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NOMENCLATURE

Pipe cross section area

Wave speed

Capacitance per unit length

Constants

Pipe diameter

e =2,71828

F= 'a-i'/o

Darcy-Weisbach friction factor

Acceleration due to gravity

H = H(x,t), piezometric head

Head loss due to fluid friction per unit length
i o=n-1

Integer

Bessel function of first kind and zero order
Bessel function of first kind and first order
?jl(z) =z Jo(z)/Jl(z) , modified quotient of Besselrfunctions
Integer counter

Bulk modulus of fluid

Integer

Inertance per unit length

Length of pipe

Bessel Function of second kind and zero order
Amplitude of pressure fluctuation

Subscript denoting point P

p = p(x,t), pressure
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NOMENCLATURE (CONT'D)

Q Q = Q(x,t) discharge
R Radius of pipe
R Linearized resistance per unit length (only in Chapter V)
R Subscript denoting point R
Re Re = VD/v, Reynolds number
r Distance from pipe axis
S Subscript denoting point S
s Complex variable o
S 5 Roots of ?71(1 }ﬂ%ﬂR) -2=0, s5=- g%_ v
s Subscript denoting steady
t Time
u Time, used in convolution integral
u Subscript denoting unsteady
v V = V(x,t) = Q(x,t)/A, mean velocity
v v = v(r,t), velocity
W W =W(t), weights for past velocity changes
X Distance along pipe axis
X Real variable
y Real variable
A Complex variable
a a=RJZ¥v , dimensionless frequency
B’= - gg., taper of pipe
r Gamma. function
Y Specific weight of fluid
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NOMENCLATURE (CONT'D)

See Equation (65)
See Equation (22)
Roots of ?71(2) -2=0

See Equations (68) and (69)

u = pv, dynamic viscosity

u/p, kinematic viscosity

v
See Equation (22)

Roots of Jy(z) =0

n = 3.14159

Density of fluid

T = %2 t, dimensionless time
Shear stress at pipe wall
See Equation (31)

Circular frequency



I. INTRODUCTION

Flow through pipes is always subject to energy loss due to
fluid friction. While there is a well developed theory about the
energy loss in steady pipe flow, little knowledge exists about the
energy dissipation in unsteady flow systems. Although there is
experimental and theoretical evidence that the fluid friction is
highly dependent upon the rate of change of velocity, most investi-
gators apply the steady state friction term to the analysis of unsteady
flow and neglect the evidence that higher harmonics attenuate much
faster than low frequency components of waves.

The treatment of transient flow in pipes, commonly called
waterhammer, begins historically with the well known works of
Joukowsky(lB) and Allievi(l) who treated the propagation of pressure

waves in frictionless systems, described by the wave equations

OH 1 oV _

&*g?ﬁ'o
and

3H a2 ov

6'€+§"SE=O

where H and V are dependent variables piezometric head and
velocity, t and x are independent variables time and distance
along the pipe axis, a 1s wave speed, and g 1is acceleration due
to gravity.

Later investigators included friction effects by applying
the friction terms derived for incompressible steady laminar or

turbulent flow,



hf=.5_2_zV
2
gD
and
2
D 2g

where hy 1s the friction loss per unit length of pipe, v 1is the
kinematic viscosity, D is the pipe diameter, and f 1is the Darcy-
Weisbach friction factor. This approach assumes that the energy dis-
sipation is only a function of the pipe constants and the sectional

mean velocity. The wave equations including fluid friction are

OH 1 oV

&*gﬁ*hf:o
and

3H af v _

§€+g 55 = ©

Only when hy 1s a linear function of V , such as when flow is laminar
or when the turbulent friction term is linearized, is an analytic solu-
tion of the equations possible. It has been studied in exhaustive
detail in connection with the resistance-capacitance-inductance model
of electric transmission lines and applied to waterhammer problems to
calculate the transient and frequency response of fluid lines.

A way to handle nonlinear friction in hydraulic lines is by
lumping it into so called friction joints. However the graphical
waterhammer theory permits the employment of only a very small number
of joints, while the method of characteristics applied on a computer
offers a procedure that can treat distributed nonlinear friction owing

to the great number of sections which can be considered.
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The application of steady state friction to transients, both
laminar and turbulent, implies that the damping effects are propor-
tional only to the velocity. Since no dependency on the rate of change
of velocity is taken into account, no change of shape of the waves can
show up in the theoretical results. That means that discontinuities
are propagated as discontinuities and higher frequency disturbances are
subject to the same damping as low frequency disturbances.
Two significant experimental results by Holmboe(ll)
D'Souza and Oldenburger(g) are chosen to show the limitation of this
assumption:

1. A pipe of one inch diameter and a length, £, of 118. 4 feet
is connected upstream to a reservoir with constant head. The

working fluid is an oil with a kinematic viscosity, v,

of v = 0.000427 £t2/sec, almost 50 times that of water.

The wave speed is 4345 f.p.s. The downstream valve is

suddenly closed and the resulting head fluctuation is

recorded in Figure 1. The step change in flow at the

valve results in a sudden increase of the pressure at the

valve and sends a steep pressure pulse through the system.

After the relatively short wave travel time 2¢/a , when

the reflected wave returns to the valve, a significant

rond-off effect of the leading edge of the pulse is

evident and increases as time progresses. This effect

cannot be predicted using a steady state friction term in

the waterhammer analysis. Furthermore the attenuation of
the fluctuation is greater then_predicted in the conven-

tional waterhammer theory.
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2. An experimental study of the frequency response of a pipe
proves that the resonating pressure amplitudes of the
higher harmonics are smaller than the lower harmonics. An
experiment over a wide range of harmonics is not available,
but A. F. D'Souza and R. Oldenburger(g) give the pressure
ratio between downstream and upstream end of a 40.25 feet
long steel pipe with an 0.495 in ID for a frequency range
from O to 100 cycles/second. The speed of wave propagation
is 4259 f.p.s., the density of the fluid 1.663 1b.sec2/ft4
and the kinematic viscosity, 0.000197 ft2/sec. Figure 2
demonstrates that the pressure amplification in the third

harmonic is smaller than in the fundamental harmonic.

Recently several investigators have attempted solutions for
transient flow which include the effect of the varying velocity distribu-

3,4,8,11)

tion over the crossmsection.( Their work is limited to
laminar flow and neglzcts all nonlinear effects. They succeedad in
calculating the response of uniform fluid lines for sirnusoidal, step
and impulse inputs, building up an arbitrary input from these elements.
The treatment of the nonuniform pipe is even more limited. Similar
techniques as for the uniform pipe are used to derive transfer functions

(18)

for pressure and flow of nonviscous and viscous fluids. They are
valid only when the duration of the pulse is very small compared to
the time required for the pulse to traverse the length of the pipe.

After consideration of the limitations ‘of the present methods,
this thesis was initiated with the objective of incorporating the

influence of viscous dispersion effects into the one dimensional model

of transient pipe flow.
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Following a review of noteworthy literature in Chapter 1T,
the fundamental differential equations of waterhammer in uniform and
nonuniform pipes and in tubes with very distensible walls are presented
in Chapter III. The equations for the friction head loss in unsteady
laminar flow are derived in the next chapter. If the flow varies
sinusoidally the dissipation is a function of the instantaneous mean
velocity and acceleration:

1 oV

= o— = g-
hf gTIVJrgg“‘t:

S

in which 1 and ¢ are functions of the dimensionless frequency para-
meter o = R~Nw/v. If the flow varies arbitrarily with time the
instantaneous value of the energy dissipation can be given as a function

of the instantaneous velocity and the weighted past velocity changes:

t N
he = §l’§ V o+ E}ié f ?E(u) W(t-u) du

&R gR= 0 ot
in which the weighting function W depends orn the dimensionless time
parameter T = LA

R2

Chapter V and VI present the application of the friction terms

to waterhammer. For periodic flow cases use of the well established
impedance method is proposed and modified by inclusion of unsteady
friction which makes the inertance and resistance terms freguency
dependent. Arbitrary flow cases are treated by use of the method of
characteristics which again is altered in respect to the friction. Both
theories are verified experimentally. A separate chapter describes the
application of the method of characteristics including frequency

dependent friction to the flow of blood in arteries.



It should be noted that frequency dependent friction is only
one of several causes for dispersion effects in transient pipe flow.
Inelastic behavior of the fluid and pipe walls may be of importance as
well as a dependency of the wave speed on the frequency of the disturbance.
However, for viscous fluids in small diameter pipes there is experimental

evidence that these influences are not too important.



IT. LITFRATURE

The phenomenon of pressure waves in conduits has been studied
very extensively during the last sixty years. TFor this literature
review only some specific aspects are of particular interest.

One aspect is not even directly concerned with waterhammer
but deals with the friction loss due to the unsteady motion of an in-
compressible fluid, laminar and turbulent.

Another one considers the response of uniform pipe to un-
steady input taking into account the influence of the varying velocity
profile. The existing literature about this topic is limited to laminar
flow. Studies which try to extend the methods to nonuniform pipes are
also noteworthy since the procedure offered in this thesis is universal
in that respect.

Finally some literature should be mentioned about the unsolved

problem of the stability of unsteady laminar pipe flow.

Wall Shear Stress in Unsteady Laminar Flow:

E. G. Richardson(l7) seems to have been the first who studied
the velocity profile of oscillating pipe flow. In an experiment on
sound waves in an Helmholtz oscillator he found that surprisingly the
maximum velocity does not occur at the center of the pipe but close to
the wall, and the higher the frequency of the periodic motion, the
closer this maximum velocity is to the wall. T. Sexl(go) verified this
phenomenon theoretically. Assuming that the pressure gradient along
the pipe is varying as a sine wave, he found an exact solution of the

Navier Stokes equations, which results in an expression for the velocity

-8-
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distribution throughout the cross section. This work was extended by
S. Uchida(27) who supérposed a periodic oscillation on an average flow
and represented it by a sum of sine waves. He examined the velocity
profile in detail and calculated the sectional mean velocity and the
shear stress at the wall, pointing out the phase difference between
them as well as the higher energy dissipation compared to steady flow.
While for application of all these equations the pressure gradient had
to be known Lambossy(lu) eliminated it and derived the wall shear stress
as a function of the sinusoidally varying mean velocity and acceleration.
For the nonperiodic case, F. Szymanski(25) gave another exact
solution of the Navier Stokes equations. With the pressure gradient
varying as a Heaviside unit step function, he evaluated the velocity
distribution. Due to the linearity of the equation any arbitrary motion
can then be represented as a convolution integral, if the pressure
gradient is known. This equation is not suitable however for inclusion
in a one-dimensional model of transient flow and it is the main objective
of Chapter IV of this thesis to derive an expression which allows the
calculation of the wall shear stress if only the variation of the mean

sectional velocity is known.

