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Abstract
Although optimization techniques have been extensively utilized to model human

postures and movements, existing models are either static, or dynamic but restricted in the
scale or dimension of the biomechanical system due to prohibitive optimization algorithms.
An optimization-based differential inverse kinematics approach is described in this paper.
The posture determination problem is viewed in the velocity domain as a problem of
determining how a change of three-dimensional hand position is partitioned by changes in
the excessive degrees of freedom. The inherent kinematic redundancy is resolved by the
weighted pseudoinverse of the Jacobian which quantifies the mapping from the joint angle
changes to the hand position changes. A set of weighting parameters visualizes the strategy
of allocating energy-type effort among the body segments involved in a movement. An
optimization procedure based on simulated annealing is employed to identify the parameter
values such that the predicted profiles best emulate the observed profiles. The proposed
approach is tested empirically by modeling three types of seated reaching movements
distinguished by the hand motion direction. The results demonstrate that accurate

| representations of measured motion profiles can be achieved, and reveal some difference
between and congruence within sets of parameters corresponding to different types of
movements. Theoretical implications regarding pre-organized motor program, levels of

movement coordination, and dynamic posture control mechanism are discussed.



Introduction

Optimization has been a viable tool to resolve redundant problems pertinent to
biomechanical modeling (Chao and An, 1978; Crowninshield and Brand, 1981). Two
primary redundancies encountered in modeling musculoskeletal systems, static or dynamic,
are kinematic redundancy and muscle force redundancy. They ére both incurred by the
same ill-posed situation: the number of unknowns, either some kinematic variables or
muscle forces, exceeds the number of equations available. Optimization techniques
generally presume an optimal strategy adopted by human beings in controlling postural
kinematics or muscle forces, and, by mathematically modeling this strategy as an objective
function, make the indeterminate equation system solvable.

Kinematic redundancy occurs in posture modeling when a human being is
represented as a multi-segment rigid linkage system with excessive degrees of freedom
(DOF). The problem of resolving indeterminacy becomes more sizable and complex as a
movement that consists of a succession or sequence of instantaneous postures is being
modeled. For example, if every instant corresponds to one optimization routine, as the
modeling is extended from a single posture to a movement, the scale of the overall problem
is literally multiplied by the number of time frames composing the sequence. This
complexity has effectively been one of the major factors accountiﬂg for the scarcity of
optimization-based predictive models to describe normal'humaﬁ postures and movements.
In contrast, the application'of optimization techniques to estimating muscle forces has beéﬁ
a rather fruitful research domain—a considerable volume of predictive models have been
generated and, to a certain extent, validated (Seireg and Arvikar, 1975; Chao and An, 1978;
Hardt, 1978; Crowninshield and Brand, 1981; Bean et al. 1988; Hughes, 1991).

The few existing optimization-based models for posture prediction have inherent
limitations that have hampered their applications. Many of these models possessed at least
one of the following shortcomings: they were either static, or two-dimensional (within the

sagittal plane), or incorporated a very limited number of segments or degrees of freedom



(Park, 1974; Ayoub ét al., 1974; Ayoub and Hsiang, 1992; Byun, 1992; Jung et al.,
1995). Three-dimensional upper body posture models include the Boeman model (Ryan,
1970), the ones by Kilpatrick (1970) and, more recently by Jung et al. (1994). All relied
on iterative optimization routines, one for each time frame, to predict three-dimensional
sequential static postures of the torso and the arms during seated operations. None of these
modeling efforts, however, recognized two critical facts: first, it is not guaranteed that the
sequences formed by conjoining discretely optimized static postures would be as smooth.or
“graceful” as real human motions; and second, there is a distinction, conceptually as well as
physically, between a static posture and an instantaneous dynamic posture (Zhang and
Chaffin, 1996). In addition, the objective functions of optimization procedures employed
in these models were based on heuristics and subject to empirical adjustments.
Interpretations of these objective functions, in physically meaningful terms, were difficult.
Therefore, despite the fact that good modeling accuracy might have been ultimately
achieved by these models, little insight was gained into the optimal strategy presumably
used in human postural control.

In dynamic models, the large amount of computation involved in dynamic
optimization can be a prohibitive factor (Girard, 1991). For instance, an optimization-
based dynamic model was developed by Ayoub et al. (1979) to predict the path of simple
upper extremity motions. A similar approach was employed (Ayoub and Hsiang, 1992) to
produce a two-dimensional dynamic biomechanical simulation of material handling motions ’
that were assumed to be planar and symmetric. These two studies both used and advocated
dynamic programming as the mathematical tool for solution search. Due to the “curse of
dimensionality” problem associated with dynamic programming (Bellman, 1957), the
number of variables or states that can be incorporated in the model is constrained. As a
consequence, either the dimension (2D or 3D) of the model or the number of body

segments included in the model, will have to be compromised.



There is another class of research, primarily related to gait analysis and simulation,
which deals with both kinematic redundancy and muscle redundancy (Hardt, 1978; Pandy
et al,, 1992; Yamaguchi et al., 1995; Zajac and Gordon, 1989). In these investigations,
dynamics equations were established to represent the causal relationships between muscle
action and motion generation; optimization was applied, quasi-statically or dynamically,
with a muscle-stress-related objective function. However, regardless of the scale of the
musculoskeletal system being modeled, the number of muscles always far exceeds the
degrees of freedom of the system; for instance, there were 30 muscles but only 5 degrees
of freedom in the study by Yamaguchi et al. (1995). Thus, these studies solved a muscle
redundancy problem per se, and the motions of only a limited number of segments were the
“by-products” of musculotendon dynamics. As this type of study still suffers from the
dimensionality problem (Yamaguchi, 1990), the number of body segments included is
usually limited.

