjion
cover (Example 1). To see this take as admissible generator set, the

is the identity. The autonomy condition

i

polynomial segments, on which
for DEVS-likeness is thus easily satisfied. Moreover, the finite degree
polynomial segments and their integrals are finitely oscillatory, so

n-generability of the integrator's state trajectories is also satisfied

(Example, Section 2).
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More surprising, perhaps, is that the integrator with piecewise
continuous segments as. input may be "arbitrarily closely simulated" by
a DEVS. By the Weierstrass Approximation Theorem, every
continuousfﬁnctionon a finite interval can be appfoximated arbitrarily

closely by a finite degree polynomial. Choose as admissible generators

the continuous segments, and let gl(w) = xl(m) where x = [approxe(int(w)]o
, t
where intfy) (t) = Jﬁw(t')dt' and ‘approxa(w) is a polynomial
0
approximating  with maximum-error e . The DEVS in this. case updates

its memory of the integrator state by evaluating the polynomial named by
x (a finite list of coefficients) at external event times, and internal event
times (state trajectory boundary crossings predeterminable in principle as a z
crossing problem). The error in state trajectory simulation.is at most

ne where n 1is the number of discontinuities in the input segment.

The reader is invited to provide the details of simulation.



FINTTE STATE DEVS SIMULATION

An obvious finiteness restriction on a DEVS M = <X,S,t,& is to
require that the sets X and S be finite. This turns out not to be
"architecturally” satiéfying since it forces quantization of the elapsed
time clock (see Appendix 5). We shall work with a weaker and useful
restriction based on the possibility of adjoining a "time-left" component

to a finite state space.

A DEVS M is explicit form (Zeigler, 1976, p.245), if there is

a set S and a function T:gl*R: such that
S ={(s,0)]s€s, 0s0¢T(s)}

and such that
t(s,0) =0 for all (E}U) € S

The situation (s,g) can be interpreted as indicating that there is a
time ¢ left for the system to remain in state s . T(s) is the maximum
such time such time (T(s) =» will cause the system to wait until an

external event occurs before leaving state s ).

A DEVS in explicit form is finite if the sets X and S are finite.

Every DEVS can be DEVS simulated by an explicit form equivalent
(obvious). This holds for finite DEVS and finite explicit form DEVS
as well. But the state spaceof a (nontrivial) finite explicit form
DEVS is infinite, in contrast to that of a finite DEVS, and thus adds
extra power (Appendix 5). 1In terms of simulation language concepts,
the finite explicit form DEVS assumes an infintely exact clock but

otherwise “inite memory and finite events.

An iterative specification G 1is finite explicit DEVS simulateable
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if there is a finite explicit form DEVS M and a DEVS morphism . (g,h)

from G{M) to G for-which h. .satisfies
*) h(s,0,e) = h(s,0-e,0)
for all (g}o) € S and 0Oge<o

This restriction on the state decoding h ensures that'the 0 component

truly ‘plays the role of a time left indicator.

An iterative specification G = <T,X,QG,Q,6ﬂT> is finite explicit

DEVS-like if:

1. Autonomy with respect to a finite equivalence of QG

(Same as finite dimension case, except that 3 is finite, i.e.,

QG/E is finite).

2. State trajectories are finitely -T-génerated.

There is a finite subcover T of 7 .and a finite subset T of

E“(Q,T) such that for all g€ Q , w € QC ,
T{ 3

STRAJ € right,seg(F)+seg(F)

where right.seg(l) is the closure of T under right segmentation and seg( )

is the closure under both right and left segmentation.

+ +
We note that right.seqg(T) < I'~(Q,T) so that F%%rhqht;seg(F) ) =
_ - ,
4
right.seq(T) . Thus condition 2) requires that each state trajectory

be decomposable into mls segments W such that each wi '

1"

i=1,...,n-1 is a right segment of some segment in T (Proposition 1) and

W is subsegment -of some.segment in T

Theorem 12 (Characterization of finite explicit DEVS simulateability).

