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Abstract 

 Major depressive disorder (MDD) is often the result of a long list of factors, one such 

factor is a disruption in frontal brain circuitry.  More specifically, MDD is characterized by the 

inability to set shift and inhibit past negative memories, thoughts, and feelings.  Based on the 

literature, it was hypothesized that individuals with MDD will have bilateral frontal 

hyperactivation and slower response time during behavioral inhibition, as both are thought to be 

the manifestation of greater effort extended on the part of individuals with MDD to maintain 

similar accuracy as healthy individuals.  The current study used a computer-based inhibitory 

control (IC) paradigm, the Parametric Go/No-go (PGNG), and functional MRI to illuminate 

differences in neural activation during response inhibition for MDD versus healthy control 

participants.  The task was administered to 26 healthy controls (Females, n = 17) and 26 subjects 

with MDD (Females, n = 18).  Results indicated no difference in ―Go‖ and ―No-go‖ target 

accuracy between the two groups, and significantly slower response time for the MDD group, as 

well as bilateral frontal hypoactivation in the MDD group.  A reduction in response time might 

be a sign of increased interference in set-shifting, and/or psychomotor slowing, a common 

symptom of MDD.  Likewise, unexpected hypoactivation suggests that the MDD group has an 

overall decrement in functioning within IC circuitry.  Further research is needed to better inform 

the source and consequences of this neural dysfunction.          
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 To Go or Not to Go? Differential Activation during Response Inhibition in Major Depressive 

Disorder 

 When you type ―depression‖ into Google you receive 77,800,000 hits and the first three 

are shaded in the distinct pink denoting those websites as sponsored links that sell medications 

used to treat the condition.  An individual can use these medications to treat the symptoms that 

are listed on a corresponding page.  In the current era of readily available information, it looks as 

though it would be easy to treat a nasty bout with depression.  Unfortunately this is far from the 

truth; clinical depression affects 6.7% of the U.S. adult population according to the NIMH 

website (http://www.nimh.nih.gov/statistics/index.shtml), which goes on to report that it is the 

leading cause of disability in those between the ages of 15 and 44.  Depression is a common 

cause of suicidal ideation, attempts and success.  The widespread age range of individuals with 

depression and the sheer prevalence of the disorder beg a response from clinicians and 

researchers with the resources to solve the elusive riddle. 

Definition and Symptoms Necessary for Diagnosis 

 Major Depressive Disorder (MDD) is defined as one or more Major Depressive Episodes 

(MDEs; American Psychiatric Association [DSM-IV-TR], 2000). MDEs are made up of 

numerous features that tend to consolidate around the heading of sadness.  An individual can 

have a single MDE and be clinically diagnosed with MDD or an individual can have multiple 

episodes and be diagnosed with recurrent MDD.  Whether they experience one or many 

episodes, the characteristics of an MDE are the same.  An MDE is a period of at least two weeks 

in which an individual is unable to find pleasure in nearly any activity.  The loss of pleasure or 

persistent sadness associated with an MDE needs to be compounded by at least four additional 

symptoms to meet the criteria for MDD.  There can be changes in weight/appetite, sleep, or 
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psychomotor activity, or loss of energy, feelings of worthlessness or guilt, difficulty with 

thinking or making decisions, or persistent thoughts of death or suicidal ideation (DSM-IV-TR, 

2000).  Clinically one can experience a variety of symptoms to be diagnosed with MDD, 

including, but not limited to: irritability, an inability to sleep through the night with subsequent 

fatigue, decreased productivity at work, or the belief that current troubles are insurmountable.  In 

its most severe forms, depression may lead to suicidal planning or attempts.  It is common for 

most individuals to experience some of these features throughout their lives, but what separates 

clinically depressed patients is that they experience these symptoms for 2 weeks or more, often 

on multiple occasions, to the point where it negatively impacts their daily functioning.          

Societal and Individual Impact 

 People who suffer from MDD are not just momentarily down; they have uncontrollable 

and often devastating sadness that can prevent them from functioning within work and social 

settings.  Thus MDD not only affects the individual experiencing it, but the friends and family 

who are frequently unable to help or find a cure.  Thirty-two is the current median age of onset of 

depression (DSM-IV-TR, 2000) so in many situations the cure is confounded by a combination of 

past and recent experiences.  In depression, an individual‘s past experiences can shape the way 

they handle their melancholy and instead of evaluating how their current cognitions and 

behaviors might contribute to their mood, the feelings of helplessness and stress are often too 

frequently present and therefore difficult to manage.  Characteristics of MDD, such as severe 

melancholy and constant sadness, may be an important clue in differentiating between the brains 

of healthy individuals and those with depression.  The mere persistence of the emotional 

symptoms of MDD is a function of its relationship with the executive control portion of the 

brain.  Instead of inhibiting thoughts and behaviors that elicit or exacerbate a depressed mood, 
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patients seem to have difficulty successfully engaging the systems that might inhibit or modify 

unwanted or persistent negative thoughts (Dai & Feng, 2011).  In this sense, those with MDD 

may not necessarily have more intense or contextually negative emotions, but rather they cannot 

regulate their emotions like a healthy person (Joorman, 2010; Joorman & Gotlib, 2010).  This 

theory has been further prompted by the distinct differences that appear between functional 

neuroimaging of depressed versus healthy study participants during executive functioning tasks 

(Langenecker et al., 2007b; Rogers et al., 2004). 

Precipitating Factors and Course of Illness 

 It is often thought that a neurotransmitter imbalance between norepinephrine, serotonin, 

and dopamine is a contributing factor in depression (Goddard et al., 2010; Levinson, 2006), 

although other possibilities have been hypothesized.  The serotonin transporter gene (5-

HTTLPR) is responsible for reducing the amount of serotonin within the synapse and is thought 

to be dysfunctional in MDD (Joensuu et al., 2010); many antidepressants work to address this 

dysfunction.  The short allele of the serotonin transporter gene is thought to interact with stress to 

increase the risk for MDD.  Relatives of those diagnosed with affective disorders are at increased 

risk themselves and it is thus important to conduct genetic studies (Weissman, Kidd, & Prusoff, 

1982).  A recent meta-analysis on the serotonin transporter gene, stress, and depression found 

that the short allele made individuals more sensitive or vulnerable to stressful events, specifically 

childhood maltreatment and stress from specific medical conditions (Karg, Burmeister, Shedden, 

& Sen, 2010).  The authors commented that previous analyses that did not reach significance had 

used subjective instead of objective measures of stress and not taken type of stressor into 

account.  Brain abnormalities and traumatic life events have also been shown to contribute to 

MDD diagnoses (Weniger, Lange, & Irle, 2006).  Hsu, Langenecker, Kennedy, Zubieta, and 
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Heitzeg (2010) found a positive correlation between activity in orbitofrontal cortex (OFC) during 

presentation of negative emotional stimuli and recent stressful events in individuals with MDD 

relative to controls.  Because the active portions of the orbitofrontal cortex are implicated in 

emotional impacts (Kringelbach & Rolls, 2004) this finding suggests that current or recent stress 

had primed the OFC pathway, which in turn elicited greater activation with the presentation of 

negative emotional stimuli.  Further, recent stress was negatively correlated with activity in 

ventrolateral prefrontal cortex (VLPFC) which was interpreted to be a result of stress on 

cognitive control centers.   

Individual characteristics conducive to depression are low self-esteem, a distorted view of 

others‘ perception of oneself, a pessimistic outlook, or an inability to acknowledge personal 

achievement (McKenzie et al., 2010; Sha, 2006).  These traits are often compounded by external 

issues such as a history of physical and/or sexual abuse, familial alcoholism, death of a loved 

one, growing up in a broken home or any number of similar stressful life events (Buzi, 

Weinman, & Smith, 2007; Schoedl et al., 2010).  Individuals with these traits or with traumatic 

experiences are more likely to experience depression or depressive symptoms and women are 

also twice as likely as men to be diagnosed with MDD (Kuehner, 2003).  Once diagnosed, 

people often experience different courses of the illness.  Recurrent episodes can either occur in 

clusters with long breaks of remission in between or the episodes might occur sporadically with 

shorter periods of remission.  Longer periods of remission often occur earlier in the life course of 

the illness and the greater the number of prior episodes, the greater the chance an individual will 

experience subsequent episodes.  Most disturbing are statistics regarding MDD recovery, in 

which 40% of patients may still experience full MDD symptoms one year after treatment has 
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begun and only 40% make a full recovery (DSM-IV-TR, 2000; Rush et al., 2006; Trivedi et al., 

2006). Twenty percent continue to experience less severe symptoms (DSM-IV-TR, 2000).     

Possible Developmental Determinants and Risk Factors 

 The presence of emotion dysregulation in MDD can be understood within the context of 

an individual‘s wider developmental and historical experiences.  Individuals learn how to 

process and control emotions when they are very young and, if an individual learns effective self 

control strategies, those strategies are more prone to last.  Individuals become vulnerable to 

depression in response to stressors when they form external control strategies or poor coping 

methods (Jopp & Schmitt, 2010).  Some people choose to play an instrument or engage in 

strenuous physical activity to alleviate stressful or gloomy thoughts.  Unfortunately, people with 

depression often ruminate about negative thoughts or past events, or employ other ineffective 

cognitive processes when feeling sad (Takano & Tanno, 2009).  It seems appropriate then, to 

look at parts of the brain that have been implicated in emotion regulation, attention, inhibitory 

control, and memory.  In light of the characteristics of depression mentioned here, the complex 

interaction of these cognitive and affective processes, and the brain structures that underlie them 

are plausibly responsible for the emotional and functional manifestations of the disorder, at least 

in part.   The present thesis is targeted to address regulation of thoughts as one possible pathway 

of dysfunction and risk for illness in MDD. 

Executive Functioning (e.g., Inhibitory Control) as a Construct 

Executive functioning is a broad term that encompasses many jobs of a managerial nature 

supported by the frontal and parietal cortical areas.  Executive functioning is subsumed under the 

larger heading of metacognition, which is loosely defined as ―thinking about thinking.‖  As an 

aspect of metacognition, executive function involves monitoring one‘s behavior, regulating that 
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behavior, and inhibiting inappropriate responses.  Healthy adults are able to perform many 

executive functioning tasks with moderate effort, whereas an inability to effectively control 

executive functioning is a marker for several types of neuropathology.  Examples of these tasks 

include selective and sustained attention, set shifting or cognitive flexibility, error monitoring, 

emotion regulation, memory, rule acquisition, abstract thinking, theory of mind, and—significant 

to the current study—inhibitory control or response inhibition.  Without much consideration, the 

average individual uses most or even all of the aforementioned executive functions in a day‘s 

time.  For example, selective attention and sustained attention are necessary if one wants to 

attend to a single auditory event amidst several other auditory disturbances for any period of time 

(Lamers, Roelofs, & Rabeling-Keus, 2010).  Rule acquisition enables one to quickly and 

efficiently pick up on patterns in the environment (Anderson, Fincham, & Douglass, 1997).  

