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Abstract 

Students arrive in class with differing backgrounds. Studying the classroom performance of students with 

a knowledge of these backgrounds allows us to better understand how a student is transformed by a 

course of instruction. While we expect that some background factors, such as prior test scores and 

academic preparation, should influence student success, we are concerned about inappropriate impact 

that results from uncontrollable factors, such as gender, socio-economic status, and race. In particular, a 

gender disparity in Science, Technology, Engineering and Mathematics (STEM) fields is nationally 

recognized and especially prominent in physics. With enrollment and success in introductory college 

physics courses a crucial factor in this female underrepresentation, our goal is to investigate the gender 

gap in introductory physics courses at the University of Michigan. We report analysis of data for 48,579 

students who have taken introductory physics courses at UM between Fall 1996 and Winter 2010. We 

clearly detect the presence and persistence of a gendered performance gap in all of these courses in all 

terms considered. We find that differing mathematical preparation accounts for some of this gender gap, 

especially in the female dominated life science sequence. The physical science and engineering sequence, 

which is substantially male dominated, shows a strong gender difference even after differing 

mathematical preparation is accounted for.  Finally, we investigate supplementary study groups as one 

means of intervention, finding that they do not significantly influence student success. From these 

conclusions and relevant literature, we provide recommendations of intervention techniques aimed at 

increasing student success and reducing the gender gap at the University of Michigan.   
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III. Introduction 

A. Statement 

Quantitative study of learning environments has potential to reveal driving factors of student success 

and failure. Exploring correlations between various parameters and student performance can yield 

revealing trajectories. These correlations are found to be independent of instructor, and therefore 

universally applicable. While some variables, such as student effort and academic preparation, are 

expected to affect performance, the influence of other uncontrollable variables, such as gender, race 

and socio-economic status, present an unjust bias. In particular, we will refer to the gender differences 

that arise when controlling for incoming factors as the ‘gender gap’. Furthermore, Havarti et al. assert,  

…heterogeneity rather than homogeneity will lead to progress in the field by introducing new 
perspectives. Kenway and Gough (1998) observe that the intellectual potential of females is an 
untapped source for furthering scientific knowledge. (Hazari, Tai, & Sadler, 2007) 

Whether motivated by equity in the classroom or by the evolution of the field of physics, with a further 

knowledge of what influences effective learning we can then start to answer the question: how can we 

encourage student success for everyone in the course?  

One issue of national concern is the gender disparity in participation in the Science, Technology, 

Engineering and Math (STEM) fields. In particular, physics has historically been a male-dominated field 

with few females. According to a recent report from the American Institute of Physics, “During 2003, 

women earned 22% of the bachelor’s degrees in physics and 18% of the PhDs in physics – a record high” 

(Ivie & Ray, 2005). As compared to other science disciplines, such as Astronomy, this statistic is 

staggeringly low. While women are grossly underrepresented in physics, the problem does not arise 

from a lack of female enrollment in introductory physics courses at the high school level. The “pipeline” 

tracks populations at various points throughout a physics career: high school, bachelor’s degree, PhD 

degree, assistant professor, associate professor and full professor. Examining this pipeline by gender, it 

becomes clear that enrollment in introductory physics courses at the college level is the main 

contributing factor for the drop-off in female involvement; in high school, approximately half of physics 

students are women whereas less than one-fourth of bachelor’s degrees in physics are earned by 

women. After this initial “leak” in the pipeline, women are represented at about the levels we would 

expect based on past degree production (Ivie & Ray, 2005). Enrollment in an introductory college physics 

course is crucial. Perhaps it is the culture of physics or the reputation of a course that drives the choice 

to enroll.  The question remains: what is happening to cause this leak?   

This thesis explores the presence of the gender gap at the University of Michigan in an effort to 

understand the nature of this underrepresentation of females in introductory physics courses. We 

investigate correlations between the gender gap and several parameters that are thought to contribute 

to this inequity. Particularly, we look at both variables specific to a student’s experience in the course as 

well as background factors that are thought to influence learning, placing an emphasis on incoming GPA, 

SAT math score, male to female ratio in the classroom and instructor gender. It is the hope that further 
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understanding will lead to the development of effective intervention techniques and eventually a 

reduction of the gender gap.  

One means of intervention which we explore is the use of study groups led by the University of 

Michigan’s Science Learning Center (SLC). These study groups provide a smaller, more interactive 

atmosphere of learning. We investigate whether these supplementary sessions can serve as a proactive 

step towards increasing the likelihood of student success in an introductory physics course. We began 

this study optimistic that study groups would be found effective in narrowing the gender gap. 

Overall, our main goal is to better understand how students learn in introductory physics courses.  By 

exploring correlations between the incoming students and their final course grades a more complete 

picture of the effects of student identity and pedagogical choices is formed. This information can then 

be used to inform instruction and provide a basis for recommendations of proactive intervention 

techniques. 

This thesis is unusual from other undergraduate physics theses as the topic is not the inanimate world. 

Instead, we focus on analyzing human subjects in the context of a social environment. Despite this 

unique topic, we have tried to approach our data from the perspective of a physicist as we aim to 

provide quantitative evidence to validate or disregard our hypotheses. The training in making 

measurements and determining levels of uncertainty is comparable to that of fellow physics 

undergraduate researchers. It has been our goal to explore how the scientific approaches and 

sensibilities of a physicist might be brought to bear on an unusual problem, but one of great importance 

to the physics community. 

We begin with a summary of relevant literature, first exploring methods of evaluating student 

understanding and subsequently exposing the challenges that arise in using these forms of assessment.  

An additional discussion of literature on the influences of pedagogical decisions and important factors 

which correlate with student success is provided as motivation for our analysis. After reviewing our 

compiled data and two analytical tools, the Kolmogorov-Smirinov Test and Bootstrap Re-sampling, 

which we will use in our analysis, we present our evidence for the presence and persistence of the 

gender gap in introductory physics courses at the University of Michigan. We also explore the influence 

of mathematical preparation, female representation and instructor gender on the gender gap. Next, we 

investigate SLC study groups as a means of intervention, analyzing student success for all students as 

well as by gender. Finally, we conclude with recommendations of ways to improve student performance 

and reduce the gender gap in introductory physics courses at the University of Michigan. 

B. Background 

The pedagogical approaches to introductory physics courses have been, and continue to be, investigated 

by the physics education research (PER) community. It is important to understand this research in order 

to build a foundation for further inquiry. Therefore, we will familiarize the reader with basic concepts 

upon which we will later build. 
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First, we review assessment instruments to provide a basis for evaluating student success. As with all 

assessment techniques, careful consideration what of measurements actually imply is essential as data 

is analyzed. Second, we will summarize the previous research on the effects of student identity upon 

entering the course. Of particular relevance are gender and cumulative GPA.  Finally, an overview of 

what happens in the physics course itself, including curriculum, structure and overall pedagogy, is 

provided. The reader will develop a basic knowledge of physics pedagogy and understand how differing 

instruction techniques can affect student success. Subsequently, we will build on this understanding as 

we analyze the presence of the gender gap, potential correlating factors, and study group intervention 

at the University of Michigan.  

1. Assessment Instruments  

There are many ways to define and evaluate student success. The most widely used method of 

assessment in the field of PER is a concept inventory; a multiple choice conceptual test administered at 

the beginning and end of a term of instruction. Concept inventories stand out in their design by 

accounting for disparities in background knowledge, providing a measurement of how much 

understanding each individual student gains throughout the course. This is especially useful when 

comparing data at different institutions as the gain score attempts to account for student preparation.   

However, while concept inventories test knowledge that is thought to be what typical students should 

learn, these content objectives do not always align with the objectives of a particular course.   

Course grades and student evaluations give another perspective on student understanding and overall 

experience in the classroom. Course grades primarily reflect exam scores, with less emphasis on several 

other course elements, while student evaluations are based on the students’ personal experiences and 

opinions about the course. In our analysis, instead of using concept inventories, we will use course 

grades as a measurement of student performance. Final course grade data is readily available and, in 

some sense, represents what really matters at the end of a course. Course grades should also be better 

aligned with course goals since exams are created by the professor of the course. It is also important to 

recognize that our data is continuous at the University of Michigan, so we need not be concerned with 

calibrating our data with different institutions.  Finally, similar to the gain measured from concept 

inventories, we can account for differences in student background by using grade prediction schemes. 

With predicted grades as a reference point, we can determine if a student does worse, better or the 

same as expected. Like gain scores, this method recognizes differences in student understanding upon 

entering the course. 

We will begin with a brief overview of concept inventories and some of the many factors to consider in 

using these assessments as an indicator of student success.  As we explore the challenges that arise in 

measuring student understanding, we provide the reader with a basis for later understanding relevant 

PER literature. 

a) Overview of Concept Inventories 

Administering tests that probe student understanding of basic physics ideas is a common mode of 

assessment. Such concept inventories are formally defined as, "A multiple-choice instrument designed to 
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evaluate whether a person has an accurate and working knowledge of a concept or concepts" (Lindell, 

Peak, & Foster, 2007).  These timed assessments often present widely held misconceptions and 

common-sense alternatives, known as ‘distracters’, as answer choices. They typically avoid challenging 

quantitative questions and a calculator is not permitted. Additionally, closed-book and closed-note 

restrictions ensure an individual’s knowledge is indeed being tested. 

In particular, a pioneering concept inventory is the Force Concept Inventory (FCI).  The FCI is carefully 

designed to test the basic principles of Newtonian Mechanics, a focus of the traditional first-semester 

physics curriculum.  Topics include kinematics, Newton’s laws, the superposition principle, and force 

analysis. In general, a score of 60% on the FCI is accepted as a reasonable benchmark for an 

understanding of Newtonian concepts (Hestenes, Wells, & Swackhamer, 1992). By collecting question 

response data from the FCI, one can begin to determine which topics are well understood. 