Wall Shear Stress in Unsteady Turbulent Flow:

This paper develops a method of considering the effects of
unsteady friction on the propagation of waves through pipes with
laminar flow. Sinée the author claims that an equivalent procedure
is applicable to turbulent flow, a brief glance should be given to the
little literature available on the subJject of frequency dependent

friction in unsteady turbulent flow.
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F. Schultz-Grunow(l9) generated pulsations of flow in a

smooth pipe of 11.5 feet length and 1.95 inch diameter. Dependent

upon the frequency the instantaneous velocity varied between 3.8 f.p.s.
and ~7.5 f.p.s. for a time period of the oscillation of T = 2.5 seconds;
~/0.16 f.p.s. and ~6.6 f.p.s. for T = 30 seconds; and .~0.16 f.p.s.
and ~A7.1 f.p.s. for T = 30 seconds. Schultz-Grunow noticed a strong
similarity between velocity profiles of decelerated flow in a uniform
pipe and steady flow in a divergent pipe: both flows are in the direct-
tion of an adverse pressure gradient. A similar resemblance was evident
between the velocity profiles of accelerated flow and flow in a convergent
pipe. In experiments with a reversal of the flow direction, separation
effects occurred and changed the profiles drastically. Although he
concluded that the time average value of flow resistance is close to

the steady state value, it should be noted that for transient flow the
instantaneous value is of great importance since it causes the dispersion
of waves. Moreover the frequencies in his experiments were relatively
low.

J. W. Daily et gi.(6) used a one inch diameter pipe 8.25 feet

inrlength. They established steady state flow and then subjected it to

a slowly changing acceleration or deceleration; however, in the case

of deceleration a rapid velocity change occurred in the start becoming
more continuous afterwards. The range of velocities was between 9 and

18 f.p.s., and the range of accelerations or decelerations between 7

and 80 ft/sz. When the authors determined the instantaneous Darcy-
Weisbach friction factor f = 2gth/V2 for both steady and unsteady

flow they came to the following conclusions: 1if the fluid is accelerated
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the friction is slightly higher than under equivalent steady state
conditions, but if the fluid is decelerated the friction is appreciably
less than in steady state flow. Referring to the initial phase of
rapid velocity change, which seems to have influenced the friction
value of the succeeding flow, the authors concluded that the particular
state from which the flow is initiated affects the subsequent flow
history. However, it seems reasonable to assume that for small
accelerations it should be possible to express the wall shear stress by
the instantaneous flow conditions. Following this idea, M. R. Carstens
and J. E. Roller(S) considered the velocity distribution to be the same
in steady state flow and in unsteady flow. Then, using a power law of
velocity distribution, they developed an expression for the ratio of
the unsteady and steady friction factor which depends slightly on the
acceleration of the fluid. The authors compared the theory with some
of their own experimental results and with those of Daily but the
agreement was not very convincing. As one of the possible reasons they
too pointed out that unsteady friction may be a function of the history
of the motion.

If one summarizes these results, it becomes obvious that, up
to the present time; no reliable prediction for the energy loss in
unsteady turbulent flow is possible.

Waterhammer in Uniform Pipes Including Effects of Frequency
Dependent Friction:

The appiication of unsteady friction effects to waterhammer

problems is relatively new. The response of a pipe with laminar flow

to an unsteady input of flow or pressure has been calculated for a
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sinusoidal, a step and an impulse input. The basic eguations are in

all cases the Navier Stokes equation

v 13 19 (v _
3 Tex T Vror Vv T
and the continuity equation
1 Jp ov _
kot T ox 0

in which all nonlinear and higher order viscous terms are neglected.

In fact the equation of motion is identical with the basic equation

for an incompressible fluid in a stiff cylindrical pipe, and therefore
the velocity distribution and shear stress, which do not show up in

the solution explicitly, are the ones of an incompressible fluid. In

the continuity equation the bulk modulus K includes the compressibility
of the water and the elasticity of the pipe walls. Based on these
equations, A. F. D'Souza and R. Oldenburger<8> derived transfer func-
tions for pressure or velocity between two points of a pipe for a
sinusoidal input. Brown(E’u) calculated pressure and discharge at a
pipe point due to a step change of pressure or discharge at another
point. The analytical expressions of Brown are very complex. The
response curve consists of three parts: the head of the curve must

be calculated using a high frequency approximation for the propagation
constant and characteristic impedance; = the tail can be calculated

using a low frequency approximation. In the remaining gap none of the

approximations is accurate enough and no analytical expression available.
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A very complicated procedure is used to convert a more easily calcuable
frequency response into a step response. In view of these mathematical
difficulties, Brown's results are applicable in a practical sense only
if one uses his carefully computed universal step response plots for
semi-infinite lines. There remains the work of expressing transient
responses by superposing step responses and of taking into account all
reflections, an approach which can be very tedious in complicated piping
systems.

Waterhammer in Nonuniform Pipes Including Effects of Frequency
Dependent Friction:

Pressure pulses traveling through a tapered pipe are subject
to a distortion which depends upon the geometry of the pipe and the
viscous shear forces. The prediction of these effects is desirable for
the design of pulse transformers in fluid control systems in which the
taper is chosen in such a way as to change input amplitude to a
desired output amplitude. The only theory of tapered fluid lines which
takes into account viscous shear effects, is developed by W. T. Rouleau

(18)

and F. J. Young. The methods adopted are similar to these used

for uniform fluid lines, discussed above, but are much more limited.

The applied series converge only for high frequency components and

therefore the procedure is only valid for short pulses, in fact only

for pulses with a small duration compared to the wave travel time Ez/a.
The underlying velocity distribution is assumed to be that

of a cylindrical pipe. This assumption is Jjustified only for very mild

(

taper. Blasius 2) demonstrated that for steady laminar flow in a

divergent tube a back flow at the wall starts when dR/dx > 12/Re



=1k

where Re denotes the Reynolds number. Back flow, however, is the
starting phase of separation which causes a rapid increase of friction.
The effect will be even higher if the fluid is decelerated since the
adverse pressure gradient is steeper.

F. J. Tarantine and W. T. Rouleau(26) derived a solution
which is applicable to pulses of any duration but for a frictionless
system only. Since a step-line-impedance technique is used the pipe
can have any continuous taper function and arbitrary transient input
must again be approximated by a sum of small step inputs.

The method developed in this thesis will be applicable for

any slightly tapered fluid line and the input can have any duration.

Stability of Unsteady Laminar Flow in Pipes:

The laminar flow theory for fluid transients in pipes is not
valid if the flow is turbulent. The discrepancies are so large that
it would be very important to have some criterion for the stability of
laminar flow as a guideline for the upper limit of applicability of the
theory. The research on this topic has been started but the reported
results are not sufficient.

D. A. Gilbrech and G. D. Combs<lo) defined a Reynolds number
for pulsating flow, relating it to the time average of the cross-
sectional mean velocity. The critical wvalue of the Reynolds number
was interpreted as the value at which the growth rate of turbulent
plugs was zero, and then presented as a function of the ratio of the
amplitude of the periodic components the time average of the velocity

and as function of the dimensionless frequency R'J&/v .
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The authors concluded that the critical value of the Reynolds
number is greater than the one for steady flow and that it increases
with increasing amplitudes of the pulsations, reaches a maximum and
decreases again but is still greater than the steady state value.

It seems that the velocity ratio at which the maximum Reynolds nunmber
occurred decreases with increasing values of dimensionless frequency.

While these results are valuable for understanding certain
aspects of the problem the range of the experiments is too limited to
permit final conclusions.

One serious problem in the application of the laminar flow
theory is the separation which has been observedduring the reversal of
the flow direction. Although the flow may still be laminar, the
assumption of parallel streamlines is disturbed, which leads to higher

energy loss than presented by the theory.



ITI. FUNDAMENTAL EQUATIONS OF WATERHAMMER

The waterhammer phenomenon in pipes is commonly described
by a one-dimensional model with pressure head and mean sectional velocity
as dependent variables and with independent variables time and dis-
tance along the pipe axis. Applying momentum and continuity principles
to a segment of dx‘ of a pipe, several authors have derived the basic

partial differential equations, which are the equation of motion

g g%.+ v g% + g%-+ ghe = 0 (1)

and the equation of continuity

vV g
— + 35V
a2

OH + g OH
ox

'5'}: 8.2 — =0 (2)

in which a denotes the wave speed and hy the head loss due to fluid
friction which is related to the wall shear stress by hy = L '75/7 -D,
with 7 +the specific weight of the fluid. Head loss is generally

taken to be steady state head loss

2
D 2g

for turbulent flow and
hr = 32 v v

2
g IC
for laminar flow.

-16-
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Concentrating now on laminar flow, it is of interest to see
how the same. waterhammer equations starting with the Navier Stokes
Equations can be derived since they will be used to develop a more
general term for the fluid friction. The following derivation
demonstrates that the problem of taking into account the varying
velocity profile can be reduced to choosing an expression for the
wall shear stress which is based on the true velocity distribution.
If one uses cylindrical coordinates x, r, and assumes the flow to be
parallel and axisymmetric in a horizontal circular pipe of constant

cross section, the equation of motion is

dv dv 1 dp R S dv

— + vV — + === -+ = — —) =0

ot v ox T o OX Y 3 dx2 * r Or (x Br}. (3)
and the continuity equation

3 3 d

e teSEtVae =0 ()

and for the equation of state

= 2B (5)

'olg/
|
o
o)

in which

= p(x,t) the pressure

v(x,5t) the axial velocity
the kinematic viscosity

the fluid density

= the bulk modulus of the fluid.

N < 4133
i
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Neglecting the radial velocities implies that the pressure
and therefore the density are constant across the cross section. The
pipe walls are assumed to be rigid although the bulk modulus may be

modified to take into account the elasticity of the wall.

