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ABSTRACT

CN EUCLIDEAN SPACE AND FUNCTION SPACE
CONTROLLABILITY OF CONTROL SYSTEMS WITH DELAY

oy
Ronald Barry Zmood

Controllability is a concept which has assumed a
position of importance in a number of areas in control
engineering., For control systems described by the vector

differential-difference equation
x(t) = Ax(t) + Bx(t-1) + Cu(t)
y(t) = Dx(t),

we study two notions of controllability in this dissertation.
These are termed controllability in euclidean space and func-
tion space controllability. For both these notions of
controllability it is necessary to distinguish between com=-
plete controllability and null controllability.

Most of the results obtained in the dissertation are
based on a new form for the fundamental solution of &
differential-difference equation, This new solution form
has the advantage that it is rather concise and that many of
the methods used in studying controllability of ordinary
differential equations can be used in studying controlli-

ability of differential-difference equations., By the use of



the new form for the fundamental solution of the differential-
difference equation given above, new algebraic necessary and
sufficient conditions for complete controllability in euclid-
ean svace are obtained., These conditions are shown to reduce
to the known algebraic conditions of Kalman, and Kirillova
and Curakova. In order to be able to discuss null controll-
ability the concept of pointwise completeness is introduced.
A new algebraic necessary and sufficient condition for
pointwise completeness, involving the matrices A and B, is
obtained. These conditions are shown to reduce to the only
previously known conditions, namely that if the matrices
satisfy the condition AB = BA, then the above differential-
difference equation is pointwise complete. The algebraic
conditions for pointwise completeness are also used to
characterize those systems which are not pointwise complete.
Using this fact a new algebraic criterion for null controll-
ability of differential-difference equations is obtained.

The question of complete function space controllability
is also considered. The approach used has been motivated by
the zeometric approach used for controllability in euclidean
space. A function space analogue of the criterion for
controllability in euclidean space is obtained. The two
special cases where A = 0, and where u and y are scalar
valued are considered. In each case a simple algebraic
criterion for function space controllability is obtained.

For +the general case the function space condition for func-
tion space controllability of the control system with delay

is transformed into a problem concerning the uniqueness of



the solutions of a two point boundary value problem for an
ordinary differential equation with certain subsidiary con-
ditions. Some recent results of Silverman and Payne on the
invertibility of differential systems are applied to the two
point boundary value problem to obtain new algebraic nec-

essary and sufficient conditions for complete function space

controllability,
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CHAPTER 1

INTRODUCTION

Controllability is a concept which has proved of great
significance in & number of areas of control engineerirng.
In this chapter we will try to outline why this concept is
important. As well we will discuss differential-difference
equations rather briefly; give a brief survey of the liter-
ature on controllability; and finally summarize the results
on controllability that will be presented in later chapters.

The usual approach in seeking a solution to an optimal
control problem is to use necessary conditions such as the
maximum principle [1] to find extremal controls. It is well
known that if there exists an optimal control then it is
also an extremal control. One approach to determining the
optimal control from among the extremal controls is to use
a sufficient condition for optimality. However the hypoth-
eses required to prove sufficient conditions are usually
quite strong, and hence many problems of interest fail to
satisfy them. For this reason many investigators have
been motivated to seek results guaranteeing the existence
of a solution to an optimal control problem; these results
can often be obtained under quite weak hypotheses, which
encompass many problems of interest. A usual assumption
of these existence theorems is that the system is controll-

able [37]; that is, there exists a control 'steering' <he
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system from its initial condition to its target, and satis=-
fying all constraints.

While the notion of controllability arises naturally
in the theory of optimal control, it was first introduced by
Kalman [2],[3] in discussing the existence of a control for the
regulator problem, and in relating the state equation rep-
resentation of a dynamical system to the transfer function
representation, It 1s apparent that Kalman also recognized
the relationship of this concept to optimal control, In [2]
he showed that the control obtained gave the minimum cost
for the linear quadratic problem., Kalman [2] also obtained
an algebraic criterion for the controllability of the diff-

erential equation

ax _

Prior to the introduction of the concept by Kalman, Pontry-
agin | 4] had used the same algebraic criterion in his dis-
cussion of the linear time optimal control problem; but

he uced it simply as a technical requirement. Kalman L2]
has stated that Pontryagin failed to recognize the

geometric interpretation of the algebraic criterion. In L5]
Kalman discusses some of the philosophical aspects of the
notion of controllability and suggests that "controllability
is basically an algebraic concept”. While this statement
seems to have validity for the controllability of ordinary
differential equations, it seems that the geometric interp-
retation of controllability is of greater significance for

the hereditary systems to be discussed later,



In recent years considerable interest has been shown
in time lag control systems (see Reference [6] for extensive
bibliography). Equations depending on the past history arise
quite naturally in some physical systems. For example
Driver [ 7],L8] has shown that a differential-difference
equation arises in the consideration of a two body protiem
of classical electro-dynamics, while Volterra[9] has dem=
onstrated that a class of hereditary equations somewhat
more general than differential-difference equations has
application in such diverse fields as elasticity and dbiology.
Of course in control systems the existence of systems
having time lags has been recognized for many years. Such
examples as systems with transportation delay, and signal
propagation delay have been studied extensively. However
it is only within the last two decades that a real interest
has been shown in the optimal control of such systems.

It is well known that the past behaviour of the
trajectory of an ordinary differential equation can be
summarized in the initial conditions. For time lag systems,
such is not the case, and the past history of the system can
only be summarized by a part or the whole of the past
trajectory of the system. Perhaps the simplest type of
differential equation exhibiting this time lag effect is
the differential-difference equation. For these equations
the past behaviour is summarized by a segment of the past
trajectory, which is usually called the initial function.
Our principal concern in this thesis will be a discussion

of the controllability of such differential=-difference



equations,

1.1 Differential-Difference Equations

As mentioned above, probably the simplest form of
hereditary or time lag control system is one described by

the differential-difference equation
(1.1,1) x(t) = Ax(t) + Bx(t=1) + Cu(t) t> 0,

where x(t) is an n dimensional vector, u(t) is an r dim-
ensional control vector, and A,B and C are matrices with
orders commensurate with x(t) and u(t). Such equations
have been discussed by a number of authors including Mysh-
kis [20], Krasovskii [11], Pinney [12], Bellman and Cooke
L13], Elsgoltz [14], Oguztoreli | 6], and Halanay [15].

It will be observed that in order to solve (1.1.1)
as an initial value problem it is necessary to know x(t),
t€[~1,0]. Since, loosely speaking, the state is the
minimum amount of information required to be able to com-
pute the future solution of (1.1.1) we see that for such
equations the state space 1s a function space. This leads
to two ways of considering the solution of (1.,1,1)., The
first or classical way of considering the sclution is as a
trajectory in euclidean space. Secondly, since the state
space is a function space it is also natural, by analogy
with ordinary differential equations, to consider the
evolution of the solution as a trajectory in function space,
This approach was first used by Krasovskii [11]. Later

authors such as Hale [16],17] and Shimanov [ 18] have shown



the power of this approach by developing a geometric theory
for equations such as (1.1.1),.

Myshkis [10] and Elsgoltz [14] have proved local exist-
ence and uniqueness theorems for equations such as (1.1.1).
However there is a significant difference between the type
of existence results obtained by Myshkis and Elsgoltz, and
the results usually obtained for ordinary differential
equations., For ordinary differential equations under suit-
able assumptions it is shown that the solution exists and
is unique in a neighborhood of the initial point (x 0t )3
that is the solution exists to both the left and the right
of the initial point., For equation such as (1,1.1) it i
only possible, under assumptions similar to those for
ordinary differential equations, to show that the solution
exists and is unique to the right of to. Hastings [193 who
has derived results guaranteeing the backward existence and
uniqueness of solutions of differential-difference equaZions,
has also shown examples where either no backward solution

exists or it is not unique.

1.2 Survey of Literature on Controllability

Over the last decade there has grown a considerable
body of literature on the controllability of dynamical sys-
tems. An excelleht survey of this subject has been given
by Weiss [20], so we will restrict our attention to discuss-
ing the controllability of differential- difference equations,

As was mentioned in the previous section there are

two ways of considering the solution of a differentiail-



difference equation. The first way is to consider the sol-
ution as a trajectory in euclidean space while the second is
to consider it as a trajectory in a function space. At first
glance this duality may not seem significant, but we will
show by considering the regulator problem that in fact this
dual w2y of considering the solution of a differential-
difference equation leads to two notions of controllability.
Let us suppose that for (1.1.1) we are given a non-
zero initial function, We can pose the following question:
Does there exist a control u such that the trajectory x(t)
passes through zero in R? at some finite time? This problem
leads to the concept of euclidean space controllability*
which is of importance for problems where we are interested
in controlling a system to a target and are not interested
in what happens to the system after it reaches the target.
It can be seen that this notion does not give an answer to
the regulator problem which is: Does there exist a control
u such +that the trajectory x(t) equals zero for all time t
greater than some finite time T? For this problem we see
that it is not sufficient to just be able to control the
system to zero in R? for only one instant T, as the future
behaviour of the differential-difference equation also

depends on the trajectory x(t),t€[T-1,T]. Hence we are

#It should be pointed out that the terminology used in
referring to the two notions of controllability mentioned
above is not yet well established in the literature., For
example euclidean space controllability is termed R" con-
trollavnility by Weiss [[20], and relative controllability by
Kiril-ova and Curakova L21).
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led to a second concept, that of function space controli=-
ability. It should be noted in passing that for ordinary
differential equations the two concepts are equivalent,

Complete euclidean space controllability was first
considered by Chyung and Lee [22] in 1966 where they general-
ized the integral criterion of Xalman [ 3] for the case of
differential-difference equations. In fact the proof is
essentially the same as that originally given by Kalman {3].
Due to certain technical difficulties, for differential-
difference equations, it is necessary to differentiate
between null controllability and complete controllability.
Weiss [23] was able to show, under the hypothesis of a new
concept called pointwise completeness, that the condition of
Chyung and Lee was also a necessary and sufficient condition
for euclidean space null controllability.

All the above results necessitate a knowledge of the
system solution. Kirillova and Curakova [21] in 1967 pre-
sented for the first time algebraic criteria for euclidean
space null controllability of (1.1.1)., They were able to
"~ obtain both a necessary condition and a sufficient condition,
but were unable to show that either of the conditions was
necessary and sufficient except for a special case of (1.1.1).
However in a recent thesis Johnson [24] was able to obtain,
by an involved development, an algebraic criterion for
complete euclidean space controllability of (1.1.1) which
was both necessary and sufficient. Recently, Weilss [253

obtained an algebraic sufficient condition for controllavility



of time-varying differential-difference equations, by a
method which is a natural generalization of the method of
Kirillova and Curakova, The result of Weiss also includes
the result of Buckalo [26] as a special case.

The concept of pointwise completeness as introduced
by Weliss [23] has to the author's knowledge only been
investigated by Popov [27]. He showed that if the matrix B
in (1.2.1) has rank one then (1.1,1) is pointwise complete.
Popov also presented an example of a time invariant
differential-difference equation which was not pointwise
complete, thus refuting a conjecture of Weiss [23] that all
time invariant differential-difference equations are point-
wise complete,

To date no algebraic criterion for function space
controllability of (1.1.1) has been presented in the lit=-
erature., Both Weiss [23] and Buckalo [26] have obtained
conditions which necessitate some knowledge of the system
solution. An interesting algebraic result for (1.1.1) with
A = 0 has been obtained by Kirillova and Curakova [21];
however their method of proof does not appear to offer much
hope for generalization. To the author's knowledge the only
other criterion for function space controllability is the
ingenious result of Popov [28]. This result which is both
necessary and sufficient, involves investigating certain
properties of the transfer function of (1.1.1), However
the approach used by Popov does not seem to offer the poss-

ibility of generalization to time varying differential-



difference equations,

1,3 Outline of Contents of Thesis

The contents of this thesis may be divided intdo two
parts, In chapter 2 we consider the euclidean space controll=-
ability of differential-difference equations. We firss
Present a new algebraic necessary and sufficient condition
for complete euclidean space controllabliity, from which we
are able to deduce known results for some special cases. We
next consider the problem of pointwise completeness as this
concept is important for our later discussion of null
controllability, We show for the first time that it is
possible to determine an algebraic criterion for pointwise
completeness, and also that a fairly large class of
differential-difference equations are in fact pointwise
complete. Finally in this chapter we present a new algebraic
necessary and sufficient condition for euclidean space null
controllability. The most significant aspect of this cnapter
was the discovery of an especially useful form for the sol-
ution of a differential-difference equation., With this form
of the solution in hand the results of the chapter follow
straightforwardly.

Chapter 3 is devoted solely to obtaining an algebraic
criterion for complete function space controllability., It
was discovered that the problem of function space controll-
ability of a differential-difference equation could be
transformed into an equivalent two point boundary value

problem for an ordinary differential equation. It is then
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possible to apply the Silverman inversion algorithm [29] to
obtain an algebraic necessary and sufficient condition for
complete function space controllability.

Finally chapter 4 summarizes the results, and suggests

further areas of research.



CHAPTER 2
CONTROLLABILITY TO POINTS IN EUCLIDEAN SPACE

In this chapter we obtain results for euclidean
space controllability of constant coefficient differential-
difference equations. For such equations it is of interest
to obtain algebraic conditions for controllability in terms
of the matrices which characterize them. Some
progress in this direction has recently been made by
Johnson [24]; but it is felt by the author that the approach
presented here gives greater insight into the question of
controllability than is obtained from Johnson's methods.
Futhermore it enables us to give a complete theory for
euclidean space controllability of differential-difference
equations,

For ordinary differential equations it is well krown
that the concepts of null controllability and complete
controllability are equivalent; but for differential-
difference equations this equivalence is not true in gereral,
For this reason the null controllability and complete
controllability of differential-difference equations have to
be investigated separately. However under the assumption of
pointwise completeness, a notion introduced by Weiss L233,
the concepts of null controllability and complete control-
ability are equivalent.

The key to the approach presented here is the

11
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realization of a particularly simple form for the fund-
amental solution of an autonomous differential-difference
equation, Utilizing this form for the fundamental solution
algebraic necessary and sufficient conditions for complete
controllability follow in a straightforward manner., Again
using the fundamental solution we develop necessary and
sufficient conditions for pointwise completeness. The
criterion that we obtain for pointwise completeness also
enables us to characterize those systems which are not
pointwise complete, and thence to obtain necessary and

sufficient conditions for them to be null controllable.