Subsequently, these conclusions can be used to prompt a discussion of potential pedagogical revisions.   

Similarly, The Brief Electricity and Magnetism Assessment (BEMA) aims to explore student 

understanding of the Electricity and Magnetism portion of second-semester physics. Topics covered on 

the BEMA include electric field, electric potential, magnetic field, basic circuits, and applications of 

Maxwell’s equations.  Like the FCI, the BEMA is consciously designed to test a student’s basic knowledge 

of Electricity and Magnetism, exposing weak and strong content areas. 

Strong alignment between assessment and course content is key. Besides these two most popular 

assessments, there are a variety of other comparable concept inventories focusing on different content 

areas.  Such tests include the Astronomy Diagnostic Test (ADT), Conceptual Survey in Electricity and 

Magnetism (CSEM), Diagnostic Exam Electricity and Magnetism (DEEM), Determining and Interpreting 

Resistive Electric Circuits Concept Test (DIRECT), Energy and Motion Conceptual Survey (EMCS), Force 

and Motion Conceptual Evaluation (FMCE), Lunar Phases Concept Inventory (LPCI), Mechanics Baseline 

Test (MBT), Test of Understanding of Graphs in Kinematics (TUG-K), Wave Concept Inventory (WCI), etc. 

(Lindell, Peak, & Foster, 2007). It is important to consider which test, if any, is consistent with the 

content objectives for the course when choosing which assessment to use. Great differences between 

the material that is being taught and the material that is being assessed may reduce a concept 

inventory’s accuracy in portraying student understanding. In these cases, course grades should instead 

be used as an assessment of student success.  

One way to measure how much a student has learned between the beginning and end of the course is 

to administer a concept inventory as a pre-test and a post-test. Both times, the same questions are 

presented in a consistent format. Combining pre-test and post-test scores, a ‘gain score’ can be 

calculated: 

  
                      

             
   

where postscore % and prescore % refer to the fraction of correct answers on the post-test and pre-test, 

respectively. Often, further analysis is conducted by comparing gain scores. This gain score represents 

how much students have learned between the pre-test and post-test; that is, how much student 
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understanding has changed (improved, remained constant, or declined) in the specified time period.   A 

typical FCI gain score is on the order of 25%, indicating that a student erased one fourth of their 

misconceptions, or gained one fourth of what they still needed to learn. Exceptional FCI gain scores are 

on the order of 45% (Lindell, Peak, & Foster, 2007). 

b) Validity of Concept Inventories 

While the use of assessments such as the FCI and BEMA present rich results and form a basis for many 

PER analyses, it is important to deeply consider the accuracy of these assessments.  Foremost, one must 

consider the methodology used in writing a concept inventory. By comparing the similarities and 

differences of many methodological factors, Rebecca Lindell, Elizabeth Peak and Thomas Foster set out 

to answer the question, “Are all concept inventories created equal?” 

 

The results (see Figure 1) indicate all concept inventories are, in fact, not created equal (Lindell, Peak, & 

Foster, 2007).  For example, researcher understanding forms the basis for distracters on the FCI with no 

reported input from student understanding.  Conversely, the EMCS only takes student understanding 

into account when composing distracters, and does not report researchers understanding as a basis of 

distracter construction.  This particular decision will perhaps affect the answer choices presented in the 

concept inventory, yielding different results. 

Figure 1: Methodological Comparison of Concept Inventories 
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Overall, there is no consistent approach to the development of these concept inventories, despite their 

similar analytical applications. Lindell, Peak and Foster urge the reader to consider these varying 

approaches when deeming a concept inventory an accurate source of data. These same considerations 

apply to all assessment instruments, including course grades. 

c)  Development of Distracters 

In addition to the lack of consistency in concept inventory development, there are specific concerns 

about using these assessments as indicators of student understanding. First, there are complications 

introduced by having distracters as multiple choice answer alternatives. Distracters are included with 

the intention of determining whether students have overcome common-sense misconceptions, 

indicating a true understanding of the correct physics explanation.  Because of this, distracters must be 

carefully composed, reflecting typical student misunderstandings, if the question is to be an accurate 

reflection of a student’s grasp on physics concepts. 

Dean Zollman and Sanjay Rebello explored the alignment of responses on FCI questions and equivalent 

open-ended questions with a sample student population of non-majors who generally had some physics 

background at Kansas State University. After administering the FCI to one randomly chosen group and 

the same questions in an open-ended format to another randomly chosen group, the open-ended 

answers were sorted based on naturally occurring categories in the responses. Comparing these 

answers, it is apparent that misconceptions presented in the multiple choice format differ from the 

misconceptions that appear in the open-ended format (Zollman & Rebello, 2004). While there is only 

one right answer, there are many possible wrong answers. It seems that the distracters in the FCI do not 

necessarily reflect the misconceptions of the students. Therefore, conclusions about student 

misunderstanding based on the FCI distracters may not be accurate.  This is a fundamental limitation of 

all multiple choice assessments. 

Furthermore, researchers presented revised multiple choice questions in which the misconceptions 

resulting from the open-ended questions replaced irrelevant FCI distracters. Upon comparing the 

number of students who chose the original FCI distracters verses the revised distracters, the latter 

tended to dominate. Thus, it can again be concluded that, “an analysis of the incorrect responses to FCI 

questions may not be an effective way to determine which parts of the students’ conceptual 

understanding are deficient” (Zollman & Rebello, 2004).  Furthermore, a caveat is included in the final 

discussion of this study warning that distracters are ephemeral; misconceptions fluctuate as the 

students learn physics jargon and confuse content throughout the semester (Zollman & Rebello, 2004).  

Considering these two results, it is clear that not all distracters are useful in identifying misconceptions; 

in fact, most are not accurate. Yet, distracters are still included in concept inventories to fulfill their 

originally intended purpose: differentiate between a student’s true understanding of physics concepts 

and some common prevailing fallacies.  
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d) Format of Questions 

The format of the questions in concept inventories also requires attention. The same question can be 

presented in a variety of different ways including verbal, graphical, diagrammatic and 

mathematical/symbolic. Does the format of the questions affect student performance, and thus, affect 

subsequent conclusions regarding student understanding? David Meltzer administered similar Newton’s 

third-law questions in two different ways: verbal and diagrammatic. He found that correct responses to 

the verbal format are consistently higher than the diagrammatic format, with incorrect responses 

following a similarly consistent pattern (Meltzer, 2005). Since verbal and diagrammatic questions 

produce quite different results, further analysis must bear in mind the implied uncertainty. 

Second, Meltzer presented four quizzes, each containing four similar questions. Every quiz was a 

different representation: verbal, diagrammatic, mathematical/symbolic and graphical.  The analysis of 

the responses to these quizzes revealed generally consistent results among the males, yet a decreased 

performance among females answering the graphically formatted questions. Thus, the format does not 

dramatically affect male performance whereas females tend to do worse on questions involving 

graphical interpretation (Meltzer, 2005).  It is apparent that the format of a question on concept 

inventories affects the accuracy of responses in a gendered manner.    

e) Pre-test Influence on Post-test 

It is a common concern for all gain score assessments that taking a pre-test and, later, taking the same 

assessment as a post-test may inflate the post-test scores. Perhaps, the students remember the 

questions or are desensitized to the format of the assessment. However, this does not prove to be the 

case.  A comparative study at the University of Minnesota, between a control group that takes only a FCI 

post-test and the experimental group that takes both the FCI pre-test and the post-test, yields no 

statistical difference  (Henderson, 2002). 
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Thus, based on these results (see Figure 2) we see that the pre-test does not bias the post-test scores.  

This lack of influence is generally accepted among concept inventory administrators. 

f) Influence of the Lack of Grading Incentive 

With points generally not rewarded for correct answers (but perhaps based on completeness), the 

question arises: do students take this assessment seriously?  To examine this, Charles Henderson 

administered an ungraded FCI pre-test, followed by ungraded and graded post-tests.  With these varying 

grading incentives, Henderson examined how seriously the students took the assessment. Indicators to 

conclude a lack of a serious attitude include refusing to take the test, drawing a picture on the Scantron 

sheet, answering all the same letter, leaving six or more blanks, and other letter patterns in the 

responses.  The results from this experiment (see Figure 3) show that a maximum of 2.8% of students do 

not take the assessment seriously due to the lack of grading incentive (Henderson, 2002). These 

students simply do not try to accurately respond to the questions. 

Figure 2: Comparison of FCI Post-Test Scores 
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What about the students who do respond to the questions? Do they put as much effort in when it is 

ungraded as they do when it is graded?  There is, in fact, a small effect due to the grading incentive: 

about half of a FCI item between the graded test (21.4   0.2) and the ungraded test (20.9   0.2).  Once 

again, this is a relatively small difference which leads to the conclusion that the lack of grading incentive 

does not significantly affect the resulting data (Henderson, 2002). 

g) Effectiveness of Individual Questions on the FCI and BEMA 

Furthermore, detailed studies have been performed on the FCI and BEMA analyzing the effectiveness of 

each individual question.  Upon conducting follow-up interviews with test takers and knowledgeable 

graduate students, it is apparent that some questions contain weak discriminators or confusing diction, 

which likely affects the analysis of these particular questions (Hestenes, Wells, & Swackhamer, 1992; 

Ding, Chabay, Sherwood, & Beichner, 2006). In some studies which utilize concept inventories as a main 

source of data collection, such ineffective questions are omitted in the analysis in order to account for 

this known inaccuracy. 

h) Accepted Validity 

Overall, despite the above statistical considerations, concept inventories, particularly the FCI and BEMA, 

are generally accepted and widely used as valid measurements of student understanding by the PER 

community. Analysis of gain scores is considered an accurate basis for testing pedagogical efficacy.  