2
The viscous term %.g_%- is small when compared with
X_.

g—-(r gz) and may be neglected.
r T

I N

With these assumptions, the equations reduce to

ov ov 1 9dp 10 ov, _
—a—t—+V—a—x-+-‘:—)-a—X--V;$(I‘-a*r—)~o (6)
L%, dey o

K( otV Bx) oS 0 (7

If one integrates over the cross section, divides by the cross sectional

area and defines the mean velocity

1 R
V=" [ 2nrvadr
T Re ¢
one obtains
oV 2 R dv 1 dp v R ov
— + — rv —dr + = = - 2 — — (r dr = 0
ot RZ of ox d p Ox R2 Of or ( a-;)



Ry v ov R dv
[ = ( Yar = r =R
0 ar 5; 5; C‘) 5;(r=R)
= - R To
pv

: ov e
For the nonlinear term Vv S—- an approximation is used
' X

R 2 d
25 [ rv %X dr & — V [ r §X~dr
RS ¢ X R 0 X
-y oV
ox
then Equation (6) becomes
d 2T
éy-+ \ rY- z ég + =—= =0
ot dx poOx Rp

These equations are rewritten using the piezometric head H = p/7

and the relation between wave speed and bulk modulus 2 = K/p .

4 V=4 ——= =0 2

ot ox g Ox (2)

With the exception of the approximation in the convective term V éz s
X

which is in itself small when compared to the remaining terms, the
one-dimensional waterhammer Equations (1) and (2) represent every

aspect of the Equations (6) and (7), if the friction is calculated

from a velocity distribution which satisfies Equation (6).
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In the traditional transient flow treatment of laminar flow,
To 1s calculated from the steady state flow velocity distribution

which is a solution of

bv

10p =10 ov
L+ = _.5_.(
0 r

g; b = 0 (8)

Bt or

in which the pressure gradient éE = constant and therefore v - 0.

e

X ot
The velocity distribution is the well known Hagen-Poiseuille flow and

the shear stress can be expressed as a function of the mean velocity
To = bovV/R .

To advance this approach in this thesis, the shear stress
will be calculated from a velocity distribution which is a solution of

Equation (8) for a time dependent pressure gradient éﬁ .

ox

A special note shouldbe made concerning the basic equations
for transient flow in nonuniform pipes. As derived in Reference 22
the differential equations are the momentum equation

aH av §Y+ghf

ax Bx Bt

fl

0 (1)

which is identical with the momentum equation for flow in uniform pipes

and the continuity equation

o ,g yOH, g OH 26V _
3% | a2 v dx a2 dt D 0 (9)

Compared with the continuity equation for a uniform pipe, Equation (2),

the only difference is in the term E%z » in which B designates the
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oD
taper of the pipe B = - = The wave speed a is now a function of

x due to the varying cross section of the pipe.

As mentioned earlier, the underlying assumption of the one-
dimensional model of transient flow is that the pipe modulus of
elasticity is small when compared to the bulk modulus of the fluid.

A way to take into account the elasticity of the pipe walls is to
modify the bulk modulus of the fluid, in other words its wave speed.
The basic mathematical model is still that of a pipe with rigid walls.

A further step forward is the application of the same concept
to flow in tubes with highly flexible walls which was done in the
treatment of blood flow by Streeter et gi.(gl’EB) In this case the
compressibility of the fluid is almost negligible when compared with
the elasticity of the tube walls. Nevertheless the one-dimensional
model of the rigid tube is applied, which means Equations (1) and (9)
are valid, and the tube is filled with a hypothetical fluid the bulk
modulus or wave speed of which is a function of x and of the
instantaneous pressure. This procedure has the advantage that
a = a[x,H(t)] can be any nonlinear function, taking into account non-
linear wall properties for example. One specific relation of the
variation of the wave speed with the pressure was defined by Wylie.(29)
Because of the complexity of the equations, the wave speed is given as
a function of the diameter, and, in a second equation, the diameter

is related to the pressure head. If the modulus of elasticity of:

the pipe walls is constant, then

w} Iotj
Oﬂ)
O
<
l_.l
1
no
~
=
|U
|
[0j¢]
[ue]

(10)

kel
g
(@)
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2
D D
° =(_.°.) (.1_zn12__+H0 Do ) (11)
2Eqeq 7 Dy 2EoeO

Dys Egs ag and e, denote diameter, modulus of elasticity, wave speed

and wall thickness under an initial head of Hy . p and 7 are
density and specific weight of the fluid.

These modifications of the wave speed affect only the
equation of continuity. This should be justification enough to neglect
the time variation of the diameter in the calculation of the friction
loss, which shows up only in the momentum equation, and is generally
smaller than the pressure gradient and the inertia term. It is
necessary for the derivation of an unsteady friction term, to hold

the diameter at a cross section constant.



IV. WALL SHEAR STRESS IN UNSTEADY LAMINAR FLOW

A. Fundamental Equations

A constant pressure gradient along the axis of a circular
pipe filled with an incompressible fluid causes the well known Hagen-
Poiseuille flow which implies a parabolic velocity distribution.

Under these conditions, the wall shear stress is customarily expressed
as a function of the mean velocity.

If the pressure gradient is time dependent, the velocity
distribution is no longer parabolic but can be of very complex nature.
Moreover the wall shear stress is not in phase with the mean velocity.
This phenomenon can be understood by drawing a physical picture of
the movement in the pipe. In laminar and in turbulent flow the viscous
effect is concentrated in a thin layer close to the pipe walls, called
the boundary layer. 1If the pressure gradient which is the driving
force on a short section of the pipe is varying with the time, it
affects the boundary layer and the fluid in the center of the pipe
differently. Since, in the boundary layer, friction is prevailing
and the inertial forces are small, the velocity near the pipe wall
is in phase with the pressure gradient. However, in the inner region
of the pipe cross section, the inertial forces are dominating, and
therefore the pressure gradient is in phase with the acceleration of
the fluid. 1In other words, a sudden change of the pressure gradient
will first affect the boundary layer, and therefore change the shear
stress at the wall, before the mean velocity is changed. The boundary
layer may even change direction of flow before the mean velocity does,

a possible cause of the separation observed during the reversal of

23
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flow direction. For several specific cases such as pressure varying
sinusoidally, as a Heaviside unit step function or the Dirac delta func-~
tion the velocity distribution has been calculated and discussed in
detail.(9’27) But only for the sinusoidal variation has an equation
been derived which relates the wall shear stress to the instantaneous
values of mean velocity and acceleration. Some of these results are
repeated in this chapter, and, in addition, a new equation is derived
for the general case of the mean velocity varying arbitrarily. This
equation relates the wall shear stress to the instantaneous mean
velocity and past velocity changes. This approach 1s necessary in
applying the friction term to a one-dimensional model of transient flow.
The Navier Stokes equation for parallel axisymmetrical flow

is restated

v  1dv 10v _ 1 op/ox

SptT e -T == 8

or rdr vot v op ( )

and for simplification F(t) = £.§_.. Here the term v ov , which is
o Ox ox

small when compared with the remaining terms, is neglected. This
means physically that the influence of the compressibility on the
velocity distribution is ignored.

Application of the Laplace transform(Y) yields the subsidiary

equation

2t\ A ~ A
Q_K + l.éi -5 v = 1 F (12)
dre r dr v Y

A A
where v is the transform of v and ¥ the transform of F , e.g.,
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LIF()] =F(s) = Ofoo F(t) e™5% ag

F(t) 1is assumed to be continuous or piecewise continuous and
is a complex number, the real part of which is positive and so large
t the integral fm F(t) e 5t gt exists.

The part;;l differential Equation (8) is now reduced to the

inary differential Equation (12), the solution of which is

w =D

T(r,s) =0p I —V%r) ¥ Cp Ny (i -V%.r) -

and N, denote the Bessel functions of first and second kind and
zero order respectively. C; and Cp are constants which must be
ermined for the specific boundary conditions. These are ¥ =0

r =R and v = finite for r =0 . Introducing them into the

ferential equation leads to

2/ Rea B

! 3. (i \ER)

and therefore the transform of the velocity is

TR

/\;(I‘,S) =

[ Mﬂ - 1] (13)

3,0 \[—i— R)



Furthermore, the transform of the mean velocity is

G(s)

in which the function ?7 z) =
of Bessel functions of first order. %

stress at the wall is

3 (s)

and the transform of

ov
dt

(s)

~26-

2 R4
= = (! r v dr
_F[ 2nG AR
"l VR 3,6 \ER)
= E ] 2 - 1]
R SVACRRTERS )

the

Jo(2)
3, (z)

-1

R
ar(r=.R)
Jn b 311V 5 R)
’\]E,R 7,1 [ER)
1% 0] v
p R ﬁ

—f’jl(i \[?JR)

acceleration is

s V(s)

?[_.__2___ ; 1]
7,V R)

is defined as a modified quotient

1@ Then the transform of the shear

(16)

Some remarks are necessary about the function §7i

An examination of S&(z) in the complex plane leads to some significant

results: ?ji(z) has no zeros and poles which are not real.

On the real
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axis there is an infinite number of zeros and poles which are interlaced

with each other. On the imaginary axis, ?jl(z) is real with

1im ¥, (iy) =+ o . < (z) is an even function, e.g. ,(-z) = 7 (#z)

y=teo 1 1 1 1

and the value at the origin is 37 =2 . The function ¢/ (a~f;i)
1(z=0) 1

with @« real will be of particular interest and is discussed in the

Appendix. There are some cases for which the inverse transforms of the

Equations (13) to (16) can be found. This study is mainly concerned with

the sinusoidal solution and a solution for the arbitrary transient case.

B. Solution for Periodic Flow

If for example the pressure gradient varies sinusoidally,
€.8.,

dp iwt
ox

]
'
d
(0]

F(t) =

O+

then

v(r,t) = - i(%elwt [l

(e EN-1)
(o 7F ] (17)

Jo(a 'J—-i)

with o = R~Nw/v which is a dimensionless number relating the three
parameters radius, viscosity, and frequency. It is understood that in
all complex equations only the real part gives the physical value.

Furthermore,

V() = -1 1.2 (18)
@ [ ?l(omf-i) ]
T (t) = e @ L (19)

(.971(0 "[—i)
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Above equations are stated without derivation, which can be found in
Reference 9. For details on the function f?l(a~f;i) see the Appendix
and Chapter IV, Section A.