Theory of mind facilitates the understanding of intentions, desires, and beliefs of the self and of 

others (Drubach, 2008).  Set shifting or cognitive flexibility would be helpful if an individual had 

to improvise a dinner recipe after finding out that she was missing a key ingredient (Stemme, 

Deco, & Busch, 2007).  Error monitoring produces a signal if an individual misspeaks (van de 

Meerendonk, Kolk, Chwilla, & Vissers, 2009).  Inhibitory control (IC) is the ability to restrain 

responses that have been habituated and is, for example, required in activities such as dieting or 

playing the game, ‗Simon Says‘ (Nederkoorn, Van Eijs, & Jansen, 2004).  IC can also be used to 

describe the process by which unwanted thoughts or ideas are regulated, often described as set-

shifting or suppression IC (Hasher & Zacks, 1979).  As mentioned earlier, the inability to 

regulate negative thoughts and emotions is a major symptom of MDD and the focus of the 

current thesis (Fladung, Baron, Gunst, & Kiefer, 2010; Santesso, 2008).   



DIFFERENTIAL ACTIVATION IN MDD  9 

 

 Due to the complex interaction between the many facets of executive functioning, 

assessing a single component can be difficult.  There are currently numerous neuropsychological 

tests that assess specific components of executive functioning, although not often in ideal ways.  

For example, the tests vary in difficulty level, in which executive functions they test, and in how 

many executive functions are at use during their completion.  Depending on the type and number 

of executive functions in use, this can in turn confound the interpretation and validity of the 

results.  Few tests are able to narrow in on one executive function and therefore interpretation of 

the corresponding fMRI results are a combination of functional activation from multiple 

processes.  An ideal imaging test would be able to test specific executive processes while 

eliminating ceiling effects and/or influences from other types of executive functions, or indeed 

other cognitive processes.  One of the more recent neuropsychological computer tasks, which 

can be used inside or outside of the scanner, is the Parametric Go/No-go (PGNG; Langenecker et 

al., 2005).  The task has three levels of increasing difficulty to better account for performance by 

group by activation interactions.  The PGNG is unique in that it begins at a relatively easy level 

where most everyone performs well (>95% accuracy) and increases in difficulty to the point 

where many individuals find themselves considerably challenged.  The first level of difficulty is 

similar to other types of tasks that have been described as GNG tasks, what we have come to 

refer to as static IC tasks.  These tasks are defined by finite and unchanging Go and No-go sets.  

We add two more levels of difficulty, so that the final level is challenging for even the healthy 

control participants (60-70% accuracy).  The PGNG is specific in the functions it tests while 

controlling for ceiling effects often exhibited by young, healthy controls.  The PGNG can be 

performed by patients and participants while inside an fMRI scanner.  By comparing the fMRI 

blood oxygenation level dependent (BOLD) signal data of controls and MDD patients during IC, 
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it is likely that differences at the neural level will become apparent.  The sensitivity of spatial and 

temporal resolution of the fMRI and the parametric variability in difficulty of the PGNG will 

hopefully shed light on differential activation between the two groups that would otherwise 

remain undetected (Langenecker et al., 2007a).       

Individuals with MDD have an inability to cope with and regulate negative emotions that 

appears to be manifest within differential neural activation (Abler et al., 2010).  Evidence for the 

lack of emotional control in MDD lies within the fMRI data gathered during a number of 

neuropsychological tests of IC/response inhibition (Berman et al., 2011).  Our underlying thesis 

is that the regulation of thoughts and emotions is subserved by a common, non-specific IC 

network (Rubia et al., 2001).  While overwhelming behavioral differences between patients and 

healthy controls are not yet fully clear, a plethora of imaging data tend to reveal differences 

within the inferior frontal cortex (IFC) and the anterior cingulate cortex (ACC; Berman et al., 

2011; George, Ketter, Parekh, & Rosinsky, 1997; Harvey et al., 2005; Holmes et al., 2005; 

Matthews et al., 2009; Wagner et al., 2006).  In controls, dorsolateral prefrontal cortex (DLPFC) 

has been shown to activate when the individual must perform a novel action, right ventrolateral 

prefrontal cortex (VLPFC) activates in the face of irrelevant responses, and ACC is active when 

performance and goals are assessed (Matthews et al., 2009; Wagner et al., 2006).  When female 

participants with MDD and current anhedonia were shown pleasant stimuli, they showed 

decreased activation in medial frontal cortex (MFC) and increased activation in IFC, ACC, 

thalamus, putamen, and insula, relative to healthy controls (Mitterschiffthaler et al., 2003).  The 

latter was a study of affect processing in MDD, but these brain regions have also been implicated 

during tasks of IC.  In tasks of IC, individuals with MDD also tend to activate ventral IFC and 

superior temporal gyrus (Langenecker et al., 2007b).  It is also possible that different groups 



DIFFERENTIAL ACTIVATION IN MDD  11 

 

utilize separate networks to accomplish the same level of behavioral performance in a task, often 

referred to as compensation, or recruitment (Cabeza, 2002; Langenecker & Nielson, 2003). 

There are several plausible explanations for why MDD patients have differential 

activation in areas of the prefrontal cortex typically implicated by IC paradigms.  Activation that 

is muted relative to the activation of healthy controls might be a result of brain regions that do 

not function at an efficient level.  For instance, perhaps the uncontrollable emotional response in 

MDD is a result of an inability to activate the inhibitory network. When activation is much 

greater than that of healthy controls, there is reason to believe that those regions are working 

harder in order to maintain a certain level of performance on an inhibitory task (Langenecker et 

al., 2007b; Schöning et al., 2009).  Differential activation and performance speaks to the 

evolving conclusion that MDD is a more serious disorder than once thought.  Brain dysfunction 

in chronic MDD is in the same playing field with schizophrenia and other historically serious 

disorders. The disability data related to long term depression may not be that ominous, but the 

monetary, familial, and interpersonal cost of depression is still staggering.   

Development of IC and Measurement Strategies and Tasks. Executive functioning 

abilities develop at different stages of an individual‘s life.  The development of IC in those who 

eventually become depressed is likely atypical, and techniques for examining these constructs in 

childhood have been investigated (Halari et al., 2009). Surprisingly, even though executive 

functions are complex in nature, children experience their inception around similar ages, often 

earlier than once thought.  For instance, false beliefs are a type of theory of mind in which one 

has knowledge about the world that is not true to reality (e.g., a woman left her reading glasses 

on her dresser, her husband moved them, and the woman therefore had a false belief of their 

location).  Adults and even 4-year-old children understand false belief, but children 3-years-old 
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and younger perform below chance on these tasks.  False belief is pertinent because the literature 

points to IC as a mechanism that aids in successful performance.  The development of IC, or lack 

thereof, is crucial because impulsive children who lack IC are often diagnosed ADHD (Rubia et 

al., 2010).  These individuals, and others, may fail to ever learn adequate impulse control, often 

to their detriment.  There are academic and social sequelae of the poor IC that might 

subsequently result in poor long term outcomes in these and other domains (Banich et al., 2009). 

Infants and young children were once thought to be solely dependent beings who must be 

taught everything if they were ever going to mature into functioning adolescents and adults.  

Further, the executive skill set of an infant was not thought to exist, let alone be related to their 

skill set as an adult (Piaget, 1962).  Diamond (1990, 2000) and many others have been working 

for the last 25 years to contradict Piagetian thought.  Piaget theorized that infants and young 

children moved chronologically through a developmental schedule, that developmental markers 

were inflexible, and that the functioning adult was the epitome of cognitive maturity.  Diamond 

and others have worked to dispel the myth that children are truly incapable of seemingly simple 

tasks. These researchers argue that just because children have not reached the final stage of 

cognitive development, they can still grasp cognitively-demanding concepts.  Diamond and 

Gilbert (1989) found that children understand contiguity—a developmental milestone—if they 

are able to inhibit the reflex to touch one part of the contiguous object.  These children can grasp 

the concept if they are not held back by an underdeveloped skill set.  Much like in tests 

measuring false beliefs, in the contiguity tasks it is not necessarily that children are unable to 

perform tasks, it is that they have not yet developed stable IC. Functional neuroimaging findings 

also support this hypothesis, in that neurocircuitry underlying IC in children has been shown to 
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approximate that of adults, although children may not employ such neural mechanisms as 

efficiently (Casey et al., 1997). 

The relation of childhood and adult IC was creatively investigated by Shoda, Mischel, 

and Peake (1990) when they asked 4-year-old children to wait in a room with a marshmallow. If 

the children waited ―until they got back‖ without eating the marshmallow, then they would 

receive two marshmallows.  In a follow-up study with the same children between 15 and 18-

years old, those children who were able to inhibit eating the marshmallow at age 4 were rated as 

having more self control and success in resisting temptations as a teen.  The IC at age 4 also 

correlated with participants‘ subsequent verbal and quantitative scores on the SAT.    

In adolescence, cognitive control is often challenged because teenagers seem to be more 

sensitive to reward than they are to punishment.  Geier and colleagues (2010) found that 

adolescents show hyperactivation in prefrontal regions, relative to adults, during response 

preparation.  The researchers took the over-activity during anticipation of reward as a sign that 

adolescent cognitive control is underdeveloped relative to adults.  In light of the marshmallow 

study by Shoda, Mischel, and Peake (1990), there is a good chance that some adolescents are 

better able to regulate cognitive control.  Depression is quickly becoming a common diagnosis 

among adolescents.  During a behavioral inhibition task, adolescents with MDD have been 

shown to exhibit reduced activation in right DLPFC, ACC, and IFC (Favre et al., 2009; Halari et 

al., 2009).   

Executive Functioning Tasks and Dysfunction in Executive Functioning and IC in MDD 

Similar to the tasks designed for children, IC can be assessed in adults using any of a 

variety of clinical measures including, but not limited to, the Wisconsin Card-Sort Test (WCST), 

Stroop Color-Word Test, Go/No-go tests (e.g., the Parametric Go/No-go in the current study), 
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and any task emphasizing a switch from a prepotent to a non-habituated response.  As noted 

previously, tasks designed to assess IC may also assess other executive functions, which is a 

confound that reflects a weakness in the literature.  