In this paper, an optimization-based differential inverse kinematics approach for
modeling three-dimensional dynamic postures during right-handed seated reaching is
presented. The biomechanical system concerned is represented by a linkage composed of
four rigid Segments: the torso, the right clavicle, the right upper arm and forearm. Seven
degrees of freedom are incorporated in this linkage. The approach is differential in that the
problem of multi-segment p;)sture determination is solved in the velocity domain—it is
viewed as a problem of determining how a change of 3D end-effector (the hand) position is |
partitioned among the involved, normally excessive, degrees of freedom. The mapping
from changes in seven joint angles, each measuring one degree of freedom, to the changes
in three hand coordinates, is mathematically described as a 3X7 Jacobian matrix. The
weighted pseudoinverse of the Jacobian resolves the kinematic redundancy with an implicit
objective of minimizing the sum of the weighted norm of angular changes. A set of
weighting parameters therefore models, in a straightforward and parsimonious way, the

strategy of allocating energy-type effort among participating segments or joints during a



movement. Using a simulated annealing (SA) search method, sets of parameters for
different types of movements performed by different individuals are determined, such that
the predicted motion profiles best approximate the actual profiles. In doing that, inherent
strategies hypothetically used by people in dynamic posture control can be quantitatively

assessed and visualized.

Methods

Modeling Scheme
Linkage Representation

One of the most commonly used biomechanical models of the human
musculoskeletal system (or some portion thereof) is a collection of interconnected rigid
segments (Andrews, 1995). In this study, the system used to describe seated postures
during reaching movements consists of the torso and the right upper extremity. As
depicted in Figure 1, the biomechanical system concerned can be adequately represented by
a chain-like linkage composed of four rigid segments: torso, right clavicle, right upper arm,

and right forearm.

Suprasternale
Right Wrist

Torso

Forearm & Hand

! Bottom of Spine

Figure 1. A linkage representation composed of 4 segments: torso, right
clavicle, right upper arm, and right forearm.



This linkage is constructed by connecting five hypothetical spherical or revolute
joints: L5/S1, suprasternale, right shoulder (acromion), right elbow, and right wrist.
Implicit to this representation are several simplifying assumptions: 1) the reaching
movements addressed in this study are right-handed, with the left hand and arms not
posing any restraint to the movement; 2) the left hand and arm are therefore not modeled, as
the study is limited to single-target-driven reaching; 3) finger actions and hand
configurations are also excluded from the model due to the excessive degrees of freedom
and complexity with which they are associated; and 4) the right hand is sustained in a
neutral, “normative” posture and can be considered as an extended part of forearm.

Seven degrees of freedom are incorporated in the linkage to specify the major
motions of the system: 2 DOF at the bottom of spine (L5/S1) for torso flexion and lateral
bending, 1 DOF at the suprasternale for clavicle rotation (or torso twisting), 2 DOF at the
acromion for shoulder abduction and extension, and 2 DOF at the elbow for humeral
rotation and elbow flexion. The seven degrees of freedom are measured by seven Euler
angles. The definitions of these seven Euler angles are established with reference to five
coordinate systems as illustrated in Figure 2: four local or segmental coordinate systems
affixed to individual links and one base coordinate system as the general reference frame.
Table 1 presents the nomenclature of these seven Euler angles. These names are provided
here for the ease of physical inferpretation, and since they are Euler aﬁgles, they may not
comply with clinically or anatomically used angle conventions. Note that since the axial
rotation of each link cannot be specified, torso axial rotation is modeled partly by a rotation
of the clavicle with respect to the torso long axis. Similarly, in order to identify a possible
change of forearm orientation caused by humeral rotation an extra DOF is modeled at the
elbow which otherwise could be well represented by a 1-DOF revolute joint. Of further
note is that as the suprasternale is modeled as an imaginary 1-DOF revolute joint to provide

clavicle rotation, the angle subtended by the clavicle and the torso is assumed to be fixed

(identified as o in Figure 2).



The nomenclature of seven Euler angles which determine the configuration of the linkage

11(torso)

general reference frame

Yo

Figure 2. Coordinate systems established to derive the seven Euler angles
which in conjunction with fixed link parameters describe the configuration
of the linkage.

Table 1.

Angle ‘ Definition

6;: Torso Flexion Rotation angle of the torso link with respect to Xj axis.

6,: Torso Lateral Bending Rotation angle of the torso link with respect to Y axis.

03: Torso Twisting Rotation angle of the clavicle link with respect to Z; axis.
04: Shoulder Extension Rotation angle of the upper arm link with respect to X, axis.
0s: Shoulder Abduction Rotation angle of the upper arm link with respect to Y, axis.
06: Humeral Rotation Rotation angle of the forearm link with respect to Y3 axis.
67: Elbow Flexion Rotation angle of the forearm link with respect to Z5 axis.




Note:  All the angles are 0 when a standard anatomical posture is assumed. Sign convention follows the
right hand rule.

Differential Kinematics and Jacobian

The end-effector (the hand) position with respect to the general coordinate system
can be expressed in terms of joint variables as the seven Euler angles, and link parameters
including link lengths and link offsets (Denavit and Hartenberg, 1955). It is derived by
concatenating a series of transformation matrices between two neighboring coordinate
systems. The more detailed mathematical derivations are provided in Appendix A.