However, it is important to remember that, with any assessment, uncertainty and biases remain.  

Whether it is the lack of complete methodology review in the development process, a distracter that 

does not reflect a student’s misconception or the choice of question format, analyses and conclusions 

must be considered with care.  In the end, we must recognize that assessments generally provide data 

of what is measured, not necessarily what the experimenter wishes to measure. Concept inventories 

record student answers to particular questions. This may be correlated with ultimate student 

understanding, but they are not perfect measures. 

Figure 3: Signs of Lack of Seriousness 

 



Miller-15 
 

 
 

2. Pedagogy, Coursework and Student Background  

We next review relevant literature that explores specific factors unique to both a student’s identity and 

the structural set-up of the classroom and how they affect student success.  We will begin by exploring 

internal factors, focusing on the effectiveness of different pedagogical techniques in the physics 

classroom.  We will then shift to external factors that the students bring to the course, with an emphasis 

on the impact of gender and prior GPA on student performance.  

Together, internal and external factors give the reader an understanding of what impacts student 

success. This basis motivates our research as we hypothesize which factors may affect student 

performance at the University of Michigan. We will later examine these important parameters in our 

analysis. 

a) Comparing Interactive Engagement and Traditional Instruction 

Introductory physics courses generally have a curriculum that is quite uniform as compared to other 

subjects; however, while the content is consistent, the structure of the activities in the courses varies 

widely.  One basic pedagogical decision is the mode of instruction. Generally, one may view the teaching 

style in relation to two basic categories: interactive engagement and traditional instruction.  Interactive 

engagement is when students are actively engaged in the class.  The key to interactive engagement is 

student participation; this may include, but is not limited to, the creation of a discussion atmosphere, 

use of hands-on experiments, and/or a real-time feedback system.  On the other hand, traditional 

instruction refers to the conventional lecture structure in which the teacher lectures to their students.  

This instructional style invokes little student involvement and aims to teach students primarily via 

lecture presentations. 

Several studies have compared interactive engagement and traditional methods of instruction. In almost 

all studies, better student understanding occurs in courses that utilize interactive engagement methods.  

Richard Hake compares gain scores on the FCI in 62 introductory physics courses at Indiana University 

(N=6542), structured as either interactive or traditional instruction. The results are overwhelmingly in 

favor of interactive instruction. 
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As seen in the above graph (Figure 4), all gain scores for the traditionally taught courses fall into the low-

gain region (g < 0.3) with an average of g=0.23 0.04.  On the other hand, 85% of the interactive 

engagement courses fall in the medium-gain range (0.7   g   0.3) and 15% in the low-gain region, with 

an average of g=0.48 0.14.  While no courses achieved a high-gain (g   0.7), the results are conclusive: 

a higher gain score is achieved in the courses taught with interactive engagement (Hake, 1997). 

Similarly, Catherine Crouch and Eric Mazur produce parallel results from introductory physics courses at 

Harvard University. Here, the term ‘peer instruction’ refers to modifications to the traditional lecture 

format which include questions designed to engage students and uncover difficulties with the material.  

Peer instruction is one widely adopted example of interactive engagement methods.  Once again, peer 

instruction and traditional courses are compared on the basis of FCI gain scores (Crouch & Mazur, 2001).    

Figure 4: Histogram of Average Normalized Gain 

White bars correspond to traditionally taught courses whereas black bars correspond to interactive 

engagement courses. 
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In Figure 5, the upper dotted line represents the average gain score of the interactively taught courses 

(g=0.48) and the lower dotted line represents the average gain score of the traditionally taught courses 

(g=0.23).  The results are startlingly clear: higher gain scores occur in courses that are interactively 

structured whereas lower gain scores occur in courses that are traditionally structured. 

There is a surprising feature in these results. Crouch and Mazur report exceptionally high gain scores; 

higher than those seen in any other study. This makes us wonder whether these results are unique to 

the Harvard environment, and possibly not applicable elsewhere. 

b) Seat Location 

Another factor to consider particularly in large introductory courses is where a student sits in a large 

lecture hall relative to the front. Perhaps seat selection itself contributes to student performance. A 

study at the University of Colorado in Boulder yields interesting correlations pertaining to seat location. 

Groups of three to four students were randomly assigned a seat location, sitting adjacent to one 

another, at the beginning of the term. Then, halfway through the term, each group's seating location 

was switched; the front moved to the back and the back to the front. 

Figure 5: Average FCI gain by Instruction 

The black bars correspond to Peer Instruction courses whereas the white bars correspond to 

Traditional Instruction courses.  
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As seen Figure 6, each group contained students of essentially the same average GPA (not including the 

course in the study), suggesting similar student populations. 

Despite substantial effort made to engage all students (the use of interactive response devices, large 

fonts and figures on lecture slides and a video camera to project smaller demonstrations), initial seat 

location was found to have an important impact on outcome: both higher attendance and higher final 

grades are seen in group 1 (students who initially sat 0-4 meters from the front). 

 

Two key trends can be seen in Figure 7: “The further the original seating location is from the front of the 

classroom, then 1) the lower the average attendance and 2) the larger the drop-off in attendance 

between the first and second half of the term” (Perkins & Wieman, 2005). In fact, the average 

attendance of group 1 declined by only 1%, despite being moved to the back of the class halfway 

through the term. 

Figure 7: Initial Seating Location and Attendance 

 

 

Figure 6: Students Grouped by Initial Seating Assignment 
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Additionally, a significant effect on the total points possible in the course (essentially, the final grade) 

due to the seat location can be seen (see Figure 8).   With 27% of group 1 receiving A’s as compared to 

18% of group 4, the fraction of A’s decreases as original seat location is further from the front.   

Similarly, 2% of group 1 receives F’s compared to 12% of group 4, indicating an increase in F’s as original 

seat location is further from the front.  

Furthermore, the effects are different for high and low performers. The performance of students in the 

top 20% is less correlated to their initial seating assignment whereas the performance of students in the 

bottom 10% reap positive benefits from initially sitting closer to the front (Perkins & Wieman, 2005).   

From this study, it appears that the location of the seat that a student sits in at the beginning of the 

term indeed affects both prospective attendance throughout the semester and final grade, clearly in 

favor of those with an initial seat location close to the front of the room, with a more dramatic impact 

on underperforming students (bottom 10%). These results do not seem to have been tested again in the 

PER literature. 

c) The Gender Gap 

In addition to the structure of the course and seat location, gender is an important factor that has been 

shown to influence student performance. We will first summarize studies that provide evidence for the 

existence and persistence of the gender gap and then provide an overview of a pedagogical intervention 

that aims to reduce or eliminate it. 

Lauren Kost, Steven Pollock and Noah Finkelstein comment on the presence of the gender gap at the 

University of Colorado: “…females make up only 25% of the students who enroll in introductory physics 

and about 15% of the physics majors. Not only is there a gender gap in participation, but there is also a 

gender gap in performance. Previous studies at CU [University of Colorado], and elsewhere, have 

Figure 8: Initial Seating Location and Course Performance 

(Excluding attendance) 
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identified difference in males’ and females’ performances on surveys of conceptual physics. This under-

representation and underperformance of females in physics is cause for concern and has led to a variety 

of studies on the source of the gender gaps in college physics” (Kost, Pollok, & Finkelstein, 

Characterizing the gender gap in introductory physics , 2009).  As reported, there is clear evidence of a 

gender gap in participation and student performance at the University of Colorado that requires 

attention. 

Additionally, Eric Brewe et al. explore success rates at the diverse Florida International University, 

sorting students first by their gender independent of ethnicity, and then by ethnicity independent of 

gender. We will focus on the findings with respect to gender.  Comparing FCI scores, it is clear that there 

exists a gender gap at this institution as well: females (N=115) have an average gain score of g=25.6 ± 

1.5 whereas males (N=143) have an average gain score of g=34.2 ± 1.4, a difference in gain of 8.6 in 

favor of males (Brewe, Sawtelle, Kramer, O'Brien, Rodriguez, & Pamela, 2010). 

In their conclusion, Brewe et al. hint at an important point: the gender gap may be dependent on the 

differences in background preparation.  However, it is stated, “Gender gaps are not accounted for by 

precollege preparation alone” (Brewe, Sawtelle, Kramer, O'Brien, Rodriguez, & Pamela, 2010).  The 

question remains: what causes the gender gap? 

d) Influence of Interactive Engagement on the Gender Gap 

With the gender gap apparent, we now summarize several studies about the influence of interactive 

engagement on the gender gap.  Some studies claim that the use of interactive engagement techniques 

can severely decrease if not eliminate the gender gap, though subsequent studies have failed to 

reproduce these results.  

Lorenzo, Crouch and Mazur compare three different teaching structures using FCI gain scores at Harvard 

University.  First, the traditionally taught course (T) corresponds to the conventional lecture format. 

Second, interactive engagement 1 (IE1) is partially interactive; a mix of traditional lectures and engaging 

discussion. Finally, interactive engagement 2 (IE2) is full interactivity; comparable to the previously 

discussed interactive engagement pedagogy.  With these varying course structures, it is the hope that 

trends exist between the level of engagement and an increased student understanding for both 

genders. 
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As shown in Figure 9, males (M) in the traditionally taught course (T) have higher gain scores than 

females (F).  In contrast, in the highly interactive course (IE2), both females and males have high gain 

scores.  This is consistent with previous studies that demonstrate that high average gain scores occur in 

interactively taught courses as opposed to traditionally taught courses.  Additionally, it becomes clear 

that females and males have increasingly similar gain scores with the increased use of interactive 

engagement techniques; a narrowing of the gender gap (Lorenzo, Crouch, & Mazur, 2006). 