The Wisconsin Card Sorting Test (WCST). The WCST (Heaton, 1993) has four key 

cards that participants use to guide their organization of a deck of like-faced cards, and all the 

while the category by which they must match is changing.  WCST standardization prevents the 

examiner from describing how to perform the task, or providing any feedback beyond whether a 

move is correct or incorrect.  Cards are matched on form, number, or color and once the 

participant has achieved ten of any category the next category begins and the participant must 

inhibit the response with which they just became accustomed to responding.  Individuals who 

continue to use one category after receiving feedback that the formerly correct choice is now 

incorrect are said to be making perseverative errors.  This perseveration impairs the participants‘ 

ability to complete the highest number of categories in the fewest number of cards.  Likewise, 

‗failure to maintain set‘ explains the behavior of participants that have trouble completing ten 

sets of any category.  Due to the negative emotional perseveration in MDD, the WCST enables 

researchers to gauge impaired perseveration in a more neutral context. 

Grant, Thase, and Sweeney (2001) found that, while depressed younger adults were not 

significantly more impaired in verbal fluency, attention, learning, and memory tasks (for a list of 

tasks and description see Grant et al., 2001), they performed significantly worse on the WCST.  

Outpatients with MDD, matched with controls, displayed a reduced ability in terms of learning 

and maintaining rules of the task, and in shifting set.  Similar findings were also reported by 

Channon and colleagues (1996).  The research findings related to WCST performance among 

individuals with depression are important, but can be interpreted in multiple ways.  For instance, 
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perhaps the patients were not ill enough to cause difficulty within all of the tests or the other tests 

were not sensitive enough to illuminate differences between patients and controls.  

Oren and Boone (1991) used the WCST to assess higher-order cognitive impairments in 

MDD because impairments on memory, motor dexterity, and mental processing speed had 

already been observed (Bulmash et al., 2006; Fairhall, Sharma, Magnusson, & Murphy, 2010).  

The researchers compared an MDD outpatient group to matched controls, and also included a 

group of outpatients with dysthymia to judge whether severity or type of depression had a 

significant effect. Participants underwent measures of symptom severity (i.e., SCID, BDI, 

HDRS) and then completed the WCST.  In regards to the WCST, a depressive diagnosis of 

Dysthymia or MDD predicted the percentage of perseverative errors, whereas severity of 

depression predicted scores on total errors, failure to maintain set, and percent perseverative 

responses.  Overall, the more depressed the patient, the worse the performance.  A high level of 

perseverative responding, indicating a lack of problem solving and hypothesis testing, was found 

in the MDD patient group. 

The Stroop Color-Word test. The Stroop task (Stroop, 1935) is another test often used 

to measure IC in depression and is comprised of three tasks.  The first part asks the subject to 

read down a list of three color words printed in black ink as quickly as possible, the second part 

presents series of letters (i.e., XXXX) printed in three colors and they must name the color, and 

the last part shows a list of color words that are printed in incongruent colors (e.g., the word 

―red‖ printed in blue ink) and the participant must name the ink color.  The latter part is the 

experimental component, as response time increases due to the interference of the printed word.  

Theoretically, participants who have more frontal interference at baseline (i.e., those with MDD, 

OCD, PTSD, or ADHD, etc.) will have even more trouble responding in a timely manner.  The 
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Stroop effect has also been used to develop tasks examining the effect of emotional salience on 

IC (e.g., George et al., 1997).  McNeil and colleagues compared three patient groups (PTSD, 

MDD, and OCD) across three Stroop measures, one General Anxiety Stroop, one Depression 

Stroop and the original Color-Word Stroop.  The researchers did not use a control group, but 

found the largest effect of the Stroop on the PTSD group.  However, differences within the three 

patient groups did not prove to be significant.  In fact, the MDD group had the faster response 

times.  While a comparison with a control group would likely have revealed interference in the 

three patient groups, the Stroop was not sensitive enough a measure to distinguish between these 

seemingly very different clinical populations (McNeil, Tucker, Miranda, Lewin, & Nordgren, 

1999). 

Go/No-go (GNG) tests. Go/No-go tasks reflect a broad category including any task that 

habituates a participant to one response and then asks them to inhibit responding on some cue.  

These tasks are increasingly being used in studies of depression and related disorders, although 

there has been some confusion between what is a Stroop-like and what is a Go/No-go task.  The 

PGNG is one such task with three levels in which participants must first respond to any X, Y, or 

Z in a string of rapidly presented letters (500ms between letters), on the second level they can 

only respond to X and Y if they are in alternating order, and the last level is similar to the 

second, but they are responding to all three X, Y, and Z.    The first level habituates participants 

to a prepotent response and IC is not necessary because X, Y, and Z can be responded to in any 

order; the second and third levels add a component of IC.  Langenecker et al. (2007a) found that 

within a cognitive battery including tests of attention, set shifting, and IC, attention and set 

shifting performance was weakly correlated with IC performance which suggests they are 

different executive functions.  Moreover, PGNG was a sensitive enough measure to detect 
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differences within several patient and non-patient groups; controls were marginally better than 

depressed and bipolar patients in inhibitory processing speed, (p = 0.077) and (p = 0.079), 

respectively.  Further, Anxiety groups were shown to perform better than the Bipolar and 

MDD/dysthymia in IC accuracy.    

More recently, a wider breadth of neuropsychological tests were employed by 

Degl‘Innocenti, Agren, and Bäckman (1998) to evaluate executive functioning in MDD.  The 

researchers used the WCST to assess the ability of participants to use working memory and 

feedback to form conceptual sets, to set shift when told to do so, and to hypothesize appropriate 

problem solving strategies.  The researchers also used the Stroop Test to test inhibition and the 

Controlled Oral Word Association (COWA) test to measure verbal fluency under timed-retrieval.  

These are all executive functions that are hypothesized to be disrupted in MDD.  The results 

revealed selective impairment within the MDD group compared with matched controls.  Controls 

were significantly more successful on the WCST in the number of trials, the number of errors, 

the number of non-perseverative errors and the percentage of conceptual level responses.  The 

MDD group was slower in all trials of the Stroop in comparison with controls and there were 

significant effects for all three trials of the COWA, with the MDD group naming fewer words for 

each of the three letters.  These results suggest that the MDD group is impaired in the ability to 

alter behavior based on feedback.  Although this study found no differences in inhibition 

between groups, the Stroop test might not be sensitive enough to reveal them.  Lastly, the results 

of COWA indicate a slowing of retrieval from the lexicon.   

 Two characteristics of MDD, diminished motivation and impaired decision making, have 

foundations in functioning of the frontal and parietal lobes.  Cella, Dymond, and Cooper (2010) 

used the Iowa Gambling Task (IGT) to assess plasticity of decision-making in individuals with 
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MDD currently on medication compared to a group of matched healthy controls.  The IGT 

allows participants to choose from a deck of cards for a monetary gain and/or loss.  Two decks 

immediately reward large sums, but eventually lead to long term loss and the second two decks 

offer small immediate rewards, but produce fewer losses and thus end in an overall gain.  The 

researchers used the contingency shifting variant IGT which is on a computer and involves two 

slightly different phases, but is otherwise similar to the original IGT in what it measures.  Not 

surprisingly the researchers found that the MDD group performed below chance, especially in 

the final three blocks of the standard IGT.  During the shifts in reinforcement in the contingency 

shifting variant IGT, the MDD group again performed worse than the control group.  These 

results can be interpreted as impaired sensitivity to reward and punishment in MDD. The results 

of the contingency shifting variant IGT suggest an inability to reevaluate decisions based on 

changing environments, similar to findings related to performance on the WCST. 

The executive functioning tasks designed to hone in on IC are different because they 

many utilize various additional executive functions, but they share the commonality of better 

assessing individuals‘ ability to contain their desire to respond prematurely or inappropriately.  

This includes control of both thoughts and actions.  Although the tasks can be discussed 

independently to detail their relative benefits and shortcomings, they do share a universal 

requirement; participants must engage with a particular concept to the point that they are 

habituated in their response to it, and then they are forced to respond in a way that is unnatural 

relative to how they have been responding.  The aforementioned tasks all meet this latter 

condition, but vary in the amount of effort necessary for successful completion.  As a result, one 

must take into account how taxing a test is and  how the related challenge on other cognitive 

functions like working memory would in turn alter how much of an individual‘s performance can 
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be attributed to their response inhibition and how much is attributable to the challenging nature 

of the task. 

 Response inhibition is an effortful activity, especially when there are other factors 

involved that may degrade its function and efficiency (Lindqvist & Thorell, 2009).  Very young 

children are known to hit, kick, and scream at inappropriate times, but most learn to curb that 

aggression as they develop, through a process of socialization.  The process of socialization 

suggests that certain behaviors must be, at least at first, consciously inhibited (Côté, 

Vaillancourt, LeBlanc, Nagin, & Tremblay, 2006).  Most adults understand that certain 

behaviors can be appropriate within some contexts and disrespectful in others.  Few would blame 

an individual that swears at his team in a sports bar, but the same man who swears in church has 

a lack of IC.  Regardless of the inappropriate behavior, a lack of IC can have relatively 

detrimental effects.   

Poor IC is certainly not the only contributing factor for MDD; individuals experiencing 

either the bar or church scenario might describe their actions as uncontrollable.  These examples 

are relevant because the current study focuses on another ‗uncontrollable‘ response; patients with 

MDD often have overwhelming and unmanageable sadness.  Instead of regulating these 

emotions, individuals with MDD find that these negative emotions seep into all aspects of their 

lives.  This may contribute to even more negative feelings.  The developmental acquisition of 

executive function is important because some individuals do not learn adequate coping methods 

and thus resort to ineffective responses to pain and loss (Nolen-Hoeksema, 2000).  Through use, 

these responses develop prepotency and then few opportunities arise in which an individual can 

undo a maladaptive response or replace one response with a more adaptive one.  In this respect, 

stressful life events may exacerbate poor IC, thereby provoking unusually intense negative 
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emotions.  To date, no sole determining allele linking some people to MDD has been found.  

Rather, it is this culmination of factors—reduced IC, excessive emotional reactivity at the 

neurological level, and stressors and life events—that likely contribute to the illness (Hsu et al., 

2010; Joorman, 2010; Langenecker et al., 2007a).     

 MDD is manifested in many other areas of cognitive dysfunction including memory, 

emotion processing, and motor dexterity and speed.  For the purposes of this paper, memory, 

emotion processing, visual-spatial abilities, and motor dexterity and speed are all viewed as 

problems in MDD that are beyond the purview of the present study.  These areas of difficulty are 

well known in the literature and have been addressed in a recent review by Langenecker, Lee, 

and Bieliauskas (2009). 