An iterative specification G 1is finite implicit DEVS simulateable,
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if, and only if, it is finite implicit DEVS-like.
Proof (= )

Let M be a finite implicit form DEVS which simulates G wusing

(4,h) . Consider the segments {ngﬁ s € S} where
njs‘(t) = h(s,t,0) for 0<t<T(s)

Since each (s,0) represents a block of 7 we have h(s,0,e) € Bg

g
for 0g<e<g . But since also h(g}o,e) = h(guo—e,O) we have
h(s,o 0Oce<a} © B— — Si hoi t ={B~_ — |s€gs
{h(s,0,e) | eco} < 5,103 ince is onto, w= { S,T(s)l s € s}
is a finite subcover of m and n— € B— _— for each s € S
S s,T(s)

As in Proposition 6, it is easy to show that for each qgeQ ., we€gqQ,
STRAJ has decomposition consisting of a finite number of right segments

14

of elements in {ng} followed by a subsegment of some ng - Thus we may

set T = {n }
S
(&)

Let G be finite implicit DEVS-like. Construct a DEVS similar

to the standard simulator of Proposition 6 as follows:

<
i

QG/E

n
it

{t,lwl,o) |n € Eﬁ-., Wl € x,0€l ,2m1}

+
£:5+R is defined by £(n,[wl],0) = ¢

5¢:S->S is defined by 6¢(n,[m].0) = (n',[w<0],c') where n' €T is
h that ! = TRAJ — and o' 1is th
suc at mg_ (s H(R(n)):w<c)0'> n is the
first breakpoint in the mls decomposition of STRAJ —
n(K(n)),m<0
by T
G:QM x X+S is defined by &M, [w)l,o,e,]) = n',[ul,0') where
1 > - ' = — d '
n'€r is such that n;__, (STRAJn<_O(e)_’u)6.> and ©



is the first breakpoint in the mls decomposition of

STRAJ by T

n(o(e),u
We interpret -o as the point which is ¢ units to the left of the right

end of n . Thus q if 2(n) is finite. If L{(p) == ,

<o Mg (n)—o

we assume that n has domain (-~~,0] and n = n|<-0,0> .

<=0
The candidate morphism (g,h) has ¢4 defined as in Theorem 10, and

h defined by

n&(n)) if o =e=0
h(n, w},o,e) = {
n<2(n)~cﬁe) for Oseso otherwise
Clearly ”<Q(n)~g(e)= n<2(n)—(c~e)(o) = n(t(n)-o+e) , so h satisfies condit:

The state (n,{w),0) represents the situation in G where operating
in regime [w] , time ¢ 1is left to the end of the generator state
trajectory n . 1f no external event occurs in the meantime, the DEVS
selects the next generator and the appropriate point from its.right end at
which to start. If a change in regimes occurs after elapsed time e , the

DEVS determines the current state of G , viz. (e) , and from this

RIACIR
determines the new, appropriate right segment of a generator under the new

input regime.

‘We omit the proof, which follows the lines of Theorem 10.
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EXAMPLE: _A DEVS SIMULATION

We provide an example of a DEVS simulateable system drawn from a much
larger simulation model built on the principles of this paper (for further

information see Zeigler, 1977, ) .

Consider a "patch" in which may live a prey population feeding on resources
in the patch. Let p(t) and r(t) denote the population size, and resource
amount available at time t , respectively. 1Initially there are no prey and
some resources. This state persists until some prey immigrate into the patch.
The resources are then consumed to exhaustion (without replenishment) at which

time some prey emigrate from the patch, while the remainder die out.

The state space of the system is @ = {(r,p) ]r 30 , px0} the first quadrant

in the p,r plane. The dynamics not including migration are given by:

dp _ -
at (b pos(r) d)p
A (r)p
3¢ = "u pos(r)i
where pos(r)=1 if r> 0 and pos(0) =0 . The parameters b , d and u

give the birth rate (when there is food), death rate and resource consumption

rate respectively.