Quantifying this gender gap (the difference between the average gain score of males and the average 

gain score of females [<SM> - <SF>]), the decrease becomes clear: the post-test gender gap of 10% for 

the traditionally taught course (T) is nearly comparable to the pre-test gender gaps in the interactive 

course (IE1 and IE2).  The post-test gender gaps for IE1 and IE2 are 7.8% and 2.4%, respectively.  

Perhaps, most significant is that the gender gap for the fully interactive course (IE2) is no longer 

statistically significant, meaning that males and females are performing at approximately the same level 

(Lorenzo, Crouch, & Mazur, 2006). Overall, these results are consistent with the claim that the degree of 

interactive engagement in the classroom is negatively correlated with the presence of a gender gap.  

Unfortunately, follow up studies on the effects of interactive engagement have not reproduced these 

results.  Pollock, Finkelstein, and Kost conducted a study comparable to the study above at the 

University of Colorado at Boulder.  However, this study differs from the previous in a few ways: while 

middle to high-gain scores are seen at both locations, students at the University of Colorado at Boulder 

start at approximately 30% as opposed to 65% at Harvard and end with scores of approximately 65% as 

opposed to 85% at Harvard. Additionally, instead of using the FCI, Pollock, Finkelstein, and Kost use the 

FMCE as the primary assessment instrument. Finally, perhaps the most notable differences the class size 

is roughly three times larger than Harvard’s with a gender ratio (M:F) nearly double (Pollock, Finkelstein, 

& Kost, 2007). 

The results from this study are in firm contrast to the previous results: “While there are individual cases 

where the gender gap is reduced, on average we see no statistically significant reduction in the gender 

gap in the IE2 and IE1 classes” (Pollock, Finkelstein, & Kost, 2007).  There is an increase in gain scores 

Figure 9: Instructional Approach and Normalized Gain, by Gender (Harvard) 
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with higher levels of interactive engagement in first-semester physics, yet there is still a statistically 

significant (p<0.01) gender gap in both IE1 and IE2 (see Figure 10; Pollock, Finkelstein, & Kost, 2007).  

In the case of second-semester physics courses taught with IE2 instruction, a smaller gender gap on the 

pre-test scores is seen with an overall statistically significantly higher gender gap on the post-test; males 

make more learning gains than females (Pollock, Finkelstein, & Kost, 2007).  These results indicate that 

the results seen in Lorenzo, Crouch & Mazur’s study at Harvard University are not reproduced at the 

larger University of Colorado at Boulder. 

We speculate that these contrasting results are due to the higher male to female ratios at the University 

of Colorado at Boulder as compared to Harvard University. We hypothesize that the physics stereotype 

threat, females fearing that they are not expected to do well in physics, is more severe in a male-

dominated courses, and will have a greater, negative effect on student performance.  

An additional follow-up study conducted by Kost, Pollock, and Finkelstein further explores the source of 

this persistent gender gap.  Modeling the post-test scores using multiple regression, several variables, 

including high school GPA, combined SAT Math and ACT Math scores, years of physics and/or math 

preparation in high school, etc., are explored as potential contributing factors. 

Using multiple and logistic regression analyses to estimate the impact of student background factors on 

gain scores, the following are found to be the only parameters to have notable effects on the gender 

gap: prior physics and math understanding, prior attitudes and beliefs, the semester a student was 

enrolled, and student gender. The stereotype threat is one example of such an incoming attitude.  These 

results lead to the general conclusion, “We find that the gender gap in conceptual post-test scores is 

substantially accounted for once prior physics and mathematics understanding and incoming attitudes 

and beliefs are taken into account” (Kost, Pollock, & Finkelstein, The Persistence of the Gender Gap in 

Introductory Physics, 2008).  

Figure 10: Instructional Approach and Normalized Gain, by Gender (Colorado) 
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Finally, the most recent article from the Colorado group investigates values affirmation as a means of 

intervention.   At the University of Colorado, up to 60% of the gender gap can be accounted for by 

previous math and physics preparation (Miyake, Kost-Smith, Finkelstein, Pollock, Cohen, & Ito, 2010). It 

is the hope that introducing a simple writing exercise about students’ values (unrelated to the subject 

matter of the course), an intervention technique that is widely used in social science disciplines, would 

further decrease the disparity. Students were divided into two groups: the values affirmation group 

selected their most important values from a list (relationship with friend, learning, family, etc.) and 

wrote about why these values are important to them.  The control group selected their least important 

values from a list and wrote why these values might be important to other people.  It was predicted that 

this reflection of self-defining values would reduce the psychological threat of being devalued based on 

group identity, in this case a female identity.  These writing prompts took 10-15 minutes and were 

administered at several points throughout the semester. 

The results are surprising: the gender gap is significantly smaller in both course grades (based 75% on 

exam scores) and FMCE post-test scores (see Figure 11). Unexpectedly, men in the values affirmation 

group experienced a decrease in exam scores. However, this is not replicated in post-test FMCE results 

(Miyake, Kost-Smith, Finkelstein, Pollock, Cohen, & Ito, 2010). 

The values affirmation exercise is especially beneficial for women who strongly endorse the stereotype 

that females are not meant to do physics (see Figure 12; Miyake, Kost-Smith, Finkelstein, Pollock, Cohen, 

& Ito, 2010): 

Figure 11: The Effects of Values Affirmation on Mean Overall Exam Score and Mean Post-test FMCE 
Score 
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Overall, this study of values affirmation writing suggests that the psychological threat of identifying with 

the gender stereotype is a significant contributing factor to the gender gap. These writing prompts 

provide an effective means of intervention as, “…the affirmation closed the ‘residual’ gender gap on in-

class exam scores by approximately 61% and entirely eliminated the gap on the FCME” (Miyake, Kost-

Smith, Finkelstein, Pollock, Cohen, & Ito, 2010). 

We are anxious to read follow up studies that present additional findings to confirm or contrast the 

positive effects seen here. While we expect that there will not be a complete elimination of the gender 

gap at all institutions, this intervention technique seems to be a simple yet promising way to reduce the 

magnitude of the gender gap. 

e) Cumulative GPA and Grade Predictive Schemes  

As an alternative, a student’s incoming cumulative GPA has been found to be a predictive factor for 

student success.  Scott Freeman et al. at the University of Washington, Seattle, developed prediction 

schemes for grades in introductory biology courses based on incoming GPA and SAT scores (Freeman, et 

al., 2007).  Motivated by this previous research, University of Michigan undergraduate Laurie Lai, 

working with Professors McKay, Gerdes, and Evrard, explored correlating factors and ultimately 

developed grade prediction schemes for introductory physics courses at the University of Michigan. Like 

Freeman et al., Lai shows that, in addition to gender, a student’s cumulative GPA at the beginning of the 

class greatly predicts their performance. In fact, a student’s cumulative GPA is the most correlated 

parameter to the final grade received in an introductory physics course.   Because of this, cumulative 

GPA can be used to develop grade prediction schemes for the University of Michigan which accurately 

predict what the student will receive in a course. 

Examining 31 terms of data (Winter 1996 through Winter 2008 from the data set we will use for our 

research), Lai finds that “a student’s physics grade tends to be lower than their cumulative GPA” (Lai, 

Figure 12: The Effects of Values Affirmation by Gender Stereotype Endorsement 
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2009).  Furthermore, a gender gap can also be seen in introductory physics courses:  “…the average 

grades of females are consistently lower than the average grades of males” (Lai, 2009).  Based on this 

high correlation between cumulative GPA and student performance, Lai developed grade prediction 

schemes by course and by gender. Plotting course grades vs. incoming cumulative GPA and fitting a 

quadratic (see Figure 13), equations that predict course grades were developed for each introductory 

physics courses at the University of Michigan.  

 

These predictions are taken to form a basis for further comparisons as they are highly accurate and 

largely independent of instructor. We will use these schemes as a point of reference in our analysis. Just 

as concept inventories use gain scores to account for differences in initial levels of understanding, grade 

prediction schemes allow us to determine if a student does better than, remains the same as, or does 

worse than expected as we vary a parameter. 

f) Additional Findings and Proposed Improvements from Lai 

Using these predictive models, Lai noted several additional findings: First, instructor gender does not 

have a significant effect on student performance.  Second, student performance is dependent on the 

student’s year in college; each course favors different years. For example, Physics 126 favors juniors 

whereas Physics 140 favors sophomores and freshman; students in both of these courses benefit from 

taking physics earlier in their undergraduate careers. Next, these predictive models are positively 

correlated with SAT math scores, ACT math scores, and ACT science scores (and therefore also with the 

ratio of SAT math scores to SAT verbal scores, total SAT scores, and total ACT scores).  Finally, 

Figure 13: Grade Prediction Model for Physics 125 

p0, p1 and p2 are variables in the best fit equation of the form f(x) = p0 + p1*x + p2*x2.  
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considering students who return to take more semesters of physics, there is a weak correlation between 

a student’s grade in their previous introductory course and their predicted grade. Furthermore, there 

does not appear to be a significant difference between students who take physics courses successively 

versus those that take a break (Lai, 2009). From this variety of findings, Lai prompts her reader to take 

into account additional factors, including year in school, ACT and SAT performance, and previous 

performance in physics courses, in an attempt to further optimize the grade prediction schemes. 