2.1 The Representation of the Solution of a Differential-
Difference Equation

In this section we introduce the basic systems that
we will consider throughout this chapter. We then go on to
consider the representation of the solutions of these
systems, and develop an explicit and particularly useful
form for the fundamental solution,

The basic system to be considered in this chapter is
the following constant coefficient differential-difference

equation,

(2.1.1)  x(t) = Ax(%) + Bx(t-1) + Cu(t) for t€(0,T],

n

(2,1.2) x(t) = o(t) for t€[-1,0],

1]

(2.1.3) y(t) = Dx(t),

where x(t) is an n-dimensional vector; u(t) is an
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r-dimensional vector, and u(*) is an admissiblé control
(that is, it is contained in the space of square integrable
functions, LZ, on every finite interval); and y(t) is an
m~-dimensional vector. A,B,C and D are nxn, nxn, nxr, &nd
mxn matrices, respectively. We will assume that the iritial
functions ¢(t),t€ _~-1,0] are contained in C([-1,0];R™), =he
space of continuous functions whose range is in R?, Tor
each admissible control u(¢), and each initial function
¢€C(L-1,0];R") there exists a unique solution to (2,1.1)
and (2.1.2), where the solution is continuous on the
interval [-1,0] and absolutely continuous on the interval
(0,7] (see References | 6], 14]).

In a recent paper, Banks L30] has obtained a var-

iation of parameters formula for the solution of (2.1.1)

and (2.1.2), namely

m
L

(2.1.4) x(T) = x(T,¢) +!X(T-S)Cu(s)ds,

where 0

(2.1.5) x(T,e) = X(T)e(0) +f X(T=a=1)Bv¢(a) da ,
-1

X(t) is the unique nxn matrix solution of

(2.1.6) L X(t) = AX(t) + BX(t-1);  ©>0
where
I t =0
) - |
0 t€L-1,0).

We will term X(t) the fundamental solution of the homo-

geneous differential=-difference equation (2.1.6).
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It will be noted that the second term of (2.1.4) constitutes
the sclution of (2,1.1) with a zero initial function, while
(2,1.5) is the solution of the homogeneous differential-
difference equation related to (2.1.1).

We are now interested in obtaining an explicit form
for the fundamental solution of (2.1.6). The first approach
that we will consider is what Elsgoltz [14] termed the
"method of steps”". Let us consider how this method works.
For +€ (0,1] the term X(t-1) in (2.1.6) is defined by
(2.2,7), hence we may solve (2,1.6)asan ordinary
differential equation over this interval, and the solution
is

(2.1.8) x(t) = A% ror te(0,1].

On the interval t €(1,2], we again have an ordinary diff-
erential equation, as X(t-1) is simply the solution of
(2,1.6) over the interval (0,1], and the initial condition
is X(1) = eA. By induction, on the interval (k,k+l],

k =0,1,.¢4. , we find

%
(2.1.9)  X(t) = At +f MAlE-stlgAlsi-lyg 4,
1

S

t 1
+J/.eA(t-Sk)Bdsk ..:/ﬂeA(SZ-Sl) X
k 1

X BeA(sl-l)dsl .

The form of the fundamental solution given by (2,1.8) and
(2,1.9) will prove useful in a few special cases in our
later discussion., However it gives us very little insight

into what properties the fundamental solution X(t) may
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have, It is our intention to now present a new form for
the fundamental solution X(t) which will prove of greater
utility in our future discussion.

Apart from the advantages of the new form of the
fundamental solution in our discussions it seems to olfer
a computational advantage. By examining (2.1.8)and (2.1.9)
we see that to evaluate the fundamental solution X(t) a
number of integrations need to be performed, However in
the form of the solution X(t), to be presented,only
algebraic operations are involved in its evaluation, which
potentially offers a considerable saving in computation
time,

Let us now consider the homogeneous matrix
differential-difference equation (2.1.6) and (2.1.7). We
introduce the following notation, by defining X, (7) =
X(r+k) for r€[0,1] and k = 0,1,2,,.,. By direct sub-

stitution in (2.1.6) and (2.1.7) we obtain

d T = T =
o X () = AX (7) X (0) = I
Lx, (7)) = BX () + AX, (7) X, (0) = x (1)

(2,1.10) ¢ . .

a _ — ’
X (1) = B 4 (1) +Aax (7)) x (0) =X, (1),

so that the solution of (2.1.6) and (2.1.7) over the
interval tE:Lk,k+1] is given by X(t) = Xk(t-k).

Letting Zk(f) = [Xg(f),....,xg(f)]T, (2,1,10) can
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be written more concisely as

a
ar 27

]

A2, (T) for relo,1],
(2.1.12) X (7) = B2, (7),

where Zk(T) is an n(k+l)xn matrix, and

(A 0 0...0 O]
B A 0...0 O
A, = |0 B A0 Oj, B = [o,....,o,IJ.
BN
Ak anc E, are n(k+l)xn(k+l) and nxn(k+l) matrices respect-

ively.

As is well known, the unique solution of (2.1,11) is

given by

(2.1.13) 2, (1) = eAkTZK(O).
and hence

(2.1.14) X, (1) = E ™k 2, (0),

There remains now the problem of finding the initial
conditions for (2.,1.11). It is clear from (2.1,10) and

the cdefinition of Zk(f) that
(2,1.15) ZO(O) = T,

We will show by induction that

I 1
Z(O)= I I N B BN B ,fork=l,2,... .
k eAk"lzk_l(O)J
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From the definition of Zi(f) and (2.1,10)

{xo(o)“ | x_(0)
| X1.(0) X, (1)
z,(0) = | 1| = I
o .
L X, (0) ] Xy (1) ]
T R
%.Zi-l(l)j 5Le"’i"lzi_l(o)j

where the last equality follows from (2,1.7) and (2.1.13).
From the statement following (2.1.10) we can write

an explicit relation for X(t), t€[k,k+l]; namely

(2.1.17) X(t) = Xk(t-k) = EkeAk(t“k)zk(o>.

It should be observed that the fundamental matrix
solution X(t) may be singular for some %, in contra-
distinction to the case for ordinary differential equations.
It is this very property of X(t) which leads to the necess-
ity of drawing a distinction between null controllability
and complete controllability,in euclidean space, for
differential-difference equations, The following example

exhibits this property quite clearly,

Example 2,1.1 Consider the following differential-

difference equation studied by Popov [27]
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@) o 2 offx @] T
(2.1.18) | &, (6) | = 0 0 =1 || x,(t) | +|
X (8) | |0 0 o)l x(6)| |

From (2.1.17) and some simple calculations we see

[2 4 -4]
(2.1.19) X(2) = E,Z,(0) =s 1 1 2
102 o

which isa singular matrix,

2.2 Complete Controllability

In this section we define the concept of complete
outout controllability, and derive algebraic necessary and
sufficient conditions for constant coefficient differential-
difference equations to have this property. From these
general results we derive the usual algebraic criterion for
the output controllability of ordinary differential
equations, We further obtain a rather simple algebraic
criterion for the controllability of a restricted class of
differential-difference equations, and also show that the
scalar differential-difference equation is controllable,
Finally we present an algebraic characterization of the
reachable set, as defined below, for those systems which
are not completely output controllable, This algebraic
characterization of the reachable set will also prove of

rreat use in our later discussion of null controllability.
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DEFINITION 2.2.1., The control system (2.1.1), (2.1.2),
(2.1.3) is said to be completely output controllable at time
T>0 if for every ¢€ZC([-1,0];Rn) and for every y1€ZRm there
exists an admissable control u(t), t€[0,T] such that

y(T) =y,.

We have defined complete cutput controllability above

rather than complete controllability, The reason for this

is that the former definition of controllability in no way
complicates the proof of the necessary and sufficient
conditions, while the results for complete controllability
can simply be obtained by setting D = I in any of the

results given below,

DEFINITION 2.2.2. Consider the control system (2.1.1),
(2.1.2), (2.1.3). The reachable set R(T) is defined as

(1) = {yeR"|y = y(1), u(-)€1?, =0} .

The reachable set is the set of points in R™ which
can be 'reached' by the output of the control system (2.1.1),
(2.1.2), (2.1.3) starting from zero initial conditions. It

is relatively easy to see that the reachable set R(T) is a

linear subspace of R™,

From (2.1,3) and (2.1.4)
T
(2.2.1) y(T) = Dx(T,p) + D[)X(T-—s)Cu(s)ds,

which can be re-written as
T
(2.2.2) y(T) - Dx(T,¢%) = DJ(.X(T-S)Cu(s)ds.
0
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We see that for each admissible control u the right hand
side of (2.2.2) is an element of the reachable set &(T).
Now suppose that the system (2.1.1),(2.1.2),(2.1.3) is com-
pletely output controllable. Then for each yleiRm and
VEEC([-l,O];Rn) there exists an admissible control @I such
that

T
yq- Dx(T,?) = D/X(T—S)Cﬁ(s)dsedl(‘l‘).
0

Therefore the system (2,1.1),(2.1.2),(2.1,3) is completely
output controllable at time T if and only if &(T) = R",

THECREM 2.2.1, The control system (2,1,1),(2.1.2),(2.1,3)
is completely output controllable at time T if and only if
nTDX(T-s)C= 0 for a.e&;€[0,T] implies n =0,

Proof. From above the system (2.1.1),(2.,1.2),(2.1.3) is
completely output controllable at time T if and only if
a(T) = R,

Now & (T) # R® if and only if there exists a non-zero
7 €R™ such that nTy = 0 for every y€R(T)., This in turn is

equivalent to
T

(2.2.3) /nTDX(T-s)Cu(s)ds = 0,
0

for all controls u(+)€E 12,

If there exist a non-zero 7€ R" such that
nTDX(T-s)C = 0 for a.,e,s€[0,T7], then (2.2.3) is true for
all u(*)e1?, On the other hand if there exists a non-zero

»e R? such that (2.2.3) is true for all u(+)e L2, then



(2.2.3) is true for
(2.2.4) u(s) = [Tox(m-s)c]T.

Substituting (2.2,4) in (2.2.,3) we obtain

T
iy
(2.2.5) ./}*DX(T-S)CCTXT(T-S)DTVds = 0,
0
and therefore conclude
nTDX(T-s)C = Q0 for a.e.se:[O,T].

We thus have succeeded in proving that &(T) # R™ if and only

if there exlists a non=-zero vIERm such that nTDX(T-s)C =0

for a.e.s€ 0,T].

COROLLARY 2,2,1. The control system (2.1.1),(2.1.2),(2.1.3)

is completely output controllable at time T if and only if
T
W(T,0) =“/Em(T-s)cchT(T-s)DTds
0
is positive definite.

Proof. Obviously W(T,0) is positive semi-definite. It is
easy to see that nTW(T,O) = 0 for some non-zero 7 E€R" if
and only if 4 DX(T=s)C = 0 for a.e.se€[0,T].

Corollary 2.2.1 was originally obtained by Chyung
and Lee [22] and McClamroch [31] for D = I.

From the result of Theorem 2,2.1 and the fundamental
solution (2.1.22) we now obtain an algebraic necessary and

sufficient condition for complete output controllability at
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time T of the control system (2.1.1),(2.1.2),(2.1,3).
To minimize the notation let us define Dk = DEk and
Ck = k(O)C for k=0,1,2,....

THEOREM 2.2.2, A necessary and sufficient condition for the
control system (2,1.1),(2.1,2),(2.1.3) to be completely out-
put controllable at time T € (k,k+1], k = 0,1,2,... is that

the matrix

- : n-1 n(k+1)-1
Q(T) e [DOCO’."’DOAO Co)cnukaCk,nno,DkAk Ck]

has rank m., Q(T) is an mx(k+1)(k+2)nr matrix.

Proof. From Theorem 2.2.1 a necessary and sufficient
condition for complete output controllability is that
nTDX(T-s)C = Q0 for a.e.sE[O,T] implies 7 = 0, where 9 €r™,

This statement is equivalent to:

(2.2.7) 2 DX (T=s) = 0 for s € (T-1,T]
(2.2.8) 2 DX(T-s) = 0 for s€ (T-2,T-1]
(2.2.9) A IDX(T-s) = 0 for s €(0,T=k]

implies % = 0,

From (2,1.17) we obtain by direct substitution,

i

(2,2.10) 2D _eho(T=s)q

o 5 =0 s€ (T=1,T7]

It

(2.2,11) anleAl(T'S““c1 0, s€(T-2,T7-1]

evsacese



(2.2.12) 1qTDkeAk(T‘k‘S)c =0, sc€(0,Tk]

k

implies 7 = 0.

We now only need to show that (2,2,10),(2.2.11) and
(2,2,12) implies 7 = 0 if and only if the rank of Q(T)
equals m,

Suppose the rank of Q(T) <« m, then there exists a

non-zero 1€ R" such that

(2.2.13) 7 TDC. = iviuiin. = 97D A0

ivi i~

for 1 = 0,1,.4..,k. From the Cayley-Hamilton theorem

and (2,2,13) we find

Th an(itl). _
for i = 0,1,.¢..,k. It can be shown by induction that

e
WTDiA?(l )% C; =0

i}

for j 0,1,2,.044y, 1 =20,1,....,k.
Using the power series expansion of the exponential

matrix, we find

qTDOeAO(T'S)CO =0, se(P-1,T]

i

A1(T‘S‘1)c1 0, se (1-2,7-1]

qTDle

AK(T—s—k)Ck

77D e 0, se (0,T-k].

This is a contradiction of the statement: (2.2.10),(2.2.11)
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(2,2,12) implies 9 = O,

Suppose on the other hand there exists a non=-zero
n €R" such that the expressions (2.2,10),(2.2.11),(2,2,12)
are true. Then by successive differentiation of (2.2,10)

and setting s = T, we find

. T =T - _ T o.n-l. _
(2.2...6) n DOCO Ul DOAOCO er e M DOAO CO Oc

Treating (2.2.11) and (2.2.12) in a similar manner we

obtain
2Tpsadc, = o,
for i = 0,1,...,k; j = 0,1,...,n(i+1)=-1, It is thus obvious

that »Q(T) = O which implies that the rank of Q(T) is

less than m.