The input set X is the set {x / x3 0} and the input segment set Q
consists of all finite segments € (X,R) such that g(t) >0 for only a

finite number of points t in its domain; (t) =x means that x prey

arrive at the patch at time t . § 1is isomorphic to the DEVS segments
o , ] e
ThEvs () so that we may take IDEVS(X) as an admissible set of generators
for it (identifying ¢ with 0O ).
The system 1s autonomous with respect to = , since for

0

w o uwEer
! DEVS (X)
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it

w Hoe> 0 (0) = p(0) «=> [ is a left segment of 1 or conversely].
Thus the regime [w] consists of essentially one segment and' represents the

arrival of w(0) prey followed by an arbitrarily long period of no immigration

during which the system evolves independently of its environment.

Q 1is divided by a partition n=={Bl,82,B3} where B) ={(0,®)

B?=={(r,p) / r>0 , p>0} , and B3==(m,O] (Figure 1 ).
State trajectories are wn-generated as we see as follows:

For w € FDEVS(X) , w{(0) = 0 and

a) for (r,0) € B

1
STRAJ (o) (o (8) = (£,0) €B , 30
b) for (0,p) € 83
STRAJ )'{O](t) = (0 , pe"dt) €By, , t20

2
up, at at €
: = (r--= - . B
SI‘RAJ(r’p),[O](t) (r a[e 11 , pe ) 2
1 ar =y
for 0gt< r(r,p)-—g-%n [GE~+1 ] where a=b-4d and
~d(t-1) :
STRAJ £) = (0 f . ) € B
(r, ),[0]( ) (0, fp(T)e 3
ar
for t2t=1(r,p) , where pl(1) =;)+-3—
and f is the fraction remaining after emmigration at time .
For w €T , w(0) *¥0 , we define

DEVS

S(r,p,w) =68(r , p+w(0) , Ol(w)) for all (r,p) €Q ,

i.e., we specify that the effect of immigration is to add the incoming prey

instantaneously to the current population. Thus

STRAT by, tw) ~ ST v w(0)), (0]



p‘ Lol
Ba * STRAJ(;.p),
(r,p) B, -
(rpo
Tomia ] . J
STRAJ(O,p), STRAJ(r,o) , [0

Fig. |
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and it is clear that every state trajectory consists of a finite nunber of

segments lying total

Thus the constructed system S

within B, or B, .

By« By 3

1

14

i.e., is

is DEVS-like.

mT~generated.

The standard DEVS simulator has input event set FDEVS(X)IS isomorphic
with X , sequential states S=QxX={(r,p,lw])} , with
t{r,p+tw(0)) if (xr,p+tw(0)) € 82
t(rlpr[w]) = {
o otherwise
1)
8y (ripsul) (0, £(prw(0)+25), [0])  if (x,prw(0)) € B,
(since ¢=w on B. U B , 6 need not be defined there)
1o 2 ¢ 2)
and
§(r,p,(wl,e, [u]) = (6(r,p,we>),[u])
= (5(r,p+w(0),Oe),[U])
(r,ptw(0), [ul) if  (r,ptw(0)) € By

An output event occuring in the crossing from

emigration)

output function

A(rrpl[w]re) = {

The simulator is in fact a finite dimension DEVS.

discrete event simula

for three real variables

a

)

de

(r, (ptw(0))e

(1—f)(p+m<oy+%§>

0

tion language such as

r,p, and [w]

(r-—EiBiglglL[eae~l]-.

. [ul)

can be defined by adding an ocutput set

(actually,

if

if

to B

> 0}

>

{y/y

if =

e

otherwise

(r,ptw(0))

(r,p+w(0))

(p*w(0))e®® , [u])

(prey

and an

T(r,p+w(0))

Realized by a

SIMULA , it requires memory

in this case

{w]

can
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be diépensed with), one internal process for the B2 phase (prey growth
and emigration) and one external process (for the prey arrival). Thus it
is realizable exactly to the precision with which real numbers are repres-

ented on the particular computer.