IV. Methods 

Building on this understanding of relevant literature, we will begin our own analysis of the gender gap 

and the effectiveness of supplementary study groups at the University of Michigan. First, we summarize 

our data set, including a discussion of the content and structure of the courses studied as well as an 

overview of internal and external parameters that have been compiled. After, we describe two key 

analytical tools that will be used in our analysis: The Kolmogorov-Smirnov Test and Bootstrap Re-

sampling. We then move to our analysis of the gender gap where we provide evidence of the gender 

gap in all introductory physics courses and in all terms we’ve studied.  

Next, we begin to explore important factors, as suggested by the literature, and their effects on the 

gender gap. We focus on three parameters: mathematical preparation, female representation in the 

classroom and instructor gender.  With the existent of the gender gap apparent and an initial analysis of 

potentially correlating factors conducted, we shift our focus to the effects of supplementary study 

groups on student performance. Starting with the influence of study groups on all students’ course 

grades, we subsequently explore the effects on only males and only females. After summarizing our 

findings, we provide recommendations, based on PER literature and supported by our results, of ways to 

decrease the gender gap in introductory physics courses at the University of Michigan.  

A. Data 

To investigate student performance at the University of Michigan, a data set containing both external 

and internal parameters is compiled. The external data, referring to student background information, is 

compiled from the University of Michigan’s Registrar’s Office. On the other hand, the internal data, 

referring to the coursework within a given introductory physics class, is collected from the University of 

Michigan Physics Department and the Science Learning Center.  Together, this data provides a broad 

profile for each student who has taken an introductory physics course at the University of Michigan 

since Winter 1996. With a total of 39 terms of data collected (Winter 1996 to Fall 2010), we assign a 

term code to each (see Appendix A). 

 The University of Michigan offers four main introductory courses: Physics 125, Physics 126, Physics 140 

and Physics 240. Physics 125 and 126 are algebra-based Mechanics and Electricity and Magnetism, 

whereas Physics 140 and 240 are calculus-based Mechanics and Electricity and Magnetism. Generally, 

non-physics majors enroll in the 125/126 sequence while physics majors and engineers enroll in the 

140/240 sequence.  
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Two new introductory physics courses, Physics 135 and Physics 235, were introduced in Fall 2006 and 

Fall 2007, respectively. These courses, entitled ‘Physics for the Life Sciences’, present Mechanics and 

Electricity and Magnetism material from a biological perspective.  The 135/235 sequence was developed 

for students planning to concentrate in any of the life sciences as well as students planning to pursue a 

career in medicine, kinesiology, or the health sciences.  In Fall 2010 students fitting this description were 

advised to take Physics 135 instead of Physics 125. The enrollment numbers in our data reflect this shift. 

The structure of introductory physics courses until Fall 2010 consisted of bi-weekly, one hour, large 

lectures with bi-weekly, one hour discussions led by a faculty member other than the lecturing 

professor. Electronic response units were used in lecture and determined the lecture grade. The 

discussion grade was based on participation and awarded by the discussion instructor.  Homework was 

completed online using various commercial homework systems. Finally, three multiple choice exams and 

a multiple choice final exam comprised students’ exam grades. The exam scores were heavily weighted 

(60-80%) in the calculation of final grades.  

In Fall 2010, a pedagogical shift to a larger discussion section occurred. The format of introductory 

courses is presently a bi-weekly, one hour lectures and a bi-weekly, one hour discussions.  Discussions 

are held in the large lecture hall and led by the lecturer. The instructor uses interactive engagement 

techniques to create a discussion atmosphere.  The same electronic response units, online homework, 

and exam formats are used before and after this shift. 

An all inclusive data set, entitled ‘SD’ for ‘student data’, is compiled. There are a total of 48,579 students 

in this structure. The available parameters come from both the external, student background data (see 

Appendix B) as well as the internal, coursework data (Appendix C).   

B. Analysis Tools 

We will now provide a brief overview of fundamental analytical techniques. This section will serve as a 

reference as we utilize these tools in our analysis. 

1.  Kolmogorov-Smirnov Test  

To quantitatively compare two distributions, we use the Kolmogorov-Smirnov Test (K-S Test).  This 

compares the shape and consistency of two distributions by examining how quickly each reaches its 

whole. From the K-S Test, we obtain two variables: ‘PROB’ and ‘D.’ PROB gives the significance level of 

the K-S statistic. Small values of PROB indicate a small random chance that the cumulative distributions 

are drawn from the same underlying distributions.  D is defined to be the maximum deviation between 

the two cumulative distributions (Kolmogorov-Smirnov Goodness-of-Fit Test, 2010). We will use the K-S 

Test as we compare the similarity of two distributions. For example, we will use it to determine the 

probability that grade distributions observed for males and females are drawn from the same underlying 

distribution.  
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2. Bootstrap Re-sampling 

Bootstrap re-sampling is a robust way to increase our confidence of measurement uncertainty.  Once we 

determine the mean and uncertainty spread on a set of data, we can re-run the experiment multiple 

times using a randomized subset of our data sample.  Each re-sampling yields a different mean (which 

fluctuates somewhat more due to the smaller sample sizes) that takes into account the non-Gaussian 

imperfections which arise in the data.  By then normalizing the errors of these re-sampled means to 

represent the entire data set, we can effectively determine the error on our original mean.  This gives us 

an accurate idea of how much error exists on a mean considering the data set used (Efron & Tibshirani, 

1993). Importantly, bootstrap re-sampling is insensitive to assumptions about the distribution. We will 

use bootstrap re-sampling several times in our analysis. For example, it will allow us to robustly 

determine the significance of a difference in mean grades between two groups of students.   

V.  Analysis 

A. Gender 

With the gender gap in Physics nationally recognized, we want to explore its presence at the University 

of Michigan. How do females perform in introductory physics courses as compared to males? Based on 

the literature, we expect males to outperform females. Considering 21 terms of data (not including 

spring terms in which the number of students is too low for accurate statistics), we find that this is 

indeed the case. We would like to quantify this difference in order to explicate the gender gap. In what 

follows, we will examine the gender gap in several different ways. 

Furthermore, we investigate potential correlating factors which may contribute to the gender gap in 

these 21 terms. Perhaps it is a disparity in mathematical preparation which leads to this significant 

gender gap in introductory physics courses. Or perhaps there are socio-psychological factors like 

stereotype threat affecting performance which have yet to be completely understood. 

1. The Presence of the Gender Gap 

To study the gender gap in performance, we plot cumulative GPA (at the beginning of the course) vs. 

final grades for males and females (see Figure 14). Cumulative GPA is chosen as the independent 

variable because of its predictive value (Lai, 2009; Freeman, et al., 2007). By binning students by prior 

cumulative GPA, we expect males and females to receive the same grade if there is no gender gap. 



Miller-29 
 

 
 

 

To the contrary, it is apparent that the mean grades for females are significantly lower than the mean 

grades for males; males receive about 0.25 of a letter grade higher than females, and this is true for 

virtually all values of incoming culumative GPA.  However, it is important to acknowledge that the grade 

distributions of male and female students do overlap; there are many cases in which female students 

outperform male students. 

We also recognize that the gender gap is weaker at the extremes of prior GPA: below ~2.25 and above 

~3.75. Students who receive a very high or very low grade do so independent of their gender.  For the 

remaining range of GPA (between ~2.25 and ~3.75), it is apparent that gender is a major factor in 

determining average course grades.  

It is important to note that there is a gender gap in all four of the introductory courses, with a more 

noticeable difference in Physics 140 and 240; females in the 140/240 sequence tend to underperform as 

compared to their male classmates in a more extreme way than those in the 125/126 sequence. This is 

an interesting trend considering that the populations of Physics 125 and 126 are female-dominated 

(56% female, 44% male) whereas the populations of Physics 140 and 240 are male-dominated (76% 

male, 24% female). 

Figure 14: Gender Gap in Final Grades 

The error bars represent the error on the means (calculated using Bootstrap Re-Sampling) and the 

dotted lines represent the one-sigma spread in the data. 
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With this evidence of a gender gap in each course for almost all cumulative GPA values, we would like to 

further explore the relationship between preparation and performance term by term. To accomplish 

this, we define the difference in preparation to be the difference in incoming GPA. This is calculated by 

subtracting the mean NGPA (GPA at the beginning of the semester) for female students in one term 

from the mean NGPA for male students in the same term. Likewise, we defined the difference in 

performance as the difference in course grades. This is calculated by subtracting the mean grade for 

female students in one term from the mean grade for male students in the same term. For both of these 

variables, a positive difference indicates that males have a higher incoming GPA/grade than females and 

a negative difference indicates that females have a higher incoming GPA/grade than males.   

Plotting the difference in preparation against the difference in performance by term for 21 total terms, 

we will be able to identify general trends between the incoming GPA and output grade, by gender. In 

particular, if the gender gap were to be explained by incoming GPA differences, then the plotted points 

would lie along the line y=x indicating a 1 to 1 correlation. 

  

Figure 15: Incoming GPA Difference vs. Output Grade Difference by Term 

The plotted line is y=x. The squares represent the overall (Difference in Preparation, Difference in 

Grade) from sorting independent of term. 
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Examining Figure 15, we see that in Physics 125 and 126, the difference in preparation is slightly 

negative; this is consistent with females having a slightly higher cumulative GPA than males. The 

difference in performance however is mostly positive, indicating that males receive higher grades than 

females. 

Similarly, in Physics 140 and 240, the difference in preparation is slightly negative (slightly in favor of 

females), but generally centered on zero, indicating that males’ and females’ incoming GPA are nearly 

equal. Once again, we see the majority of difference in performance is positive meaning that males 

generally receive better grades despite the near equity of incoming GPA. There are a few exceptions in 

Physics 240 where we observe a negative difference in performance. These are terms in which females 

received better average grades than males.  