An interesting property of differential-difference
equations will be observed from Theorem 2.2.2. Namely
the system may become controllable only after some
non~zero time interval has elapsed. In the example below
we will present a system which is not completely output
controllable for time T < 1, but is completely output

controllable for all time T > 1,

Exanple 2,2.1. Consider the following differential-

difference equation,

(2.2.17) = +

il(t) [1 0 xl(t)] 1 0 xl(t-l)
iz(t) Lo 1 xz(t)J 0 0

xz(t-l)
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(2,2.18) yi ()] _ [x (8)]
¥, (t) X, (%)

Suppose that T€ (0,1], then we find

and the rank of Q(T) =1 < 2, Now suppose T > 1, then

1 1 1+l ...
Q(T)= 1 9
Ll 1 e 2 0 8 ¢ & @

and we note the rank of Q(T) = 2. Hence the system (2.2.17),
(2.2,18) is not completely output controllable for T €(0,1],
but is completely output controllable for all time there-

after.,

COROLLARY 2.2,1, If the system (2.1.1),(2.1.2),(2.1.3) is
completely output controllable at time Tl' then it is

completely output controllable for all time T > Tl'

Proof, Suppose T > T1 then from Theorem 2.2.2 we can

partition Q(T), as
Q(T) = EQ(Tl)’ 6 ].

It can now be seen that if Q(Tl) has rank m, then Q(T) must

also have rank m,
The following result is the usual algebraic criterion

for complete output controllability of ordinary differ=-



26

ential equations., This result was originally proved by
Kreindler and Sarachik [32], and for the case D = I by
Kalman [2].

COROLIARY 2,2.2, Suppose that in the system (2.1.1),
(2,1.2),(2,1,3) the matrix B = 0. Then a necessary and

sufficient condition for complete output controllability at

time T is that the matrix
Q, (1) = [DC,DAC, ... .., DA™ C]

has rank m.,

Proof., Suppose QA(T) has rank m, then Q(T) has rank m for
any T. This follows from the fact that

(2.2.19)  D,C, = DC,....,DOAQ"lco = pan1g,

and hence Q(T) has m linearly independant columns for any
T >0,

Suppose the rank of QA(T) < m, then there exists a

non-zero 'r)CRm such that

(2.2.20)  TDC = 7TDAC = ..., = 4 DA% C = 0,

Applying the Cayley-~Hamilton theorem we can show

7 TDA"C = 0,

It can then be shown by induction that

T

" DAn+3

(2.2.21) C=O fOI‘ £=0,1,¢ccl
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The general term in qTQ(T) is given by

&

',}TDiA. 3 for 1 = 0,1,...;}(3 L= Ogl’llil|n(i+1)*1’

'_J

Substituting for Di'Ai and Ci the general term becomes

n TD.ALC, = 4TD0,. 0., 0,11 [A% 0. . . L0][T Tc
O AZI . . ¢ 0 .eA
0 0. . . Kl eiA
j -
= WTDA elAC .

Expanding elA in a power series, and applying (2.2.20) and

(2,2.21) to the general term

T 4L
Y DiAiCi

H

ATDAP[1 + A+ ()% + L] C =0

1

Hence qTQ(T) 0 and the rank of Q(T) < m,

The following result, originally proved by Kirilliova
and Curakova [21] for D = I, gives a simple algebraic
criterion for complete output controllability for the

system (2.1.,1),(2.1.2), (2.1,3) where A = 0,

COROLLARY 2.2.3. Suppose in system (2.1.1),(2.1.2),
(2.1.3) the matrix A = 0, Then a necessary and sufficient
condition for complete output controllability at time

T €(k,k+1] is that the matrix

ag(T) = [DC,...., DB C]

has rank m,
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If T > n-1 then a necessary and sufficient condition

for complete controllability at time T is that the matrix
a (1) = [nc,....,D8"" c]

has rank m,

Proof., Suppose the rank of QB(T) < m, then there exists a

non-zero 7 €R" such that
(2.2.22) 17Q,(T) = nT[nc,.....,085¢] = o.
The general term in nTQ(T) is given by

y DA

for i = 0,1,....,k; £=0,1,..,.,n(i+l)=1, Substituting for

Di’Ai and Ci the general term becomes

(2.2.23) nTDiA‘].Lci =p[0,....,0,1][0 0o 0. .0 01¢
B O 0, ,0 0
0O B 0., .0 Of}x
0O 0 0, .B 0
-1 1 ¢,
I
X | I+B
. 1 i=1

For £ = 0,(2,2.23) becomes

T - 1 i-1
y D[I+(1—1)B+......+(i_1)! B™"" ]c.
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From (2.2.22) this term equals zero. For £=1,(2,2.23)

becomes

n TDLI+(1-=2)B+. ..+ TI%ETT 81=2]c,
which is again zero by (2.,2.22). Similarly 7TDiAici = 0
for 1 <4< i, For £= i, expansion of (2.2.23) leads to
nTDBC which is zero from (2.2.22). For £ > i we see that
<

A:

4 . .
i = 0, hence 'qTDiAiCi = 0 for4 > i, From the above cis-

cussion we may finally conclude that pTDiA§Ci= 0 for
4 =0,1,....,n(i+1)=1, From the above comments we Sce that
nTQ(T) = 0, and the rank of Q(T) < m.

For sufficiency suppose QB(T) has rank m. We
recognize from the general term (2.2.23) and the discussion
following it, that DiAici = DBiC. Hence,indicating only
the important terms the matrix Q(T) has the form

26, vv.,DB5C]

(DC,...,DBC,..,DB
and so it must also have rank m,
Let us suppose T > n-1, Now if QC(T) has rank m, then
since it constitutes the first n sub-matrices of QB(T), T >n,
we see that QB(T) has rank m,

Now suppose QC(T) has rank less than m, then there

exists a non-zerO'néfflsuch that
(2.2,24) 7 T[DC,uuvereas,DBPIC] = o,

Applying the Cayley-Hamilton theorem and an inductive

argument we find

T

. DBn+ZC -

0

for 4 =0,1,.... . Hence we find the rank of Qg (T) is
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alsc less than m.

In Corollary 2.2.3 it was shown that for T > n it is
necessary and sufficient to investigate the rank of QC(T)
rather than the rank of QB(T) which leads one to conjecture
that a similar situation arises in Theorem 2.2.2, The
author believes this conjecture to be true but up to the
present time has only been able to prove it for some
special cases.,

Let us now consider the scalar differential-

difference equation

(2.2.25)  xM)(4) +Z a.x(1)(4) +

(1) -
+ b.x (t=1) = cu(t),

where x(t) and u(t) are scalar functions of time t, and
the parameters ai’bi and ¢ are constant, We denote the
i'th derivative of x(t) by x(i)(t). We will now transform
(2.2.25) into the form of (2.1.1),(2.1.3) and thus show

that (2.2.25) is controllable.

L0 @) _

-1
xz“" gt e ey Xn (n )'

Defining Xy =

we can write (2.2.25) as

X

%y (8) = x,(t)

X, (t) (t)
(2.2.26)] 2 *3

n-1 n-1

Xn(t) - :E: 8ixi+l(t)-:E:bixi+1(t—1)-+cu(t).
1=0 i=0

a..-“
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This equation can be written in the matrix form given in

(2,1,1),(2,1.3) where

- - ~ -

0 1 0, ., .0 0 0O 0. . .0
0 o 1 1 . . O ? [] L] L]
0 0 O 1 6 b 6 e ¢« o+ O
i "ao-al"azo . .-an_l‘ i -bo-bl-bzl . .-Dn"iJ
(2.2.27) o]
0
c= |- , D=1
0
1
" .

COROLLARY 2,2.4., The scalar control system (2.2.25) is

completely output controllable for every time T > O,

Proof. The proof is an immediate consequence of (2.2.27)

and Theorem 2.2.2.

We now present an algebraic characterization of
the reachable set #(T) for those systems which are not

completely output controllable,

THEOREM 2.2.3. The reachable set &(T) equals the range

of the matrix Q(T)QT(T), where Q(T) is the matrix defined

in Theorem 2.2.2,

Proof, By examining the proof of Theorem 2.2.2 we see
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4
that the orthogonal complement, & (T), of #(T) is given by
4
(2.2.28)  &7(1) = {n€r™ |ya(m) = o}

It is clear that (2.2.28) can be re-written as

"

il
a7(1) = {ne ’"|Q%(T)y = o} = {n€r !Q(T)Q (T)q = o}

it

nul1(2()al (1)) = range(@ ()2 (r))",

The last two‘equalities follow from the basic properties
of linear transformations, where null(Q(T)QT(T)) denotes
the null space of Q(T)QT(T), and range(Q(T)QT(T)) denotes
the range of a(T)TQ(T), Hence 4 (T) = range(Q(T)QT(T)).

2,2 Pointwise Completeness

In order to be able to discuss the question of null
output controllability of differential-difference equations
it is necessary to introduce the concept of output point=-
wise completeness. In this section we will define the
concept of output pointwise completeness, and obtain
algebraic necessary and sufficient conditions for the sys-
tem (2.1,1),(2.1.2),(2.1.3) to be pointwise complete,

Some further results will exhibit a large class of systems
which are output pointwise complete. Using these results
we will present an example of a system which is not
pointwise complete. Finally for those systems which are
not pointwise complete we will present an algebraic
characterization of the set @#(T), defined below.

Let us consider the control system (2.1.1),(2.1.2),



(2,1.3) with the control u = 0,

(2.3.1) x(t) = Ax(t) + Bx(t-1), t€(0,T]
(2.3.2) x(t) = ¢(t), t €[-1,0]
(203c3) Y(t) = DX('t).

We now introduce the following:

DEFINITION 2,3.1, The system (2.3.1),(2.3.2),(2.3.3) is
said to be output pointwise complete at time T if for every

y1€ZRm there exists a ¢ €C([-1,0];R™) such that y(T) = Yy

The notion of pointwise completeness as introducea
by Weiss [23] is equivalent to our definition if we take
D=T1and so y(t) = x(t). Weiss gave no explicit
conditions under which a system is pointwise complete,
but recently Popov [27] has shown that if the matrix
B = ng, where b and g are n-dimensional vectors, then
the system (2.3.1),(2.3.2),(2.3.3) is pointwise complete.

Let us recall (2.1.5) which we will write again

for convenience
0

(2.1.5) x(T,¢) = X(T)¢(0) +U/”X(T-s-1)B¢(s)ds.

It is clear that (2.1.5) can be re-written as

0 s+1
(2.3.4) x(T,p) = /‘[ds(/X(T-«a)Bda + X(T)H(s))] ¢(s),
-1 0
1 s =0
where H(s) = {
0 se [-1,0),
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To ¢implify the notation let us define
s+l
(2.3.5) u(r,s) =./rX(T-a)Bda + X(T)H(s),
0

where we note U(T,-1) = 0 and U(T,s) is a function of

bounded variation in s. Hence (2.3.4) becomes
0

(2,3.6) x(7,9) = /[dsU(T,s)]p(s).
A -1
Finally the output y(T) which we will write as y(T,¢) to

emphasize its dependance on ¢ 1is

0
(2.3.7) y(T,¢) =f[dsDU(T;s)]so<s).
-1

We note (2.3.7) is a linear operator mapping the space of con-

tinuous functions C([-1,0];R™) into the euclidean space rR™,

DEFINITION 2,3.2., The range of the operator (2.3.7) is

defined as
p(1) = {yer"y = y(T,9), pe c([-1,0]:RM)}

It can easily be shown that #(T) is a linear subspace of R™,
It is obvious that a necessary condition for output

pointwise completeness is that the matrix D has rank m. For

completeness we include the following result due to

Porvrov [27].

THECREM 2.3.1. Let us suppose that D has rank m. If the
system (2,3.1),(2.3.2),(2.3.3) is not output pointwise
complete at time T* then it 1s not output pointwise com=-

plete for all time T > T¥,

Proof, Suppose the system is not output pointwise complete

at time T%*, then there exists a non-zerO'qeiRm such that
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nTy(T?¢) = 0 for every'y’ec([-l,O]:Rn). Let us suppose
x(t,#) is the solution of (2.3.1),(2.3.2) corresponding to
y(t,#); that is y(t,¢) = Dx(t,#). Now for all s>0, the
function X(t) = x(t+s,#) is also a solution of (2,3.1) for
some initiél condition ¢€C([-1,0]3;R"). Hence yTy(T*,?)=O;

but y(T*+s,¢) = ﬁ(T*,¢) and so
T (¥ _
"} y(T +S,¢) - 00

Since s is arbitary, this completes the proof,

We now turn our attention to establishing a necessary

and sufficient condition for output pointwise completeness.

THECREM 2.3.2., A necessary and sufficient condition for
the system (2.3.,1),(2.3.2),(2.3.3) to be output pointwise
complete is that for every non-zero 7 eRm,

i) 7TDX(T-%)B # 0 for ac[0,1]
or m

ii) 9 DX(T) # 0 .
Proof, Let us suppose (2.3.1),(2.3.2),(2.3.3) is not
output pointwise complete, then since the range of (2.3.7)
is a linear subspace of R™ there exists a non-zero nEZRm

such that nTy = 0 for every y€#(T). Hence we see
0
(2.3.8) an[dSDU(T.S)M(S) = 0,
-1

for every # €C([-1,0];R"). We note (2.3.8) is a continuous
linear functional mapping C([-1,0];R") into R. By the

Riesz representation theorem such linear functionals
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mapping c([-1,0];R™) into R are uniquely represented by
Stieltjes integrals of the form (2.3.8). Since the funct-

ional equals zero for every continuous function ¢, we con-

clude the variation,

0
(2.3.9) Var ‘-O]TDU(T,S)] = 0,
s==-1 =
0 k
T - T T
Wheres\-_{?]{ [07 DU(T,S)] = supjzzl H')? DU(T,sjﬂ)-—"] DU(T,s)“Rn,

and the supremum is over all possible finite partitions of
the interval [-1,0].
Since U(T,s) is absolutely continuous on the interval

se€l-1,0) and U(T,-1) = 0 we see that (2.3.9) implies,
m
(2.3.10) m°DU(T,s) = 0

for <€ [-1,0]. Substituting (2.3.5) into (2.3.10) we

obtain
s+l

(2.3.11) fy]TD/X(T—a)Bda + mTDX(T)H(s) = 0, s€[-1,0].
0

Hence we find that 7 DX(T-a)B = 0 for a€[0,1] and

qTDX(T) = 0 which contradicts the conclusion of the theorem,
The necessity of this result can be shown by assuming

there exists a non-zero WG:Rm such thatlyTDX(T—a)B = 0 for

a€ [-1,0] and qTDX(T) = 0, and then simply reversing the

arguments given above. It is clear that we have

(2.3.12) 7 DU(T,s) = 0

for =€ [0,1]. From (2.3.12) we see that (2.3.8) is true for
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every 7’€C([-1,0];Rn) which implies that #(T) # R™, and so
(2.3.1),(2.3.2),(2.3.3) is not output pointwise complete.