Supposing that the model always starts with ro food supply and no

prey, the following sketches a simulation program realization:

Internal Process

state variables are: r ,p , last.time
B S r=r_,p-=
1 et o o 0
Wait
B Hold for a time rt(r,p)
. . ar
Cause emigration of (iwf)(p<+jaﬁ prey

Set r =0, p-= f(p-&%f) , last.time = time.now

B Wait

External Process

1 Cause immigration of x prey

If Internal Process is in Bl , Set p =x , last.time = time.now

Start Internal Process from B2

If Internal Process is in 82 , Set e = time.now - last.time
u ae ae . ) .
Set ¥ = r - ?? [e""-1] , p = pe +x , last.time = time.now

Start Internal Process from 82

If Internal Process is in B3 , Set e = time.now - last.time

~de
Set p = pe + x

Start Internal Process from Bl

Hold for interarrival time go to 1.
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Finite Explicit DEVS Simulation

We shall give an. example of a finiﬁe explicit form DEVS approximation
to the model just developed. Let us start by noting that because of the
exponential prey growth and limited resources, the effect of the actual
number of prey in migrating is small.
This is seen in lines 1) and 2) with %%— large compared to w(0) . For
the same reason, subsequent prey invasions have little effect once a colony
has been established. This is seen in lines 1) and 2) with p (the population
size at a subsequence prey invasion) large compared to w(0) . Thus our
first simplification is to reduce the input event set to a single event

indicating that at least one prey is arriving.

Formally, we are assuming that the system is autonomous with respect to

the equivalence = , where thf consists of two classes:
ua
(0] = {w/w(0) = 0}
and [1] = {w/w(0) > 1}

Note that the autonomy condition for generators in [1] is precisely a
statement of the fact that the system is sensitive at most to the arrival

of prey and never to the exact number arriving.

Now let us (reasonably) suppose that there is an upper bound on the
resources available; set it equal to 1 by normalization. To make things

more interesting we shall allow the resources to grow to the maximum in

ar

logistic 'f ion:
ogistic ‘fashion ar

=gr{l-r) in the absence of prey. Let us recognize
3 intervals of resources: low, medium and high (Figure:( ). Placing

Y ) and r . at the center of ‘the respective intervals, we shall
low med high

assume that the state trajectory STRAJ(r‘ 1, (0] (i € {low, med, high})
1’~'I A

adequately approximates the state trajectories STRAJ(r 1) [0]
L4 E

from interval i
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Thus our model has 5 generator trajectories as follows:

1
= STRAJ » in tt abs i
n (.01,0),[0] (resource growth in the absence of prey, assuming
an initial value .01 in Bl)
nt = STRAJ i € {low, med, high} (restricted to B,)
(rirlL[O} 2
3 ) . a .
= . = —
n STRAJ(O'pmax)JO] (prey decay from a maximum Prax = o 1 in BB)

All state trajectories associated with input generators are mls de-

composable into a number n 20 of right segments of the generators

={nl ’ nlow ' nmed ’ nhlgh ’ n3} followed by a subsegment of one of them.
For example, for (0,r) € Bl , STRAJ(p,r),[O] is of the form nS) ; and
STRAJ is of the fo i or nin3 or in3 where 1 depends
(0,r),[1] 5 rm nt> T < t> L p =

on r and o depends on 1 (Figure 2). Thus the state trajectories are finitely
m-generable and the system is finite explicit DEVS-like.
The standard simulator has five finite states with associated maximum

times as follows:

S T (s)
1 oo
low T (time to reach B along n°%)
Low -ime to reac , along
med T (similar)
med
high Thigh {similar)
3 o (time to reach p=1 starting from p )
max max

Then, referring to Figure 2, § is defined by
é¢(i,c) = (3,01) for i € {low, med, high} and
5¢(3,0) = (1,)

and & 1s defined by

§(l,»,e,1) = (i(e),T.