To obtain a relation between the wall shear stress and the
mean velocity the pressure gradient is eliminated by dividing Equation

(19) by Equation (18). This leads to

r - i pRw
o(t) éi;ﬂ;IffISTE v(t) (20)

and for the head loss due to friction

he(t) R © &8 J(a-i)-2 v(®) (21)

V(t) stands for the complex mean velocity V(t) =Re V(t) + i Im V(%)
Since V(t) is varying sinusoidally, Im V(t) = - é-Re g% (t)

Furthermore let n and ¢ be two dimensionless numbers depending only

on
i _ Re 21
21
g = Im ——n
‘yi(a's/—-i)-E
then
-0 Ly 1oV
he = g (n i) - o ot

and the real part of hf is given by
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_ w1 £ OV
h, = =2V + 2 — 22
f g g ot (22)
and
- fBwly ROV
To > 5 oS (23)

Numerical values of 1n(q) and E(q) for «a varying from 0.1 to 10.0
are given in Table I, while Figure 3 shows a graphical plot of n(q)

and &(q) for a from 0.0 to 26.0.

To examine the limiting value of he for o - O Equation

(21) is used and fjl(a'J;i) expressed by the first terms of a power

series near the origin

F (aN-1) = 2 - (@-1)? - .19.5 (aN-1)* - ...

n
b, _ozzv 21 (V-ll%z
R'g % iof + %6 o + ® ot
=Y (8 + —-o? V - i Bf..é!
Rgg( A loﬁvat)

in which higher order terms of  are neglected.

The real part of hy 1s
n, = Xy+Ll X (2k)
The first term of hf is identical with the expression for steady

state shear stress, while the second represents a third of the inertance

of the fluid in the pipe.
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090
100
1+1C
1620
130
1440
16450
1e6C
1«7C
1.8C
1.9C
2ell
210
220
230
240
2¢50
260
2470
248C
2690
240C
3410
3420
3430
340
3¢50
3460
3470
380
390
4400
4410
4420
4430
4040
4450
%e60
&70
480
4490
5,00

n AND ¢

n

e CuHOU
eQ1125
e U200¢C
e03125
e 044009
006124
e 07597
el0211€C
e 12480
e15106
017968
¢21072
024419
028003
e3182¢C
¢3586¢
e4013¢
0 44628
040321
e54231
¢59327
e 64607
e 7TC06U
e 75674
081438
087338
e93361
0994904
1405722
1e¢1203%
1e18418
124859
le31346
1437870
le&4420
1450989
157569
leb64154
1670740
1¢77324
183902
1690474
197039
2403597
210148
20416695
2423238
2429779
2436321

TABLE I

FOR a=O-l, 0-2, o0

g
$3327%4
¢33333
«33333
¢33333
«33332
¢33331
¢33228
¢33324
23318
«33210
«33300
¢33235
33257
¢373245
«33217
«33183
¢33142
«23094
«23037
«32971
«32865
¢32808
«32709
¢32599
32475
032337
«321R6
¢32C20
¢31840
031644
e314373
«31208
30968
30714
¢30445
e30164
029870
¢29565
029249
«28923
«28590
e28248
«27901
027549
027193
026835
e26475
026114
e25755

25396

n

20420604
20494172
2455965
2e62526
2e690%6
2075676
2¢82267
2688877
26954055
3402117
2e08755%
2415410
3622078
3428758
3635452
3e42157
3.48375
3455607
3e62247
24690972
375852
3682621
3432260
2e961¢4
4402078
4409770
LelbE0E
GLo2340L 70
+e20221
427047
Gelt2570
4450716
4e575ECQ
4464406
4471258
LeT78114
4484975
4491840
4498709
5005582
512459
519340
526224
533112
5¢40004
5¢46898
553796
5460698
567602
574500

g

02D,
0 24687
024231
023982
023657
023217
022957
o EAL
022741
«272N28
021730
e214131
«e2113%
«20853
020572
e 20300
02007272
016771
e1951¢
e19267
016023
218785
015553
018325
¢1810%2
0178886
17677
017465
017267
017063
0162675
016677
016491
016309
016130
015955
015784
015616
015451
015290
015131
¢14976
014824
014675
014529
014385
014245
014107
013971
¢13838
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To compare the frequency dependent friction with the steady
state friction, one can calculate the ratio of the amplitudes and the
phase shift between them as a function of the dimensionless parameter

a =R~Nw/v . For frequency dependent friction

1 oV
he = @1v+§ 22
fw " gn g3t (22)
and for steady state friction
8y 8w
hf = V- = —-—-Q—V
s izé gaf
The velocity is varying sinusoidally V = |V| clwt
w1l g iwt
h = (== + =1 v
£, G7+g i |Vl
iwt
hf = §2— ‘V‘ e
s go?
hf
% . %(Tig)
fq
2 . -1
_ T i tan™+ (e-
yl
The modulus ey i? + 52 represents the ratio of the amplitudes and

1
the phase angle tan’l(g-n) represents the phase shift between the

head loss hfu and hfs . Since hfs is in phase with the mean
velocity, the phase angle is identical with the phase shift between

hfu and the mean velocity V . For numerical values see Figure L,
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C. Solution for an Arbitrary Flow

o
If F(t) = % 5% is a nonperiodic time dependent function,

the inverse transforms of Equations (13) to (15) can be given by the

convolution integrals

2 r 2
J (Ej §') - Ej g% u
e

ey = B Sy 2§

0 =L g2 (k)

1 re
- - R—E)] du (26)

v §J2

2 -voo Y
_ R m e R 1
v(t) = - of P (tou) [ & L -g—f - 5] du (27)
v gjz

by _ -

To(t) = 2Rp Of 5% (t-u) [jél -E—;_— - %; ] du (28)
J

The constants gj are the zeros of the Bessel function of first kind
zero order, e.g. Jo(gj) = 0 . They are tabulated in Reference 12.

In the periodic case it was possible to eliminate the pres-
sure gradient by combining the equations for the mean velocity and
the shear stress. This procedure cannot be applied in the more general
transient case. It is necessary to eliminate the pressure in the
transformed equation and attempt an inverse transform of the resulting
equation.

Dividing Equation (15) by Equation (14) yields

Tols) = B T(s) (29)

?71(1 V-S— R)-2

v
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It is a necessary property of all Laplace transforms that they converge

to zero when s tends through real values to + o . An examination of

’”~

Fquation (29) leads to the result that T, as a function of v does

not satisfy this necessity. Therefore ?5 is expressed as a function
e

v

of = Dividing Equation (15) by Equation (16) yields
N
~ 0
7 (s) oR Y (s) (30)

i J, G ﬁR)-e 3t

Let

Bs) - R (31)
T, \/%‘R)—Z

7
To find the inversion @(t) of @(s) +the complex inversion formula
can be used
o+iw ~
t
B) = lim — [  $(s) " as (32)
w=w 2T goig
and evaluated by use of the residue theorem for analytic functions.

¢(s) is analytic for all complex s except for singularities s

J
and has a zero at infinity. Therefore:
1 7 st
t) = — d
plo) = g $ B s
& 2 st
= 2, Res [f(s) e, s,] (33)
J=1 J

C 1is a path enclosing all the s

roots of (i '\/%R) =2

The poles of @(s) are the
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A detailed consideration shows that the first root is s = 0

and an infinite number of roots are on the negative real axis at
2

05

R2

M .2.3 = 5.1356, 8.4172, 11.6198 ... . The interval between them
32504

S.:. = -

3 v . The constants nj had to be calculated,

is approaching = . The first 100 values are given in Table II.
The function @(t) is given by the sum of all residues of

B(+) 5% | They are

Res [8(5) eSt, 55]

Differentiation of EZL yields

which i1s constant for all residues except the one at the origin.

Therefore
2
"
- —= Vvt
" st 2vp R®
. = —= e
Res [p(s) e, 541 =
and for the residue at the origin
st = lLVp
Res [f(s) e, 0] = =2
R
Finally, using Equation (33),
bvo 2vp 2 -n.2 T
- —L  =¥e J
Py = & "R & ° (3he)
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513562
BellT724
11e61984
14479595
17495982
21641170C
24427011
2742057
30656920
3371652
36e8B86786
40400845
43415345
4642980C
49444216
526586072
5572962
5887302
624601622
6515927
68635216
T1e44499
746585769
77473030
8087283
84401529
8715768
9030003
93644232
96458456
994725677
102486893
106401107
109415317
112629524
11543729
118457931
1216472131
124486329
128400525
131414720
134428912
137443104
140457293
143471482
146485669
149499855
183,14040
156428224
1594642407

36

TABLE II

1HE FIRST 100 ROOTS OF THE EQUATION x

51
52
573
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100

-2 =0

162456589
165470770
168684950
171499130
1756133209
178427487
181e41664
184455841
187470017
190841973
103,4,98368
197412543
200026717
203e40891
206655064
209669237
212834009
215697581
219411757
272625924
225e400096
228e54266
231668437
224482607
23796776
241010946
244425115
247439284
250653453
253467622
256481790
259495958
263410126
266024294
269438461
272452628
275466795
2784809672
281495129
285409296
2884623462
291637629
294451794
29T7e65961
300680127
3034694292
30708458
310622623
313636789
316450954
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in which 1 = gg t is a dimensionless time equivalent to the dimen-
sionless frequency o = R'J57; in Chapter IV, Section B. The series
in Equation (34%) is uniformly and absolutely convergent for T > O .
But since the convergence is relatively slow if T 1is smaller than
approximately 0.02 an alternative solution for ¢(T) will now be
derived which is valid only for small values of T .

The transform of ¢(T) was given in Equation (31). Instead
of applying the residue theorem, ¢(s) is developed into a series for
large values of s since in the theory of Laplace transforms the
behavior of the image function at s -« 1is related to the behavior
of the original function at t -0 .

When y is real and large then

63 27
2

T (iy) = y+ s g0 L er L,
1 8 42 128 3 3 ;K

[
-+
(¢} |NY
el L

This series can be derived from the expansions for the Bessel functions
Jo and Jl . Taking the first six terms will be sufficiently accurate.