COROLLARY 2.3.1, Every system (2.3.1),(2.3.2),(2.3.3) is

output pointwise complete for all TE€[0,2) if D has rank m.

Proof, For T€[0.1] we have from (2.1.8) that X(T) = otT,

Hence DX(T) has rank m, and so for every non-zero # €R" we
have 2 DX(T) # 0, contradicting Theorem 2.3.2,1i)

Let us now consider the case TE€[1,2). Suppose
(2.3.1),(2.3.2),(2.3.3) is not output pointwise complete.
Then there exists a non-zero 2 €R™ such that VTDX(T-(X)B = 0

for a€[0,1] and 2 "DX(T) = 0. Therefore
(2.3.13) »TDX (T-0)B = 0

for T-1 < a <1, and substituting for X(T-a) from (2.1.8)

we have

(2.3.14) » Tpeh (T=2)g =
for T=1 < a <1, Since eAt

See ﬂTDeAtB

is an analytic function of t we

H

0 for every t. We now examine condition ii)
of Theorem 2.3,2, Substituting (2.1.9) for X(T),1 < T < 2

we obtain
T

(2.3.15) 2o [eAT +/eA(T'Sl)BeA<Si'1)ds] = 0,
1
Since vTDéJT'Sl) = 0 for all s, (2,3.15) implies

WTDeAT = 0, Finally, DetT has rank m so we conclude # = 0

which contradicts the assumption? # 0,
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In the proof of Corollary 3.1 we have used the form
of the fundamental solution X(t) given by (2.1.9). It
could equally well have been proved using (2.1.,16) and

(2,1.,17), but it is slightly more convenient to use (2.1.9).

COROLLARY 2.3.2 If in the system (2.3.1),(2.3.2), (2.3.3)
the matrices A and B commute, that is AB = BA, and D has
rank m then it is output pointwise complete for every time

T > 0,

Procf., Since AB = BA some simple calculations show (2.1.9)

simplifies to

k - i . .
(2.3.16) xee) = 5 Ll A1)
i=0
for t€[k,k+1).

Let us suppose (2.3.1),(2.3.2),(2.3.3) is not output point-
wise complete, then from Theorem 2.3,2, there exists a non-

zero 7 € R® such that

(2,3.17) i) v DX(T-a)B = 0 ael0;1],
and
(2,3.18) ii) VTDX(T) =0 ,

Let us suppose that k < T < k+l, where k is an arbitrary

integer. Substituting (2.3.16) into (2.3.17) we obtain
(T-(i"l -y - +
(2.3.19) v DZ A(T-o-1)giHl

fOl" T-l < T"'2 < ko
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We can rewrite (2.3.19) as

k .
(2.3.20) [ZvTDB“l -ia (T-a-i )l]eA(T-—a) =

L 1‘
i=0

for T-1 < T-a < k. We note that (2.3.20) consists of the

term in brackets multiplied by & non singular matrix, nence

_ia (T=q-
(2.3.21) Ew peltle lA-(———;.-f—)- =0

~for T-1 < T=d < k, Since (2.3.21) is a polynomial in «, we

conclude that
(2.3.22) »IDBY = 0

for 1 = 1,...,k+1l., Substituting (2.3.16) into (2.3.18) we

find
k+1

(2.3.23) ) D Z Bl (T l)l A(T—l)

Therefore from (2.3.22), (2,3.23) becomes
(2.3.24) »TpelT = o,

and since D has rank m we conclude » = 0. This contradicts
our initial assumption and so the system is output point=-
wise complete for T€ [k,k+1). Since k was an arbitrary
integer we see the result is true for all k, and so the
proof is complete.

Two particular cases of interest are when A = 0, and
when B = 0, For both these cases (2.3.1),(2.3.2),(2.3.3) is

output pointwise complete for all T » 0, provided D has rank m.
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We will now obtain an algebraic necessary and suff-
icient condition for output pointwise completeness of the
system (2.3.1),(2.3.2),(2.3.3), To simplify the notation

let us define F, = Zk(O)B.

k

THEOREM 2.3.3. The system (2.3.1),(2.3.2),(2.3.3) is output
pointwise complete at time Te (k,k+l),k = 0,1,2,..., if and

only if for every non-zero 7€ Rm,

. T : , n(k+1)-1
i) » [Dka,....,DkAk F ] £ 0
T | ank=1p
or 11) 2 LD Fyqree oD g A R g1 # 0

or 1i1) yTDkeAk<T'k)zk(o) # 0

Further (2.3.1),(2.3.2),(2.3.3) is output pointwise complete
at time T =k, k¥ = 0,1,2,.... 1f and only if for every non-

m
zerc 7€ R,

i 2 [D Cveee,D nk'lklj;zo

k-1 k 1 k=-1"k-1

or i) 27D W2y (0) # 0,

Proof, Let us first consider the case T € (k,k*+1), k¥ = 0,1,...
Suppose the system (2.3.1),(2.3.2),(2.3.3) is not output
pointwise complete at time T, then from Theorem 2,3.2 there

exists a non-zero 7€ RM such that

- T =
(2.).25) Y DX(T-0)B =
for a€[0,1], and

(2.2.26) 2TDx(T) = 0 .,
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Substituting (2.1.17) in (2.3.25) and (2.3.26) we obtain

T Ay .1 (T-a=k+1) -
(2.3.27) 2 D, Fog =0

for T-1 < T-a < k,

(2.3.28) -yTDkeAk(T““‘k)Fk =0

for k < T=o. < T, and

Ap (T k) =
(2'3-29) 4 Dke k k(o) = 0,

Since the terms on the left of the equality in (2.3.27) and
(2.3.28) are analytic functions of @, we see that they are
identically zero for all a € R, By successive differentiation
of (2.3.27) and (2.3.28) and setting a = T=k+l and a = T-k

in (2.3.27) and (2.3.28) respectively, we obtain,

(2.3.30) » o Al i F =0,

k-1

for i = 0,15.-.,1‘1}{-1, a.nd

(2.3.31) TDnAka 0,

for i = 0,1,..4.,n(k+1)-1, Hence (2.3.29),(2.3.30),(2.3.31)
lead to a contradiction which completes the proof of sufi-
iciency. |

To prove necessity suppose there exists a non=-zero

vE Rm such that

T- n(k+1)-1 -
(2'3‘32) 4 LDka’caact, kAk ] b O,

T nk-1 A
(20 30 33) ‘V LDk"'le-l' ¢ v e 'Dk-lAk-l Fk-lj - 0,



L2

and

Ak (T-k)

7 _
(2.3.34) 2D z,(0) = 0.

From the Cayley-Hamilton theorem and (2.3.32) we obtain

T. n(k+1), _
(2.2.35) D DAL F = 0.
Then by induction
(2.3.36) 'pTDkAQ(k+1)+‘ = 0

for £ = 0,1,4.¢.. « Using the power series expansion of

the exponential matrix we find

T

(2.3.37) ? "D

eAk(T-a—k)F =0

k

for T-a €(k,T), Using a similar argument with respect to

(2,3.33) we also find

T

' A1 (T-a-k+1)
(2.3.38) » "D, _,¢ k-1 F

k-1

for T-a €(T-1,k), Hence from (2,3.34),(2.3.37) and (2.3.38)

we have shown

P IDX(T-a)B = 0
for «€[0,1], and

i
o

2 DX (T)

which is a contradiction.
Let us now consider the case where T is an integer, k,
say. In this case it is easy to see that it is necessary

< s . m
and sufficient if for every non-zero 2 €R,
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T, Ax-1(1-a)
(2.3.39) » D Fiq 20

for a €[0,1],o0r

(2.3.40) vTDka(O) # 0.

For (2.3.39) we use the same arguments as above thus

leading to i') in Theorem 2.3.3. This completes the proof.

COROLLARY 2.3.3. A necessary and sufficient condition for

the system (2.3.1),(2.3.2),(2.3.3) to be output pointwise

complete at time T € (k,k+1), k = 0,1,..,. is that the matrix
T n(k+1)-1 nk-1
M(T) - LDka.oco'DkAk Fk".'Dk-lAk-l Fk-l'

Ak(T—k)
Dke Zk(o)]O
has rank m.
For T equal to an integer, k say, a necessary and

sufficient condition for the system (2,3.,1),(2.3.2),(2.3.3)

to be output pointwise complete is that the matrix

- I nk-1
M (T) = Dy _4Fy qseeesDp 1A 1 Fy gDy 2, (0)]

has rank m,

Proof. The proof is an immediate consequence of Theorem 2.3.3.
Corollaries 2,3.1and 2.3.2 could have been proved

using Theorem 2,3.3 rather than Theorem 2.3.2, However

it proved possible to give a more direct proof using

Theorem 2.3.2 and the fundamental solution given by (2.1.8)

and (2.1.9).
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It is obvious that if the matrix D in (2,.3.,3) does
not have rank m, then the system (2.3.1),(2.3.2),(2.3.3)
is certainly not output pointwise complete. This may
be termed the trivial case. For the non-trivial case,
that is when D has rank m, the possibility of a system
not being pointwise complete is not so clear. Popov | 27]
recently gave the following example and we will use it to
demonstrate that not all systems (2.3.1),(2.3.2),(2.3.3)
are output pointwise complete, as well as demonstrating

an application of Theorem 2,3.3.

Example 2.3.1, Let us consider the differential-

difference equation given in Example 2.1.1, and let us
suppose y(t) = x(t), that is D = I. We will examine the
system defined above to see if it is pointwise complete at
fime T = 2, From Corollary 2.3.3 and some straight-

forward calculations it may be shown that

[DlFl,...,DlA?‘lFl,DzzZ(o)]
2.2 0 24 0 04 0O
=]1-2 0 0-2 00 0 0}.
0 2 0 2 0 0 0=4 0

It may easily be seen that this matrix has rank less than

three, 1In fact taking wm = [1 -2 -1] it follows that
T n-1 -
ﬂ [D1F1100.0|D1A1 Fl,DZZZ(O)] - Ol

Hence this system is not output pointwise complete at time

T = 2, Then from Theorem 2.3.1., due to Popov we see the



system is not output pointwise complete for all time T > 2,
To complete this section we discuss an algebraic
characterization of the set #(T), where #(T) is given by

Definition 2.3.2,

THEOREM 2.3.4, The set P(T) equals the range of the matrix
M(T)MT(T) for T equal to a non-integer, and ¢ (T) equals
the range of the matrix M'(T) (M'(T))T when T is an integer.

The matrices M(T) and M'(T) are defined in Corollary 2.3.3.

Proof. By examining the proof of Theorem 2,3.3 we see that

L .
the orthogonal complement, € (T), of @ (T) is given by
L
e7(1) ={ve R"v™m(T) = 0}

for T equal to a non-integer. A similar relation holds
when T equals an integer, where M(T) is replaced by M'(T).
The proof then follows along the same lines as that of

Theorem 2.2.73.

2.4 Null Controllability

In this final section we define null output controll-
ability for differential-difference equations, and obtain
algebraic necessary and sufficient conditions under which
these equations are null output controllable. We find
that for null controllability the concept of pointwise
completeness plays a significant role; this is especially

so for the result given by Corollary 2.3.3.

DEFINITION 2.4.1, The control system (2.1.,1),(2.1.2),

(2,1.3) is said to be null output controllable at time T > 0
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if for every yé:C([-l,O];Rn) there exists a control u(t),
0 <t < T such that y(T) = 0.
From (2.1.3) and (2.1.4)
T

(2.4.1) v(T) = Dx(T,¢) + ?}fX(T,s)Cu(s)ds,
0
and this can be re-written as
T
(2.4,2) v(T) - Dx(T,¢) = q/fX(T,s)Cu(s)ds.
0

Now since we wish the output y(T) = 0 for any initial

function ¢ € ¢([-1,0];R™), (2.4.2) becomes
T
(2.4,72) -y(T,¢) = q}ﬁ%(T,s)Cu(s)ds
0

for some admissable control u(t), 0 <t < T, where

y(T,¢) = Dx(T,¢), as in (2.3.7). From Definition 2.3.2 it
immediately follows that the control system is null

output controllable if and only if #(T)C &(T).

If a system is output pointwise complete at time T
then we know that ¢#(T) = R™, and hence null output controll-
ability is equivalent to complete output controllability.
For this case the results of section 2 can be used for
investigating whether the system is null output controllable,
Therefore for null output controllability the principal
interest lies with those systems which are not output

pointwise complete at time T, that is @(T) # R",

THECREM 2.4,1, The control system (2.1.1),(2.1.2),(2.1.3)
is null output controllable at time T € (k,k+1), k = 0,1,...

if and only if the matrices M(T) and Q(T) defined in
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Corollary 2.3.3 and Theorem 2,2.2 have the following pro-
perty: The rank of [M(T)MT(T),Q(T)QT(T)] equals the rank
of Q(T)QT(T).

For T equal to an integer, k say, the control system
(2.1.1),(2.,1,2),(2.1.3) is null output controllable if and
only if the rank of [M'(T)(M'(T))T,Q(T)QT(T)] equals tne
rank of Q(T)QT(T).

Proof, From the discussion preceding the theorem and the
results of Theorem 2,2.3 and Theorem 2.3.4 we see that the
system (2.1.1),(2,1.2),(2,1.3) is null output controllable
if and only if range (M(T)MT(T)) C range (Q(T)QT(T)).

Let us suppose range ()Mt (1)) C range (@(mat (),
then the columns of M(T)MT(T) are linearly dependant on the
columns of Q(T)QT(T), and so the rank of [M(T)MT(T),Q(T)QT(T)]
equals the rank of Q(T)QT(T). On the other hand suppcse the
rank of [M(T)MT(T),Q(T)QT(T)] equals the rank of a(mat(T),
then the columns of M(T)MT(T) are linearly dependant on the
columns of Q(T)QT(T) and hence the range (M(T)MT(T)k: range
(@(ma™(r)).