Overall, we see that in each class the majority of the plotted points lay above the line y=x confirming 

that the gender gap cannot be explained by differences in preparation alone. In particular, each term-

independent difference (see squares in Figure 15) is at a negative difference in preparation and a 

positive difference in performance.  This is consistent with our previous analyses: although females 

enter with equal if not slightly higher cumulative GPA, males receive better course grades.  

Another way to quantify this gender gap is to compare the incoming GPA and grade distributions for 

males and females by term. For this, we use the K-S Test to calculate the probability of these gender 

distributions being different. Recall that small probabilities indicate that the distributions are likely to be 

different and large probabilities show that the distributions are consistent with one another.  We plot 

the  K-S probabilities for both preparation (incoming GPA) and performance (final grades) against the 

difference in preparation and the difference in performance, respectively, to compare gender 

distributions.  Again, a positive difference indicates that males have a higher incoming GPA/grade than 

females and a negative difference indicates that females have a higher incoming GPA/grade than males.  

These plots will show us which gender has more preparation (sign of the difference in incoming GPA) 

and which gender has higher performance (sign of the difference in grades), as well as the likelihood 

that the male and female preparation distributions (examining probability values for incoming GPA) and 

male and female performance distributions are different populations (examining probability values for 

grades). 
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In Figure 16, we see that while incoming GPA gender distributions vary in likelihood of being different 

from term to term, the grade gender distributions are very different populations (PROB~0) in the 

majority of terms.  With a positive difference in grade distributions, we can confirm that males are 

receiving higher grades than females. 

It is interesting to again note that this effect is weaker in Physics 125 and 126 and stronger in Physics 

140 and 240. In the 125/126 sequence, we see varying incoming GPA probability as well as varying final 

grade probability, with clusters of low grade probability consistent with the above described trend. On 

the other hand, in the 140/240 sequence, almost all resulting grade probability values are near zero, 

indicating very different grade distributions despite similar incoming GPA distributions.  

With this evidence, we see that there exists a gender gap in the University of Michigan’s introductory 

physics courses. This gender gap persists through each course and all terms considered here. It is 

important to emphasize that while this gender gap does exist, our analysis also acknowledges the many 

cases in which a female student outperforms a male student. We merely claim that this event is less 

likely than the reverse.  

With the gender gap apparent, we would like to turn towards an analysis of potential correlating factors. 

Based on the literature, we have reason to believe that mathematical preparation, female 

Figure 16: Gender gap vs. Gender Probability, by Term 
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representation in the classroom, and instructor gender, among other factors, may influence the 

performance of males and females. We would like to explore these parameters to see if they may be 

contributing to the observed gender gap. 

2. Mathematical Preparation 

While the level of math required in the course (algebra for Physics 125 and 126 and calculus for Physics 

140 and 240) may affect the magnitude of the gender gap as seen above, perhaps the real issue is 

differences in the level of mathematical preparation females and males bring to the course. We can 

analyze this preparation by taking the SAT Math score to represent prior mathematical knowledge. 

 

In Figure 17, we see that the gap in final grades between males and females arises at all levels of SAT 

Math performance for all courses. For example, in Physics 140, even at the highest levels of SAT math 

performance, there is still a multi-sigma difference in course grades.  We note a more dramatic gender 

gap in Physics 140 and 240, consistent with previous results. Mathematical preparation does not 

completely account for the gender gap. Therefore, the question remains: what causes the gender gap?  

Figure 17: Gender Gap in SAT Math Scores 

The error bars represent the error on the means  

(calculated by Bootstrap Re-sampling). 
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3. Female Representation 

In addition to mathematical preparation, we would also like to explore if the number of females as 

compared to males in the class influences final grades. To do so, we divide the students into two grade 

categories: those who receive a B or better and those who receive less than a C (failing the course). We 

take the difference in the fractions of males and females who fit in each category and plot against 

female representation, that is, the fraction of female students in the course (see Figure 18 and Figure 

19). A positive difference indicates more males receive a B or better/C or worse whereas a negative 

difference indicates more females receive a B or better/C or worse. 

Examining Figure 18, we note that in Physics 125 and 126, 50% or more of the course’s population is 

female. This is in contrast with Physics 140 and 240 where the female representation varies from 16% to 

35%. This reiterates the reality that, in general, the 125/126 sequence is slightly female-dominated 

whereas the 140/240 sequence is male-dominated.   

We also observe that, in almost all terms, the difference of the fractions of males and females receiving 

a B or better is positive. This indicates that it is more likely that males receive a B or better as compared 

to females. In particular, the strongest effect is seen in Physics 140, with an effect also seen in Physics 

240. In Physics 125 and 126, this trend is present, but weaker. 

Figure 18: Difference in Fractions Receiving B or Better vs. Female Representation 
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Interestingly, these trends occur in almost every term, independent of the varying female 

representation when considering each course individually. This leads us to an initial conclusion that the 

slight variation in representation of females in each independent course does not influence which 

gender receives a B or better grade; males almost always receive high grades regardless of the gender 

ratio in that course. Yet, we must recognize that there is little variation of female representation within 

one course from term to term. 

This initial conclusion is in tension with Figure 16. However, we can compare, for example, Physics 125 

and Physics 140, two courses which differ greatly in female representation. We then see that more 

males receive a B or better in Physics 140, where there is a higher male representation, as compared to 

Physics 125, where there is a higher female representation. We must be cautious about this assertion 

though—there are many factors, such as content and course structure, which might influence this 

comparison between courses.  

Similarly, we analyze the difference in the fraction of males and females receiving below a C. Once 

again, plotting this difference against the female representation, that is, the fraction of females in the 

course, we look for any trends that may arise. 

 

Examining Figure 19, we see the same female representation values as in Figure 198, as expected. 

However, in these plots, we see an overall negative difference in the fractions of males and females 

receiving less than a C. This means that the fraction of females failing the course is larger than the 

Figure 19: Difference in Fractions Receiving Less Than C vs. Female Representation 
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fraction of males.  This is consistent with the above analysis of B or better students; the fraction of 

females receiving good grades is lower and the fraction of females receiving poor grades is higher: vice 

versa for males. 

Again, we do not see the development of trends due to the representation of women when considering 

an individual course. In almost each term, men are receiving better grades and women receiving worse, 

despite small variations in female representation within that one course.  This leads us to conclude that 

the ratio of male to female populations in each course does not dramatically affect the gender gap.  

However, as mentioned before, we must recognize the lack of variation in female representation from 

term to term when examining a course. 

A tension arises with this conclusion and Figure 16 as well. Upon comparing Physics 140, with less 

female representation, and Physics 125, with higher female representation, we see that the effects in 

Physics 140 are again more extreme. We cautiously assert that this supports our hypothesis that lower 

female representation negatively influences females’ grade performance, while also noting several 

additional factors which may influence our comparison of these two courses.  

4. Instructor Gender 

Finally, previous research has led us to believe that instructor gender may play a role in the reduction of 

the gender gap. In the data set we’ve compiled, only two female professors taught either Physics 125 or 

Physics 126 in just four terms of the 84 analyzed course terms:  

Fall 2011 (1360): Physics 126 

Fall 2005 (1560): Physics 125 

Fall 2006 (1610): Physics 125 

Winter 2007 (1620): Physics 126 

From this alone, it is clear that female representation among professors teaching introductory physics is 

minimal; less than 5%. And 3 of these 4 terms were actually taught by a lecturer.  Below (see Figure 20), 

we highlight these select terms in a previously analyzed plot (Figure 15):  
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In these four terms, there are no major differences in expected incoming GPA and course grade patterns 

that arise. However, we do notice that the highlighted terms are in the lower half of the grade 

difference distribution, meaning that the difference in grade by gender, while still in favor of males, is 

closer to being equal than in other terms. This leads us to the initial conclusion that instructor gender 

may have a slightly positive effect on the reduction of the gender gap. Unfortunately, there are no other 

terms in which a female instructor taught an introductory course in our data set. Therefore we are 

unable to further confirm this conclusion. 

B. Science Learning Center Study Groups 

With the presence of the gender gap apparent, we now shift our focus to the investigation of different 

intervention techniques which we hope will improve student performance for both genders as well as 

decrease the gender gap. Given that female students tend to benefit from interactive engagement 

techniques, the literature suggests that a potentially effective means of intervention is to utilize small 

study groups which incorporate such methods. The Science Learning Center (SLC) at the University of 

Michigan offers supplementary study groups for all introductory physics courses.  These groups, which 

meet 2 hours a week, give students the opportunity to review concepts and work on practice problems 

with their classmates, under the supervision of an advanced undergraduate. 

The parameter SG in our data set (see Appendix C) indicates if a student was signed up for a SLC physics 

study group, and, if so, for which course.  It is important to note that the data available does not account 

for the level of participation of the students in a SLC study group; we cannot tell if a student consistently 

attended or even dropped out of the study group, something that may affect the correlation analysis 

with student performance.  SLC study group data overlaps with the larger data structure for only two 

terms: Fall 2007 and Winter 2008. 

Figure 20: Incoming GPA Difference vs. Output Grade Difference, by Term, for Female Instructors 

* corresponds to the terms in which the instructor was female. The plotted line is y=x. 
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1. The Effects of Science Learning Center Study Groups on Students 

We would like to investigate the affect SLC study groups have on final course grades by comparing 

students who participated in a study group to students who did not participate in a study group.  To do 

this, we split the available data into two populations: SLC### and NOSLC###.  

SLC### includes students in a SLC study group in a given course ### with a known grade and a known 

cumulative GPA.  This gives a total of 729 students: 207 students for Physics 125, 143 students for 

Physics 126, 255 students for Physics 140, and 124 students for Physics 240.   