Let r=[x y z]T be the hand position in three dimensions, then the non-linear,

complex relation between r and the Euler angles can be expressed in an abstract form as:
r=[f1(6,,67) fo(6y,+,67) f3(91"",97)]T =f(©) (1)
In fact, equation (1) represents the kinematic relation dealt with in a static posture
prediction model (e.g., Ryan, 1970; Jung, 1994) which attempts to determine the closed-
form non-linear solutions of joint angles from the hand location, strictly in displacement
domain.
Differentiating (1) with respect to time results in
= f(©)0=J]0)0 )

where J is the Jacobian of f with respect to ©. In this particular case, the J is a 3x7

matrix with each element
Wi o ia L |
Ji,j —ﬁ (1—1,2,3, J —1'7) (3)

J

What equation (2) represents is a linear relationship between the end-effector
velocity and the joint angular velocity. This method of coping with velocity or rate rather
than position to take advantage of the linearity is termed differential kinematics (Nakamura,
1991) and was first introduced by Whitney (1969). The Jacobian J which quantifies the
mapping from the changes in joint angular coordinates to the changes in the hand

coordinates plays a central role in this method.

Optimization-Based Weighted Pseudoinverse



The problem of posture prediction using differential kinematics now can be stated
as: given a change in hand position, how to determine the changes in joint angles.
Mathematically, it requires solving equation (2) for © by attaining the inverse of the
Jacobian. For redundant systems such as the one concerned in this study, the ordinary
inverse of J is not defined. However, by hypothesizing that an objective function to

c=|w,9| @)
is followed in solving redundancy, © can be determined as

o=w,[aw;']'s. )

Here, W is a symmetric and positive definite 7x7 matrix, and # symbolizes the
pseudoinverse of a matrix.

The general form of a finite number of solutions that satisfy (2) is actually given by

0=W,'[Jw;' ]#r +WHI- [JW;I]# JW;hv (6)
where I is a 77 identity matrix and V is an arbitrary vector of 7 dimensions. Among the
infinite number of solutions, a unique solution with a minimum weighted-norm is provided
by equation (5). Note that the minimization of (4) is equivalent to the minimization of

1e"weé 0
where W=W_TW . Term (7) has been referred to as the instantaneous weighted system -

kinetic energy (Whitney, 1969). The diagonal components of the matrix W may be

regarded as weighting parameters which model a strategy of allocating kinetic-energy-type
effort among involved joints so as to minimize the weighted total effort. Therefore, a
relatively smaller value of the parameter would indicate that the corresponding joint angle is
more involved in the motion, and a “heavier” weight signified by a greater value would

suppress or “penalize” any change in the associated joint angle.

Empirical Testing

Problem of Parameter Determination
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In order to accurately predict seated reaching movements using the proposed
modeling scheme, the parameters that characterize the strategy presumably used by people
during a movement need to be identified. It is theorized that if the profiles predicted by a
particular set of parameters, hopefully time-invariant, closely emulate the actual profiles of
a movement, this set of parameters then describes, in a parsimonious and quantitative way,
the inherent strategy. This suggests a technique which empirically determines the
parameters that provide the best-fit with respect to the real human motion data. Such a
technique involves the resolution of another optimization problem described as follows.

Since motion data are captured by 3D measurement systems in discrete time frames
at a certain sampling rate, kinematic quantities, hereinafter, will all be expressed in discrete
forms with the subscript being the time frame number.

Let ©, and <) ; » both 7-dimensional vectors, represent respectively the
instantaneous angles and angular velocities at an instant of time t. Equation (4) can now be

re-written as:
(_‘) — AGt — et _@!—l
At At

#Ar,

Ar (8)

-1 -1
=w0 [Jr—lwo ]
Note that J,_, is in fact J,_;(©,_;), a function of instantaneous angles at t-1 only.

By factoring and eliminating the finite sampling time interval Az at both sides,

equation (8) becomes

[ P ,
0, =0 =W [J W7 ['ar,. ©)
Using equation (8) recursively, ©, can be computed as
-1
_ i
0, =0+ Y W,'[1,W;'] ar,. (10)
k=1

In equation (10), as ©, , J,, and Ar, are known or derivable, the seven
weighting parameters in W, presumed to be time-invariant, become the only variables
influencing the behavior of ®,. Thus, if ©; represents the measured set of joint angles at

time t, W, can be determined by minimizing

T -1
Yo+ YW, [5,w;'] ar, -0} (1)
=2 k=1
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where T is the number of time frames used to completely describe a movement.
Equation (11) now provides a means to evaluate the global average (across the

entire movement) of the mean absolute error of 7 predicted angles with respect to the

measured angles. Two alternative criteria also are used as the objective functions of

optimization procedure to determine the parameters:

T
Y W3 w;] ar, - €] (12)
1=2
and
T
0+ Y W,'[5,,W,'] ar, -6 (13)
=2

Function (12) evaluates the global average (across the entire movement) of the mean
absolute error of the angular velocity values with respect to the actual values; function (13)
evaluates the mean error of the predicted angles of the ending frame, which, due to
progressive error accumulation, may be substantial even if (11) or (12) is minimum. There
is a computational advantage to the latter two criteria, because the number of mathematical
operations involved is considerably reduced as compared with (11). Nevertheless, a more
comprehensive performance evaluation of a determined set of parameters (based on one
particular criterion) is provided by a “cross-examination” using all the three criteria.