Division leads to

_ L - 1,31 151 151 1551 _ 451
T2 5y 228 P78 FT1B5 RE
Now
oy = m(YP L sy w152
R S 2R28 8R 85/2 8 ;{ESQ
R U S
128 g5 ¢9/2 2 26 .3
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(6)

The inverse transform of 1/s* is tx-l/r(x) for x real and x> O.

r(x) denotes the gamma function. Thus

-1/2
B(s) = oR(Y-l/gLf vy 1 YR 152y
R 1dy 2 RRT(1) 8 RD r(g) 8 g* r(2)

1

If the dimensionless time, T =5 t 7is used and

=

r(i/2) = 1.77245k
r(1) = 1.000000
r(3/2) = 0.886227
r(2) = 1.000000
r(5/2) = 1.3293k40
r(3) = 2.000000
then
1
g(r) = Egﬁ + 22 (0.282095 2 1.250000 + 1.057855 /2

+ 0.937500 T + 0.396696 T5/2 - 0.351563% 72) (34p)

for T < 0.02. The terms have been arranged to show the similarity

to Equation (3ka).



-39-
The convolution of ¢(t) with the rate of change of velocity,

Fquation (30), leads to the desired equations for the wall shear stress

and the head loss

, _ hpy 2ov ¥ OV
To(t) = 5 (t) + = o SE (u) W(t-u) du (35)
ne®) = 2 ve) + % L F ) wew) w (36)
g R R2 0 ot
1%
T = Eé-t
o 2
wit) = L e "3
=
—5.15562T —8.”1722T -11.61982T
= e +t e + e
2 o
N e-14.7960 T+'e—17.9598 T (37a)
T> 0.02
L
W(r) = 0.282095 T © - 1.250000 + 1.057855 /2
2
+ 0.937500 T + 0.3%96696 T3/
- 0.351563 1@ (370)

T < 0.02

Equations (35) and (36) mean that the instantaneous energy loss is the
sum of the steady state value plus a term in which certain weights are
given to the past velocity changes. The weights can be calculated

from Equations (37a) and (37b) which deliver identical results in an over-
lapping region. Numerical values of W are given in Figure 5 and in

Table ITII, A-C.
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TABLE IIIA

THE WEIGHTING FUNCTION W(t) WITH T VARYING FROM

26497014
1029295

Te29161
584621

495630
4433876

387844
3451851

3022726
2498544

278058
2060422

2¢45037
2031467

2419386
2408543

1698745
1.89835

1.81691

1¢76210

16671227

SN
Se&idlu3

6Ee92116
56374

4081600
4Le23647

379569
3e45551

3¢175%41
2654182

274225
2¢57180

2¢42139
2028240

2¢17125
206506

196896
1e88149

16480144
1¢72785

w(T)
15405535
8075423

661328
5044564

4468501
4413975

372457
339504

3412541
2089960

2070699
254025

2439411
2626471

2014912
2404508

1e95082
1486492

le78624
le71384

T=0.0001 TO Tt = 0.0100 IN STEPS OF 0.00d

1287627
8418575

632021
5026962

4e56235
4404811

3465283
223694

2.07714
2485870

267177
2450951

236700
2024057

2412745
202550

1493301
1484864

1477128
170004

11428970
Te7C5GC2

6007606
5610705

Loe44T718
3496114

3058421
3428106

3,03051
2481904

2063752
2047956

2434053
2421696

2010623
2000629

le91552
183264

1675657
le68646
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TABLE IIIB

THE WEIGHTING FUNCTION W(t) WITE T VARYING FROM
T =0.0105 TO T =0.1000 IN STEPS OF 0.0005

T w(T)

0105 1662158 1e56133 1450520 1e45274 1440360
1e35744 1931398 1629299 1023423 1419753
1e16271 1012963 1409816 1.06816 1403954
1401220 ¢986C4 ¢96100 «93700 ¢91397

0205 «89185 «87059 ¢85013 «83044 e81146

+79316 ¢ 77549 075844 «T74196 672603
«71061 069569 068124 W66724 065366
«64049 062771 061530 e 60325 059154
L0305 +58015 056908 ¢55831 054783 053762
«52768 o5v18(Q 250856 e 49936 049036
048164 047211 046478 45664 e 44870
44094 « 43337 ¢42596 041872 «41165
L0405 040473 ¢39756 035134 38487 ¢37853
«37232 ¢26675 +36030 «35448 «34877
034318 032771 033234 032708 032193
e31687 ¢31191 ¢30705 «30228 ¢29760
.0505 ¢29301 $28851 028409 027975 027550
027132 026721 026318 025922 025534
«25152 $ 24777 024409 W 24047 023691
¢23341 $22998 022660 .22328 022002
L0605 ¢21681 $21366 021056 «20751 «20451
020156 015866 019580 «19300 «19024
018752 018484 018221 «17962 «17708
017457 ¢17210 016967 .16728 ¢16493
L0705 016261 016033 +15808 «15587 «15370
+15155 «14944 014736 «14531 «14330
014131 +13935 013743 .13553 013366
013182 ¢13000 012821 012645 012472
0805 12301 012132 ¢11966 «11803 W11641
011483 011326 011172 +11020 «10870
010722 010576 010433 ¢10291 10152
+10015 009879 009746 ¢09614 009484
0905 909356 +09230 009106 «08983 008862
008743 008625 «08509 .08395 008282
.08171 008062 007954 007847 007742

«07639 +07536 007436 «07336 07238
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e 5361

4718

e 04131
03617

«3168
002775

e G2431
« 02130

e 1866
¢01635

01433
01256

31100
e 00964

«00845
e 00741

e 0J649
¢ 00569
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TABLE IIIC

THE WEIGHTING FUNCTION W(t) WITH T VARYING FROM

T=0.1010 TO T = 0.2000 IN STEPS OF 0.0010

W C4O22
«03522

e 03285

02702

002267
02074

eC1817
«01592

01395
e01223

031:72
¢ 00939

000823
00721

000632
000554

w(T)

006678
005841

005111
004474

003917
003430

e 03004
002632

¢02306
002020

001770
e01551

01359
001191

¢01044
¢ 00915

00802
00703

e 00616
000540

« 06501
05687

04977
« 04356

«03814
«03340

«02926
« 02563

002245
«01967

01724
01511

«01324
01160

01017
00891

200781
« 00684

00600
¢« 00526

e 06329
e05537

o 04846
0 064247

003714
003253

e 02849
002496

002187
001916

e 01679
e 01471

e 01289
e 01120

e 0099¢
e 00868

« 00760
e 00666

s 00584
e00512



V. APPLICATION OF FREQUENCY DEPENDENT FRICTION
TO STEADY OSCILLATING FLOW

A. Method of Solution

Steady oscillations of pressure and discharge in fluid
conduits are a specific problem of the waterhammer phenomenon. They
occur if a periodically changing boundary condition exists long enough
to establish flow conditions which are periodic at every point of the
system, i.e., repeat themselves identically with every cycle. If the
distribution of the fluid is taken into account, one is dealing with
a steady state wave phenomenon the solution of which has been well
known for a long time. A modern tool of representing the solutions

of the wave equations is the method of impedances(22’28>

which is
particularly convenient for handling complicated pipe systems.

A. F. D'Souza and R. Oldenburger(8) have treated the dynamic
response of fluid lines, taking into account the cross sectional
velocity distribution. Their work results in a transfer function for
pressure and mean velocity at two pipe locations. They do not derive
an explicit expression for the friction term, but include the velocity
distribution by dealing with the radial coordinate as a third independent
variable, and later obtaining a cross sectional average. The present
study is different insofar as it calculates the wall shear stress
explicitly and includes it in the existing resistance-capacitance-
inertance model which has been represented by the impedance model. The

numerical results should be identical to those of D'Souza and

Oldenburger.

S
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The equations of waterhammer are used in a simplified
form since all nonlinear terms are neglected or linearized. Then the

momentum equation and the continuity equation become

OH oQ a

E—}—(— + L 8{ +RQ = O (58)
OH  0Q

C=+= =0
Y (39)

The notations R, C, L. are equivalent to the ones used in the analysis
of electric transmission lines. They describe the cross sectional
parameters of a fluid line.
C is the capacitance per unit length which represents
the storage capability of the pipe
I, describes the inertia of the fluid
R stands for the energy dissipation due to fluid

friction.

Equations (38) and (39) are modified

OH , 1 oq 4 _
= A Ot " w o ° 0 (%0)

— + = 0 (41)

and for the head loss due to friction Equation (22) is used



hf = T = _(P_Q-l-_;-.a_Q’. (22)
n and ¢t are dimensionless functions of the parameter q = RNw/v ,
see Chapter IV, Section B.

Equation (L40) becomes

oH + 2;-(1 +¢) % +

w
ox gA ot  Agn

]
l_l
N

=

no
—

and after comparison with Equation (38) one gets

R = -2 (43)
Agn
1

L o= = (1+¢) (44)
gh
7
a

C = — L
) (45)

Use of the steady state friction term hy = 32‘2’ Q would lead to
gD=A

gD=A
1

I = — y
- (%7)
2

cC = éK (48)

The limits for the inertance and resistance terms are
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®w -5 0 R—)BEV
gD°A
L—-)——];—
5 gA
W - o R » o
L - L
gA
The steady state friction term hy = 52; Q has been widely
gbh=A

used to describe the energy dissipation in transient flow of a viscous
fluid. However, it should be noted from Equation (24) that for o — 0
the head loss tends to hp = —— 9 + 22Y_q , the second term of

3Ag Ot  gDPA
which is identical with the expression for steady state friction, while
the first term amounts to one third of the inertance of the pipe. It
is obvious that this relation is a more accurate low frequency approxima-
tion then the steady state friction term.

While here the use of frequency dependent values for
resistance R and inertance L 1is proposed, the capacitance has been
held constant. It would be no major problem to include a frequency
dependent wave speed and the resulting variable capacitance into the
analysis. It seems, however, that at least for rigid pipes this in-
fluence is not of major importance.

Equations (38) and (39) can be solved, assuming that the
dependent variables H and V vary sinusoidally. Arbitrary periodic

variations are handled using a Fourier analysis.
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The derivations leading to the propagation characteristics
of the pipe and transfer functions can be found in Reference 22. The
following is a summary of the results.