For the case where T is an integer we replace M(T) by

M'(T) and repeat the arguments given above.



CHAPTER 3
CONTROLLABILITY IN FUNCTION SPACE

In the last chapter we discussed the controllability
in euclidean space of differential-difference equations,

The present chapter is devoted to the study of function
space controllability of differential-difference equations.
The necessity for such a discussion is not apparent until
one realizes that the state space for these equations is a
function space, whereas for ordinary differential equations
the state space is a euclidean space. As was indicated in
the Introduction the state space for differential-difference
equations consists of functions on the interval [-1,0] whose
raﬁge is the euclidean space Rn, where n denotes the dimen-
sion of x(%t) in equation (1.1.1).

For ordinary differential equations we know that con-
trollability in euclidean space gives a complete answer to
the regulator problem posed by Kalman [2]. In particular
we can decompose the regulator problem into two parts: The
first part involves contrelling the system from its initial
condition to zero, that is, a euclidean space controll-
ability problem, while the second part is involved with
keeping the state equal to zero once it has been 'steered’
there, However as was shown in the Introduction, controll-
ability in euclidean space does not give a complete answer to

the regulator problem for differential-difference equations,

L8



L9

This follows from the fact that while we can still decom=-
pose the problem into two parts, the first part now involves
the question of controllability to the zero function.

In this chapter we will consider the question of com-
plete function space controllability of differential-
difference equations. In the first section we introduce
the notion of complete output function space controllability
and then obtain a function space criterion for it. From
this result we are able to obtain simple algebraic condit-
ions for complete output function space controllability of
two special classes of differential-difference equations.

In the rest of the chapter we will be concerned with
the development of an algebraic condition for the complete
output function space controllability of differential-
difference equations which do not fit into either of the
classes of equations mentioned above. In the second
section we transform the function space condition for com=-
plete output function space controllability into an equiv-
alent two point boundary value problem. The two point
boundary value problem is closely related to the problem of
invertability of ordinary differential equations. So in
the third section we present the structure or inversion
algorithm of Silverman and Payne [33] and those of their
results that are required in our later discussion., Finally
in the fourth section we present an algebraic necessary and
sufficient condition for complete output function space

controllability.
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3,1A Function Space Criterion for Complete Output Function
Svace Controllability

In this section we will introduce the basic control
system that will be considered throughout this chapter. We
then define the concept of complete output function space
contreollability, and give a lemma which proves to be of
fundamental importance to all our later discussions., From
this result we are able to deduce a function space criterion
for function space controllability of these systems.
Finally we present results for two special classes of
systems where the function space criterion for controll-
ability reduces to simple algebraic conditions.,

The basic control system to be considered in this
chapter is the same as that considered in the previous one,
and is the following constant coefficient differential-

difference equation
(3.1.1) x(t) = Ax(t) + Bx(t-1) + Cu(t)

for t € (0,T],

(3.%.2) x(t) = (%)
for +£[-1,0],
(3-1'3) y(t) = DX('t).

where the assumptions concerning (3.1.1),(3.1.2),(3.1.3)

are the same as those given in Chapter 2 for the system

(2.2.1),(2.1.2),(2.1.3).



DEFINITION 3.1.1., The control system (3.1.1),(3.1.2),
(3.1.3) is said to be completely output function space con-
trollable at time T > 1 if for every € >0, for every ¢ in
the space of continuous functions C([-1,0];R"), and for
every y, in the space of square integrable functions,
LZ([T-l,T];Rm), there exists an admissible control u(t),

0 <t < T such that

vy = yplpaw)|| < ¢

denotes the usual norm in the space LZ([T-l,T];Rm),
and yT(¢;u) denotes the output function y(t), T-1 <t < T,
given by (3.1.3).

It will be noted that we have defined complete

output function space controllability above rather than

complete function space controllability. Using the former

definition rather than the latter does not complicate the
proofs given below, while the results for complete function
space controllability can easily be obtained by setting

D = I in any of the theorems below,

The definition given above is closely related to the
idea expressed by Antosiewicz [34] in his definition of
approximate controllability, and the work of Fattorini [35].

In the definition given above it will be noted that
we have taken the 'target function' ¥y to be in the space
of square integrable functions., We have some latitude in
the choice of the class of functions in which the function

y, may be contained, and we could equally take the class of
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continuous functions C([T-l,T]:Rm) or the class of abso-
lutely continuous functions AC([T—l,T];Rm) in place of the
class of square integrable functions LZ([T-1,T7];R™) in
Definition 3.1.1. The reason for the choice of the class
of square integrable functions is that it simplifies some
of the proofs given below; but it appears that the proofs
are still valid if either class of functions mentioned
above is used in Definition 3.1.1. in place of the class of

square integrable functions.

DEFINITION 3,1.2., Consider the control system (3.1.1),

(3.2.2),(3.1,3). We define the reachable set &(T) as
a(ry = {y€r?([1-1,71:8") |y = yp(0,u),u(*) €1%(0,T), p = 0},

In contrast with the definition of the reachable set
given in Definition 2,2.2 the reachable set presented here
is a subset of a function space., In fact it is the set of
functions defined on the interval [T-1,T] which can be
'reached' by the output of the control system (3.1.1),(3.1.2)
(3.1.2) starting from zero initial conditions., This abuse
of “he term 'reachable set' should cause no difficulty to
the reader as the notion given by Definition 2.2.,2 is never
used in the present chapter. It is relatively easy to see
that the reachable set ®(T) is a linear subspace of
12 ([r-1,7];R™).

From (2.1.4) and (3.,1.3)
-t

(3.1.4) y(t) = Dx(t,0) + D/X(t-—s)Cu(s)ds
0
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for t€ [T-1,T]. Denoting x(t,¢), T-1 < T by xp(#) and the
integral operator in (3.1.4) on the interval tEZ[T-l,T] by
AT(u), (3.1.4) can be re-written, with a slight abuse of

notation, as

(3.1.5) yT(¢,u) = DXT(¢) + DAT(U).

For each admissible control u it can be seen from (3.1.4)
that DAT(u) is an element of the reachable set &(T).

Suppose that the system (3.1,1),(3.1.2), (3.1.3) is com-
pletely output function space controllable at time T. Then
for every € > 0, each y, € L°([7-1,7];8") and g€ c([7-1,7]:R")

there exists an admissible control u such that
(3.1.6) v, - vp(g,8)] <e.

From (3.1.5) and (3.1.6) we have

(3.1.7) ||y = Dxp(#) = DA()]| < €.

Since y, may be any square integrable function it 1s easy to
see (3.1.7) implies that the reachable set R(T) is dense in
LZ([T-l,T];Rm). Since the converse is trivially true from
Definition 3.1.1, we see (3.1.,1),(3.1.2),(3.1.3) is com~
pletely output function space controllable at time T if and
only if R(T) is dense in LZ([T-1,T];R™).

The following lemma was stated without proof by
Fattorini [35]. Since this lemma proves to be fundamental
to all our future discussions, and the author has been

unable to find a proof of it in the literature, we will
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present a proof in the Appendix., This result is actually
a generalization to a function space of the well known
result that a linear subspace, M, of the euclidean space
R" equals Rn if and only if the orthogonal complement, ML,

is empty excepting for the zero vector.

DEFINITION 3.1.,3, If X is a Banach space, and M is a subset

of X, then the set
1 .
MT = {x'€ X'!(x',x) = 0, for every x€M}

is called the orthogonal complement of M, X' denotes the
dual space of the Banach space X, and (x',x) denotes the

functional x' evaluated for xXEMNM,

LEMMA 3.,1.1. Suppose the set M is a linear subspace of the
Banach space X, Then M is dense in X, with the norm topology,
if and only if the orthogonal complement MJ'is empty except-
ing for the zero vector.

The next result gives a function space criterion for
the system (3.1.1),(3.1.2),(3.1.3) to be completely output
function space controllable, A careful examination of this
resul®t shows that it is the function space analogue of

Thecren 2,2,1,

THECREM 3.1.1. The control system (3.1.1),(3.1.2),(3.1.3)
is completely output function space controllable at time
T > 21 if and only if the only square integrable function
f(6), 6€[1-1,T7] for whi%h

£T(0)DX (9-2)Cdf = 0
Tl
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for a.euse[O,T]isthezerofunctionf(0)=()fora.e.0€[T-l,T].

Proof., We recall from the discussion following Definition
3,1,2 that the system (3.1.1),(3.1.2),(3.1,3) is completely
output function space controllable if and only if the reach-
able set QR(T) is dense in LZ([T—l,T]:Rm).

Suppose &(T) is not dense in LZ([T-l,T];Rm), then
from Lemma 3.1.1 we see that there exists a non-zero funct-
ional '€ (L%([T-1,7];R"))" such that for every y€ R(T),
m',y) = 0. By the Reisz representation theorem there

exists a function f€L([T-1,7];R") such that
T

(3.1.8) (* ) =/fT(0)y(9)de
- 7-1

Hence from (3.1.8) and Lemma 3.1.,1, there exists a non-zero

function f€ LZ([T—l;T];Rm) such that for every y€R(T),

m
(3.1.9) ﬁ‘T(a)y(o)de = 0,
m-1

From (2.1.4),(2.1.5) and (3.1.3) we see that y€ R(T) if and

only if
t

(3.1.10) y(t) = D/X(t-s)Cu(s)ds, te€[T-1,T],
0

for some admissible control u, Since X(t) = 0 for t€_-1,0],

(3.1.10) becomes: y€ &(T) if and only if

T

(3.1.11) y(t) =Dﬁ((T-—s)Cu(s)ds, t€ [T-1,T],
0

for some admissible control u. Substituting (3.1.11) into

(3.1.9) we find there exists a non-zero function

féiLz([T-l,T]:Rm) such that for every admissible control u
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7 T
(3.1.12) ﬁr(ﬂ)ngX(O—s)Cu(s)dssdo = 0,

T-1 0
By the Fubini theorem we may interchange the order of inte-

gration in (3.1,12) thus obtaining
T

T
(3.2.13) %(ﬂzj/;T(o)DX(o-s)Cdoi u(s)ds = 0,

T=-1
Since (3.1,13) is true for all admissible controls u, it

must be true for
T

(3.1.14) u(g) = z/fT(o)DX(o-s)CdegT.
’ T-1
Substituting (3.1.14) into (3,1.,13) we find

T
(3.1.15) GlngjffT(ol)Dx(ol-s)Cd01§x
T-1

T
T T —
ggfi (GZ)DX(GZ-S)Cd02§ ds = 0,

and therefore
T

(3.1.16) S @)nx (6-s)cas = o
T-1

for a.e,s€[0,T]. This is a contradiction.
For necessity, let us assume #(T) is dense in
LZ([T~1,T];Rm). Suppose there exists a non-zero function

€12 7-1,7];R™) such that

N &

T
(3.1.17) ffT(e)DX(e-s)Cde =0
T-1
for a.e,s€[0,T]. Then from (3.1.17) we see
T T
(3.1.18) f;ffT(e)DX(G-s)CdG u(s)ds = 0

0 7T-1
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for every admissible u, i.e, for every uEiLZ(O,T). By the
Fubini theorem we may interchange the order of integration

in (3.1.18) to obtain
T T
(3.1.19) ffT(e)ngx(e-s)Cu(s)ds d9 = 0,
T-1 0

It will be observed from (3.1,11) that the term {+} in the
integrand of (3.1.19) is an arbitrary element of &(T),
Again using the Riesz representation theorem and Lemma 3.1.1
we find A(T) is not dense in LZ(ET-l,T];Rm).

Utilizing the fundamental solution given in (2.1.17)

we can obtain a more useful form for Theorem 3.1.1.

COROLLARY 3.1.1. A necessary and sufficient condition for
the control system (3.1.1),(3.1.2),(3.1.3) to be completely
output function space controllable at time T€I[i,i+1),

i=1,2,,... is that the only square integrable function

f(e), 6€ [T-1,T | for which

T
7
_/bger(e‘S)sz(e)de = 0,

S
S m
T Akei(6-s-1).T
T~/i:k_le D _qf(6)de +

T
T
4l/bTeAk(e~S)DTf(e)de = 0,
k k
S
for s€7-1,7] and k = 1,....,i-1, and

S

m
T Ai-1(6=-s+1).T
CI‘/:lCi__le Di_lf(e)de +

T
T
+Jfb§eAl(e'S)D§f(e)de = 0
S
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for s€[i,T] is the zero function f(8) = 0 for a.e.

6€[T-1,7], where C, = z,(0)C, D, = DE

k k k!
2,044, ( for definitions of Zk(O) and E, see Section 2.1).

for all k = 0,1,

Proof. Let us recall from (2.1,17) that the fundamental
matrix solution for t€ [kx,k+1], k¥ = 0,1,.,.. is

Ag (t-k)

(3.1.20) X(t) = E_ e

. Zk(O).

Substituting (3.1.20) in the integral of Theorem 3.1.1 it

is immediately clear that
T
(3.1.21) JﬁfT(e)Doer(e'S)code = 0
S

for s€ [T-1,T],
s+k

(3.1.22) ./}T(e)nk o1 (8-skt)e  gqp 4
-1 ) i

m
./}T(e)nkeAk(e'S+k)ckde =0
s+k

for s€ L T-1,7], k =1,..4., i, and

(3.1.23) ./}T(e)n. ehi-1(8=s-141)g  4q 4
i-1 i-1
-1

T
./}T(G)DieAi(9°S+l)C%de = 0
S+i B

for s€[0,7-i], By making the change of variable s' = s+k,
kK = 1,....,1 in (3.1.22) and (3.1.23) and taking the trans-
pose of (3,1,21),(3.1.22),(3.1,23) the result immediately
follows,

We will now examine the necessary and sufficient

conditions for complete output function space controll-
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ability of two special cases of the control system (3.1.1),
(3.1.2),(3.,1.3)., It will in fact be shown that Corollary
3.1,1 reduces to a simple algebraic criterion in each case,
Our first result will be seen to be equivalent <o
that of Corollary 2.2,3 for T > n., It will further be
noted that when D = I, our result is equivalent to the
result obtained by Kirillova and Curakova [21], The reader
should be aware however that Kirillova and Curakova dis-
cussed function space null controlliability while in the

present work we are discussing complete function space con=-

trollability.