The proposed modeling scheme provides the flexibility of implementing different
scenarios of the parameters as} variables in the optimization procedures. A simplifying yet

plausible scenario is to hypothesize a segmental weighting strategy and use four

parameters, one for each segment. The W can then be specified as

wp 0 0 0 0 0 0
0w 0 0 0 0 0
0 0w, 0 0 0 0
0 0 0 wy 0 0 0 (14)
0 0 0 0 wg 0 0
0 0 0 0 0 w, O
i 0 0 0 0 0 0 w |
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Note that angles of same segment have identical designate weight. A test of
whether this W, configuration or a more heterogeneous one results in a set of parameters
with satisfactory predictions, based on above evaluation criteria, may lend support to
different theories of how the control of and coordination between segments are actualized.
Simulated Annealing

The optimization problem of determining the best-fitting parameters, as posed by
(11)-(13), is difficult to solve. It is highly non-linear and a genefal knowledge of the
function surface is not available. Gradient-based non-linear optimization methods are not
applicable because the derivative of the objective function is analytically not achievable.

Simulated annealing (SA) offers a heuristic alternative of obtaining good solutions
to difficult optimization problems. It is an iterative stochastic search method, analogous to
the physical annealing process whereby molten material is gradually cooled so that a
minimum energy state is achieved. The simulated annealing approach has the virtue of
being a powerful, relatively easy to implement, search technique for optimizing any
function without much prior knowledge about its “terrain”. Specifically, it is well suited
for a class of problems such as the one concerned in this study, because the approach only
requires a point's corresponding function value and no other information. A thorough
treatment of simulated annealing can be found in Kirkpatrick et al. (1983) or Eglese (1990).

‘Specifications of the‘simulated'annealing algorithm used in this study to determine the
weighting parameters are as follows.

The three objective functions (11)-(13) all serve as evaluation functions. The
results are “cross-examined”: a solution obtained by one objective function is evaluated
using the other two functions; overall performance is then assessed to determine the final
optimal set of parameters. A neighborhood function which specifies the move from one

intermediate solution to the next is given by

w;(n)=w,_;(n-1)+ Rand[-0.5,+0.5] (15)
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where n is the iteration number and Rand[-0.5,+0.5] generates a random number between

-0.5 and 0.5. The starting “temperature” is 20 (dimensionless). Heating factor and cooling
factor are 2 and 0.99 respectively. The search terminates as soon as either of the two
criteria is satisfied: 1) the number of iterations exceeds 2000; 2) the function value is less
than the stopping threshold—0.8 degree for functions (11) & (13), 0.2 degree/frame }for
function (12).
Experimental Data for Model Testing

Data for testing the proposed modeling scheme were acquired from an experiment
(described in detail in Zhang & Chaffin, 1996) in which three types of seated reaching were
performed by six young adult subjects. These three types of reaching tasks were
distinguished by the directions of hand motions (i.e., Ar): anterior-posterior (AP), medial-
lateral (ML), and up-down (UD). Each type was performed at four different hand
trajectory positions which were characterized by two of the following three dimensions: 1)
the height—shoulder or hip height; 2) the radial distance from the right shoulder—60% or
120% of the arm length; 3) the offset angle from the sagittal plane—O0 degree or 45 degrees,
all with respect to an upright seated person. The former two dimensions were adjusted in
accordance with the individual anthropometry. Thus, a movement can be described by its
hand trajectory, for example, as anterior-posterior at shoulder height with 0 degree offset
angle. The 12 movement trials (3 typesx4 positions) were completed by each subject using
a normal, self-paced speed. Figure 3 graphically illusﬁates the experimental setup. The
twelve hand trajectories approximately intersect each other at eight locations as labeled in
the Figure. These intersection locations can be conveniently used to codify the movements.
For instance, an anterior-posterior reach at the shoulder height with 0 degree offset angle
was coded as AP13, whereas a medial-lateral reach at the hip height and close-in distance
was coded as MLS56.

Reflective spherical markers were placed over palpable body landmarks identifying

the right hand, right elbow, right acromion, suprasternale, right and left anterior superior
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iliac spine (ASIS). The two ASIS markers were utilized to estimate the bottom of the spine
assumed as their bisection. A MacReflex™ motion analysis system with four digital
cameras was employed to measure the coordinates of these markers during the movements
at a sampling frame rate of 25 Hz. A linkage representation as portrayed earlier in Figure 1
was constructed. Profiles of the seven Euler angles based on the definitions established
with respect to the linkage system were derived, and, along with those of the hand

coordinates, served as the empirical basis for model testing.

Figure 3. An experiment in which three types of seated reaching
movements were performed: anterior-posterior (AP), medial-lateral (UD),
and up-down (UD). The labeled locations where the hand motion trajectory
approximately intersect are used to codify the movements
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Results

Each optimization procedure for modeling one movement yields two results: the
optimal objective function value and the corresponding solution. They represent,
respectively, the best accuracy achieved by the proposed model and the weighting
parameters identified for the particular movement. In general, the model performed well
with the use of only four weighting parameters which was based on the hypothesis of a |
segmental effort-allocating strategy. Table 2 presents some descriptive statistics of the
overall accuracy measures in terms of the three evaluation criteria for modeling with four
parameters. These measures show considerable variation. In fact, the best achieved
accuracy and the corresponding weighting parameters differ distinctively for the three types
of reaching movements. Therefore, results are classified by the movement type and are
presented in the following. The emphasis is placed on the use of four parameters (called a
four-parameter scenario) when presenting these results because of its general success.
Attention is also directed to examining whether seven different weighting parameters (called
a seven-parameter scenario) provide a significant improvement in modeling accuracy,

especially in those conditions where the four-parameter scenario fails to perform well.