 The deficiencies in IC in the MDD population are the focus of the current study.  The 

aforementioned study by Murphy et al. (1999) found a bias of MDD participants to respond 

normally to sad targets and slowly to happy targets on an inhibition and set-shifting paradigm.  

Alongside this finding, depressed participants, when compared to matched controls and to manic 

participants, were unable to shift attention from one target emotion to another.  These results, in 

conjunction with the emotional bias, suggest an inability for the depressed group to inhibit 

previously salient emotions. 

 Langenecker et al. (2005) found that even mildly depressed women exhibited deficits in 

IC in relation to matched healthy controls.  Using the PGNG, the researchers assessed IC on two 

of three levels of the task.  As in previous studies, Langenecker et al. found that depressed 

women performed significantly worse on the more challenging level three of the PGNG (i.e., 

alternatively responding to X, Y, and Z stimuli).  Contrary to hypotheses, the differential 

performance of MDD and healthy controls on the easier level two of the PGNG (i.e., 
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alternatively responding to X and Y) did not reach significance.  These findings suggest 

dysfunction within IC in depressed individuals; most reliably on sensitive tasks (see Langenecker 

et al., 2007a).  

Brain Areas Supporting Executive Functioning, Specifically Inhibitory Control 

As with other studies using fMRI, the literature on neurocircuitry related to IC proves 

somewhat inconsistent.  Nevertheless, there appears strong evidence for functional activation 

within the DLPFC, ACC, IFC and basal ganglia (BG; Aron, Robbins, & Poldrack, 2004; Goghari 

& MacDonald, 2009).  More specifically, activation appears to lie within the dorsal ACC 

(dACC) and the right IFC, although Rubia et al. (2002) found left lateralized activation in the 

IFC.  Often researchers combine either a Stop-Signal Task, Go/No-go task or another task 

measuring IC during fMRI (e.g., Chevrier, Noseworthy, & Schachar, 2007).   

 There are different aspects of cognitive control that, when activated together, enable an 

individual to inhibit a prepotent response.  One aspect of cognitive control is focusing attention 

on the relative or important features of a situation while ignoring other extraneous parts of the 

environment.  Weissman et al. (2004) examined the relationship between dACC activation and 

ability to complete a cued global/local selective attention task.  The task consisted of either 

global (‗G‘) or local (‗L‘) images that were either a large letter or a bunch of small letters making 

up a larger letter, respectively.  Participants had to press one button if the letter was an ‗H‘ or an 

‗S‘ and another button if the letter was an ‗X‘ or an ‗O‘.  This way, the experimenters were able 

to create congruent trials in which the global and local letters needed the same key press, neutral 

trials in which a random letter was used or incongruent trials in which the local letter did not 

warrant the same key press as the global letter.  Weissman and colleagues predicted that 

participants would have more difficulty responding to local than to global cues and indeed 
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reaction times (RTs) were slower for local trials.  Further, the researchers had also predicted 

greater dACC activity during local cue trials.  Interestingly, within the first three of the six trials, 

there was significantly more dACC activation during local trials.  This study highlights both the 

relationship between controlled responding and dACC activation, as well as the importance of 

taking practice effects, which tend to increase processing speed, into account. 

 While attention is an important element of inhibiting prepotent responses, there are other 

measures that, when used within an fMRI setting, serve to better elucidate the role of neural 

mechanisms in IC.  One of these tasks is the Go/No-go (GNG), which has been used successfully 

outside the context of fMRI as described above, and has also been used in a variety of forms with 

fMRI.  Konishi et al. (1999) compared prefrontal activation during a GNG task with activation 

during the Wisconsin Card-Sort Test (WCST).  The researchers found substantial overlap 

between the tasks in their activation of the right IFC and less significantly of the left IFC, 

although the significance did not withstand statistical correction.  Not only does the former 

provide evidence for a specific location within the PFC that corresponds to IC, but it appears that 

inhibiting a ‗go‘ response and inhibiting a cognitive set are functionally similar.  Likewise, in a 

review by Aron, et al. (2004), the researchers discussed evidence for rIFC and DLPFC activation 

during other versions of GNG, the WCST, tasks measuring ‗switch cost,‘ and tasks requiring 

inhibition of inappropriate memories.   

In the studies by Aron et al. (2004) and Konishi et al. (1999) participants were shown to 

activate right IFC during the inhibitory trials of GNG and WCST, which suggests that right IFC 

is involved in at least motor and cognitive IC.  Berkman, Burklund, and Lieberman (2009) 

investigated whether intentional motor inhibition might not have a ―spillover‖ effect within 

affective inhibitory structures if a task implicitly presented negatively-valenced stimuli.  They 
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found activation within right IFC, ACC and DLPFC during no-go trials.  Further, negatively-

valenced inhibitory (i.e., no-go) trials produced a reduction in amygdala activity as compared 

with go trials and with baseline.  In other words, active motor inhibition produced ―spillover‖ 

emotional inhibition during trials with implicit negative emotion.  This finding is relevant for the 

current study because an oft-cited trait of MDD is an inability to inhibit negative emotional 

affect. 

If inhibition is truly localized within these specific parts—right IFC, ACC, DLPFC—of 

the PFC, the next question is what effect do individual differences in brain activation have on 

function, if any.  Forstmann et al. (2008) used a cued version of the Simon task, fMRI, and 

diffusion tensor imaging (DTI) to map the connection amongst IC, brain function and brain 

structure, respectively.  The computer version of the Simon task displayed a signal for either 

‗congruent‘ or ‗incongruent‘ and then displayed a screen with either a green or red circle to the 

right or left of center.  In all trials, green meant press left and red meant press right, but they 

could appear on either side of center (i.e., spatially congruent or spatially incongruent).  Further, 

the label of congruent or incongruent on the first screen was either valid or invalid.  For trials 

that were invalidly labeled, the comparison of good versus poor inhibitors (as measured by 

reaction time) revealed significant BOLD activation of the right IFC during invalidly cued trials 

only.  Forstmann and colleagues hypothesized that behavioral success, as identified by faster 

response time, would in turn be related to the connectivity of white matter in the structure 

activated during the task.  The results revealed a positive correlation between right IFC BOLD 

activation and right IFC structural differences; more proficient inhibitors were found to have 

greater connectivity within white matter tracks of the right IFC.  As stated earlier, individuals 
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with MDD have been found to have trouble inhibiting negative emotions and the current study 

sheds light on a potential link between functional difficulty and structural inadequacy.  

 It is readily apparent that MDD is a disorder involving irregular activation in the frontal 

lobes.  One meta-analysis concluded that at-rest individuals with MDD have hypoactivation in 

DLPFC, dACC, insula, and superior temporal gyrus (Fitzgerald, Laird, Maller, & Daskalakis, 

2008).  Other studies (Okada et al., 2003) have likewise found hypoactivation during executive 

functioning tasks, including tasks of verbal working memory, but many of these studies have 

small sample sizes (<10) and rely on block designs.  Similarly, studies that fail to report 

performance or report accuracy and no response time do not allow an adequate comparison 

between the two groups.  The event-related design used in the current study, in combination with 

the PGNG task is suggested to be more effective than preceding studies using block designs, as it 

enables a focused examination of individuals‘ response to stimuli requiring IC.  The current 

event-related design allows a comparison of activation during successful and failed behavioral 

inhibition.  

Studies of Impaired Executive Functioning and Inhibitory Control in MDD 

Studies of attention have found that, when an MDD group performs similarly with the 

control group, they show a relative increase in prefrontal and parietal regions (Holmes et al., 

2005).  In a Stroop interference task, Wagner et al. (2006) found that, while the MDD and 

control groups performed similarly on accuracy and reaction time, imaging data revealed 

hyperactivation in rostral anterior cingulate gyrus (rACG) and DLPFC.  One study used a verbal 

n-back task during fMRI and found that, when the MDD and control groups performed similarly 

with regard to reaction time and accuracy, MDD subjects had greater activation in the lateral 

PFC and the ACC (Harvey et al., 2005).  The latter three studies suggest that individuals with 
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MDD are able to maintain equivalent behavioral performance relative to controls, but they 

exhibit greater activation during a task in order to maintain said performance.     

Few studies have directly considered IC as a dependent variable in MDD.  One study 

measured response inhibition used the PGNG task and an event-related design to compare three 

behavioral measures and imaging data for 42 participants (MDD = 20).  The control group had 

better performance on target accuracy and faster response times, but the patient group was more 

successful on inhibitory lure trials (i.e., correct rejections).  Activation during correct rejections 

was found to be greater in the MDD group, specifically in frontal and anterior temporal regions 

(Langenecker et al., 2007b).  Berman et al. (2011) hypothesized that the ruminative style of 

MDD might be accounted for by differences in activation (e.g. temporal, spatial, and/or strength) 

in left IFG in the patient group.  The MDD group was significantly worse than the control group 

at removing negative information from short-term memory.  Although the MDD and control 

groups both activated left IFG to the same degree, the MDD group exhibited greater spatial 

variation within this region.  The researchers rationalized the spatial inconsistency as an artifact 

of ineffectual activation within the MDD group and a cause of the behavioral discrepancies.    

Summary Section and Hypotheses 

 The prevalence and debilitating toll of major depressive disorder are a call to action for 

clinicians, psychiatrists, other healthcare providers, researchers and all others that have a stake.  

MDD is characterized frequently as an inability to regulate emotions, to shift between different 

emotional contexts, and to override rumination through cognitive control.  At a neural level, 

emotion and cognitive control are connected via the subgenual and rostral cingulate cortex, from 

the amygdala to the PFC (e.g., Phillips, Drevets, Rauch, & Lane, 2003b), with a primary effortful 

IC foci in the right IFC (Aron et al., 2004).  Studies have repeatedly indicated that depressed 
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individuals exhibit outward and inward problems with executive control/regulation and 

differential activation in and around these pathways, relative to healthy controls.  Previous 

studies have attempted to pinpoint differences in activation during various tasks of executive 

function, but few are able to challenge controls enough to elucidate differences, which causes a 

disadvantage for the MDD group.   

 The current study uses a PGNG task that has been shown to be challenging not only for 

individuals with MDD, but also for control groups (Langenecker et al., 2007a, 2007b, 2010).  

The difficulty of the PGNG, paired with event-related fMRI analyses, will hopefully more 

clearly distinguish the MDD from the control group as well as neural differences during 

successful versus unsuccessful behavioral inhibition.  Differential activation during response 

inhibition in an affectively neutral task would suggest that MDD does not just impact 

dysregulation in emotion, but cognitive control more generally.  Or it might suggest that effortful 

cognitive and affective control circuits are highly overlapping.   

