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Abstract

The generalized phase-space distributions, including the Wigner distribu-
tion, are presented in terms of expected values of generating operators. A
generalization of the Weyl correspondence is obtained to provide expressions
for generalized Wigner equivalents. Finally, rather simple relationships are
obtained connecting the generalized phase-space distributions to the Wigner
distribution; and similar relationships are obtained for the generalized Wigner
equivalents. In particular, it appears that among the class considered, there is
no reason to use any distribution other than the Wigner for performing any

calculations.



I. INTRODUCTION

In 1932 Wignerl introduced a method of performing quantum-mechanical en-
semble averages in terms of phase-space integrations over c-number variables.
Since that time a number of extensions, modifications, discussions,
derivations, applications, etc., have appeared in the literature. We shall
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refer the reader to a review in which further references can be found.

Actually, there exist an infinite number of quasi-distribution functions
which can be used for the same purpose as the Wigner distribution function.
In a recent paper5 Cohen described one method for generating such distribu-
tions, and showed how the Wigner function, the so-called "symmetric" function
and the Born-Jordan function could be generated. He also obtained equations of

motion (quantum Liouville equations) for these distribution functions.

In the present paper we present a particularly simple and elegant manner
for generating an infinite class of distribution functions which include, as
special cases, the Wigner, symmetric, and Born-Jordan functions. Also we show
that all of these various distributions can be obtained from the Wigner dis-
tribution by a rather trivial transformation.

For the purposes of our later discussion, it is convenient for us to point
out several general properties that all of these distributions have in common.

We represent the 6N dimensional phase space by the 3N dimensional momentum
and position vectorsr and p. A generalized phase-space distribution is a func-
tion of the variables r and p and time, f(r,p,t). These functions satisfy the

following conditions.



Classical Limit
The function
fc(ryp;t) = lim f(r,p,t) (l)
£+0

must be the "correct" classical phase-space distribution. That is £.(r,p,t)

must satisfy the Liouville equation.

Marginal Distributions

The integral of f over one of the variables r or p must give the correct

distribution in the other variable.

f dr f(r,p,t) < 6(P'p) > (2)

[ dp £(r,p,t) < 8(R-r) > (3)

where R and P are the position and momentum operators.

Generalized Wigner Equivalents
For any given function A(R,P) of the position and momentum operators, we

must be able to determine a generalized Wigner equivalent a(r,p) such that
< F(R,P) > = [ drdp f(r,p,t)a(r,p) (L)

We might point out here that the distributions introduced by Cohen3 do not in
general provide for a generalized Wigner equivalent. In particular for Cohen's
distribution (6.2), an operator of the form F(©:R+7.P) does not have a gen-

eralized Wigner equivalent.



The most convenient way of finding generalized Wigner equivalents is by
first finding the generalized Weyl correspondence. That is we find the operator

A_(e,7,R,P) for which the Wigner equivalent is

of

afe,me,p) = o (&TTE) (5)

Then if the operators Ag are complete, we can expand any operator as
MR£)==fd%¢d@ﬁMé%Tmﬁ). (6)

(We shall consider the completeness of the Ag's when we specify the details of
the distribution.) Clearly we can determine the Wigner equivalent of A(R,P)

by knowing the Wigner equivalent of the right-hand side of (6), that is using

(5).
a(r,p) = J aedr a(@,T)ei(@.r+T}p) (7)

It is easily shown that the expected values of the following generating

operator
1 1 1 —i(@"I"FT"p) 1 1
D(R,P,r,p) = — % [ dr'de’ e Ag(@ ,7',R,P) (8)
(2n)
will give a distribution for which (5) holds.
fg(l‘,p,t) = <D(R,P,I‘,p) > (9)

We will show that this distribution also satisfies the other conditions,

we listed earlier. Our approach here is related to that followed by Cohen.5



II. THE DISTRIBUTICNS
We can specify a distribution by writing the operators Ag(O,T,R,P). We

take generally

i(@<R+T1-P
a6, RP) = gfiorn)el ST (10)
where g(x) has a series expansion about zero of the form
0 2n
X (2n)
= 1+ R 11
() I oor £ (12)

Clearly we must take g to be an even function of #t-© to insure that D is her-

mitian.

i(©+R+T-P)

The completeness of the operators e is shown in Ref. 2.

The Wigner distribution is obtained by taking

g(x) = 1
Then
l - l. + l. s "R+ "P
fu(r,p,t) = E—-)ﬁ [ ar'de’ e i(et rer'-p) < el(g T'P) > (12)
2n

This form was obtained by MoyaLIL.LL If we recall that

1
= [B,A]
HPeB = ATB 62 , (13)
for
[A,[B,A]] = [B,[B,A]] = O,



and

[0+R,T-P] = iMe-'r , (1k)
we can write (12) as
N -
1 -i(Q'er+r'. 2 0'-R 2
f.(r,p,t) = — Jar'de'e i(etertrtep) e e >
(2n)
i'r'-l—D i'r'--P
1 -7 2 2
= Z;_;3N [ ar' e TP 8(R-r)e > (15)
e
or alternatively we can write
R
ie'.=— ie'.=
1 -i(Q.r+1'. 2 it'.P 2
£ lr,p,t) = - 5 [ dr'de' e i(6-r+r".p) <e e e >
(2n)"
i@"B i@"B
, =i0'.r 2 2
( )5N [ do'e <e 5(P-p)e > . (16)
2n

Using (15) and (16), it is a straightforward matter to derive Egs. (5a) and

(5b) in Ref. 2.