: Table 2.
Descriptive statistics of overall (across all the subjects and movements) accuracy measures
in terms of three criteria for modeling with four weighting parameters

Evaluation Criterion Mean Std. Dev. Minimum Median Maximum

Cl1 (degree) 33 2.7 0.6 2.4 11.6
C2: (degree/frame) 0.57 0.38 0.15 0.45 1.9
C3: (degree) 4.8 4.3 0.78 3.5 20

Note:  Cl: the averaged (across the entire movement) mean error of 7 predicted angle values with
respect to the actual angles;
C2: the averaged (across the entire movement) mean error of 7 predicted angular velocity
values with respect to the actual values;
C3: the mean error of the 7 predicted angels of the terminal frame.
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Modeling Accuracy

Figure 4 consists of three box plots of the modeling accuracy that was achieved
using the two different weighting parameter scenarios. Each is evaluated by the three
criteria for the anterior-posterior (AP) reaching movements. A box plot graphically
provides a collection of information about the data: the top, bottom, and line through the
middle of the box correspond to 75th percentile (top quartile), 25th percentile (bottom
quartile), and 50th percentile (median) respectively; the whiskers on the bottom extend
from the 10th percentile and top 90th percentile; the square symbol represents the mean.
All three plots in Figure 4 exhibit the same clear pattern: a better modeling was achieved
with AP13 and AP57 as compared to AP24 and AP68, regardless of the parameter
scenario. Recall that the former two were the motions with a O-degree offset angle (hand
trajectory in the sagittal plane) whereas the latter two were the motions with a 45-degree
offset angle. Overall, for anterior-posterior reaching motions, the medians of the accuracy
measures in terms of the three evaluation criteria are 5 degree, 0.86 degree/frame, and 7.3
degree respectively. Figure S illustrates the predicted versus actual profiles of all the seven
angles for a “typical” movement trial with which the accuracy measures were close to the
median vzﬂues. Notice particularly a substantial discrepancy between the predicted and the
observed for the elbow flexion which does not appear to be coordinated well with the
motions of other joints. A ;:omparison between two scenarios (left vs. right in Figure 4)
reveals that, by the use of seven weighting parameters, modeling accuracy was improved
as measured with C1 and C3 but not with C2.

Figures 6 and 8 present similar box plots for medial-lateral (ML) and up-down
(UD) reaching movements. Notice the scales of the ordinates in these box plots are half of
those for anterior-posterior movements. A superior accuracy attained by the proposed
modeling scheme for these two types of movements: even with the four-parameter
scenario, the medians of the accuracy measures in terms of the three evaluation criteria are

1.5 degree, 0.35 degree/frame, 2.0 degree for medial-lateral motions, and 1.47 degree,
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0.34 degree/frame, 2.06 degree for up-down motions. Again, an illustration of the
predicted versus actual angular profiles of a movement, with which a “mediocre” modeling
accuracy was achieved by the four-parameter scenario, is presented in Figure 7 for ML
motions and Figure 9 for UD motions. In contrast to the AP movements, however, the
improvement brought forth by the seven-parameter scenario appears to be trivial. An
interesting pattern analogous to the one described above is exhibited by the box plots for
the ML movements: ML12 and ML56 out-performed ML34 and ML78, regardless of the
parameter scenario. Recall that the former two were the motions at the close-in locations
whereas the latter two were the ones at the far-out locations. However, for the UD

movements, no such pattern can be identified.

Weighting Parameters

While the accuracy measures the performance aspect of the model, the weighting
parameters are parsed in the interest of making inferences, from the optimization procedure
applied, regarding the strategic aspect of the movement or posture control, the consistency
or variability across individuals, and so on.

As the weighing parameters are scalable (i.e., only the relative ratio matters), the
four parameters within each set that corresponds to a particular movement are normalized as
percentages of their total to better visualize the partitionihg among segments. Figure 10
illustrates these normalized percenfages for all the subjects in three area plots for the three
types of movements. The mean across the subjects for each type of movement is presented
as a separate column. These plots show that overall there exist some degree of congruency
within each type of movements across the subjects, although individual differences yet
appear to be substantial as reflected by the “zigzag” contours. However, the partition
among the segment varies distinctively across different types of movements. For instance,
the torso is very much involved in the anterior-posterior movements as its average

percentage is relatively lower, but virtually motionless during the up-down movement as its



18

percentage is dominantly high; the reverse situation appears to be true for the clavicle

movements.

Criterion and Computation Considerations

As described earlier, a set of parameters as a solution derived from the optimization
procedure using one of the criteria was also cross-evaluated by the other two criteria. A
final set of parameters was therefore determined from three solutions based on their
respective three criterion values. In this determination process, it was found that solutions
generated by C1 and C3 consistently out-performed the one generated by C2—unless the
three solutions converged (only approximately in simulated annealing method), the one that
was optimal in terms of C2 usually was not the optimal solution overall. For most cases,
C1 and C3 yielded comparable solutions: each scored the best in its own category but not

much worse than, if not as well as, the other in the other category. However, there is a

considerable computational advantage to the criterion C3. Suppose the W;,l is given by a

set of parameters for a movement of T time frames. Without saving the intermediate ©,

values, the numbers of various matrix or vector operations needed to derive the C1 function

T(T-1) T(T-1)
2

value (referred to equation 11) are:

T(T-1)

pseudoinverses; 3x* multiplications,

+T -2 additions, and T-1 subtractions. For C3 function (referred to equation

A13), these numbers are T-1, 3(T-1), T-1, and 1 respectively. Note that, the larger the T is,
the more advantageous the C3 is. For example, for a 25 frame motion, it took 200-300
seconds (Mathematica running on a 7100/66 Power Macintosh) to solve for a set of
parameters based on C3, but 8-10 times more based on C1. Therefore, C3 can be used
singly in the optimization procedures for solution search, and should be preferred when the

computation resource or time is of concern.
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Figure 4. Modeling accuracy measured by three evaluation criteria for
anterior-posterior (AP) reaching movements at four different locations:
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Discussions

Though optimization-based approaches to model human dynamic postures or
movements have been widely appreciated, and attempted with a certain degree of success
for a variety of biomechanical systems, the implementation of three-dimensional dynamic
models with a desirable level of sophistication remains to be a challenge. Previous
modeling approaches concerning movements can be generally classified as sequential static
(Ryan, 1970; Kilpatrick, 1970), or dynamic (Ayoub et al., 1974; Ayoub and Hsiang,
1992; Yamaguchi, 1990). Both approaches postulated an optimal strategy explicitly
formulated as an objective function. Methodologically, the former involved intricate
optimization procedures, one for each time frame, whereas the latter usually resorted to
dynamic programming or optimal control which suffers from the problem of
dimensionality. It has been acknowledged in several previous efforts that high complexity
and extreme computational demand are the primary obstacle to the quest for models that are
three-dimensional, dynamic, and possess a sufficient number of degrees of freedom
(Hsiang, 1992; Girard, 1991; Yamaguchi, 1990).

The approach presented in this study offers a potential means of circumventing the
above difficulties. Rather than working in the displacement domain or coping with
nonlinear musculoskeletal dynamics (equivalent to working in accéleration domain), this
approach resolves the inverse kinematics problem in the velocity domain to take advantage
of the linearity (See equatibn 2). In our modeling approach, a set of tunable weighting |
parameters quantifies an effort-allocation strategy as an implicit objective function in
optimal motion control. Once these parameters are given, joint angle profiles can be
delivered via forward integrations (see equation 10, which consumes about 20 second CPU
time to compute for a 25 frame motion using Mathematica on a 7100/66 Power Macintosh).
This process is computationally much more efficient than, given a known objective
function, to determine motion profiles using previous approaches aforementioned. For

instance, Yamaguchi et al. (1995) reported a 3.5 hour CPU time (on a Silicon Graphics
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IRIS) consumed to solve the kinematic redundancy of a 5-DOF biomechanical system in a
3 second motion, using a supposedly very efficient algorithm based on dynamic
programming.

It appears that a recent study by Jung et al. (1995) also recognized the availability of
the velocity domain (differential) inverse kinematics method for posture modeling. In that
study, while it is perplexing how angular profiles were generated (without specifying hahd
motion trajectory), the posture determination was clearly accomplished by iterative
resolutions of an optimization problem minimizing the sum of deviations of joint angles
from their neutral position. Therefore, at least in the respect of optimization procedures
employed, their model still belongs to the sequential static category.

Clearly, the success of our modeling scheme relies on the ability to determine the
set of parameters such that resulting joint angle profiles well represent the observed ones.
The present study introduced a comprehensive set of measures for evaluating modeling
performance, devised an optimization procedure for determining the parameters (as
variables), and identified good (though approximate) solutions using simulated annealing.
The empirical evaluation using measured reaching motion data demonstrated a promising
modeling performance by the proposed approach. Although there is no data available in the
literature for evaluating what is a “good” or “bad” dynamic posture prediction model, the
overall 3.3 degree mean error of prédicted angles with respect to the measﬁrcd angles
(referred to Table 2) is intuitively satisfactory. Particularly, a superb modeling accuracy
was achieved for medial-lateral (ML) and up-down (UD) movements with which a better
inter-joint coordination appeared to be associated. A comprehensive accuracy comparison
of the current modeling approach, applied to larger scale motion data, with a number of
previous approaches (e.g., Ryan, 1970; Kilpatrick, 1970) is underway. The comparison
will be conducted based on similar target-driven seated reaching movements.

The general success of using a segmental strategy with four time-invariant rate-

control parameters in modeling coordinated multi-segment movements leads to several



28

important theoretical interpretations. First, the fact that the parameters (and so as the
inherent strategy they represent) are time-invariant lends support to the motor program
theory of movement control. The generalized motor program notion asserts that the
production of (at least some) movements has invariant characteristics within the structure of
movement pattern (Schmidt, 1975; Young and Schmidt, 1991). Several lines of evidence
that are supportive of the motor program notion came from animal deafferentation research,
examination of reaction time behavior and EMG patterns during (mostly simple arm)
movements (see Young and Schmidt, 1991 for an excellent review). The current study
provides a new line of evidence, in a unique way, by extracting a set of invariant metrics
that characterize common seated reaching movements. Although a direct link between the
“strategy” in this work and the motor program seems groundless, the identified additional
invariance presents a straightforward form of visualizing an abstract concept.