The complex propagation constant

y = Vco (- In + iR) (49)

and the characteristic impedance

are functions of the physical properties of a cross section of the

pipe and the frequency of the oscillation. The hydraulic impedance

7z = g- (51)

includes the geometry of the piping system; it stands for the change
of head necessary to cause a unit change of discharge. In the complex
notation used here, the modulus of Z gives the ratio of the amplitude
of head fluctuation to the amplitude of the discharge fluctuation,
whereas the phase designates the phase difference between head and
discharge.

Given two of the values H, Q and Z at one cross section
Xy , the values at another cross section xp can be calculated using

the following transfer functions:
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H(xe) = H(xl) cosh ¥ (x2-xl) - Q(xl)ZC sinh 7(xp-x7) (52)
H(xy)
Q(xp) = - sinh 7 (xp-x7) + Q(x;) cosh 7 (xp-x7)  (53)
C
7 _ H(xp) _ Z(xy) - Zo tanh 7 (x5-%7) )
2 T ) Z0) oY
1 - Zg tanh ¥ (xg—xl)

Special boundary conditions and treatment of branches, series pipes etc.

are discussed in Reference 22.

B. Experimental Verification

To demonstrate the significance of frequency dependent fric-
tion a simple experiment was carried out, which measured the pressure
amplification due to resonance in a plastic tube. The system used is
shown in Figure 6. The length of the tube was T72.3 ft., the diameter
D = 0.248 in., and the wave speed was measured to be a = 1003 f.p.s.
The fluid was water with a viscosity of 1.078 x 102 ftg/sec At one
end of the tube discharge oscillations were forced by a piston pump,
the frequency of which was varied between O and 50 radians per second,
while the other end of the tube was closed. The pressure was measured
at two points, using two pressure transducers. The ratio between down-
stream and upstream pressure was taken and compared with the results

of the mathematical model. The transfer function for the head is

] 1

Hy ) cosh 74 (55)

Figure 7 shows the numerical results obtained from this equation, using
the frequency independent terms and the frequency dependent terms for

L and R .
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DIAMETER OF PIPE 25 INCH

S; WAVESPEED 1003  fps.

KINEMATIC VISCOSITY  1078-10°  ft¥/sec
RESERVOIR

‘r///PRESSURE TRANSDUCERS

| END
723 FEET -

N —{] cLosep
|
I

—
puMp —]

Figure €. Experimental System for Study of Pressure Amplification
Due to Resonance.

DOWNSTREAM/UPSTREAM PRESSURE RATIO

i
o] 10 20 30 40 50
w [RADIANS PER SECOND)

Figure 7. Ratio of the Amplitude Between Downstream and Upstream
Pressure versus Frequency.
——————— Calculated Results Using Steady State Friction.
Calculated Results Using Frequency Dcpendent
Friction.
oo Experimental Results.
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Using steady state friction, the highest pressure amplifica-
tion with resonant frequency is predicted to be 34%.4, application of
frequency dependent friction leads to 11.5 and the measured amplifica-
tion was T7.5. The measured pressure build up, which is still smaller
than predicted using frequency dependent friction, may be partially
influenced by visco-elastic properties of the plastic tube. Of
significance is the slight change of resonance frequency which can be
seen in the experimental data and which is predicted using frequency

dependent friction, but not using steady state friction.

C. Numerical Example

In the study of the pressure amplification versus frequency,
Figure 7, one may observe that the prediction is fairly independent
of the friction if the exciting frequency is not close to resonance
conditions. The following numerical example will show that although
the amplitudes may be only slightly different a significant change
of the wave shape is nevertheless caused by frequency dependent effects.

A hypothetical system is assumed with a one inch I.D. pipe,
1000 feet in length, Figure 8. The wave speed is 4000 f.p.s. and the
kinematic viscosity of the fluid v = 0.000k27 fte/sec. The boundary
conditions are a constant head of 50 feet downstream, and the head
varying as a square wave upstréam, Figure 9. This discontinuous varia-
tion causes waves with high frequency components which are subjected to
higher damping than the low frequency components. The input frequency
is o = 11.27 rad/sec. which is between the natural frequencies of the
pipe for the first harmonic, w = 6.28 rad/sec., and the second

harmonic, = 12.56 rad/sec.
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DIAMETER OF PIPE | INCH ¥
WAVESPEED 4000 fps RESERVOIR
KINE MATIC VISCOSITY  .000427  ff/sec
HEAD IN RESERVOIR 50 FEET
l |
| |
|
|
|
A B C
la— 500 FEET ! S00 FEET — o
Figure 8. Hypothetical Pipe System for
Numerical Study.
100 |-
50 |-
1 1 |
¥ 1 T
——=f=—T= 555 —=—"T=.555 -

Figure 9. Assumed Head Variation

at Point A of the System in Figure 8.
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The square wave was approximated by 28 terms of a Fourier
series, and the response of the system calculated using steady state
friction and frequency dependent friction.

Figures 10 and 11 show the discharge variation at the upstream
point A, and pressure variation at the midstream point B. In both cases,
the maximum fluctuations, using frequency dependent friction, are
smaller than for steady state friction. The difference, however, would
be much more significant if the input frequency were chosen closer to
resonant conditions. The varied friction causes a phase shift between
the results and a rounding effect of the waves.

In the example, the frequencies of the 5th, 15th and 25th
Fourier component of the square wave are very close to 9th, 27th and
45th harmonic of the pipe. This causes an amplification of the affected
components in the calculation using steady state friction. The
frequency dependent friction attributes more damping to the higher

harmonics, and the scattering effect does not occur.
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Figure 11.
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Discharge Variatiocn st Point A Resulting from a Square
Wave Input of Head st Point A,

—o—e—o-—o— Using “teady State Friction.

—o—po=o  Using Freguency Dependent Friction.



VI. APPLICATION OF FREQUENCY DEPENDENT FRICTION
TO TRANSIENT FLOW CASES

A. Method of Solution

The solution of the waterhammer equations given in Chapter V
is limited to periodic oscillations. Although similar impedance
techniques have been used to calculate the transient response of
fluid systems, this thesis emphasizes the use of the method of

(22,24)

characteristics because of the distinct advantages outlined in
Chapter VIII.
The governing equations for a tapered tube are two quasi-
linear hyperbolic partial differential equations: see Chapter III.
OH oV . oV

gg'}z+v-a—;+-a—:t—+ghf = 0 (l>

OH , &
dx g2
They can be transformed into a pair of total differential equations,
the validity of which is restricted to certain lines in the x - %

plane called the characteristics.

This procedure leads to

g ._.._dH .___d“ - E_S = 0 6
3 + 1 + g he a V D (5 )
g o él g@ = 0
- . + " + g hf +aV D (57)
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and for the characteristic lines

dx

ajE-=V+a (58)
dx
% - V-e (59)

For most practical cases a first-order finite difference approximation
has been found to be sufficiently accurate to approximate the four

equations.

Vp - Vg + % (Bp-H) + (tp-tg) (gbs - oy Vg %? = 0 (60)
Vp - Vg - i—s (Hp-Hg) + (tP-tS)(ghfS+ ag Vg %%) = 0 (61)
xp - xg = (Vg + ag) (tp -tg) (62)
xp - xg = (Vg - ag)(tp - tg) (63)

Having now four algebraic equations, the four unknowns Vp , Hp, Xp, tp
can be calculated from the known values at the points R and S ,

see Figure 12. In many cases, it is more convenient to use a grid with
specified time intervals. This leads to an interpolation procedure
described in Reference 22. The methods of treating different boundary

conditions are also given there.
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Figure 12. Characteristic Lines on the x - t Plane.
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Figure 13. Grid of Characteristics for Specified Time Intervals.
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If the velocity of the fluid is small when compared to the
wave speed, the velocities VR and Vg in the equations for the
characteristic lines can be neglected. This approximation corresponds
to a cancelling of the nonlinear convective terms V g% and V gg
in the differential Equations (1) and (9).

No restriction have yet been made to the friction loss he ,
and the wave speed a , which may be any linear or nonlinear functions
of the instantaneous values V, H, t and x . But they certainly do
affect the accuracy of the first order finite difference approximation,
which is sufficient only if the friction term g hf , and the taper
term a V %E , are small when compared to the other terms in the total
differential Equations (56) and (57).

Henceforth the term'"simplified equations” is used if in the

ov oH

basic Equations (1) and (9), the convective terms V I~ and V .
X X
are neglected, and the wave speed is assumed to be constant. Then
specified time intervals can be used without interpolation, although
for tapered tubes the Ax segments must be adjusted properly.
It is customary to apply the steady state friction terms
172 32v :
hf = f = — for turbulent flow, and hf = —5—'V for laminar flow,
D 2g Deg
in the method of characteristics. As pointed out in the introduction,
these terms cannot describe the energy dissipation with sufficient
accuracy in fluid transients with higher frequency disturbances. In
Chapter IV, Section C, a more accurate equation for the wall shear
stress in unsteady laminar flow has been derived, which depends on

the instantaneous velocity, and the past velocity changes. There is

no way of expressing the unsteady fluid friction only by instantaneous
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values of the velocity or the acceleration except in sinusoidal flow.
Since the method of characteristics is a time step method, in which
the next step is calculated using the results of the previous time
step the history of the velocity is known, and the equation for un-
steady friction can be applied. The head loss at an instant t is

given by Equation (36):

_ 32 16V ° V() wltw) du
he(t) g v(t) + s Of S (u) W(t-u) d
= h(t) +n'(t) (36)

h 1is the steady state friction loss, h' +the component due to the
unsteady motion of the fluid. Using a grid with specified time

intervals, as shown in Figure 13, the head loss at point Pi can

sk

be calculated from a first-order approximation of Equation (36).

1

= + h'
By x Bk TRk
— 32v
hik = —=Vik
gD
o, k1
1 - 16v .
Bix T 2 j=lz,:5,... (V3,541 = V1,3-1) W((k-3)at)
gD
k-1
16v
5 2 (Vi goger = Vi gogon) W(IAE)
gD J=l,5)'oc ) J 2 J
_ 16v
T2 (V5 i = Vi,x-2) W) + (V) o = V5 )W(3at)
+ o4 (vi,2 - Vi,O) W((k-1)At)] (64)
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Similar series can be set up for any grid in which the abscissas x
of the grid points are constant. Also higher order approximation
can be used to calculate the integral.