THEOREM 3.1.2.A Suppose for the control system (3.1.1),
(3.1.2),(3.1.3) the matrix A = 0. Then a necessary and
sufficient condition for complete output function space
controllability at time T€[k,k+l), k = 1,2,,... is that

the matrix
5B(T) = [DC,....,DBk‘lc]

has rank m,
If T > n, then a necessary and sufficient condition
for complete output function space controllability at time

T is that the matrix
Qu(T) = [pc,....08"1c]

has rank m.

Proof. 1In Corollary 3.1.1 we note that the integrands
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contain terms of the form

T
T ACt.T
1 c
(3_""021"') uie 1 Di
for i = 0,1,....,k. Since we have assumed in this theorem

that the matrix A = 0, we find by simple calculations that

(3.1.24) becomes
. A2
(3.1.25) oTlr + BT (t+i-1) + (3T)% L2220
. 1
l....+ (BT)li‘-t!]DT

fOI‘ :;1. = O'l,.ll’kl
To prove sufficiency let us assume matrix aB(T) has

rank m. From Corollary 3.1.1 and (3.1,25) we have
T o T

(3.1.26) y/bger(e-S)Dgf(e)de =_/ETDTf(9)de = 0.

. s S

Differentiating (3.1.26) once, we find
(3.1.27) cTplr(e) = 0

for a.e. 8€[T-1,T]. Let us now suppose
(3.1,28) T8y pls (o) = 0

for a.e, 8€[T-1,71, £=0,....,i=1, Then from (3.1.25)

and (2.1.28)

S
T -
(3.1.29) Jfbg_leAl-l(e s*)pT_ r(e)ae =
P-1
3 - 1-1
. _/ET[E + BT (g-a+i)+. ...+ (3T)i"? i%;ﬁ%%% IoTr (a)ae
T-1 o

= 0,



61

Hence we find from (3.1.25),(3.1.28),(3.1.29) and Corollary
3.1.1 that

T
(3.1.30) 0 =ﬁ:§eAl(e“s)D§f(e)de

S
T

3
Tr. T 11 (ggt1 )it
:/C L.L + B (e“S) +a ¢ n+ (BT)l (ei-sj.;! +

S

+ (B )l(end )

Ipf(e)as
T

. oms
J/.T(B )ipT ﬁqj_l £(6)de.
S
Differentiating (3.1.30) i+l times, we find
(3.1.31) cT8T)ipTe(e) =

for a.e. GEI[T-l,T]. Therefore by induction we have

(1.1.32) cTsT)pTr (o) =

i
o

for a,e. 8€[T-1,T7], and £ = 0,1,....,k-1, and

(3.1.33) cT(8T)kpTr (o) =

|
o

for a.e. 8€[k,T]. It can be seen that (3.1.32) and

(3.1.33) can be written as

(3.1.34) #T(e)[pe,...., 085 c] = 0
for a.e, 6€ [T-1,k] and

(3.1.35) £T(e)(DC,....,DB5C] =

for a.e, 8€[k,T]. Since the matrix SB(T) has rank m we
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conclude that f(8) = 0 for a,e. 6€[T-1,T], thus showing by
Corollary 3.1.1 that the system (3.1.1),(3.1.2),(3.1.3) is
completely output function space controllable,.

To prove necessity let us assume that the rank of

ﬁB(T) <m, and T > k., Hence there exists a non-zero qEIRm

such that
cToly = ..., = cT(T)1pTy = o,
We now define the function f(8), T-1 < 86 < T as follows:

T-1

] =
(3.1.36) £(0) = {O Ceen’

A
e»)
A
=

From (3.1.25) and the definition of the non-zero function
f(e), T-1 <8 < T given by (3.1.36) we see that the inte-
grals in Corollary 3.1,1 are zero. For T = k we define
f(e) =m, T-1 <6 < T, and again see that the integrals in
Cornliary 3.1.1 are zero, Hence for both cases considered
above there exists a non-zero function f(8), T-1 < 86 < T
such *that the integrals in Corollary 3.1.1 are zero, and
so (2.1,1),(3.1.2),(3,1.3) is not completely output funct-
ion space controllable,

For T > n, we will show the matrix 5B(T) has rank m
if and only if QC(T) has rank m. Since for T > n, QC(T) is
a submatrix of 5B(T) we see that the rank of QC(T) is less
than +the rank of 5B(T). Hence if the matrix 5B(T) has rank
less than m, then matrix QC(T) has rank less than m.

Now suppose matrix QC(T) has rank less than m, then

there exists a non-zero vector nEﬁRm such that nTQC(T) = 0,
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Using the Cayley-Hamilton theorem and an argument by
induction we can show that o)TDBIC =0 for i = n+l,....,k-1.

Hence the matrix 6B(T) has rank less than m.

COROLLARY 3.1.2. Suppose in the control system (3.1.1),
(3.1.2),(3.1.3) the matrix A = 0. Then the control systen
is completely output function space controllable at time
T >n if and oniy if it is completely output controllable

at time T > n (see Definition 2,2.1),

Proof, The proof is immediate from Corollary 2.2.3 and
Theorem 3.1.2.

The final class of systems that we will examine in
this section is where (3.1.1),(3.1.2),(3.1.3) is a singie
input-single output system. Again we can obtain an aige-

braic criterion for complete output function space controll-

ability.

THEOREM 3.1.3 Suppose in the control system (3.1.1),
(3.1.2),(3.1.3) C and D are nxl and 1xn matrices which we
will denote by c and dT respectively. Then a necessary

and sufficient condition for complete output function space
controllability at time T€ [k,k+1), k = 1,2,...,. is that

the matrix

_ 4T T,n=-1 T T ,nk-1
QD(T) - Ldocoycnoc,dvo Co'dlcl'..."dk-lAk"l C'«{_l]
has rank 1,

. . T
Proof. We now prove sufficiency. Let us suppose doc0 = .

T,j-1 T, ‘
o = d{Ag C, = 0 and dzAéjcz # 0, where £ k-1 and j < n -1,
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Now dgco T seee= dgAg'lc = 0 implies by the Cayley-Hamilton
T,1

A"c
oo o

0

theorem and an argument by induction, that d = 0 for

all i =n,ntl,.... . Similarly we can show

1 T Y =
(3.1.37) dAnC, = O

form=1,,..,4-13p = 0,1,... . Hence from (3.1.37) and the

definition of the exponential matrix we find

T Apt -
(3.1.38) d e =0,

form=1,,...y£-1, and t€ R, From Corollary 3.1.1 we have
S

T
T _Ag-q1(6-s+l)
(3.1.39) /cl_le g,  fe)de +
™ A, (6-5)
2 =
+/::£e dzf(e)de 0

for s€ [T-l,T]. Now from (3.1.38) we see that the first
integral in (3.1.39) is identically zero, and hence (3.1.39)

becomes

T
(3.1.40) J/;feAz(e'S)de(e)de =0
S

for s€ [T-1,T]. Taking the (j+1)'th derivative of (3.1.40)

we obtain T

T 144
(3.1.4%) U/;EeAﬁ(9-8)(AE)J+*dﬁf(e)de +

S
T/ Ty
+ =
QZ(Aé) qéf(s) 0
for s€ [T-1,T]. Since cE(AE)jdg # 0 we can divide (3.1.41)

by Qg(Af)de to obtain
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T

T .
(3.1.42) £(s) + —— [ ]2 880 (a])I™q s (0)as = o
q‘(Az)JqZ A

for s€ [T-1,T]. By the well known fact that a Volterra
intesral equation has a unique solution [36], we conclude
that £(6) = 0 for a.e, 8 LT-1,T] in (3.1,%42). Hence From
Corollary 3.1.1 the control system is completely outpuz
function space controllable,

For necessity suppose that the matrix QD(T) has rank

zero, Hence by using a similar argument to the one used to

obtain (3.1.38) we can show

T Apt -
(3.,1.43) d e e = 0

as follows:

Yy T-1 <6<k
(3.1.44) f(o) = {
0

k<8 <T

where ¥ is any non-zero constant. Substituting the funct-
ion f(8), T-1 <8 < T given by (3.1.44) in Corollary 3.1.1,
and utilizing (3.1.43) we see that all the integrals in the
corollary are zero. Hence we have shown there exists a non-
zero function f(8), T-1 < 8 < T such that the conditions of

Coroliary 3.1.1 are satisfied,

3.2 Transformation of Function Svace Criterion

In this section we will be concerned with the trans-
formation of the function space criterion given in Corollary

3.1.1 into an equivalent two point boundary value probvlem.
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To attain this objective it is necessary to introduce some

new notation,

In Corollary 3,1.1 let us define

m
(3.2.1) v (t) = J/ETeAO(e't)DTf(e)de,
(o] d o] o]
and
%
(3.2.2) v () = J{ég_leAg'l(e"t+1)D§_1f(e)de +
T-1 7
m
+ [cZePk(8=t)pTe 5y 40,
X K
%
for ¥ = 1,....,1 and t€[T-1,T].
Let us further define
A (o-t).T
(3.2.3) zo(t) = [g"0 Dof(e)de,
T
(3.2.14) 5 (%) = J/;Ag-l(e"t+1)n £(0)de,
k k-1
T1
and
T
i
(3.2.5) 2, (t) = feAk(e"t)Dkf(e)de,
%

for kx =1,.,..,1 and t€[T-1,7], From (3.2.3),(3.2,4) and
(3,2.5) we see that (3,2.1) and (3.2,2) beconme

5 =Ty (4
(3.2.4) v (t) = Cz (%)
and
- AT 2 T
(3.2,7) Vi (t) = Cp 47, 4 (£) + Cyrzy (£)

for X = 1,....,1 and t€ [T-1,7].

We further observe that (3.2.3),(3.2.4) and (3.2.5)
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satisfy the following ordinary differential equations with

the given boundary conditions,

) N T _
(3.2.8) zo(t) = -Aozo(t) - Dof(t) zO(T) = 0,
(3.2.9) &) (t) = -A; 43, (t) - "K-lo;  £(%) 2, (T-1) = 0,
and
3,2.10) = =Alz () - DIf(t) (T) = 0
(3,2,10 zk(t) = -Akzk(t - Dk t Zy T) = 0,

fork =1,....,i, and tEI[T—l,T].

Letting z(t) = [z0(£),87(t),2] (t),.... 2} (+)]T, and

vi(t) = [vo(e)une w317, 5 = 101,15, (3.2.6) to (3.2.10)

can be written more concisely as

(3,2,11) z(t) = Pz(t) + Qf(t),
(3.2.12) vl = (e,
and

(3.2.13) Vi(t) = Riz(t)

for t€ [T-1,T], where z(t), v>"1(t), and vi(t) are
(i+1)2n, ir, and (i+l)r dimensional vectors respectively.

Also

"AT 0 O + 0 0‘] —DT ]
° PEACT
0 =A* 0. . .0 0 ODo
T _ T
P = 0 0 -A;..0 O qQ = D,

. .. T
’ T AT-1T
R T ;
0 0 0 =A: -D; ‘
| 0 i ! i
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'cg o 0..0 0 0 0]
o ¢ ¢f 0o 0o o0 o0
o) 1
O 0 0..0 0 0 O
-1 | L. L
R - L] L ] [} [ ] ] L ] [ ’
. L] 1 'T .T [} ]
0 0 0. .ci 01,0 O
(3.2.14)
¢ o o0o.,..0 0]
o]
m m
o ¢t ¢F, . ,0 o
. o) 1
R”*= 1o o o...0 0|,
0 0 0...cl,ct
. 1=-L 1

where P,Q, R and RT are (i+1)2nX(i+1)2n, (i+1)2nxm,
rX(**:) n and (i+1)rx(i+l)2n matrices respectively. Finally

let us define the subspaces U and V, both contained in

. 2
1
R(l+*> n’ as

Y :
(3.2.25) U= {zer™) R = 10,07, 20T

Y
2,1 €R” ToL=1,...,i1}

and
. 2
(3.2.16) v ={zerE)™|; < [o, z1,o......,2?,o]T,
z, €ERIN £=0 i+1} .
bl_l A ’ ,ona'.;_

We may summarize the results of this section in the

following two theorems: The first being for T equal to an
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integer, and the second for non integer values of T,

THECREM 3.2.1., A necessary and sufficient condition for
the the control system (3.1.1),(3.1.2),(3.1.3) to be com=
pletely output function space controllable at time T = i+1,
i=20,1,.... is that the only function f(t), T-1 <t <7
for which vi(t) = 0, T-1 <t < T and the two point boundary
value problem

z(t) = Pz(t) + Qf(t)

for t€[T-1,T7], 2(T-1)€U and z(T)€ V, is satisfied, is the

zero function, that is f(t) = 0, for a.e. t€[T=1,T].

THEOREM 3.2.2. A necessary and sufficient condition for

the control system (3,1.1),(3.1.2),(3.1.3) to be completely
output function space conirollable at time TE€ (i,i+l), i =1,
2,.4.0. 1s that the only function f(t), T-1 <t < T for

which vi_l(t) =0, t€[T-1,1), vi(t) = 0, t€ [i,T] and the

two point houndary value problenm
z(t) = Pz(t) + Qf (%)

for t€[T-1,T], z(T-1)€E U and z(T) €V, is satisfied, is the
zero function, that is £(t) = 0 for a.,e. t€ [T-1,T].

By a change of variable we can shift the solution of
the two point boundary value problem to the interval {0,1],

rather than on the interval [T-1,T].

3.3 The Silverman Structure Algorithm

In the preceding two sections we have presented
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function space criteria for complete output function space
controllability. We were able to show that for some special
cases of the control system (3.1.1),(3.1.2),(3,1.3) these
funestion space conditions reduce to algebraic conditions,

In the last section we have shown that the conditions for
compliete outout function svace controllability reduced to
investigating certain properties of a two point boundary
value problem,

We will show in the following section that the struct-
ure algorithm of Silverman and Payne [33] is intimately
related to the present work. Meanwhile in this section we
will present their structure algorithm, as well as those of
their results which will be used in the succeeding section
to developr an algebraic criterion for complete output funct-
ion space controllability. Since these results will soon
be apnearing in the literature we will present them without
proof,

Let us consider the system of differential equations

defined in Theorem 3.2,1

(3.2.1) z(t) = Pz(t) + af(t),

-
3
o

(3,2.2) v (t) = RYz (%),

where we recall that z(t) is an (i+1)2n dimensional
vector: f(t) is an m dimensional vector; and v (%) is an

(i+1)r dimensional vector. We can also develop the algo-

}.J.