Tt is clear that the generating operator for the generalized distribution

is related to the generating operator for the Wigner distribution by commutators

of R and P, since
g(hr-0) = g(-i[0-R,T-P]) . (17)

As an example let us consider the symmetric distribution introduced by

Margenau and Hill.5 As discussed by Cohen5 the appropriate g(x) for this

case is

g(x) = cos(x/2) .



In this case the distribution is

1 (0 it tn) (0. ReT! s
f(r,p,t) = —=—7 [ de'dr' cos (#1'-0'/2) e (6" r+r'.p) 1(0".R+7"-P)
N
(2n)
(18)
When we note that
1 ; [QY'R,T"P] _ 1 [QY.R T'-P]}
costrr 0172 = 2(E ke -

and use (13), we can write (18) a

l 1 3 1. . 1. \
1 L i(g e <: 1@ R iT! . 1T Pel@ R2;>
fs(r,p,t) = z——szﬁ. [ do'dr! e
27

5 < 8(R-7)8(P-p) + 3(P-p)d(R-r) > (20)

The remaining distributions commonly found in the literature can also be

generated by an appropriate choice of g(x).

ITT. CONNECTIONS AMONG THE DISTRIBUTIONS

First let us show that the three properties of generalized phase-space
distributions listed in Section I hold for the distributions generated by (8),
(9), and (10).

Of course our choice was made to provide a simple means of determining
the generalized Wigner equivalents. Therefore we need not discuss this
further,

i(©-R+T.P)
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To find the classical limit we note that <e > has a series

expansion in# and



. R + 'P 3 @. |+ . 1
lin <eXOBTE L agp fc(r',p',t)el( r'+rep') (21)
>0
Also we note from (11) that
lim g(#o:T) = 1 (22)
Then
1 (0" (g op) 4T (D' =
lin f(r,p,t) = = [ ar'adar'dp’ fo(r',p',t) (L8 (x-r)sr'+(p'-p))
#1=0 (21)
= fC(I‘,p,t) . (23)

Now let us consider the marginal distributions.

1 -i(Q'ir+T!'. i(Q'.R+T1' P

[ ar f,(r,p,t) = = [araorar e (87r+1'-B) hotir)< o 2N

(2n)

1 -it’'- it'.P
- [ arraet s(et)e T Pe et TS
3N

(2n)

where we have taken ©' = O and noted that g(o) = 1. The remaining integrations

give Eq. (2) for fg. It is obviously just as easy to show that Eq. (3) holds

for fg.

To establish the equivalence of the various distributions we explicitly

insert (8) and (10) in (9)

-1 Vep+r'eP ] ' R+T '
£,(r,p,t) = — [ ar'ae" g(nme'-r')e (" -r4r!-F)_ 1(Q"-Rer!+F) (2k)
(2n)

o

Using the property

g(x) = g(-x)

we note that



)e-i(g'-r+T'~p) i(Q"er+t'.p)

g(ho'-T = g('ﬁvr-vp)e_

Recalling Eq. (12), we see that
fg<r:p:t) = g(‘ﬁvr'vp)fw(r,p,t) . (26)

A form somewhat similar to this was used byvon Roos6'to obtain a distri-

bution function for a molecular gas.

Now let us consider the generalized Wigner equivalent

ag(r,p) = [ dedr ag(@,T)ei(g'r+T‘p) (27)
where Oy is obtained from
A(R,P) = [ dedr ag(@,T)g(ﬁ@-T)ei(@'RH'P).
Since g = 1 for the Wigner distribution, we must have
og(©,7) = og(@,T)gCﬁ@-T) . (28)
Applying (28) and (23) in (27), we have
s”w(I';P) = g(’ﬁvr-vp)ag(r,p) (29)

IV. DISCUSSION

Clearly the generalized phase-space distributions and the generalized
Wigner equivalents are different for different choices of g(x). However the
important conclusions regarding these distributions must be concerned with

their connections with experiments in terms of Eg. (U4). Consider then



< F(R)P) > = f drdp fg(r)p)t)ag(ryp}t) (30)
Using (26) we have

< F(R,P) >

| ardp a,(r,p,t)g®r Vp)fy(r,p,t) .

Integrating by parts gives

i

< F(R,P) > [ ardp fw(r,p,t)g(’hvr-vp)ag(r,p,t) ’

and using (29)

<F(R;P) > = fdrdp fw(r)p:t)a’w(r)p)t) . (51)

Tt is not surprising that both (30) and (31) hold, since we constructed
the generalized phase-space distributions to satisfy just these equations. How-
ever, the rather trivial connections among the various distributions does not
seem to have been pointed out in the literature; and leads one to wonder why
more than the Wigner distribution need be considered for any calculations.

Using Eqgs. (26) and (29), we can immediately relate the results already
obtained for the Wigner distribution (as for example in Ref., 2) to the corre-

sponding results for a generalized phase-space distribution.
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