Secondly, a segmental strategy (i.e., four-parameter scenario) claims that the
energy-type effort is allocated among body segments rather than individual degrees of
freedom. This strategy implies not only an inter-segment coordination (as reflected by
fixed weights assigned to each segment) but also a within-segment “synergy” (as reflected
by the sarﬁe weight shared by two degrees of freedom within a segment). This work, for
the first time, distinguishes these two levels of coordination—whether a segmental strategy
can accurately model a movement indicates what level of coordination is achieved. Indeed,
the modeling accuracy (referred to Figures 4, 6, 8) differentiates those more coordinated,
less difficult movements from those less coordinated, more difficult ones (e.g., AP
motions vs. ML or UD motions; 0-degree offset angle vs. 45-degree offset angle, close-in
vs. far-out, etc.). The legitimacy of proposing above two levels of coordination is further
justified by the result that a seven-parameter scenario improved substantially the modeling
accuracy for AP movements (which a four-parameter scenario did not model well) but
barely for the ML or UD movements. One comment that should be made here in this

context is that the distinction between the two levels of coordination cannot be revealed in a
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two-dimensional modeling effort, since each segment would possess only one degree of
freedom.

Thirdly, the nature of being a velocity domain approach and its considerable
computational advantage over either the displacement or acceleration. domain approach also
has interesting implications. It may suggest a primary role of the first-order or rate control
(as bopposed to the O-order or second-order control) in determining dynamic postures.
Using an analogy of CPU as the neural computing unit used by central nervous system
(CNS) for motor control, we may be able to reason that optimization-based 0-order or
second-order control is simply too slow for solving kinematic redundancy and realizing a
movement. The necessity of figuring out optimally positioned postures from moment to
moment (as in sequential static models), or selecting one from an infinitive number of
possible variations (as in models based on dynamic programming), is questionable. An
alternative which facilitates much quicker information processing and decision making, as
offered by the rate control mechanism, is perhaps more likely to be the one adopted by
human beings.

An additional appealing aspect of the proposed modeling scheme is that it can
accommodate problems with a larger number of degrees of freedom. This is an especially
important attribute, considering the trend towards increasingly complex, large scale
biomechanical models (Yamaguchi, 1995). Seven degrees of freedom are possessed by the
current model describing the upper torso and right arm, which already compares favorably
with most existing relevant models. If more degrees of freedom were to be incorporated,
the Jacobian matrix would become more sophisticated but yet derivable; in the search for
weighting parameters using simulated annealing, the number of operations remains the
same even though dimensions of involved matrices and vectors would be increased.
Therefore, the complexity of applying current approach would conceivably increase by
introducing more degrees of freedom, but not substantially, and in no way exponentially as

those previous approaches relying on dynamic programming (Yamaguchi, 1990).
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It would be a remiss not discussing the limitations of the proposed approach.

One limitation of the model arises from its dependence on a specification of hand (end-
effector) motion trajectory. This specification may in effect reduce the applicability of this
modeling approach. An improvement can be made through the implement of a separate
model which predicts the hand trajectory, provided the initial and terminal hand positions.
For point-to-point extracorporeal simple reaching motions, the hand trajectory has been
well researched. One of the most robust results reported by several experimental studies
(Morasso, 1981, 1983; Flash and Hogan, 1985) is that the hand trajectory is essentially
straight with a bell-shaped velocity profile. A model derived from a minimum jerk theory
for predicting such hand motion trajectory is available and can be readily utilized (Flash and
Hogan, 1985). Nevertheless, for more complex hand motions, the issue of characterizing
their trajectories still remains a contentious research topic.

Another limitation is that the best level of modeling accuracy graded for the less
coordinated, more arduous movements, particularly the anterior-posterior (AP)
movements. Though the accuracy was considerably improved using a modeling scenario
with seven parameters, yet it was not as satisfying what was achieved for other types of
motions even with a four-parameter scenario (see Figures 4, 6, 8). This limitation leads to
two possible avenues for further research. One is to implement a modeling scheme with

“time-variant weight bmmneters,‘stming with piecewise time-invariaﬁt parameters. This
generalization of the current approach would certainly entail a great deal of added intricacies
in modeling. But it may prove to be worthwhile, if it helps us gain a more comprehesive
insight by detecting possible strategic change(s) during the course of a variety of
movements. The other investigative line worth exploring is, as alluded earlier in the
discussion, to take advantage of the modeling performance difference for movement
classification purpose. A tool that stems from the current modeling approach may be
developed as a gauge to differentiate more coordinated vs. less coordinated, or normal vs.

pathological reaching motion patterns.
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Appendix A: Jacobian Derivation

Notational Conventions

A vector is expressed with a leading superscript donating the coordinate system or

frame to which it is referenced, unless it is referenced to the general frame (frame [0]).

Therefore, 'P represents a vector referenced to frame [1]; either OP or P denotes a vector

referenced to the general frame. A 4x4 homogeneous transformation matrix j-T achieves -

the mapping of a vector from its description in frame [i] to its descﬁption in another frame

[;] by i P=j-Tj P. This transformation requires a "1" to be added as the last component of

the vectors.

Transformations

The transformation matrices between two neighboring coordinate systems are:

0

1
2

IT -

cos 6,

sin 6, sin 6,

—cos 0;sin 6,

cosf; -sinf,

0

sin@3 cos B,

o 0
o - 0

~sin 6
sin 6,4 cos O
—c0s 8, cos 65
0

cos B¢ sin 6,
—sin 06
0

0
0 -l sinosinfy
1
0

0 sin 92 ll sin 92

cosf, -sinB cosf, -l sinb, cosb,
sinf, cosfcosB, I cosb cosb,

0 0 1

l,sincrcos 6,

[ cosa
1

0 cos 05 -1 sin 05

cosf, sinBysinfs I3sinf,cosbs
sinf, —cosB,sinbs [5cos6,cosbs

0 0 1

[cosBgcosB; —sinB; sin6gcosB; Iy cosbgcos by
cosf,; sinBgsinB; I,cosbgsin b,

0 cos 6 —1l4sin B¢
0 0 1
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The transformation from frame [0] to frame [4] is then obtained by concatenating

the above matrices as %T=01T12T23Ti .