On the other hand, NOSLC### includes students not in a SLC study group in a given course ### with a 

known grade and a known cumulative GPA.  This gives a total of 2553 students: 518 students for Physics 

125, 465 students for Physics 126, 891 students for Physics 140, and 679 students for Physics 240.  

Overall, there are a total of 3,282 students considered in this study. 

To begin our analysis we first examine incoming cumulative GPA distributions for both populations, by 

course. The purpose here is to look for obvious differences in the nature of the students in the SLC and 

NOSLC cohorts before proceeding to further analysis.  Cumulative GPA is chosen as the variable of 

comparison based on previously investigated correlations between GPA and final course grades (Lai, 

2009; Freeman, et al., 2007). Plotting histograms (bin=0.1), we qualitatively compare the shape of the 

distributions to ensure relatively similar student populations.   

Upon first examination of Figure 21, there seems to be little apparent difference.    



Miller-39 
 

 
 

Moreover, by conducting the K-S Test, we can ensure that the distributions are in fact very similar. In 

particular, the two populations in Physics 240 have the most different cumulative GPA distributions, 

with PROB=0.024.  Physics 125, 126 and 140 are much more likely to be drawn from the same incoming 

distribution, varying in probability between PROB=0.15 and PROB=0.33. 

Second, we investigate the probability of receiving a grade for each population, by course.  Plots of 

course grade versus the probability of receiving that grade are analyzed. This is meant to illuminate 

terms where  students in SLC study groups and students not in SLC study groups have significant 

differences in the likelihood of receiving a particular grade. 

Figure 21: Cumulative GPA 

NOSLC### corresponds to the solid line and SLC### corresponds to the dashed line. 

. 
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Overall, there does not appear to be a significant difference in final grades except for select grade 

ranges in Physics 140 and Physics 240. In Physics 140, students in a SLC study group are more likely to 

receive a ~2.0-2.3 (C range) whereas those not in a SLC study group are more likely to receive a ~3.2-

3.75 (B to A- range). Additionally, in Physics 240, those not in a SLC study group are more likely to 

receive a ~2.2 (C) whereas those in a SLC study group are more likely to receive a ~3.5 (B+/A-). It is 

important to note that the effects in Physics 240 are smaller than those seen in Physics 140. 

Finally, we utilize grade prediction schemes created for these classes as a whole, based on cumulative 

GPA and defined by course (Lai, 2009).  Subtracting the predicted grade from the actual grade, we plot 

residual values for both populations. Fitting a Gaussian model to these distributions, we can 

quantitatively compare the mean of the functions as well as the spread.  This determines if either group 

has higher or lower than expected grades.  This step is the ultimate indicator of the influence of SLC 

study groups on student performance. 

Figure 22: Probability of Course Grades 

NOSLC### corresponds to a + and SLC### corresponds to a diamond; 

Zero probabilities are due to course grade having discrete values. 
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Reviewing Figure 23, we can see that the distributions match up fairly well.  The differences in means 

are as follows: 

We see that the difference in distributions in Physics 140 is of statistical significance (Prob=0.0015). 

Physics 140 students who opt to take a SLC study group receive a final grade worse than expected, 

according to the grade predication scheme used. 

Figure 24: Differences in SLC Means 

* indicates a significant probability (Prob<0.05) and  

** indicates a highly significant probability (Prob<0.01). 

 

Course Difference Prob 

Physics 125 0.013 difference in favor of NOSLC125 0.9240 

Physics 126 0.066 difference in favor of SLC126 0.1362 

Physics 140 0.12 difference in favor of NOSLC140 0.0015** 

Physics 240 0.082 difference in favor of SLC240 0.2306 

 

Figure 23: Comparison with Predicted Grades 

NOSLC### corresponds to a solid plot and distribution as well as the upper left legend and  

SLC### corresponds to a dotted plot and distribution as well as the upper right legend.   

The K-S Test determines D and Prob as listed in the upper right legend. 
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Overall, according to these measures, we see little direct impact of SLC study group participation on 

student performance relative to what is expected. The strongest effect is in Physics 140, where students 

in SLC groups actually perform worse than expected. There arises an interesting pattern: in first term 

courses (Physics 125 and 140) students in SLC groups do worse than expected whereas in second term 

courses (Physics 126 and 240) they do better than expected, though these effects are not highly 

significant. 

2. The Effects of Science Learning Center Study Groups on Males 

To extend this study, the above analysis is repeated dividing the population by gender: considering only 

males and then only females.  We apply an additional gender restriction to the previously defined 

SLC### and NOSLC###. It is important to note that the fraction of females choosing to take a SLC study 

group (34%) is more than double the fraction of males who elect to take a SLC study group (15%). 

To begin, we focus on an all male population. The total male sample size is 2,068 students with 315 

students participating in SLC study groups (SLCMAL###) (58 students in Physics 125, 44 students in 

Physics 126, 143 students in Physics 140, and 70 students in Physics 240) whereas 1,753 students did not 

participate in SLC study groups (NOSLCMAL###) (266 students in Physics 125, 231 students in Physics 

126, 695 students in Physics 140, and 561 students in Physics 240).  

Upon examining Figure 25, comparing the cumulative GPA distributions of males in a SLC study group 

and out of a SLC study group, we can again conclude that the incoming populations are very similar for 

physics 125 and 126, but less so for physics 140 and 240. 



Miller-43 
 

 
 

 

Next, we examine the probability of a male student in a SLC study group receiving a particular grade as 

compared to a male student not in a SLC study group receiving that same grade (see Figure 26): 

Figure 25: Male Cumulative GPA 

NOSLCMAL### corresponds to the solid line and SLCMAL### corresponds to the dashed line. 
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Here, all differences in grade probability for physics 125 and 126 are accounted for.  However, in Physics 

140, males in a SLC study group are more likely to receive a 2.0 (C) and a ~2.3 (C/C+), and males not in 

an SLC study group are more likely to receive a 3.0 (B), ~3.3 (B/B+) and ~3.7 (B+/A-); males in a study 

group do slightly worse.  Additionally, in Physics 240, males in a SLC study group are more likely to 

receive a ~3.7 (B+/A-), and males not in a SLC study group are more likely to receive a 2.0 (C); males in a 

study group do slightly better.  

This implies that there may be a negative effect of SLC study groups on males’ grades in first semester, 

calculus-based physics (Physics 140) with a potential positive effect of SLC study groups on males’ grades 

in second semester, calculus-based physics (Physics 240). 

These suspected effects are further explored by comparing the grade distributions to the predicted 

grade schemes for males in each course (see Figure 27): 

Figure 26: Male Probability of Course Grades 

NOSLCMAL### corresponds to a + and SLCMAL### corresponds to a diamond; 

Zero probabilities are due to course grade having discrete values. 
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The differences in means are as follows: 

 

We see that the differences in Physics 140 (Prob=0.0002) and Physics 240 (Prob=0.019) are of statistical 

significance.  SLC study groups are ineffective at raising the mean of the distribution of course grades for 

males in Physics 140 but are effective for Physics 240. This is a similar trend to what is seen with the 

overall population analysis (not split by gender) of SLC study groups being ineffective for Physics 140 

students. This is not surprising considering Physics 140 and 240 are male-dominated courses. 

Figure 28: Differences in Male SLC Means 

* indicates a significant probability (Prob<0.05) and  

** indicates a highly significant probability (Prob<0.01). 

 

Course Difference Prob 

Physics 125 0.463 difference in favor of NOSLCMAL125 0.8231 

Physics 126 0.098 difference in favor of SLCMAL126 0.4584 

Physics 140 0.155 difference in favor of NOSLCMAL140 0.0002** 

Physics 240 0.124 difference in favor of SLCMAL240 0.0188* 

 

Figure 27: Male Comparison with Predicted Grades 

NOSLCMAL### corresponds to a solid plot and distribution as well as the upper left legend and 

SLCMAL### corresponds to a dotted plot and distribution as well as the upper right legend. 

The K-S Test determines D and Prob as listed in the upper right legend. 
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3. The Effects of Science Learning Center Study Groups on Females 

Similarly, we restrict the sample to an all female population.  The total female sample size is 1,211 

students with 414 students participating in SLC study groups (SLCFEM###) (149 students in Physics 125, 

99 students in Physics 126, 112 students in Physics 140, and 54 in Physics 240) whereas 797 students did 

not participate in SLC study groups (NOSLCFEM###) (252 students in Physics 125, 233 students in Physics 

126, 194 students in Physics 140, and 118 students in physics 240). 

Figure 29 provides evidence that the female sample in a SLC study group and the female sample not in 

an SLC study groups are very similar. The K-S probability ranges from 0.330 (Physics 125) to 0.733 

(Physics 126). It is also clear from this figure that female students are much more likely to participate in 

study groups. 

With these similar populations, we again find the probability of each population receiving a particular 

grade (see Figure 30). 

Figure 29: Female Cumulative GPA 

NOSLCFEM### corresponds to the solid line and SLCFEM### corresponds to the dashed line. 
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In Physics 125, females in a SLC study group are slightly more likely to receive a 4.0 (A); In Physics 126, 

females in a SLC study group are slightly more likely to receive a ~3.4 (B+); In Physics140, females in a 

SLC study group are slightly more likely to receive a ~2.3 (C/C+); In Physics 240, all differences in 

probabilities are insignificant. 