Omax

O high-
O med’

T low]

™

-~V

i(e)?

fow

med

a)

high

Fig. 2

oV



and

§(i,0,e,1) = (i,0-e) in all other cases (invading prey ignored)

As a simulation program this takes the form:
. Wait until a prey invades

. Obtain elapsed time e

Hold for time T,

i(e)
Cause emigration of fff«‘ prey
fe
Hold for time o,
i(e)

. Go to 1

37.
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APPENDIX

e el

REVIEW OF INPUT SET RELATED CONCEPTS

(Z,T), where 2 is a set and T is a time base (reals or integrals),

denotes the set of all segments w:<0,1>*>2 where T>0 . The angular
brackets represent a fixed choice from the set {( 1, [ ), [ 1}

(2,T) 1is a semigroup under composition;  wew' 1is the segment obtained by

translating w' so that as to be contiguous with . and concatenating.

For w:<0,t>~>2Z , dom(w) = <0,1t> , {w)=1 ; wt> = w|[<0,t> and
Wep =W t,1> are left and right segments of w at t respectively.
ADMISSIBLE GENERATING. SETS
For a subset [ < (Z,T) , the semigroup generated by T . is denoted
+ L N , .
r . A decomposition wl,w2,...,mn of w by I is 'a maximal length

segment (mls) decomposition, if each wi ig the longest generator in

' which is a left segment of w ...w . The points

n-1
{£(w)) /2 (w)+2(w,), ..., | L(w)} are called the breakpoints of the

‘ i=1
decomposition wl,wz,...,wn . The length of this decomposition is n
I' generates Q if r*=0 and admissibly generates § if moreover
each w €0 has an mls decomposition‘by ' (it is unique if it exists).

A semigroup { 1is admissibly generated by itself. I non trivially

admissibly generates . if T 1is a proper subset of {I which admissibly

generates: it.

Sufficient, but not necessary conditions, for admissibility are:



39.
Theorem A.1 (P. 220, {Zeigler, 1976]).

+
I' admissibly generates T if
+ .
a) w€Tr -omax{tlwt> € I'} exists

b) we€Tl = w(t €ET for all T>0 in dom(w) .

[Zeigler, 1976], P.220 gives an example where b) fails. An example

where a) fails is the following:

let T = {at]t € irrationals ; here at denotes the segment of
+
length t and constant value a . Then T = {atlt € reals} . T does
o + . .
not admissibly generate T since for integer 1 , the set

{t|t is irrational <t} has no maximum.

DISCRETE EVENT SEGMENTS

Let X be a set of "events" and T be the reals.

FDEVS(X) = Q¢ U QX where Q¢ is the set of no event segments

{¢T[T >0} where 9. (£)=¢ for all t € <0,1> and Q  is the set of

one event segments {xrlr >0} , where Xr(t)=:¢ for 0<t<t and

xT(O)==x . Here < > is fixed to be [ )
+ . ‘
FDEVS(X) and QDEVS(X) = FDEVS(X) are called discrete event generators
and segment sets, respectively. FDEVS(X) admissibly generates QDEVS(X) ’

(P. 238, [Zeigler, 1976}).
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Let g c (X,T) and ' < (X',T') be semigroups. A mapping

g:'+qQ is called an encoding of Q' by 0

An encoding g¢:Q'=+Q is invertable if

i et e bt i A

1. g preserves left segmentation : w' a left segment of w

implies gl(w') 1is a left segment of g (w)

2. g 1is one-one on lengths : f(w)=2(w')e L{gw)) =2 (gw))

Lemma A.2 (P. 271, [Zeigler, 1976]).

g is invertable <= there is a one-to-one function MATCH such that

MATCH(R (w)) = 2(g(w))

g(wt>) = g{w)

MATCH(t)>
Let § and Q' be closed under right and left segmentation.