The weights W are given in Table IIIa-c and Figure 5 as
the function of the dimensionless parameter T = 25 t . W(T) approaches
zero for T — o . If one choses a Ty, SO thatRall weights W(T)
for 7> Tax &re negligible, then the number of terms in Equation
(64) never surpasses Tpax R®/ (2vAt) .

But since their number can still be high in many practical
cases, a modified procedure to calculate hy will now be given. The
idea is to employ the friction which has been calculated in the

previous time step and calculate only its change within the time 2Nt

from Equation (36) one obtains

np(t-2at) = h(t-24t) + h' (t-24t)
t-2At .
L' (t-240) = léﬁ_f C—BY-(u‘) W(t-2At-u) du
gD? 9 ot

and therefore

h'(t) - n'(t-2At)

]

t
£§Z- éz (u) W(t-u) du
gD T

42t O
16y t-2At 3y
+ gD2 Of " (u) W(t-u) du
t-2At
_16v TV () W(b-2Ab-a) du
gD2 0 ot



and

I
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n(t) + h'(t)

t
égg-v(t) + h' (t-2At) + 16y f gY (u) W(t-u) du
gD gD y_oat OF

16v ft'ZAt éy
eD2 0 ot

(u) [W(t-u) - Ww(t-2At-u)] du  (36a)

and after using a first order approximation

1
hl)k ¥ hi,k
ng l,k
' 16v
hi,k-Q + gDE (Vi,k - V' ’k_z) W(At)
16 k-3
v
=Y Ve a,n= Vi & . B L
gD2 j=1,5,__.( i,j+1 V]_,J_]_>[w((k Jat) -w((k-j-2)At)]
h. + }é‘i (Vi o= Vs ) W(at)
i,k-2 2 i,k i,k-2
gD
16 k=
v . ’
TP e : (Vi kojo1- Vi k-j-3) [W((3+2)at) -w(iat)]
8 J—l)B;-..
' 16v
hi,k-? * ng (Vi,k = Vi,k_g) w(Aat)
16y
¥ gBE {(Vi,k_e - Vi,k_u)[w(5At) - W(at)]

(Vg -V @) [WAE) - W(BAE)] + ...

+ (Vg p - ¥y o) [W((k-1)at) - W((k-3)at)1}  (6he)
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The necessary number of terms in Equation (64a) is smaller than in
Equation (64), because the velocity changes are no longer weighed with
W(t) but with the differences W(t) - W(t-2At). Figure 5 demonstrates
that they approach zero much more rapidly than W(t) . One can choose

a suitable Tnax and the maximum number of terms is again Tpgy R2/(2vAt).

B. Experimental Verification

To verify the procedure of including frequency dependent
friction in the method of characteristics, numerical results are

(11)

compared with experimental results by E. L. Holmboe. He ran tests
on a one inch I.D. copper tube connected upstream to a 60 gallon tank,
which was maintained at constant pressure by compressed air. A quick
closing valve was mounted to the downstream end. The tube had a length
of 118.4 feet, was coiled in the form of a spiral about three feet in
diameter, and embedded in concrete to reduce vibration; the wave speed
was measured to be 4345 f.p.s. Pressure transducers were located at the
valve and the midpoint of the tube. A sketch of the experimental set
up is given in Figure 14.

To produce a noticeable viscous shear effect, an oil was used
as fluid having a viscosity of 0.427-1077 fte/sec at 80°F which is
almost 50 times that of water. The traces of the pressure fluctuation
after a sudden closure of the valve are reproduced in Figure 15.
Holmboe indicated a relatively high range of calibration error for
the pressure of + 8%, and adjusted the pressure scale so that the
sudden pressure step, immediately after the closure, corresponds to the

well established value of a vo/g .
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Numerical results are obtained from the method of character-
istics using laminar steady state friction and frequency dependent
friction. For the mathematical model, the basic Equations (1) and
(9) are simplified since V << a , a = comstant, B =0 .

A grid with specified time intervals At = 0.00136 is used,
the number of sections is 20 and the integral in Equation (36) is
replaced by a first order approximation as done in Equation (64) .

Figure 15 shows the comparison between calculation and
experiment. The application of steady state friction gives only a
rough approximation of the measured pressure fluctuation. However,
the inclusion of frequency dependent friction not only predicts the
higher decay of the fluctuation, but even very accurately details the

disperson of the wave shape.
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VII. APPLICATION OF FREQUENCY DEPENDENT FRICTION
TO THE FLOW OF BLOOD IN ARTERIES

A. Basic Assumptions

One important application of the method of characteristics
including frequency dependent friction is in the calculation of blood
flow in the arterial tree. As pointed out in the chapter on basic
equations, the one-dimensional approach is approximate for a highly
flexible tube like an artery. The flexibility of the walls is only
taken care of by making the wave speed pressure dependent, which
affects only the capacitance effect of the system. The balance of the
forces, pressure gradient, inertia, friction is that of a rigid tube.

An alternative to this approach is used by Wormersley,(ao)
who introduced the radial and axial velocities, and the pressure, as
dependent variables of the cylindrical coordinates x and r and
the time t . After some assumptions, the most important of which is
the linearization of the equations, he formulates a relationship of
the instantaneous mean flow to the pressure gradient.

The one-dimensional approach is relatively crude compared to
Wormerley's theory, but it has some distinct advantages in that it
includes nonlinear effects, taper of the artery, branches, etc. The
introduction of frequency dependent friction into the one-dimensional
model moves it closer to Wormersley's model since the effects of the
varying velocity profile on the equilibrium of forces are considered.

The basic partial differential equations are Equations (1)
and (9), which are transformed into total differential equations and

approximated by first-order difference equations as shown in Chapter VI.

-67-
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The significant feature of the application of these equations to
blood flow in arteries is that the wave speed depends upon the pressure.
The relation used in the following example is the one of Equations (10)
and (11). It implies that the modulus of elasticity of the wall is
constant, and the arterial wall is incompressible, Poisson's ratio = 0.5.
The artery is tethered and the compressibility of blood is neglected.

Two different equations for the friction loss have been
derived in Chapter IV. They imply the assumption of treating blood

as a Newtonian fluid, i.e. the viscosity is independent of the shear

rate;
h, = —B—?IV+—l@i ft ov (u) W(t-u) du (36)
f D2 aD? o ot
and
ol gV
he = gnv+gat (22)

Equation (3%6) is valid for any arbitrary flow case, while Equation (22)
is true only for a sinusoidal motion, and, if using a Fourier analysis,
for any periodic motion. Although the flow of blood is periodic, due
to the rhythmic action of the heart, a direct application of Equation
(22) on the method of characteristics is not possible because the
Fourier components cannot be determined beforehand.

In Chapter VI is a description given of how the friction can
be calculated using Equation (36). For this purpose, the grid has to

be chosen so that the x~coordinates of the grid points are fixed. This
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(21,23)

demands an interpolation procedure which is quite time consuming.
In the application to blood flow, a floating grid, as described by
Wylie,(gg) has been found to produce only minor shifts in the x-coordi-
nates of the grid points. If a grid point P deviates a small

distance ©®x from the line x = constant , on which the integration

is carried through, the velocity on the line may be calculated by
A(x+dx)

V(x) = V(x+8x) ON and its value used for the integration. This
X
)
is true since gg- is small compared to 89 .
X

A more approximate way of taking into account frequency
dependent friction will now be given: for small values of O

Equation (22) tends toward Equation (2k)

v L

he = - (2k)
3 Deg Jg Jot
The proof is given in Chapter IV.
Equation (24) may be written more generally:
_ ov
he, = hp+ g.a_t_ (65)

The unsteady friction term, hfu , is the sum of a steady friction
term, he , plus the acceleration multiplied with a constant, ¢( .

The basic differential equations become:

OH ov oV -
g Vst (1+t) Sgreby = O (66)

N _By=o0 (67)



-70-

For convenience let

=+ Vel e s o §F e (68)
and
v = - Vel () + g D7 e gk (69)

Then the difference equations, equivalent to the Equations (60) to

(63) in Chapter VI, are

+

g
"5 (Hp-Hg)
ag

(1+¢) (Vp-Vg)

+ (g By - g o2 VR) (bpety) = O (70)
gg
(1+¢) (Vp-Vg) + —5 (Hp-Hg)
ag
+ (g hrg = Ag %@-VS)(tP-tS) = 0 (71)
Xp-Xy = -l—i—g (Voag) (Bt (72)
Xp-Xg = Z%E (VS+XS)(tP—tS) (73)

These are four equations which can be solved to calculate the four
unknowns VP, HP’XP’ t

Instead of using Equation (24%) one can in the same way
apply Equation (22) with the constants 1 and ¢ determined for the
frequency of the first harmonic, if the time average of the flow is

not too high.
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B. Computed Results

A comparison of calculated results with in vivo measured

blood flow data fails, due to the lack of reliable measurements. But
there is no question that a mathematical model which includes the
influence of the varying velocity profile, is more realistic than one
which assumes the velocity distribution to be parabolic. However,
more than in any technical application, approximations which simplify
the resulting equations are justified in blood flow, since the assump-
tion of a full developed velocity profile is very approximate in itself.
Arteries are seldom long and straight enough, and the influence of
entry disturbances and outflow at branches is too dominant to create
truly axisymmetrical flow. But this should not effect the basic
assumption that only when the history of the velocity at a cross
section is known, an evaluation of the wall shear stress is possible.
Two numerical studies have been made which are closely
related to each other. In the first one, the head loss due to friction
18 calculated from a known flow curve. This task is somewhat theoretical
but it demonstrates the different assumptions better than an actual
model of an artery in which friction is only a secondary effect. Next,
the flow in a tapered arteryis calculated, assuming the pressure varia-
tion at the proximal and the distal end to be known. For this the
method of characteristics is applied as described.

1. Comparison of Computed Steady and Unsteady Friction

The mean flow in a stiff, long tube with a 0.316 cm diameter
is assumed to be periodic with a time period of 0.4 seconds, see

Figure 16. The kinematic viscosity is v = 0.05 cm?/sec. Figure 17
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shows the head loss due to friction calculated for one unit length of

pipe under several different assumptions.