 Currently there is a contradiction in the literature as to whether individuals with MDD 

show hyper- or hypoactivation during executive functioning tasks.  A majority of studies using 

event-related fMRI and larger participant populations have found hyperactivation in MDD 

groups during executive tasks relative to control groups (Harvey et al., 2005; Holmes et al., 

2005; Langenecker et al., 2007b; Wagner et al., 2006).  Others have reported no difference 

between MDD and control groups (Barch, Yvette, Sheline, Csernansky, & Abraham, 2003), or 

hypoactivation (Berman et al., 2009; Halari et al., 2009; Okada et al., 2003).  Likewise, one 

recent meta-analysis suggests that frontal and some temporal hypoactivation in MDD is apparent 

at resting states (Fitzgerald et al., 2008).  This discrepancy across studies is not unique to 

depression, and similar contradictory findings have been reported in schizophrenia and mild 
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cognitive impairment, even in healthy aging.  Phillips et al. (2003b) rationalized the 

contradictions as a combination of hyperactivation within the ventral network and hypoactivation 

within the dorsal network, dependent on the type of task utilized.  

As mentioned above, the current PGNG task is meant to challenge control participants in 

a way that better disentangles activation in various conditions of the task. In the current study, it 

is predicted that: 

H1. The MDD group will have slower response times, relative to the control group. 

H2. The MDD group will have worse accuracy for target trials, relative to the control group. 

H3. The MDD group will have better or no different accuracy for inhibitory lure trials, 

relative to the control group. 

H4. The MDD group will exhibit dysfunction in frontal circuitry during successful and 

unsuccessful behavioral inhibition, relative to controls.  Specifically, the MDD group will 

show bilateral frontal hyperactivation for successful rejection trials.          

Method 

Participants 

 This study was conducted using a portion of the existing data from two ongoing studies 

and one completed study (Langenecker et al., 2007b) examining individuals with major 

depressive disorder (MDD) and matched healthy controls (HC).  The current set of participants 

included 26 individuals with MDD (18 females) and 26 healthy controls (17 females).  

Participants were initially evaluated with the structured clinical interview for the DSM-IV (SCID-

I; First et al., 1995) to determine psychiatric diagnosis.  A score of ≥15 on the Hamilton 

Depression Rating Score (HDRS) was used as inclusion criteria for MDD participants.  Healthy 

controls receiving an HDRS score >5 were excluded.  MDD participants with comorbid 
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disorders other than panic disorder, GAD, or social phobia were excluded.  Exclusion criteria for 

both groups included any history of serious medical illness, any use of psychoactive substances, 

history of DSM-IV alcohol or drug dependence within the past five years, head injury with loss 

of consciousness, or any regular tobacco use.  Further exclusion criteria for HCs were prior 

treatment with a mental health professional and first or second degree relatives with alcohol or 

substance abuse, affective disorders, Schizophrenia, or anxiety disorders. All participants met 

their respective group‘s inclusion and exclusion criteria and were further included in the current 

study if they had completed the PGNG task during an fMRI scan.  Therefore the data from a total 

of 52 individuals (26 MDD) was available for behavioral and imaging analyses. 

Independent sample t-tests were performed on the demographic variables of interest in 

order to determine whether there were differences between the HC and MDD groups.  The 

control group did not differ significantly from the patient group in age, t (50) = .41, p = .582, 

level of education, t (50) = 1.24, p = .067, or Shipley IQ (Shipley, 1946), t (49) = .10, p = .205. 

There were no differences between the two groups in gender distribution, X
2
(1) = .087, p = .768.  

As expected, the two groups were significantly different on the Hamilton Depression Rating 

Scale-17 (Hamilton, 1960), t (50) = -21.88, p < .001, with the MDD group (M = 19.52, SD = 

4.11) exhibiting significantly higher scores than the control group (M = .85, SD = 1.42). 

Demographic data for the two groups are presented in Table 1.     

Measures 

Hamilton Depression Rating Scale.  The Hamilton Depression Rating Scale (HDRS) is 

a 17-item inventory that is administered by a clinician or trained research associate.  The scale 

attempts to quantify the severity of depression with questions regarding physical, psychological 

and emotional well-being.  The first 17 items of the questionnaire are graded and questions 18-21 
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give more information about the depression (Hamilton, 1960, 1967) and our group has 

demonstrated strong interrater reliability in administration (Langenecker et al., 2007b, 2010). 

Shipley Institute of Living Scale.  The Shipley Institute of Living Scale (Shipley, 1946) 

is comprised of two subsections aimed at measuring intellectual ability.  The first subsection 

involves vocabulary and the second subsection involves abstract reasoning (Villar, 2005). 

Task 

 Parametric Go/No-go Task. The PGNG task involves three levels of ascending 

difficulty (Langenecker et al., 2005, Figure 1).  Each level consists of a stream of black 40-point 

Times font letters against a white background on a computer.  The letters are presented for 500 

ms each with 0 ms in between each letter presentation.  The participant is encouraged to respond 

as quickly as possible by hitting a predetermined computer key (letter ―n‖) with the index finger 

of their most comfortable hand. 

 Level 1 is a static-inhibition task that allows the participant to develop a prepotent 

response to a set of three target letters (here ―x,‖ ―y,‖ and ―z‖).  The target letters appear 

interspersed among other letters and the participant is instructed to respond every time they see a 

target letter, regardless of the order in which they are presented (e.g., respond to both x, y, z and 

y, z, x).  Because the participant must respond to the target letters every time regardless of their 

order, the first level of PGNG is a simple executive functioning test of attention and response 

time (Langenecker et al., 2007a).  Dividing the number of correct target responses by the total 

number of possible target responses for Level 1 gives the percentage of correct target trials 

(PCTT—sustained attention and set maintenance), or total hits in the fMRI analyses.  The 

average response time for correct targets for Levels 1, 2, and 3 is labeled as the reaction time to 

hits (RT—simple processing speed).  



DIFFERENTIAL ACTIVATION IN MDD  30 

 

 Unlike Level 1, Level 2 only consists of two target letters (―x‖ and ―y‖) and context is a 

factor in determining whether an ―x‖ or a ―y‖ is a target (hence go/no-go).  The participant is 

instructed to press the ―n‖ key every time they see an ―x‖ or a ―y‖ in alternating order.  This is 

labeled as the ―non-repeating rule.‖  The participant must use working-memory (WM) to 

remember which target they just responded to and thus cannot respond to again until they 

respond to the alternate letter (e.g., after responding to ―y,‖ the WM target is ―x‖ and the WM 

inhibit set is ―y‖).  Level 2 is seemingly more difficult than Level 1 as participants are required 

to inhibit the learned prepotent response from Level 1.  However, only two letters must be kept 

in WM at a time and a good approach is to remember only the letter that must be responded to 

next and thus not use resources otherwise necessary to keep both the to-be responded to letter 

and the letter to inhibit in WM at once.  Level 2 also measures sustained attention and set 

shifting (PCTT) along with complex processing speed (RT) and response inhibition (PCIT).  For 

both Levels 2 and 3, response inhibition was measured by dividing the total number of times a 

participant successfully inhibited a response by the total number of times it was necessary to 

inhibit a response.  

 Level 3 is again a go/no-go level, but the aforementioned anticipation strategy is hindered 

by the addition of a third target (now ―x,‖ ―y,‖ and ―z‖) with the same non-repeating rule in 

effect.  The three targets must now be responded to in alternation such that once ―y‖ is responded 

to, both ―x‖ and ―z‖ must be held as potential targets in WM while ―y‖ must be held in the WM 

inhibit set.  In Level 3 the participant loses some ability to anticipate the next target response and 

must constantly shift the target set.  Although Level 3 is much more difficult than Level 2 (and 

Level 1), it requires sustained attention, response inhibition, and set shifting similar with Level 2.  

PGNG Levels 2 and 3 have been shown to measure more complex executive functioning skills 
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and context-based inhibition while addressing oft-encountered ceiling effects in the performance 

on young, healthy adults (see Langenecker et al., 2005, 2007a).  The PGNG task is pertinent to 

the current study because it will allow for a more sensitive measure of the differences between 

healthy controls and participants with MDD in regards to IC, set shifting and other complex 

executive functions.  By using a sensitive measure like the PGNG during fMRI, the current study 

hopes to better elucidate any differences in functional activation that exist between MDD and 

healthy control participants.  

Procedures 

 The current studies were advertised in local newspapers, in outpatient clinics, and within 

the Mood Disorders Program at the University of Michigan.  Interested participants were 

screened over the phone and made aware of the inclusion and exclusion criteria.  Informed 

consent was obtained and participants were further screened for items that would prohibit their 

engagement with the fMRI (e.g., pacemakers, metallic surgical devices, etc.). 

Participants meeting all inclusion criteria were brought in for an initial personal interview 

that was comprised of the Structured Clinical Interview for DSM-IV (SCID-I).  The participants 

then completed the Hamilton Depression Rating Scale (HDRS) and Shipley Institute of Living 

Scale, as well as other neuropsychological tests beyond the purview of the present study. 

Participants‘ second visit consisted of the fMRI, acquired on a GE Sigma 3T scanner 

(release VH3, Milwaukee, Wisconsin).  They performed a practice run of the PGNG before 

entering the scanner and, after all of their questions had been addressed, they completed the 

experimental protocol inside the scanner.  During fMRI, participants also performed facial 

emotion perception, monetary incentive delay, and resting state tasks.  The data for the latter 

three tasks are not examined in the current study.            
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MRI Acquisition and Processing 

Imaging was performed using a GE Signa 3 T scanner (release VH, Milwaukee, 

Wisconsin). The fMRI series consisted of 30 contiguous oblique-axial sections; 4 mm thick to 

cover the brain acquired using a forward-reverse spiral sequence. The typical image matrix was 

64 x 64 over a 24 cm field of view for a 3.75 x 3.75 x 4 mm voxel. The 30-slice volume was 

acquired serially at 2000 ms temporal resolution for a total of 720 time points over six runs.  The 

entire scanning procedure and protocol for processing is described in detail in a prior work 

(Langenecker et al., 2007b) and includes coregistration, normalization, and smoothing (5 

FWHM).  First level individual models include regressors for correct hits and rejections, as well 

as incorrect responses (commissions and omissions).  Missed opportunities (i.e., lure stimuli 

following an omission), were also entered as nuisance regressors. Analyses of neural activation 

were conducted with Statistical Parametric Mapping (SPM; version 5) software.   