. . , . : -1
Then MATCH is a monotonically increasing function with inverse MATCH

defined for all positive values of T

An encoding g 1is-a homomorphism if glww) = g(w)glw') for all

w,w' € '

Let [ admissibly generate Q' and ¢:T'+Q . Then g 1is the unique

extension of ¢ to Q' where g(w) = g(ml)...g(wn) and ml,...wn is the

mls decomposition of w by T
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APPENDIX 2

RELATION BETWEEN HOMOMORPHISM AND SIMPLICITY

We remark that the properties of invertability and homomorphism are

completely independent. For example, the map g is invertable, but not

t
a homomorphism, where g(m)(t)=f w(t')dt' , and the map g is
0
homomorphism but not invertable,where ' = {piecewise constant segments} and
g 1is the unique extension to Q' of ¢:{constant segments}-+Q , where
aT if ax0
sé(aT) = {
a otherwise

2T

We say that g 1is a homomorphic invertable encoding if it is both

invertable and a homomorphism.

A homomorphic invertable encoding allows only length dependent
time scale change (the function MATCH), and memoryless segment by segment
mapping. A class of examples of homomorphic invertable encodings is given
by the point-by-point, uniform dilation encoding .g , where g(w) (t) =

d(w(t/T)) where ¢g:X'+X and T are arbitrary.

@ is left cancellable if w =yup = = m(Q(u) . The choice

< > = [ )} with the natural composition, render § left cancellable.
So does the choice [ ] with right segment's endpoint, determining the

value at the joint.

Assertion A.3

Let @ be left cancellable. If g 1is a homomorphic invertable

encoding into @ then g is a simple encoding.

Proof

If it is readily shown that g preserves both left and right
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segmentation at all points, including breakpoints, i.e.,

glw, ) = glw) and g(w<t) = g{w)

t> MATCH (t)> <MATCH (t) )
Q.E.D.
It is important to note that a simple encoding need,not be a
homomorphism. For example, let Q'= Qn of Example, Section 2, and let
Q=0 . . : i = : =
DEVS Let g'rvﬁ*FDEVS be def;ned by & (w) xT where x=uw(0)

and 1=2(w) . Let g:Qn—>Q be the unique extension of ¢ defined

DEVS

by gl(w) =~g(ml)...g<mn) , where o ceaw is the mls decomposition of

1"

w . It is readily shown that ¢ is invertable and preserves right
segmentation at breakpoints, but is not a homomorphism since if w,y € FB

then wk € FB and g{wp) = m(O)Q But g(w)g(y) = w(O)Q(w)u(O)

(w)+2(u)
and g(wu) (2{w)) = ¢ # u(0) = glw)gu) (L(w))

r

2{n)

’



43,

APPENDIX 3

THE EVENT RELATION

Consider the sets I'= {finite degree polynomial} and Fm { piecewise
finite degree polynomial having derivatives at leat to order m} . Then

for w € r ’

w pes» w is a left segment of y or conversely

0
(polynomials which agree on a non zero interval are identical; Levi, 1968),
and for w,u € Fm )

w I u* w and U start with the same polynomial segment.

[@ 2T

Thus Fm/é is an infinite dimensional vector space isomorphic to
. K] l+ s
I' . We can show this is true for any subvector space of [ which

generates it.

Proposition A.4
‘ o+ _ +
Let QG be a subvector space of T which generates T . Then

QG/z is an infinite dimensional vector space isomorphic to T
0

Proof

» . +
It is readily shown that @ /= 1is a vector space. Since QG cr .,

S o
for every w € QC there is a 7 such that W €T . Moreover,
wEw - Thus there is a linear transformation taking QG/E into T
0 T

0
(or better its representation) given by mapping [m]o onto the sequence

of derivatives (w(0), w'(0), w"(0),...)

+ , .
Conversely, since T E_QG ", for every w € ' , there is a T such
that w S € QC . Again, since u = w there is a linear transformation
T 3 0
mapping I into @ /= givén by mapping w into [w_ _]} . Thus Q /=
G 0 ) ™70 G 0

and ' are isomorphic as vector spaces.

0.E.D.



44.