. . . . - "11. i"'l .
rithn in a similar fashion for v (t) = R™ "z(t)., Since

in the next section we will be considering both cases we
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will use i-1 or i1 either as a superscript or a subscript to
differentiate exvlicitly between the two cases,

In this section we will let p = (i+1)2n and
u = (i+l)r to simplify the notation. We will also denote
the vector vi(t) by vi(t}, the matrix ri by Ri and the
system (3.3.1),(3.3.2) by Eé to conform with the notation
of Silverman and Payne [32). Ve see that P,Q and Pé are
pxp, pxm, and uxp matrices, respectively.

Following Silverman and Payne [33] we define a
sequence of systems Ei, k=1,2,.... inductively, where Zi

k

denotes the k'th system., Let us assume Ei has the form

(3.3.3) z(t) = Pz(t) + Qf(t)
(3.3.4) v}i(t) = R}i{z(t) + S}if(t)

where S; has its last u~q§ rows equal to zero and we parti-

tion vi, Ri, and S! as follows:

k
-1 =i a1

. Vi . [ Ry | . Sy

Vk(t) = ’ Rk = ’ Sk = ’
¥l “R’iJ 0
k L "k
ol i i ,o=1 =1 i .
and Sk has rank Qyer and Q. Tows; Vy and Rk have qy TOWS; and

Ni "’i i
Vi and Rk have u - Qi rows.

Let us introduce the matrix differential operator

(3.3.5) e

e
e
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and observe that

s Ry 5 |
(3.3.6) Mv (t) = z(t) + £(t).
3 i
ReP R0

We note that (3.3.6) is well defined since 5; = ﬁiz(t), and

hence is differentiable. In (3.3.6) let

R s
yioo | K E
K+l R P R I

Rep e

and let qk+1 equal the rank of J If S

L+ +1 is the matrix

formed from the first qk+1 linearly independant rows of

Ji+1 then there exists a non singular uxu matrix Gk+1 such
that

-3

5L

. ] k+1
(3.3.7) Gloqdi, =
¢ Al k+1%k+1 ’
0

The system 2k+1 is then defined by

(3.2.8) z(t) = Pz(t) + Qf (%),

(3'?'9} k+1z(t) = Rk+1z(t) + Sk""la(‘t/,

whefo vo . (1) = o mivi(+> RE . = ﬁ* and s =
: 1 k+1%k kv Ty 1< k+1 k+1

i i i - owid
G419y 41+ [Hence vk(t) = Nv (t) where
iz i i A
(3.3.10) Ny —[ }Gk_ij_j_l v k= 1,2, (M, =)
j=0  °
is 2 seaquence of non-gingular matrix differential overators.
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. i ~ -1 _ =11 ~wl o1 i
We define Nk and N by v, = Nov©oand ¥ = Novo, '
It is obvious that, in general, the matrices Gé are

not unique; but we will present a useful method of con=-

. » ‘)‘ .
structing them, We define Giil as the unique elementary
. I, IS e a fhr of e AL
matrix such thaz Gk+1“k+i hes for its Tirst Uy tq rows,

. i . . . i . o
_ narly Al + ] +]
the first Qg +1 linearly independant rows of Jk+1 with their
relative order unchanged, and its last u-q}t_,_1 rows are the

remaining rows of J;+1, again with their order unchanged,

Therefore
3 T
I i 0
: U
1# _ =1
(3.3.11) &=l 0 Tl
~i
bO Yk+1J
i i i s i
where Yk+1 has q, ,,-q; rows, and Y, ., has u-q,,, rows. We
note that
g Yi"rl-%
5 - |
i - z
(3.3.12) Y E .
L k+1J

is an elementary matrix. Let us define

sl
=L k
(3'3'13) Sk+1 - ~i ~i
41 RiQ
and
i _ i 21 =1
(3.3.1%) Bt ™ T fenQ Sea
where
it _ &iT ,a1 &iT -1
(3.3.15) St = S Gy Sy )77
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Then we can define Gf as

c+1
I, 0
i qk +1 1%
(5.2.26) G = | i Gean
-K T .
k+1 1
I Wy |

Tt will be observed that G§+1

(3.3.16) achieves the desired transformation of the matrix

as defined by (3.3.11) to

i
Jk+1’ and that

=1
. Rk
- -
(30 30377) Rk.;_l - ?i NiP ’
k+17%
and
1 NI _omiowio dw od
(3.3.18) Rig = LRl - KRy,

Let o, < P be the first integer such that q, = q;,
: i

and for the matrix
(3.3.19) L, = [R LR o B

let 8, < p be the first integer such that rank LB =

1

T
—g.4+1
1

We now present some results given in Reference [33].

rank

LEMFA 3.3.1. There exists an integer Bi, Bi < 6i < p and
ma‘tl"ices T}J;, k = 0,1, o000y 65_-1 SUCh tha-t
8 61
o R i igi
Ry = }E:Tk(FTYj>Rk
k=0 thd

The proof of this lemma 1s fairly straightforward, and is

presented in [33].
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Our next step is to present two fundamental results
which give information about the functions which lie in the
range of the output of (3.3.1),(3.3.2). To accomplish this

task we introduce the following differential operaters

1 dai 6i-1 dk ai .
(3.3.20) Mt = (‘“TT _:z: n ) i
1 K E ! J
at k=0 dt j=0
and
51-1 j ai e
O T s S
J"’O ,C:J'H Jd‘t J j=0 =0 2=kl dte

THEOREM 3.3.1. (Range Theorem) A u dimensional vector
function w(t) defined for t€ [T-1,T] is in the range of

the system (3.3.1),(3.3.2) with initial condition z(T) = z,

if and only if

1) wer ={v|n, vers([r-1,7)}
83 i

.. ~g - ~]

ii) Njw(t)‘ . R]

4= z for j = O,....,Bi-l, andc

0]

111)  (MF-MPFN_ w(t) = 0 for a.e. t€ [T-1,T].
l

We can further characterize the function £(t),T-1 < %
< T which will cause the output v'(t),T=1 <t £ T of {3.3.1)
(3.3.2) to equal a function w(t), T-1 <t < T, in the range

of (3.3.1),(3.3.2) by an inverse system.

THEOREM 3.3.2. Suppose the function w(t), T-1 <t < 7T is
in the range of the system (3.3.1),(3.3.2), then the output
vi(t) = w(t) for t€ [T-1,T7] if and only if the function f(t)

is equal to the output of
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e
—~~
t
S
1]

=1 = =t = i
(P-QSaiRai)y(t) + QSaiNaiw(t) + Qqu(t)

£() = - §§.Ra.y(t) + §;’Na_w(t) + Kéu(t),
1 1 1 1

for z.,e., t€[T-1,T], where y(T) = zos u(t)y, T-1 <t <7 is

an arbitrary function in LZ(T-l,T), and Ké is a matrix

whose columns form a basis for the null space of §a .
i

From Theorems 3,3.1 and 3.3.2 we immediately deduce the

following result,

THECRE! 3.3.3. There exists a function f in LZ(T-l,T) such
that in (3.3.1),(3.3.2) v(t)

in

0, t€ [T-1,T] if and only if
Z is an element of the null space of LB’ and if such a

function f exists it is equal to the output of

v(t) = (P - Q8 R,y (%) + QKéu(t), v(T) = Z

£(t) = 87 R, y(%) + KZu(t)
1l 1

for a.e. t€[T-1,T], where u is any element of LZ([T-l,T]).

Finally we present the following lemma, Although
this result is implied in the work of Silverman and Payne,
we present it explicitly as i1t will be used in the next

section,

LEMMA 3,3.2. If in the inverse system defined in Theorem
3,3,2 the initial condition y(T) = z,» the initial con-

dition for the system (3.3.1),(3.3.2), then the solution
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y(t), T-1

IA

t < T of the inverse system equals the solution

z(t), T=1 <t < T for every function w(t), T-1 <t <

+3

.
in

the range of (3.3.1),(3.3.2), provided f(t), T-1 <t <

=

in
(3.3.1),(3.3.2) is set equal to the output of the inverse

systen.

Proof. From Theorem 3.3.2 the inverse system of (3.3.1)

(3.3.2) is

(3.3.22)  §(t) = (P-Q8] R, )y(t) + Q8] N w(t) +
1

1 1 1

+QKgu(t) ,  y(t) =z

and

i

(3.3.23)  £(t) = -8 B, y(8) + 8 N, w(t) + Kju(v) .
1 1

i
Let us define s(t) = y(t) - z(t)., Therefore from (3.3.22)

and (3.3.1)

i

(3.3.24)  §(t) = y(t) - 2(%)

=t = =t =
(P-QS_ R Dy(t) + QS5 N w(t) +
ai ai ai ai

+ QKéu(t) - Pz(t) + Qf(t).

Substituting (3.3.23) into (3.3.24) we obtain

=1 = -t — .
(P-QS_ R_Jy(t) +QS_ N w(t) +
ai ai ai ai

i}

(3.3.25)  §(%)

+Qkzu(t) - [ P2(t) - Q5 B, y(t) +
1 1

st = i
+ 8, Fo w(e) + QKqu (t)]

1}

Ps(t).
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il

Since s(T) = y(T) - z(T) = 0, we conclude s(t)

n

0,
T-1 <+t <T. Hence y(t)

]

z(t) for t€[T-1,T7].

3.4 An Algebraic Criterion For Complete Output Function
Svnace Controllability

In this section we present an algebraic criterion for
complete output function space controllability. The
approach to be used is based on the results of Silverman
and Payne presented in the previous section, and the two
point boundary value problem given in Theorem 3.2,1. For
convenience we treat the problem for two separate cases:
namely for T = i+1, i = 0,1,...., and for TE€ (i,i+1), i =1,

2’.'.. *

THEOREY 3.4,1, A necessary and sufficient condition for
the control system (3.1.1),(3.1.2),(3.1.3) to be completely
outrut function space controllable at time T = i+l, 1 = 0,

1,.... 1s that qQy, =m and
i

vne =iy = {o}

where W = null [LB.]F\V. U and V are the linear subspaces
1

.

defined in Section 23 LB is the matrix defined in Section

- i
33 and £, =P - Qs; Ra (see Sections 2 and 3 for defin-
— - i :Jz
itions of P,Q,ST and R_ ).
a. a.

Proof, We first prove the necessity of the above result.

Let ue suppose Ay, < M We will now show there exists a
i .

non-zero function f£(t), T-1 < t < T such that v'(t) = 0,

-1 <t £ T, and the two point boundary value problem in
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Theorem 3.2.1 is satisfied, thus contradicting the fact that
the system (3.1.1),(3.1.2),(3.1.3) is completely output
function space controllable,

Let us take z(T) = 0, From Theorem 3.,3.3, since
z(T) € null [LBi], we see that the class of functions F{t),

T-1 <t < T which result in vi(t) =0, T-1 <t < T, is

given by all the solutions of

(3.5.1) J(t) = (P-a§y R, Jy(t) + akju(t), ¥(T) = 2(T) = 0

i 1

T - .
(3.4,2) £(t) =S, R, y(t) + Kju(t),
., Q
i
where u(t), T-1 <t < T is any square integrable function.
To simplify the notation let us define Fi = 5; ﬁa y I, = QKé
ici -

and ¥, = Ké, and then (3.4.1),(3.4.2) become

1]

(3.4.3) y(t) = =,y(¢) +Mult), y(T) =0

(3.4.2) £(t) = Dy (s) +wyu(t),

We now apply the Silverman algorithm to (3.4.3),(3.4.4) to
determine the class of functions u(t), T-1 <t < T for
which f(t) = 0, T-1 <t < T, We recall that u(t) is an

m-=q lmensional vector, ¥, = as ra m=q y 2N
(m-g, ) dimensional vect ; = kb nk (m-q, ), and
i i

y(T) = 0€ null[Lé.] where LB denotes the L, matrix for

i i i
(3.4.3),(3.4,4), EHence from Theorem 3,3.2 the function u(t),

w

T-1 <t < T must equal the output of



80

(3.4.6) w(t) =¥, Iy (),

. .

it
for a.e, t€ [T-1,T], where the prime (') denotes the in-
verse system with respect to the system (3.4.3),(3.4.4),

Therefore we conclude that the only function u(t),

-3

-1 < . < T for which £(t) = 0, T-1 <t < T in (3.4.3),
(3.4.4) is when u(t) = 0, 7-1 <t < T,

Now since q, <m, we know Ké # 0, and hence by the
use of a non—singuiar transformation T, we can decompose

(3.4,3) into a completely controllable vart and a com-

pletely uncontrollable part, namely

L) S =z,.y = 7

(3.2.3) ¥, (t) = 55y, (t)

where 7(t) = [77(£),73 ()] = Ty(+), and u(t) = [uf(t),ul(t)]7

Hence there exists a function u(t), T-1 <t < T not ident-
ically zero such that y(T-1) = y(T) = 0, If (3.4.3) is
completely uncontrollable then the choice of the non=-zero
function u(t), T-1 <t < T is arbitrary. Since u(t),

T-1 <t £ T is not identically zero we see from above that
T(t)y T=1 £t < T 4is not identically zero, Hence we have
constructed a non-zero function f(t), T-1 < t < T such that
L(

v (t) =0, T-1 <t < 7T, z(T) = 0 and from Lemma 3.3.,2

z(T-1) = 0, Hence we obtain a contradiction of Theorem
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Let us now suppose q, =m, but une 1w # {o}.
i
Hence there exists a non-zero vector x€ rP such that x€ null

[LB.], X€V and e~1x€ U. Since x€Znull[LB.]; from Theorem
i i

3.3.3, there exists a function f(t), T-1 <t > T so that in
Theorem 3.2.,1, the function v (t) = 0, T=1 <t <7, Accord-

ing to Theorem 3.3.3 this function f(t) is equal to the

output of

(3.4.9) y) = Zy(8)  y(T) = 2(T) = xeV,
(3.4.10) £(t) =r,y(t)

for a.e. t€[T-1,T]., From Lemma 3.3.2, z(t) = y(t) for

t€ [T-1,T7] and hence z(T-1) = y(P=-1) = e"sixer. We now
show that the function f(t), T-1 <t < T given by (3.4.9),
(3.4.10) is not identically equal to zero. Suppose f(t) = 0,
T-1 <t < T, and recall that z(T) = x # 0. Then we see

from (3.2.16) that for some j =1,....,1 the component

%j(T) of z(T) does not equal zero, Hence from (3.2.9)