Statistical Analyses 

 The alpha threshold of significance was p < .05 for all behavioral tests.  The first 

hypothesis concerned differences in response time between the MDD and control groups, 

predicting that the MDD group would have greater response times across trials.  In order to test 

hypothesis one, a 2 x 3 repeated measures analysis of variance (ANOVA) was performed on 

response time for the three levels of the task with group (MDD x control) as the independent 

variable and response times for levels one through three as the dependent variable.  To test the 

second hypothesis, predicting that the MDD group would have worse accuracy for target trials, a 

2 x 3 repeated measures ANOVA was performed on target accuracy with group (MDD x control) 

as the independent variable and accuracy to target trials in the three levels of the task as the 

dependent variable.  Likewise, to test the third hypothesis, predicting that the MDD group would 
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have equal or better accuracy for inhibitory lure trials, a 2 x 2 repeated measures ANOVA was 

performed, with group (MDD x control) as the dependent variable and accuracy for inhibitory 

lure trials in the latter two levels of the task as the dependent variable. 

 The functional analyses were done using SPM-5.  The whole brain corrected threshold 

for significance for all analyses (p < .04) was computed with a monte carlo simulation using the 

program AlphaSim.  This program takes into account the probability of height by extent 

thresholding, considering voxel size and spatial smoothing. As such, a p < .001, extent of 264 

mm3, and smoothing of 5 FWHM with the acquisition parameters results in 4% whole brain 

significance detection errors in the monte carlo simulation.  Hypothesis four, regarding 

differences in activation between the MDD and control groups was tested using four separate 

ANOVAS with group (MDD x control) as the independent variable and each of four variables in 

the PGNG task as the dependent variables.  These independent variables were BOLD fMRI 

changes due to hits in the static Level 1 (3 target go condition), hits in the context-dependent 

levels two and three, correct rejections (successful response inhibition), and commissions (failed 

response inhibition).  A planned ROI analysis was also conducted for each of the four behavioral 

regressors in comparison between HC and MDD in right IFG (Brodmann areas 44-47), with a p 

< .01 and mm3 > 120.  

Results 

Correlations 

 Table 2 shows the correlations between the behavioral measures for each Level of the 

PGNG task.  As indicated, RT and PCTT variables intracorrelate for all three Levels of the task.  

Likewise, PCIT variables correlate for levels two and three of the task.  There is no measure of 

IC in level one, but RT and PCTT are modestly correlated, r (52) = -.24, p = .09.  For Level 2 of 
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the task, RT correlated with PCTT, r (52) = -.27, p = .05, RT correlated with PCIT, r (52) = -.35, 

p = .01, and PCTT correlated with PCIT, r (52) = .46, p < .01. None of the dependent variables 

correlate on Level 3 of the task.     

Repeated Measures ANOVAs for Performance Variables 

 A series of three repeated measures ANOVAs were conducted for response time, 

accuracy in target trials, and accuracy in inhibitory trials, respectively.  The means and standard 

deviations for these dependent variables are reported in Table 3.  Each ANOVA was followed by 

paired posthoc t-tests as warranted by significant main effects. 

Response time to hits.  First, response time (RT) was compared across the three levels of 

the PGNG using a 2 (group) x 3 (level) repeated measures ANOVA.  There was a significant 

effect of Level on RT, with RT decreasing as the levels increase in difficulty, F (2, 49) = .151, p 

< .001.  There was no interaction between group and Level, F (2, 49) = .959, p = .357.  The 

difference in RT between groups was significant, with slower performance in the MDD group, F 

(1, 50) = 4.602, p = .037 (see Figure 2). 

A paired-sample t-test was used to evaluate the effect of PGNG level on response time 

(RT).  There was no significant difference in RT between Level 1 and Level 2, t (51) = -1.76, p = 

.084, but there was a significant difference in RT between Level 2 (M = 485.30, SD = 60.95) and 

level 3 (M = 543.61, SD = 58.93), t (51) = -12.55, p < .001.  Both the control group, t (25) = -

10.66, p < .001, and the MDD group, t (25) = -7.51, p <.001, showed significant slowing from 

Level 2 to Level 3.  The change in response time between Level 1 and 2 was not significant for 

either group.     

Accuracy for target trials.  Accuracy for target trials was compared across the three 

Levels using a 2 (group) x 3 (level) repeated measures ANOVA.  There was a significant effect 
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of Level on target trial accuracy, with accuracy decreasing with Level, F (2, 49) = .578, p < .001.  

There was no interaction between group and Level, F (2, 49) = .967, p = .441, and the difference 

in target trial accuracy between groups was not significant, F (1, 50) = .10, p = .753.  

A paired t-test was used to evaluate the effect of Level on general target accuracy.  

Overall, there was a significant difference in target accuracy between Level 1 (M = .96, SD = 

.05) and Level 2 (M = .93, SD = .09), t (51) = 2.45, p = .018.  There was a significant effect of 

Level 3 on target accuracy, in comparison to Level 1, t (51) = 6.05, p < .001, and level 2, t (51) = 

5.05, p < .001.  The change in accuracy between Level 1 and 2 was not significant for either 

group.  Both the control group, t (25) = 3.31, p = .003, and the MDD group, t (25) = 3.77, p = 

.001, showed a significant decrease in target accuracy between Levels 2 and 3. 

Accuracy for inhibitory trials.  Accuracy for inhibitory trials was compared between 

Levels 2 and 3 using a 2 (group) x 2 (level) repeated measures ANOVA.  There was a significant 

effect of level on inhibitory accuracy, with Level 3 decreasing in accuracy, F (1, 50) = .629, p < 

.001.  There was no interaction between group and level, F (1, 50) = 1.0, p = .998.  The 

difference in inhibitory target trial accuracy between groups was not significant, F (1, 50) = .161, 

p = .690.  

Again, paired t-tests were performed to evaluate the effect of level on accuracy for 

inhibitory trials.  Inhibitory trials were only present for Levels 2 and 3.  There was a significant 

difference in inhibitory accuracy between Level 2 and 3, t (51) = 5.49, p < .001.  Both the control 

group, t (25) = 3.60, p = .001, and the MDD group, t (25) = 4.14, p < .001, showed a significant 

decrease in inhibitory accuracy between Levels 2 and 3.    

Functional Imaging Results 
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Event-related responses to hits (correct targets) in the Level 1, 3 target go condition 

(i.e., Level 1).  For both groups there was significant activation for hits bilaterally in ACC and 

middle occipital cortex.  There was also activation in right paracentral frontal, medial frontal, 

superior frontal, and superior temporal gyrus.  Areas of left activation included precentral, 

posterior insula, and superior temporal, within the insula.  The control group did not show 

significantly more activation than the MDD group, but the MDD group showed greater 

activation in left precentral and midbrain and in right cerebellum.  Regions of activation for hits 

in Level are located in Table 4.   

Event-related responses to hits in the Level 2 and 3 Go/No-go conditions (i.e., Levels 

2 and 3).  For both groups there was significant activation for hits bilaterally in middle frontal 

and middle temporal regions.  There was also activation in right precentral, medial frontal, 

superior frontal, middle occipital, and superior parietal regions as well as left fusiform and 

inferior parietal lobule.  The MDD group did not show significantly more activation than the 

control group, but the control group showed greater activation in right inferior frontal gyrus.  

Regions of activation for hits in the Level 2 and 3 Go/No-go conditions are located in Table 5.   

Event-related responses to correctly rejected lures in the Levels 2 and 3, Go/No-go 

conditions.  For both groups there was significant activation for correctly rejected lures 

bilaterally in medial frontal gyri.  There was also activation in right lingual and supramarginal 

gyrus and in the left hippocampal tail.  The control group did not show significantly more 

activation than the MDD group, but the MDD group showed greater activation in left dorsal 

cingulate.  Regions of activation for correctly rejected lures in the Level 2 and 3 Go/No-go 

conditions are located in Table 6.  The planned region of interest (ROI) analyses for rejections 

within the inferior frontal gyrus are reported below. 



DIFFERENTIAL ACTIVATION IN MDD  37 

 

Event-related responses to commission errors in the Level 2 and 3, Go/No-go 

conditions.  For both groups there was significant activation for responses to commission errors 

bilaterally in middle frontal and posterior lobule.  There was also activation in left medial frontal, 

inferior frontal, and cuneus.  The MDD group did not show significantly more activation than the 

control group, but the control group showed greater activation in right middle frontal and 

superior frontal regions.  Regions of activation for responses to commission errors are located in 

Table 7. 

Event-related responses to all events of interest within right inferior frontal gyrus 

(IFG).  A final planned analysis was conducted within the right inferior frontal gyrus in 

comparison of the HC and MDD subjects. As right IFC is thought to play the most pivotal role in 

IC, we used a relaxed threshold and focused set of analyses on Brodmann areas 44-47.  Using the 

Wake Forest Pick Atlas and these Brodmann areas, with a dilation of 2 to cover all gray matter 

areas, we used a combined height by extent threshold of p < .01 and mm3 > 120.  There was 

activation in right IFG that was greater in HC relative to MDD for rejections (50, 20, 18, Z = 

2.91, p =.002, 1640 mm3).  There was also a larger IFC cluster more active for HC relative to 

MDD in a more anterior right IFG cluster in the commissions analysis (46, 44, 20, Z = 3.98, p < 

.0001, 2696 mm3).  There were no areas of greater activation for HC relative to MDD for the 

Level 2 and 3 Hits only condition that could be considered within the right IFG.  An area of 

anterior insula/orbital frontal cortex (36, 24, 4, Z = 3.43, p < .0001, 784 mm3) was more active 

in HC relative to MDD for the Level 1 targets, which includes set shifting and maintenance 

components.  The MDD subjects exhibited activation greater than HCs in two small ventral IFG 

clusters for commissions (44, 0, 6, Z = 2.49, p = .006, 464 mm3 and 48, 22, 10, Z = 2.17, p = 

015, mm3 = 136).  A smaller right IFG cluster was more active in MDD relative to HC for Level 
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1 hits only (60, 18, 18, Z = 2.31, p = .01, mm3 = 168), with no areas in right IFG more active for 

MDD relative to controls for either rejections or hits in Levels 2 and 3.  The areas of greater 

activation in HC relative to MDD, several of which survive FDR correction, are shown in Figure 

7.   

Discussion 

This study explored the differences between healthy individuals (HC) and individuals 

diagnosed with Major Depressive Disorder (MDD) using an IC task.  The MDD group exhibited 

significantly slower reaction times than the HC group in each of the three levels of the task, 

although there were no significant differences between the two groups on either target trial 

accuracy or inhibitory lure accuracy.  The imaging results indicated that the task was successful 

in engaging activity within regions typically implicated in IC and sustained attention (e.g., ACC, 

DLPFC, and right IFG; Aron, Robbins, & Poldrack, 2004; Berkman, Burkland, & Leiberman, 

2009; Ckikazoe, Konishi, Asari, Jimura, & Miyashita, 2007; Hedden & Gabrieli, 2010; McNab 

et al., 2008; Rubia et al., 2001).  The task was also designed in a way that allowed for enough 

error events that differences in sustained attention and IC activation between MDD and control 

participants could be compared across levels for hits, successful rejections, and errors of 

commission.   