Theorem A.5

Let § Dbe the piecewise analytic segments or the piecewilise
continuous segments. Then for any vector space generator set {

of Q QG/S is infinite dimensional.
0
Proof

+ . + .+ , o .
r c £ in both cases. QC o1 and in fact it is easy to show

7

+ . . .. . .
that QG N T generates T . Since QG N T 1is infinite dimensional,

so is .
G
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APRENDIX . .4

REVIEW OF SYSTEM SPECIFICATIONS AND MORPHISMS

G = <T,X,QC,Q,5G,n> is an iterative specification if QG < (X,T) is an

admissible generating set, and 6C:Q X QG—+Q extends uniquely to a transition
. - + . C e

function 5:Q><QG~*Q having the composition property. We have modified the

definition of Zeigler 1976, P. 223, by omitting Y and A and requiring

instead the specification of a finite intersection cover of ©

DISCRETE EVENT SPECIFICATION

A DEVS M = <XM,S,&,t> where XM and S are sets (external events

+
and sequential states, respectively); %:S—>RO o = {0,»] 1is the time
’

advance function; and G:QM X (XM U {¢})>S where Oy = {(s,e) s €5,

0O<egt(s)} and é&(s,e,p) = é¢(s) where 6¢;S-*S is called the internal

event transition function.

A DEVS M 1is legiti@g&g_if for each (s,e) € QM and >0 , the
number of transitions in the interval (0,1) , made starting form (s,e) ,

mS e 1 is finite. (See Zeigler, 1976, P.237 for formal definition.)
r’ ’

Theorem A.6 (Zeigler, 1976, P. 238)

A legitimate DEVS M induces an iterative specification

G{M) = <T,X,T

DEVS (x) ‘' 8> where T =R, X =X Uf{¢} and

(S; x T > Y ¥
G QM DEVS (X) QM is given by

il

SG<s,e,¢T)



and
ME R 6G(3(s,efX),0,¢T)

SYSTEM

A system S5 = <T,X,Q,Q,8> where T Iis

the input value set, 0 < (X,T)

the time base

is the input segment set, Q

46.

(R or I) X is

the state set

and 06:Qx0=+Q , the transiticn function. We require that  1is a semigroup
under composition and ¢ has the composition property Slgeow') = (S(g,w) ,t

An iterative specificatior G specifies a system SF where
Q=0 and §= 6

¢ e

MORPHISMS
A system morphism from S to S' 1is a pair (g,h) where
-- onto - —

g:g' -+ and h:Q —Q' where Q €@ such that for all q€ ¢ ,
W 6 EZ' 12

h{§(g,g{w)) = §'(h{g) w)

A specification morphism from G to G' 1is a pair (g,h) where

+ . . .

g:Qé +QG , h is as in the system morphism, and the commutative relation

is required to hold only for ¢ € Q

Theorem A.7 (Zeigler, 1976, P. 271, 274)

A specification wmorphism (¢,h) from G

morphism {(g,h) from SG to SC, where (
3

to Qé If moreover, g 1s invertable,

‘MATCH(t)) for

(t) = h(STRAS
€] ()

STRAJ
STRS h(g) ,w q,

to G' induces a system

is the extension of ¢

- +
all g€ 9, w€ Qé ..
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EQUIVALENCE OF DEVS SYSTEM AND SPECIFICATION MORPHISMS

Theorem A.8

Let M be a DEVS, S a system and (g,h) a system morphism from

SG(M) to S . If g is a simple encoding, then (g,h) is induced by a

specification morphism (g,h) form G(M) to G where SG==S

Proq£

Since g 1s simple, by Proposition 2, T = gml(FDEvﬁ) admissibly
3 LDl
generates Q . Let G have the same objects as S except that
Qn=T and 6G = S‘F . It is easily shown that G 1is an iterative

specification and SG==S . Also (4,h) 1is a specification morphism

from G(M) to G ,where ¢ = g‘T which induces the morphism - (g,h)

0.E.D.

Since every specification morphism (4,h) from G(M) to G induces

s is f - S é
a system morphism {g,h) rom SG(M) to e we have

Corollary A.9

A system S 1is DEVS simulateable if, and only if, it has an interative

specification which is DEVS simulateable.

(By a system S being DEVS simulateable, we mean that there is a

system morphism (g,h) from some to S such that g 1is simple

SG(M)

and states of M represent blocks of 7 as in the DEVS morphism definition.)