Curve a: steady state laminar friction hye = -5—2% V.
gD 2
Curve b: steady state turbulent friction hp = f % g— , £ =0.5.
g

Curve c: unsteady friction using Equation (36) and Equation (22)
leading to almost identical results. This curve represents
the exact solution of the Navier Stokes equation, Equation (8).
For application of Equation (22) the flow curve is described
by the first 18 terms of a Fourier series, hy calculated for
every frequency and the results superposed. The integral in
Equation (56) is evaluated, using a first order finite dif-
ference method, as described in Chapter VI. The calculation
is carried through for two cycles to eliminate the transient
solution, Toax is 0.05.

Curve d: approximation to unsteady friction based on Equation (65),

hf=é§-‘iv+%—§i.
D¢ g ot

Comparing the different curves, some important results can be
noted: there is a significant phaseshift between unsteady and steady
state friction, and therefore between unsteady friction and mean
velocity. Furthermore, for accelerated flow, the unsteady friction,
curve ¢, is greater, and for decelerated flow, smaller, than steady state
friction, curve a. The ratio of the amplitudes is about 1.35 for the
first positive peak but about 2.00 for the negative peak. Finally, the
approximate expression of Equation (24) describes very closely the un-

steady friction, at least for the physiological range of data of the

example.
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The Reynolds number never surpasses 230 during the cycle and
therefore the probability is very small that turbulence develops. But
even then it is interesting to add a friction curve which is calculated
from the assumption that hy varies with the square of the velocity.

A very high Darcy-Weisbach friction factor of f = 0.5 had to be
chosen to match the first positive peak, but the negative peak is still
much smaller than calculated from a linear friction term.

2. Comparison of Computed Flow Curves

The model consists of an elastic tapered tube 9.4 cem in
length with a diameter of 0.316 cm and a wall thickness of 0.026 cm
at the proximal end. The vessel tapers linearly to 0.228 cm at the
distal end. The modulus of elasticity is 1.76-107 dynes/cm2 and
the wave speed head relationship of Equations (10) and (11) is used for
an initial pressure level of 11.5 cm Hg. The blood viscosity is chosen
to be 0.05 cm?/sec. Proximal and distal pressure variations, Figure 18,
are used as boundary conditions.

Two different computer programs applying the method of
characteristics were written. The first one uses Equations (60) to
(63) and specified time intervals, and necessarily, an interpolation
procedure as described in References 21 and 25. The second program uses
Equations (70) through (73) and a free floating grid as described in
Reference 29.

In a first run, steady state laminar friction was employed
in both programs, i.e. ¢ =0 1in Program 2. This proved that the
interpolation in Program 1 does not cause a significant change in the

resulting flow curve, which is given as curve a in Figure 19. Then
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HEAD IN CM Hg

.05 1 45 .20 .25 .30 .35 .40
TIME IN SECONDS

Figure 18. Head Variation at Proximal and Distal End of a
Tapered Artery.

FLOW IN CC PER SECOND

.30 35
TIME IN SECONDS

Figure 19. Flow Variation at Proximal End of Papered Artery
Resulting from the Head Variation of Figure 18.

Curve a: Using Steady State Iaminar Friction.
Curve b: _._ _Using Steady State Turbulent Friction, f=0.5.
Curve c: ----- Using Unsteady Laminar Friction,
Equations (56) or (2?).
Curve d: ..... Using Approximation to Unsteady Laminar

Friction, Equation (24).
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unsteady friction of Equation (56) was used in Program 1, curve C in
Figure 19, and the approximate relation of Equation (22) in Program 2,
curve d in Figure 19.

The most important result of a comparison of the calculated
flow curves is in the negative peak, which becomes significantly
smaller 1f frequency dependent friction is employed in the analysis.
Former comparisons of calculated flow curves with experimental blood
flow data by Streeter et gi.(21’23) demonstrated that the main dis-
agreement between theory and experiment occurred in the prediction
of the backflow portion of the flow which generally was much smaller
in the in vivo data than in the calculation. Although the damping of
the backflow still does not seem to be sufficient the trend of the
results is significant.

An effect which is neglected in the present study is the
influence of the taper on the velocity profile. As pointed out
earlier separation occurs even in steady flow in a divergent pipe.

If in addition the fluid is decelerated, in other words the adverse
pressure gradient increased, separation may occur even in very slightly
tapered tubes and increase the energy dissipation during the backflow.
Streeter(El) has taken into account such asymmetric friction by
assigning different empirical friction factors for forward and back-

ward flow, but did not consider the influence of the acceleration.



VIII. SUMMARY AND CONCLUSIONS

The obJjective of this thesis was to include the effect of
the varying velocity profile of unsteady laminar pipe flow into the
one-dimensional model of transient flow. It has been shown that the
problem can be reduced to choosing an expression for the wall shear
stress which is based on the true velocity distribution.

For sinusoidal flow, an equation which relates the wall shear
stress to the instantaneous values of mean velocity and acceleration
is applied to the RLC model of steady oscillations in pipes. The pro-
cedure results in frequency dependent terms for the resistance R and
the inertance L . A solution of the equations with the established
impedance method is possible without further modifications of the
method.

For a transient variation of the flow, an equation is
derived which relates the wall shear stress to the instantaneous mean
velocity and to the weighted past velocity changes. The term is
applied to the method of characteristics in which the past velocities
at every point are known.

Experimental verification of the theory is given by comparing
measured and calculated pressure amplification due to resonance in a
tube, and by predicting the pressure fluctuation in a pipe due to a
sudden valve closure. A numerical study demonstrates how freguency
dependent friction alters the response of a pipe if the input contains

high frequency components.

-T7-
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A separate chapter applies unsteady friction to the flow of
blood in arteries and shows various results of flow curves using
turbulent friction, steady and unsteady laminar friction, and gives
a special approximate equation for unsteady friction.

On the basis of experimental results and numerical calcula-
tions, one can conclude that the traditional application of steady
state friction to unsteady flow problems is insufficient for viscous
flow with high frequency components. Earlier methods of other authors,
which consider frequency dependent effects, are all based on the
classical linear theory of transfer operators for pressure and flow
at two cross sections of the pipe. The method presented in this study
uses the transfer technique only for periodic flow but applies the
method of characteristics to the transient case. The employment of the
developed theory is dependent on the use of a computer, however, the
method has some distinct advantages:

a. If transfer operators are used, all input functions must be
expressed by a summation of step functions, and in addition
all reflections have to be taken into account individually.
This is somewhat tedious for complicated systems consisting
of series, branches or parallel pipes. In the method of
characteristics, however, all reflections are considered
automatically, and complicated systems can be handled with-
out significantly increasing the difficulty.

b. Nonlinear boundary conditions which must be linearized in

the transfer techniques can easily be handled.
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¢. In the classical linear methods the equations had to be

linearized and the convective terms, V gy- and H gz , 1in
b'e X

particular were neglected. These terms are important if the
fluid velocity and wave velocity are of the same order of
magnitude, for example in pipes with very flexible walls.
The method of characteristics includes these nonlinear terms.

d. If an approximation for the wall shear stress of unsteady
turbulent flow can be found, the method of characteristics
offers the possibility of considering the nonlinear terms
analytically.

e. The treatment of an arbitrarily tapered tube is possible, if
the taper is not so great that it affects the velocity
distribution. This limitation was adopted by all earlier
investigators. No restriction is made with respect to the

duration of the pulse.

The results of this thesis are valid for laminar flow and only
a criterion of the laminar-turbulent transitions could describe the
range of applicability of the theory. No reliable Reynolds number
for unsteady flow has yet been developed, although some attempts are
described in the literature review, Chapter II.

Similarly, the problem of frequency dependent friction in fully
developed turbulent flow is still unsolved but of highest importance.
The literature available indicates that, even in turbulent flow, the
friction is dependent upon the history of the motion. The way in

which laminar friction is applied to the method of characteristics in
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Chapter VI could be extended to turbulent friction if realistic weights
for the velocity changes could be determined. Due to the strong

lateral diffusive effect of the eddies, the time history of the velocity
changes which actually has an influence on the instantaneous friction,
seems to be much shorter for turbulent than for laminar flow. This
makes the proposed method even more valuable, since it would reduce the
necessary calculations. The topic should be subJjected to an intensive

experimental study.



APPENDIX

DISCUSSION OF THE FUNCTION %/, (o V-i), o REAL

In Chapter IV ¥ (o N-i) was defined as Y, (a Joi) =

\/— . JO(a J_'i) »

= gN - ——————
Jl(a '\/—-i)

follow Kelvin and introduce the functions ber o , bel o, berla 5

To calculate numerical values for €7l one can

beija (Bessel-real and Bessel-imaginary) which stand for the real

and imaginary parts of Jo and Jl and use

Jai = 2 (-1+1)

J2

Then

NI o .y ber a + 1 bei ¢

i) = -1+1

7, (o Jo ( ) berja + i beijq

?71 can be separated into the real and imaginary parts, which, in most
cases is not necessary, because the numerical calculation can be

carried out in the complex plane.

a ber a belja - ber o berya - bei o beija-bel a ber o
@1(06"/_-3'-) = T

J2 > 2

ber-a + beisx

1 1
.1 o ber o berla + beigabejjo - bei o bexla +ber a bejjo
2 2
Jé begLa + be%La

The Kelvin series are absolutely and uniformly convergent series for any

real « . They may be differentiated and integrated term by term. They
are (15)
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2 L 6
beiq = 2 {1-(%) -(%) +(%) +o.
1 o2 1r2r 203 3k

If @ 1is greater than 10 a progressive loss of accuracy
occurs if the above series are used to calculate (Ul , since the first

terms become very large. It is more precise to apply the asymptotic

(15)

expansions for Kelvin functions with large arguments. However,
for most practical cases it is sufficient to calculate ‘71 from the

expansions

Iy (aJ-i) w \/__P:__._ cos (aN-1 - E)
1 aN-1i
Jy (aJ—i) ~ ‘\/;—-&-2-:/,: cos (aV-i - % 1)

which are the more accurate the more ¢« 1increases. It follows that

C’jl(omf-i) = - gN-i tan (V-1 -%n)
N 3 -
- O (1-4) - sin ("/—2 a+ s n) + i sinh (J—E Q)
2 cos («/—2 a) + cosh (~/—2 a)
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for o> 10 the fraction approaches 1 and therefore

@ide)”

(1 +1)

a
NE

If o is less than about 0.1, gl(a \[—i) can be calculated from

the first terms of a power series near the origin
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