Jacobian

The hand position with respect to the general reference frame can be expressed as

r="r=T4e=%T-[0 0 0 1.
The first three elements of r as the three Cartesian coordinates with respect to the

general frame are:

x =1, cos B sin 67 (—cos 8, sin B3 cos 6, +sin B, sin 6,1 +
l4 cos B cos 6;(—cos 6, sin B5 sin B, cos B5 —sin B, cos 6, cos b5 —
cos 6, cos 85 sin O5) + I, sin  cos B, cos 85 — 5 cos B, sin B5 sin 6, cos 65 +
1, cososin 6, +1; sin 8, — I3 sin 8, cos 6, cos 85 — I3 cos B, cos 65 sin 5 —
l4(cos 8, cos B5 cos 65 — cos B, sin 65 sin B, sin B5 — sin B, cos 6, sin O5)sin G

y =1, cos B¢ sin 67 (—sin 6, cos B, sin 6, +
cos 04(cos 0; cos 5 —sin 0, sin 6, sin 63)) +
l4 cos B¢ cos 6, (sin 6, cos B, cos 8 cos B5 + sin 6, cos O5(cos 6 cos 65 —
sin 6, sin 6, sin 63) — sin 65(cos 8; sin 5 +sin B sin B, cos 63)) —
I, cos otsin 6 cos 6, — 1, sin 6, cos B, + 3 sin B cos B, cos 6, cos 5 +
I, sincos 6, sin 65 + [, sin asin 6, sin 8, cos 65 + I3 sin 8, cos B5(cos 6, cos 65 —
sin 6, sin 6, sin 63) — l3(cos 6, sin 65 + cos B sin 8, cos B sin O5) —
l4(cos B5(cos 6, sin 65 +sin 6, sin B, cos B5) + sin 6, cos B, cos O, sin O +
sin 64 (cos 6, cos 65 — sin 6, sin 6, sin 63 )sin Os)sin G

2 =1, 5in G cos B7(cos B cos B, sin B, + cos B, (sin G; cos 65 +
cos 6, sin 6, sin B3)) + 14 cos B¢ 6,(—cos 6 cos 8, cos 64 cos Os
+sin 8, cos B5(sin 6, cos 65 + cos 6, sin 6, sin 63) —
(sin 6, sin 6; — cos 0, sin B, cos B5)sin B5) + I, cos acos ; cos 6, +
[, cos 8, cos 8, — I.cos 6, cos B, cos 8, cos O5 + [, sin ¢ sin 6 sin 63 —
L, sin @ cos 6; sin B, cos 65 + 5 sin B, cos B5(sin 6, cos G5 + cos B, sin B, sin 65) -
—L3(sin 6; sin B3 — cos 6, sin B, cos 65 sin B5) — [4(cos B5(sin O, sin G5 —
cos 6, sin 6, cos 6;) — cos 6, cos 8, cos 8, cos 65 + sin B, (sin §; cos 65 +

cos 0, sin 6, sin 63)sin 5)sin G
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The Jacobian matrix is derived as

r

ox oJx odx oJdx Jx Jdx ox
96, 36, 99, 99, 96; 36, 98,
T R
96, 99, 96, 36, 96; 36, 96,
dz oJz dr dz dr dz Oz
|06, 06, d6; 96, J6s Jbs Ib; |
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Appendix B: Simulated Annealing Algorithm
Arguments
To: starting temperature; X: initial guess of solution
hf: heating factor; cf: cooling factor;
fup: neighborhood function; f,,, : evaluation or objective function;

Texit: temperature to exit the search; Vexii: foyq Vvalue to exit the search;

Nexit: maximum number of iterations allowed.

Variables
Nycpt: nUmber of accepted solutions; ny,cp: number of accepted worse solutions;
Xbest: best solution so far achieved; Vieg: best f,,, value so far achieved;
T: current temperature; X: current solution; V: current value;
1: number of iterations completed,;
converged: Boolean variable;

heating: Boolean variable.

Procedures (for maximization)

Step 1. Initialization: T = To; X = Xo; V = foy21(X0); Xbest = Xo: Vbest= V; 1 =0;
Naept = 0; Nyacpt = 0;
converged = false; heating = true if hf>1, false otherwise.

Step 2. Seti=i+l;
If 1 = Neyit, go to Step 6.

Step 3 Generate a candidate solution: Xcand = f; (X); Evaluate Veand = foya (Xcand)s
Compute the probability of accepting the candidate solution:
P = Min[1, eV ™'T],

Step 4. Generate a random number between 0 and 1;

If the number < P, nacp[ = nacpt+l, X = Xcand, v = Vcand;
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and if Vypq < X, Nwacpt = Dwacptt1;
If Veand > Vest, Xbest = Xcand, Vbest = Veand-
Step 5. If nyacpt 2 2, heating = false.
If heating = true, T = T*hf; otherwise, T = T*cf
If T < Texit OF Vpest > Vexit, converged = true;
If converged = false, go to Step 2.

Step 6  Output Viegr, Xpests 1, T, converged, etc.