A

d a - T A
(3.4.11) 3 2.(t) = - A3q25(t) 24 (1) # 0,

and therefore Qj(T-l) # 0. Hence z(T-l){U and so the
boundary conditions of the two point boundary value problem
are not satisfied which is a contradiction. Thus we have
again constructed a non-zero function f(t), T-1 < % 5 T

such that vi =0, T-1 <t < T and the boundary conditions

of the two point boundary value problem are satisfied, which

contradicts Theorem 3.2.1,
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Let us now turn to the proof of sufficiency. Since
q,. = m, and in order that v (t) = 0, T-1 <t > T as in
i
Theorem 3.2,1, we find from Theorem 3.3.3 that we must have

z (T) € null[LB‘] and £(t) equal to the output of
i

(3.4.12) y(t) = (P-q 0’[ )y (%) y(1) = z2(m,

l

. -t -
(3.8.13) 28) = §¢ Ry v(®)
%3
for 2.e. t€[T-1,T7], Now suppose z(T) = 2., where z €V is
a non-zero vector. Then from the condition Une =iy ={0}

Jve see eit -El -
we see either ZO¢HUI1[LBi] or z ¢ eI, If zo¢ null[LBi]
then v7(t), T=1 < t < T is not identically zero, which is a

contradiction. Also if ZO¢ e"¥iy then then the two point
boundzary value problem is not satisfied, which is again a
contradiction, Hence z(T) = 0 is the only admissible
boundary condition., Therefore from (3.4.12),(3.4.13) we

find that £(t) = 0, T-1 <t < T, and so the system (3.1.1),
(3.1.2),(3.1.3) is completely output function space controll-
able,

We now state without proof the result for T € (i,i+1),

i:j-gz’aooc L]

THECREM 3.4.2, A necessary and sufficient condition for
the control system (3.1.1),(3.1.2),(3.1.3) to be completely
outmut funetion space controllable at time T € (i,i+l), 1 =1,

2y4... 18 that Qy = m and



83

one™ S T nna (g Tn et [ 1n)}=1o}.
: i-1

U and V are the linear subspaces defined in Section 2; LB- .
l..

and L8 are the matrices defined in Section 3, for the out-

.

i
puts vl"l(t) ana v (t), T-1 <t < T, respectively; and

— _ =1 = . - = . .
2.4 < P-QS, Ra. and ¥, = P'Qsa.Ra (see Sections 2 and
i=-1 Yi-1 %
’ R y, and R_ ;.
i-1 %1 %ie %

3 for definitions of P, Q, S

Proof. The procf follows along similar lines to that of
Theorem 3.4.1 excepting for some obvious modifications and

so will not be repeated here,

3,5 Examples

In this section we present two examples to illustrate
the application of the results presented in this chapter,
Both these examples arise from population growth models
used in demography where a control variable has been

included.,

Example 3.5.1, Let us consider the following single sex

population model
(3.5.1)  x(t) = (B-8)x(t) - Be  x(t-1) + u(t),

where x(t) i1s the number of births at time t, B is the birth-
rate and ¢ is the death-rate., A question of interest is
whether (3.5.1) is completely function space controllable?
From Theorem 3,1.3 it is immediately obvious that (3.5.1)

is completely function space controllable for all T > 1,
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since the coefficient multiplying the control is unity.

Examole 3.5.2. In this example we consider the following

two sex female dominant population model

EXCII EEAI Pt
B, e”1 0‘ x, (£=1) ?ui(t)

i +
82e~61 OJl.Xl(t'l) uz(t)

where xl(t), xz(t) are the number of female births and male
birthe at time t respectivelys 61 and 82 are the female and
male »irth rates respectively; and 5, and 62 are the female
and male death rates respectively. For this equation we

wish %o investigate whether it is completely function space
controllable at time T = 2, It is clear that we have to use
the zeneral results presented in Theorem 3.4.1, Since T = 2
we see that 1 =1 in Theorem 3.4.1, Hence we may write the

two point boundary value problem in Theorem 3.2.1, as

i

(3.5.2) z(t) = Pa(t) + Qf (%),

(3.5.2) Vi) = RYz (%)

i

where
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[Ble 0] B, =54 o}
B = ,andA 1-
ts =01 5
2® , ‘1J
Applying the Silverman algorithm we find Ay = 2 = M.
1

However in order to test the second condition of Theoren
3.4.1 we need to find le. The procedure becomes quize
involved, and it proves very difficult to derive any
general conclusions about (3.5.2) by this procedure.
However by the following indirect approach we can come
to gone interesting conclusions without resort to Theorem
3.4.1. The first equation in (3.5.2) is not coupled <o the
second and hence is completely function space controllable
at any time T » 1, by Theorem 3.1.3. The second equation

is coupled to the first equation by the term
-61
(3.5.5) 8%, () = Bye™?Lx, (t-1).
We can decompose the control uz(t) into two parts:
uy (B) = uj(t) + uj(t)

where the first term ué(t) is used to cancel the term

(3.5.5), and the second term ug(t) is used to control what
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is now an ordinary differential equation. Hence by Theorem
3,1.2 the second equation in (3.5.2) is also completely func-
tion space controllable for any T > 1, and so (3.5.2) is
complelely function space controllable at any time T > 1.
Hence we see that by the use of this indirect apprcach
we can obtain some definite conclusions about the function
space controllability of (3.5.2). If however we were to
conssrain uz(t) to be identically zero there seems to be no

other recourse but to use Theocrem 3.4.1 directly.



CHAPTER 4

SUMMARY AND CONCLUSIONS

As indicated in the Introduction we have to distingu-

ish between the notions of controllability in euclidean

space and controllability in function space for differential-
difference equations. In this thesis we have given a full
discussion of euclidean space controllability of constant
coefficient differential-difference equations, and a some-
what less than complete discussion of function space controll-
ability of these equations, 1In this final chapter we will

iscuss and summarize the results obtained and present some

problems for further research.

L,1, Buclidean Space Controllability

The new form for the fundamental solution of a
differential-~difference equation has been used to obtain an
algebraic necessary and sufficient condition for the
euclidean space controllability of thesé equations. By the
use of the fundamental solution we were able to obtain alge-
braic necessary and sufficient conditions for pointwise
completeness, The attractive feature of the new form for
the fundamental solution is that it is expressed in terms
of an exponential matrix; which enables us to obtain results
which have a similar form to those for ordinary differential
equations,

The main new results are the algebraic condition for

87
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complete controllability in euclidean space and the alge-
braic condition for pointwise completeness. The condition
obtained for complete controllability in euclidean space is
closely related to the result obtained by Johnson [24], In
fact the author has been able to show that when the
differential-difference equation is second order then
Johnson's results and our results are equivalent, However
for higher order differential-difference equations the
author has been unable, up to the vresent time, to find a
simpie proof for the equivalence of Johnson's and our
results. The main advantage of using our form for the fund-
amental solution of constant coefficient differential-
difference equations is the simplicity with which we may
present the results and the ease of proof. It was necessary
for Johnson to introduce a large amount of new notation from
automata theory in order to be able to write the requisite
products of non-commutating matrices in a concilese fashicn,
OQur condition for controllability in euclidean space was
also shown to reduce o +the Kalman condition [2] for
ordinary differential equations and the result of Kirillova
and Curakova [21] for the case where A = 0 in (1.1,1).

For pointwise completeness there seems to be no other
alternative but to use the new form for the fundamental
solution in order %o obtain an algebraic criterion. We were
also able to show that if the matrices A and B in (1.1,1)
commute, i.e. AB = BA, then the differential-difference

equation is pointwise complete; a result which has also
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recently been obtained by Brooks and Schmitt L39]., of
course this includes the well known cases of ordinary
differential equations, and when A = 0 in (1.1.1). Finally
we were able to characterize the set of all points which
could be 'reached' from the class of initial functions, by
using the algebraic criterion for pointwise completene:zs.
This enabled us tc obtain for the first time an algebraic
necessary and sufficient condition for null controlliability
in euclidean space.

There are a number of directions in which these
results may be extended. It seems that for multiple delays
the extension is relatively straight forward when the
delays are rationally related. When the delays are irrat-
ionally related the results should still be able to be
extended, although the notation would become rather cumber=-
some, A somewhat more interesting extension is to the case
of time-varying differential-difference equations., For this
case it seems almost essential to use the new form for the
fundamental solution., It seems probable that a necessary
and sufficient condition for euclidean space controllability
can be obtained when the coefficients in (1.1.1) are ana-
lytic. For pointwise completeness it also seems possible
to extend our results for the case of multiple delays, and
for time-varying differential-difference equations, It
is readily apparent that the conditions for controllability

that we have presented have much algebraic structure.

Hence it seems that a fruitful line of enquiry may be the
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investigation of the algebraic structure of these conditions
along the lines of the recent work of Kalman [5]. Finally
it should be possible to extend these results to the class
of problems where we have discrete delays in the control of

the differential-~difference equations.,

4,2, Function Space Controllability

Algebraic necessary and sufficient conditions for the
compnlete output function space controllability of
differential-difference equations have been obtained by
transforming the problem into a problem concerning the
uniqueness of the solution of a two point boundary value
problem. These results are related to the work of Kirillova
and Curakova [21], and in a sense generalize their results.
For instance we are able to obtain, for the case A = 0 in
(1,2.1), a result which is formally the same as their con-
dition, However their condition is necessary and sufficient
for function space null ccntrollability, while our result
is for complete function space controllability.

Whereas for euclidean space controllability the notion
is fairly clear-cut and natural, in the case of complete
function space contrcllability there are a number of suit-
able definitions. A cursory consideration should convince
the reader that the class of functions in which the system
(1.1,1) is to be controlled cannot be arbitrary if we wish
to be able to control to every function in the class, Popov
[28] resolved this problem by restricting the class of

functions to be sufficiently differentiable. Our approach
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has been somewhat different and has been principally moti-
vated by the desire to retain the geometric ideas which
have proved so useful in euclidean space, albeit in a fun-
ction space setting., With this desire in mind, we have
been able to arrive at a new function space condition for
complete output function space controllability which is
formally analogous to the function space condition for
euclidean space controllability,

From this function space condition for complete out=-
put function space controllability we are able to obtain
simple algebraic condtions for the case where A = 0 in
(3.1.1),(3.1.2),(3.1.3), and for the case where (3.1.1),
(3.1,2),(3.1.3) has a scalar input and a scalar output;

For the first case the condition is formally the same as
that of Kirillova and Curakova [21], as was mentioned adbove.
For the second case the result has not appeared in the 1it-
erature, to the author's knowledge, and is believed to be
entirely new, It will be noted however that it is formally
similar to the invertability condition given by Brockett
[38].

This observation prompted us to investigate whether
in fact an algebraic condition could also be obtained for the
more general case, where (3.1.1),(3.1.2),(3.1.3) is not a
single input-single output system. It has in fact been
shown in Chapter 3 that such an algebraic condition can be
obtained. The approach taken was to transform the function
space condition for complete output function space controll-

ability into an equivalent two point boundary value problem,
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with certain subsidiary conditions. Utilizing some recent
results of Silverman and Payne [33.] on the input-output
structure of linear systems we are able to obtain the main
results of Chapter 3, which are new algebraic necessary and
sufficient conditions for complete output function space
contrellability.

There are still a number of outstanding problems in
function space controllability which have yet to be solved.
Probably the most important problem is that of function
space null controllability., It is felt by the author that
a similar approach to that of Chapter 3 may yield an answer
to this problem. Also it would be of interest to extend
these results to the case of multiple delays, and to the
case of time-varying differential-difference equations,
Finally there is the computational problem! An examination
of the algorithm given in Chapter 3, indicates that even for
a quite modest problem, the matrices that have to be
handled soon become enormous., However these matrices are
rather sparse, and it may prove possible to take advantage

of this property to simplify computations,



APPENDIX
PROOF OF LEMMA 3,1.1,

In this appendix we present a proof of Lemma 3,1.1.
As was indicated in Chapter 3 Fattorini [35] stated the
lemma without proof.

For convenience let us repeat:

DEFINITION 3.1.2, If X is a Banach space, and M is a subset
of X, then the set

wt ={x' €X' |(x',x) = 0, for every x€ M}

is called the orthogonal complement of M. X' denotes the

dual space of the Banach space X.

LEMMA 3.1,1, Suppose the set M is a linear subspace of the
Banach space X, Then M is dense in X, with the norm topology,
if and only if the orthogonal complement is empty excepting

for the zero vector,

Proof., We will prove the necessity of the above result by
contradiction. Suppose M is dense in X, then for every

€ >0, and for every X € X, there exists a u€&M such that
von-u“ < € . Further let us suppose Ml'contains a non-

zero vector u'€ X'; that is there exists a non-zero vector
u'e X' such that (u',u) = 0 for every u€ M., Therefore we

find

93
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(1)t = et x| < Jlwff]fxg=ul| <efut]|

for every xo€ X, Now since £ is an arbitrary positive
number, we see that !(u',xo)l = 0 for every X e Therefore
we conclude u' = 0, which contradicts the assumption M'L
contzins a non-zero vector,

We also prove the sufficiency of the above result by
contradiction, Suppose M is not dense in X, then there exists
an 60 > 0, and an xoe X-M such that for every ucM,

”xo-uH 2 € We now construct a non-zero functional u' such
that uv' is an element of M', hence showing IVI‘L contains a
non~-zero vector,

Since for every u €M, on-u” > £, We see that

(A.2) infllx -ul| > _ > o,
sntlr,mul 2,
Let us define inf”xo-u” = P, We now construct a new linear
ueM

subspz.ce, MO, of X by defining
(A.3) M, o= {yéEX}y = Ax + X, X€M, and X is a scalar} .

On the snace MO we define the following bounded linear

functional uéz

(ué,x) = \d, for every x €l .

It is clear that ué is a linear functional, We now show

that ué is bounded. For every x€iMO such that x = Ax + x

we have

A ' = A lp= inf -
(A (weox)| = [r]p MU;MHXO uf
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< M= = z] =[]«

By the Hahn Banach theorem there exists a continuous linear

functional u'€ X' defined on X such that u' is an extension

of ul. That is for every x€MN_, (u',x) = (ué,x), where

u'€ X', Since (ué,x) = 0 for every x€ M, and (ué,xo) =p,
1

we see that u'€ X' is a non-zero functional and u'€ M,

. 1 .
hence showing that M contains a non-zero vector,
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