APPENDIX 6

FINITE DEVS LIMITATIONS

Theorem A.10

For a finite DEVS M let the set ES wogt = {e[&(s,x,e) = g'} be

’ 7~
a union of a finite number of intervals for each s,x,s' for which
is not empty. Then M is DEVS simulateable by a finite DEVS

s,X,s'

ff for which &(s,e,x) is independent of e for all s €S , x €%
Proof

The union of E

o3y R

, over all x € X and s' €5 is just

[0,#(s)] . Since each Eg N is a finite union of intervals and

’ 7

there are finitely many pairs (x ; s) , the intersection all these

sets finitely partitions [0,%(s)] and refines every Es,x,s‘ . Let
O<:tl< t2...<:tn = £(s8) be this partition. 1In & , replace s by
states (s,l),...,(s,n) such that é¢(s,i)'= (s,i+1) for i=1,...,n-1 ,
and $¢(s,n) = (§¢(s),1) ;o E(s,1) = ti+l--ti ; and

%((s,i),e,x) = G(S,ti,x) . Clearly, g((s,i),e,x) = é((s,i)re',x) for

all e,e' € [0,t{(s,i)] as claimed. It is easy to show that ‘M DEVS
simulates M

0.E.D.

The theorem indicates that a finite DEVS with a reasonable clock
dependence, can be only finitely sensitive to the arrival time of an
external event. Any timing of arrivals that such a device can do, can
also be done by a succession of a finite number of states in which the
elapsed time within a state plays no role in determining the next state.

In effect, the simulation clock has been replaced by a finite counter.

Note that the proof depends on the finite number of sets E
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g0 would not go through for a finite explicit form DEVS which may

have an infinity of sets E — -
b4 (s,0),%x,(s',0")

While the foregoing indicates the "architectural" weakness of
finite DEVS systems, it does nct establish that there are 1-0 bhehaviors
"tuned" to this weakness. We now provide an example of an 1I-0
behavior not finite DEVS realizable, but finite explicit form DEVS

realizable.

Theorem A.11

There are I-0 function behaviors of finite explicit form DEVS

systems which are not realizable by any finite DEVS system.
Proof

Consider a finite explicit form DEVS M = <X,S,Y,4,\, > where

X={l}) =Y, S = {ref,act} , T(ref)= Tref?>0 , T{act) = « and

§ (ref,o) = (act,w)
)
§(ref,o,e,l) = (ref, o-e)

6(a.g.tlcnlell)

i

(gef,Tref)

_ 1 if s = ref and o0 = ¢
As,0,e) = {

) otherwise

The I-O behavior of this M 1is characterized by the fact that in state
act (active) it waits until receiving an input pulse, whence it switches
to state ref (refractory). It remains in state £¢f for a finite refract~
ory period Tref ., during which all input pulses are ignored, and then

reverts to state act while signaling this event by an output pulse (fiqﬂr*

Now let M be a finite DEVS which realizes that behavior of M at

the I-0 function level (Zeigler, 1976, P. 205). 1In particular, let (s,e)

N



output P
o input
pulse pulse

Fig. 3
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realize the input segment to output segment mapping from state (ref,Trpf,O)

s € s} exists and

in SC(M)‘ Since M has a finite set § , min{t{(s)

is not zero, (assume M has no transitory states, without loss of
generality, Zeigler, 1976, P.24). Let e= min{t(s)} and apply any

segment ¢Tle for O<'r<'I'r -e to (s,e). By the DEVS operation the

ef

state at the end of this segment is of the form (s,e) (the pulse at
time 1 causes an immediate transition to some "unseen" state (s,0)

and since e<t(s) , we are in state (s,e), € seconds later). Since

~

S 1is finite, there are O<7t,<T1.<T such that S is in

Tl’Tz’ 1 2 ref - ¢ G(ﬁ)

the same state (s,e) at both T and T, - The behavior from this state

cannot be different in both cases. But as can be seen by applying a segment

¢T o , this contradicts the behavior of SG(M)
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