Engagement of Attentional Control and Set Maintenance Areas in Level 1 Go-Only 

Condition 

Activation for hits in Level 1 of the task registered significant activation for both groups 

bilaterally in ACC and middle occipital cortex, as well as right lateralized activation in 

paracentral, medial and superior frontal and temporal regions.  The ACC has been implicated in 

focusing attention on relevant stimuli in order to minimize distraction by irrelevant ones.  Orr 
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and Weissman (2009) used an attentional cueing task and found that dorsal ACC is more 

involved in focusing attention on relevant stimuli, while rostral ACC is involved earlier in 

spotting potential conflict with competing stimuli.  ACC activation for hits in level 1 of the 

PGNG is suggested to be a mechanism whereby individuals focus attention on the relevant 

stimuli (i.e., X, Y, and Z in any order) and prevent distraction from irrelevant stimuli (i.e., other 

letters).   

Interestingly, although Level 1 has only a static inhibitory component, the ROI analysis 

revealed two areas of significant activation in right IFG that were greater in the MDD group, 

relative to the controls.  There is a static measure of IC because there are three items that are 

perpetually within the target group of memory (i.e. X, Y, and Z in any order) and all of the other 

letters serve as incorrect lures, or distracters, in memory.  This does not provide the contextual, 

set-shifting IC challenge to HC or MDD that Levels 2 and 3 provide. However, it is noteworthy 

that MDD had significantly greater activation in right IFG in Level 1, an area of major import 

within the IC network (Hedden & Gabrieli, 2010; Rubia et al., 2001).  This might suggest that 

the MDD group were working harder than the control group to maintain accuracy in the 

classically ―easiest‖ of PGNG levels.  However, this hypothesized pattern of frontal 

hyperactivation was to a large extent absent within the MDD group in the current study in more 

challenging levels of the task, inconsistent with the earlier work by our group (Langenecker et 

al., 2007b).  Still, regions in which the MDD group exhibited significantly more activation 

included the cerebellum and precentral motor areas, indicating greater necessity for regions 

implicated in fine and more general motor movements during Level 1 of the task.   

Addition of Set-Shifting and Contextual Inhibitory Control for Hits in Levels 2 and 3, 

Go/No-go Conditions 
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 Levels 2 and 3 of the PGNG involve a higher demand on working memory and IC 

because the appropriate target is dependent on changing context, or the last response made.  Both 

groups activated middle frontal cortex, which is likely a result of this increase in demand on 

working memory (Provost, Petrides, & Monchi, 2010).  There were no significant differences in 

hit accuracy between groups, although the MDD group was significantly slower in levels two 

and three of the task.  These results suggest either that the MDD group was decidedly slower in 

order to maintain accuracy in the more difficult go trials of Levels 2 and 3 or that reduced 

response time was an artifact of insufficient activation within inhibitory circuits.    

The right IFG is a region that is suggested to play a major role in inhibiting prepotent 

responses (Aron, Robbins, & Poldrack, 2004; Berkman, Burkland, & Leiberman, 2009; 

Ckikazoe, Konishi, Asari, Jimura, & Miyashita, 2007; McNab et al., 2008), with greater 

activation commonly manifesting as a function of the inhibitory response demands (Goghari & 

MacDonald, 2009).  However, right IFG has also been shown to become active when important 

stimuli are perceived in the environment and not just under instances of behavioral inhibition 

(Hampshire, Chamberlain, Monti, Duncan, & Owen, 2010).  It is also noteworthy that many tests 

of IC focus mainly on behavioral inhibition of a prepotent response.  The contextual set-shifting 

required in the Level 2 and 3 Go/No-go tasks includes elements of inhibition in working 

memory, as described previously by Hasher and Zacks (1979).  It is possible that the IFG is also 

important for inhibition of unwanted thoughts within working memory.  The hypoactivation in 

MDD is related to slower set maintenance and shifting in response time to hits, or changing of 

the target and lure working memory sets.  In the present study, the control group exhibited 

significantly more activation in right IFG, relative to the MDD group for rejections and 

commissions.  Due to the context-dependent nature of Levels 2 and 3, as opposed to the static 
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nature of Level 1, response demands are greater, and therefore significantly more attention and 

inhibition must be placed on important stimuli.  This suggests that the control group might have 

been able to ramp up engagement with the task to a greater degree, which might reflect the faster 

response times present for controls.    

Behavioral Inhibition Successes and Failures in Level 2 and 3 Go/No-go Conditions 

Successful behavioral inhibition involves attention, working memory, and the activation 

of the IC network within the brain (Aron, Robbins, & Poldrack, 2004; Berkman, Burkland, & 

Leiberman, 2009).  Our whole-brain between-group analyses revealed that the MDD group had 

greater activation in dorsal cingulate cortex during correct rejections, but planned ROI analyses 

showed that controls had greater activation in right IFG.  During errors of commission (i.e., 

unsuccessful behavioral inhibition), the control group had greater activation in more anterior 

regions of right IFG and also bilateral superior and middle frontal gyri, while the MDD group 

had greater activation in a smaller cluster in ventral IFG.  The comparison between correct 

rejections and errors of commission is the crux of the PGNG task as it reveals differentiation in 

neural circuits between and within groups during successful and unsuccessful behavioral 

inhibition.  Contrary to hypothesis 4, it appears that the current MDD group had hypoactivation 

relative to controls in regions implicated in IC.   

Activation in anterior regions of right IFG might seem counterintuitive in the face of 

unsuccessful behavioral inhibition because right IFG is implicated in successful IC.  However, 

more anterior regions of right IFG have also been shown to be active in instances of failed or 

―lost‖ inhibition.  For instance, one study found activation in anterior right IFG when participants 

were instructed to lose to a computer in a game of rock, paper, scissors (Matsubara, Yamaguchi, 

Xu, & Kobayashi, 2004).  The activation in ventral IFG present in the MDD group during errors 
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of commission might suggest a broader role of ventral IFG in the response inhibition task in 

general, whereas a combination of IFG, dACC, and DLPFC might be necessary to fully process 

lures and targets and make successful rejections (Cai & Leung, 2009).  While both groups 

performed similarly in inhibitory lure trials, the control group was able to do so with a 

significantly quicker response time, suggesting better efficiency of inhibitory circuitry.          

The relative hypoactivation in MDD contradicted hypothesis 4, and is somewhat puzzling 

in that it included some of the same patients as a previous study (Langenecker et al., 2007b).  

Many of the newest recruits to the MDD group had a current diagnosis of MDD with comorbid 

anxiety.  It is quite possible that comorbid anxiety confounded the results because anxiety has 

been found to have a dulling effect on the frontal lobes, which is manifest in hypoactivation and 

irregularity relative to controls (Britton et al., 2010; Etkin, Prater, Hoeft, Menon, & Schatzberg, 

2010).  Analysis of comparisons between those MDD subjects with and without comorbid 

anxiety is an appropriate area for future investigation.  There is also the possibility that a larger 

sample size with a larger number of individuals with pure MDD might have increased the 

significance of the activation in the MDD group.       

The PGNG task did not attempt to evoke any affective state, with the aim of investigating 

general cognitive inhibition without the confound of emotional stimuli.  This distinction was 

made as a result of recent data suggesting that MDD might not only be characterized by the 

inability to inhibit negatively salient stimuli, but that different inhibitory mechanisms (e.g. 

emotional and cognitive) might share the same neural pathways (Berkman, Burkland, & 

Lieberman, 2009).  Berkman and colleagues found evidence for a form of ―inhibitory spillover‖ 

in affective inhibition in a task that only intentionally engaged cognitive inhibitory networks.  In 

addition, cognitive reappraisal tasks with MDD subjects demonstrate hyperactivation in right 
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IFG, suggesting greater general IC needed to regulate unwanted emotions (Johnstone, Reekum, 

Urry, Kalin, & Davidson, 2007).  While the current study did not assess the similarities and 

differences between emotional and cognitive inhibitory circuitry, the imaging data suggest 

differences in inhibitory networks for affectively neutral stimuli.   

One study found that lesions in right IFC, which cause an obvious decrement in function, 

were significantly associated with reductions in reaction time in response inhibition, measured 

by Stop-Signal Reaction Time (Aron, Robbins, & Poldrack, 2004; Verbruggen & Logan, 2009).  

One of the hallmarks of MDD is psychomotor slowing (Bulmash et al., 2006); with the current 

task, the MDD group was significantly slower than the controls in each of the three levels.  It is 

hypothesized that hypoactivation in frontal circuitry—regions often implicated in planning and 

executing (Hedden & Gabrieli, 2010)—might underlie psychomotor slowing and other common 

higher order dysfunctions in depression.  The current study argues that the hypoactivation in 

right IFC during the PGNG task is linked to the negative rumination and often overwhelming 

feelings of worthlessness common to MDD (Berman et al., 2011; Young & Nolen-Hoeksema, 

2001).  Future research should aim to answer the question of directionality of these findings.  

Does inadequate activation of right IFC lead to reduced cognitive and emotional control and thus 

depressive symptomology?  Or alternatively, does depression put some form of strangle-hold on 

the activity of the frontal lobes, specifically right IFC, BG, and dACC, i.e., regions shown to be 

involved in IC?      

Recent work with a combination of fMRI and diffusion tensor imaging (DTI) has 

revealed that both the function and the structure of right IFC play a role in response inhibition 

(Forstmann et al., 2008).  Specifically, when healthy controls were compared based on their 

accuracy and RT measures in a cueing version of the Simon task, those that were more proficient 
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in regards to response inhibition had comparably more activation in right IFC than those with 

less proficiency in the task.  Further, DTI revealed that greater fractional anisotropy or white 

matter connectivity within rIFC was correlated with more successful outcomes on the task.  

Future studies should incorporate patients with MDD in studies with DTI in order to elucidate 

any underlying structural differences.          

Depressed individuals have been shown to exhibit impairment in post-error performance 

in neuropsychological tasks meant to gauge executive function (Pizzagalli, Peccoralo, Davidson, 

& Cohen, 2006).  While impairment in post-error performance was outside the scope of the 

current study and not included in behavioral or functional analyses, it was a partial basis for the 

prediction that MDD participants would display worse performance for target and inhibitory lure 

trials.  While the current behavioral results depict otherwise, the functional data reveal a 

differentiation in activation.  In light of these results, perhaps the current PGNG task was not 

sensitive enough to reveal differences in target accuracy or inhibitory lure accuracy.  In fact, as 

the task was completed twice prior to participants‘ completion of the task during fMRI, the 

effects of interest may have been washed out with practice.  Some have hypothesized that 

decrements in inhibitory accuracy will only be revealed for emotionally salient tasks, although it 

is probably more likely that both dorsal and rostral regions of ACC are important for IC, the 

former for cognitive control and the latter for emotional control (Mohanty et al., 2007; Orr & 

Weissman, 2009).  The current study provides evidence of dysregulation of the cognitive part of 

the ACC in MDD, but not for impairment of behavioral inhibition.  

This honors thesis attempted to better explain behavioral symptomatology common in 

MDD with a computer-based task of IC, as well as functional imaging data to inform the neural 

correlates of performance.  As mentioned earlier, one limitation of the current study was that a 
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large number of participants within the MDD group also met diagnostic criteria for comorbid 

anxiety disorders.  In contrast to earlier studies (Langenecker et al., 2007b) that found frontal 

hyperactivation in the MDD group relative to the control group, the current study found frontal 

hypoactivation.  The hypoactivation in MDD might be an artifact of the comorbid anxiety as has 

been the case in previous studies (Britton et al., 2010; Etkin, Prater, Hoeft, Menon, & 

Schatzberg, 2010).  Likewise, the PGNG task did not appear sensitive enough to distinguish 

between the control and MDD groups on the two accuracy measures (i.e., PCTT and PCIT).  

However, the slower RT in the MDD group, coupled with the differential activation, suggests 

that functional imaging data and multiple behavioral measures are necessary to parse apart the 

frontal dysfunction widely cited in depression.  As is the case in most studies that make use of 

fMRI, the small participant sample size is a factor in whether or not results reach significance, 

and hopefully future studies will continue to grow in size as more and more individuals fall ill to 

this disorder and demand a response. 

 The importance of this study lies in our illumination of the differences between MDD and 

HC groups in interference resolution and inhibitory circuitry with an IC paradigm.  Specifically, 

the MDD group exhibited hypoactivation in IC circuitry, suggesting a functional deficiency 

within this network.  Importantly, behavioral data alone might not have been sensitive enough to 

elucidate this finding.  However, this study was not meant to single out IC as the only problem 

within clinical depression.  MDD is a multifaceted disorder and clinicians and researchers are 

just beginning to understand its complexity (Boland & Keller, 2010).  Moreover, studies 

involving genetic testing and behavioral therapies are likewise important pieces to the puzzle.  

Based on the current findings, it is imperative that future studies seek MDD patient groups 

without comorbid anxiety, but continue to dissect the neural correlates of dysfunction within 
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frontal circuitry.  Perhaps one day cognitive behavioral therapy will be used to promote efficient 

neural activation during tasks of cognitive control and thus teach better response to 

pharmacotherapy.             
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Table 1 

Demographic Characteristics 

 MDD (n = 26) HC (n=26) 

 M (SD) M (SD) 

Age 37.23 (12.37) 38.58 (11.57) 

Education 15.62 (2.82) 16.46 (2.02) 

HDRS-17 19.52 (4.11) 0.85 (1.42) 

Shipley IQ  105.64 (9.02) 105.96 (13.15) 

Note. HDRS-17 = Score on the Hamilton Depression Rating Scale (Hamilton, 1960; 

Hamilton, 1967), MDD = Participants Diagnosed with Major Depressive Disorder, HC = 

Healthy Control Participants, Education = Participants‘ years of formal education. 
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Table 2        

Go/No-go Correlations        

  2. 3. 4. 5.  6. 7. 8. 

1. Level 1 RT 0.71 0.76 -0.24 -0.15 -0.15 -0.19 -0.10 

2. Level 2 RT   0.84 -0.08 -0.27 -0.13 -0.35 0.00 

3. Level 3 RT     -0.05 -0.12 0.00 -0.06 0.16 

4. Level 1 PCTT       0.27 0.46 0.21 0.27 

5. Level 2 PCTT         0.62 0.46 0.20 

6. Level 3 PCTT           0.25 0.07 

7. Level 2 PCIT             0.59 

8. Level 3 PCIT               

Note. Numbers in bold and italics are significant at the 0.01 level (2-tailed). 

  

Numbers in bold are significant at the 0.05 level (2-tailed).  
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Table 3 

PGNG Behavioral Data 

 

 MDD (n = 26) HC (n=26) 

 M (SD) M (SD) 

Trial1RT 493.58 (54.85) 455.72 (35.08) 

Trial2RT 499.71 (63.79) 470.88 (55.46) 

Trial3RT 555.30 (65.95) 531.92 (49.49) 

 

 

Trial1PCTT 

Trial2PCTT                   

Trial3PCTT 

 

 

Trial2PCIT 

Trial3PCIT 

.95 (.04) 

.94 (.06) 

.85 (.12) 

 

 

.74 (.19) 

.61 (.21) 

.96 (.05) 

.91 (.11) 

.84 (.17) 

 

 

.72 (.21) 

.59 (.18) 

Note. RT = Response Time, PCTT = Percent Correct Target Trials, PCIT = Percent 

Correct Inhibitory Trials. 

 

 

 

 

 

 

 

 

 



DIFFERENTIAL ACTIVATION IN MDD  67 

 

Table 4 

Regions of Brain Activation for the Hits (Correct Go Targets) in the Level 1(3 Target Go) 

Condition 

Lobe/Region Foci BA x y z mm3 Z 

HC and MDD       

Frontal Paracentral 5 4 -40 56 2216 4.75 

 Precentral 4 -41 -17 43 832 4.15 

 Anterior Cingulate 32 1 30 24 11904 4.5 

  25 -1 14 -7 376 4.43 

 Medial Frontal 6 1 1 58 448 4.3 

 Superior Frontal 9 8 57 27 320 3.9 

Occipital Middle Occipital 18/19 -45 -71 -9 3224 5.38 

  18 26 -93 6 3672 4.51 

Temporal Post. Insula 13 -50 -42 19 1240 4.01 

 Superior Temporal 22/21 52 -38 8 2232 4.63 

  

Superior Temporal/ 

Insula 22/13 -45 -21 2 1712 4.54 

HC > MDD        

None               

MDD > HC        

Frontal Precentral 4 -41 -17 43 336 3.69 

Brainstem Midbrain  -6 -40 -15 408 3.49 

Cerebellum Culmen   8 -48 -10 488 3.79 

Note. BA = Brodmann area. 
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Table 5 

Regions of Brain Activation for the Hits in the Level 2 and 3 Go/No-go Condition 

Lobe/Region Foci BA x y z mm3 Z 

HC and MDD        

Frontal Precentral 6 43 -5 47 3648 4.36 

 Medial Frontal 6 3 28 35 360 3.8 

 Middle Frontal 9 34 41 27 304 3.79 

  10 -34 47 18 17984 5.76 

 Superior Frontal 6 1 14 53 992 4.23 

Occipital Middle Occipital 18 38 -83 -10 7176 5.25 

 Fusiform 18 -25 -95 -10 4224 5.48 

Parietal Superior Parietal 7 24 -63 48 5952 5.16 

 Inferior Parietal 40 -48 -52 41 4648 5.11 

Temporal Middle Temporal 21 -59 -27 -7 1832 4.52 

    21 59 -34 -9 352 4.17 

        

HC > MDD        

Frontal Inferior Frontal 47 26 24 -4 352 4.46 

        

MDD > HC         

  None             

Note. BA = Brodmann area. 
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Table 6 

Regions of Brain Activation for Correct Rejections in the Level 2 and 3 Go/No-go Conditions 

Lobe Foci BA x y z mm3 Z 

HC and MDD       

Frontal Medial Frontal 10 6 55 -4 712 4.47 

 Medial Frontal 9 3 53 20 448 3.48 

Occipital Lingual 17/18 15 -106 -8 1880 4.86 

Parietal Supramarginal 40 48 -56 37 320 4.01 

  

Hippocampal 

Tail   -24 -42 8 264 3.64 

HC > MDD        

None               

MDD > HC         

Frontal Dorsal Cingulate 24 -10 -15 38 904 3.79 

Note. BA = Brodmann area. 
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Table 7 

Regions of Brain Activation for Commission Errors in the Level 2 and 3 Go/No-go Conditions 

Lobe Foci BA x y z mm3 Z 

HC and MDD       

Frontal Medial Frontal 9 -1 51 29 5088 5.2 

 Middle Frontal 10 -34 51 9 1032 4.54 

  8 -40 16 41 672 4.11 

 Inferior Frontal 47 -48 30 -8 272 4.43 

Occipital Cuneus 18 -17 -102 2 440 3.82 

Cerebellum Posterior Lobe  31 -83 -31 4784 4.73 

      -34 -75 -34 792 4.3 

HC > MDD        

Frontal Middle Frontal 6 38 1 49 488 5.01 

  6 27 -7 59 376 4.09 

  10 40 39 19 360 3.98 

 

Superior 

Frontal 8 19 37 40 400 4.17 

    6 1 14 59 304 3.68 

MDD > Control        

None               

Note. BA = Brodmann area. 
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Figure 1. Parametric Go/No-go task.  This figure illustrates the three levels of the PGNG task.  

The first level is static and the second two are context-dependent.  All letters appear in blue.    
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Figure 2. Response times to targets in each level of the PGNG. This figure illustrates the slower 

response times to targets in the MDD subjects.   
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Figure 3. Activation for hits in Level 1 of the PGNG.  Pink represents significant activation for 

both groups and blue represents significant activation for the MDD group. 
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Figure 4. Activation for hits in Levels 2 and 3 of the PGNG.  Cyan represents significant 

activation for both groups and green represents significantly greater activation for the HC group 

compared to the MDD group. 
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Figure 5. Activation for correct rejections in Levels 2 and 3 of the PGNG.  Yellow represents 

significant activation for both groups and blue represents significantly greater activation for the 

MDD compared to the control group.  
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Figure 6. Activation for errors of commission in Levels 2 and 3 of the PGNG.  Red represents 

significant activation for both groups and green represents significantly greater activation in the 

HC group compared to the MDD group. 
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Figure 7. Greater activation in the healthy control subjects compared to the MDD group in 

regions of the right IFG for targets, rejections, and commissions.  Cyan represents greater 

activation in the HC group for level 2 and 3 hits, yellow represents greater activation in the HC 

group for rejections, and red represents greater activation in the HC group for commissions, all 

in comparison to the MDD group.  Two clusters in ventral IFG that are greater in MDD relative 

to HC are not shown. 

 