Finally, we again plot and compare the differences in grade distributions to the grade prediction 

schemes for females in each course (see Figure 31): 

Figure 30: Female Probability of Course Grades 

NOSLCFEM### corresponds to a + and SLCFEM### corresponds to a diamond; 

Zero probabilities are due to course grade having discrete values. 
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The differences in means are as follows: 

 

While no courses produce statistically significant differences, the greatest difference is seen in Physics 

126 (Prob=0.091); females in Physics 126 are slightly helped by SLC study groups.  

Overall, considering the analysis conducted with the total population and split by genders, we can 

conclude that SLC study groups have little significant impact on student performance in introductory 

physics courses.  The pattern of SLC groups negatively impacting first semester courses (Physics 125 and 

Figure 32: Differences in Female SLC Means 

* indicates a significant probability (Prob<0.05) and  

** indicates a highly significant probability (Prob<0.01). 

 

Course Difference Prob 

Physics 125 0.017 difference in favor of NOSLCFEM125 0.3857 

Physics 126 0.122 difference in favor of SLCFEM126 0.0908 

Physics 140 0.629 difference in favor of NOSLCFEM140 0.2719 

Physics 240 0.162 difference in favor of SLCFEM240 0.5018 

 

Figure 31: Female Comparison with Predicted Grades 

NOSLCFEM### corresponds to a solid plot and distribution as well as the upper left legend and 

SLCFEM### corresponds to a dotted plot and distribution as well as the upper right legend. 

The K-S Test determines D and Prob as listed in the upper right legend. 
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140) yet positively impacting second semester courses (Physics 126 and 240) as seen in the non-gender 

split analysis, arises again when considering males and females independently: males in SLC study 

groups tend to do worse in Physics 140 yet better in Physics 240 with females similarly doing slightly 

better in Physics 126.  This is an effect perhaps worth following up. 

VI. Conclusion 

Adjusting for incoming GPA differences, we have effectively shown the presence and persistence of a 

gender gap in student performance in introductory physics courses at the University of Michigan. This 

gender gap is apparent in every term studied, developing the conclusive trend that male students 

outperform female students by approximately one fourth of a letter grade. However, we must 

acknowledge that the distributions do overlap, indicating that there are many cases in which a female 

student outperforms a male student. 

Furthermore, we go on to show that mathematical preparation (SAT math score), does account for a 

great deal of the gender gap, especially in Physics 125 and 126.  Yet, this does not completely explain 

the magnitude of the gender gap we see, especially in Physics 140 and 240. Investigating other 

potentially correlating factors, we have shown that the representation of females in a course may affect 

grade performance slightly—there is a larger gender gap in Physics 140 and 240 where the population is 

male-dominated. Yet the grade disparity persists despite small variations in female representation in 

each individual course from term to term.  Unfortunately, we cannot vary female representation within 

a course itself, which would allow us to control for course content, course structure, and other 

influential factors, so we must be careful about this comparison between different courses. Additionally, 

we came to the initial conclusion that a female instructor may slightly reduce the magnitude of the 

gender gap. However, with only four terms in which the instructor was female, we do not yet have the 

statistics to strongly support this assertion. 

Finally, we explore one means of intervention, SLC study groups, in the hope that it would increase 

grades for all students as well as reduce the gender gap. In our analysis, a trend arises: students in a SLC 

group for first semester physics (Physics 125 and 140) tend to receive worse than expected grades 

whereas students in a SLC group for second semester physics (Physics 126 and 240) tend to receive 

better than expected grades. Again, more extreme effects are seen in Physics 140 and 240. 

Furthermore, examining a male only population, we see that SLC study groups for Physics 140 negatively 

impact males’ grades whereas SLC study groups for Physics 240 positively impact males’ grades. Finally, 

analyzing a female only sample, we see that SLC study groups have a very small, positive impact on 

females’ grades in Physics 126. These gender specific results are consistent with the general trend 

described above. 

VII. Recommendations  

Based on our findings and review of PER literature, we have several recommendations of proactive steps 

for improving course grades for all students as well as reducing the gender gap in introductory physics 

courses at the University of Michigan. First, we discuss the disparity in students’ academic background, 

commenting on differences in physics and math preparation. Second, we shift our discussion to focus on 
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psycho-sociological factors, such as the stereotype threat, self-identification with physics, and 

understanding the importance of the content. Finally, we conclude with a brief overview of a grant that 

aims to develop an online system that provides customized, real-time coaching to students. Overall, 

while we recognize that some variables will inevitably influence student performance, we are motivated 

by reducing the impact of factors which we feel should not affect student performance, especially 

gender. It is the hope that these recommendations create more equity in course grades, giving everyone 

a fair(er) chance of receiving the grade they truly deserve. 

Foremost, we have seen that academic preparation dramatically influences the gender gap. While we 

have shown that the majority of the gender gap is due to differences in mathematical preparation, 

especially in Physics 125 and 126, the same issue arises when considering previous exposure to physics. 

Has the student taken physics before?  If so, at what level? How long ago? Did they effectively learn the 

content? One way to acknowledge the difference in physics preparation would be to provide support for 

struggling students. While supplementary SLC study groups did not prove to be as effective as we had 

hoped, efforts could be made to refine them to be more successful at raising student grades.  

Additionally, continued encouragement to use resources such as the physics helproom or attending 

office hours would likely resolve some difficulties with content.  The Physics Department could also 

utilize their own physics majors by creating a tutoring program with the Society of Physics Students 

(SPS), Society of Women in Physics (SWIP), and Sigma Pi Sigma. Furthermore, it would be ideal to 

individually identify with which content areas a student is struggling and provide more in depth 

explanations and extra practice problems. Compiling and analyzing the online homework data would be 

a good starting point for identifying a student’s difficulties throughout the course. 

In addition to differences in physics preparation, we also must recognize the varying levels of math 

background the students bring to the course. It is essential to ‘speak’ the ‘language’ of math in order to 

fully grasp physics concepts. To encourage a greater understanding of fundamental math techniques 

while not dedicating valuable course time, supplementary worksheets or even discussion sections could 

easily be created. The focus would be on the math concepts necessary to understand the physics topics 

at hand and would be passed out/held the same week as the applicable lecture(s).  While discussion 

sections would come at an additional financial cost, it is an effective way to ensure that students are 

exposed, at a relevant moment, to the necessary math concepts.  

While academic preparation is the main contributor to the gender gap as we have seen, there are also 

several socio-psychological aspects which have been shown to influence student success. We would like 

to acknowledge such issues and recommend ways in which a professor could reduce, if not eliminate the 

gender gap in their course. First, we must acknowledge that stereotype threat exists. Claude Steele has 

made a compelling argument that the threat of others’ negative judgment dramatically affects students, 

causing them to underperform on academic tests (Steele, 1997). While we believe that science, 

specifically physics, is not just a male domain, we must show that we do not, and students should not, 

believe this stereotype is true. At the same time, discussion of the stereotype threat is complicated—we 

must be careful not to unintentionally draw further attention to the issue in order to avoid encouraging 

propagation. It is also important to recognize that most interventions do not alter the stereotype 

globally or forever, but rather induce a local and temporary change.  Similarly, we should not expect that 
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these recommended techniques will dramatically change the stereotype or reverse 20 years of 

reinforcement that students bring to the class. Rather, our goal should be to reduce and eliminate the 

gender stereotype in one course and one term at a time. 

In order to address the stereotype threat effectively, we must consider the self-identification of female 

students.  The goal is to increase self-identification with the field of physics so that student efficacy 

increases, hopefully resulting in better performance. In this process, however, we must be careful not to 

alienate male students by focusing too much on the female identity. Some productive ways to 

encourage this identification is to bring in successful, female, physicists as guest lecturers early in the 

term.   Seeing a female thriving in a physics-related profession makes it easier to imagine oneself in her 

position.  In addition, encouraging involvement in SWIP, Women in Science and Engineering (WISE) and 

SPS can also increase self-identification with the domain as students gain a socially enjoyable 

environment as a result of their interest in physics. Finally, simply incorporating female scientists who 

have made significant contributions to the field of physics, something that is absent from most 

textbooks, in lecture slides or discussions, reinforces that females do belong in this field. 

It is also important for students to understand why they’re learning the content. Further understanding 

the applicability increases effort in the course.   Why is this course relevant if you’re not planning on 

winning a Nobel Prize in physics?  Of course, the answer varies depending on which course and what 

student identity is under consideration; for example, telling engineering students that fluid flow occurs 

in your veins and pre-medicine students that thermal expansion is considered when designing devices 

would be unproductive. Thus this discussion of applicability must be well thought out and customized to 

the audience in a specific course in a specific term. In order to do this, incorporating a simple survey 

question into an early homework assignment asking what prospective majors students are interested in 

provides a basic understanding of the student population. With this, it is the hope that a shift will occur 

from viewing introductory physics as ‘just another requirement’ to something that is interesting and 

useful. 

Finally, it would be ideal to apply the suggestions provided here in a customized, real-time manner. We 

are currently embarking on the development of an ‘ECoach’, an online expert/electronic coach which 

provides personalized feedback and advice based on content difficulties and socio-psychological factors.  

This will provide a way to reach out to struggling students, isolating particular groups (such as females) 

while limiting the adverse affects of excluding other groups.  

 

Overall, the gender gap in introductory physics courses needs attention. The Physics Department at the 

University of Michigan ought to be dedicating time and effort towards the success of their students.  A 

productive way of understanding the existing inequity and beginning to develop intervention techniques 

would be to encourage other departments on campus to get involved. For example, consulting the 

College of Engineering, which faces similar issues as related to gender and has shown dedication to the 

improvement of its introductory courses, would provide a fruitful partnership as we move forward with 

our efforts. 
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VIII. Extensions 

There are several ways to extend this research. First, it would be interesting to explore correlations 

between student evaluation data and course performance. This data, already compiled for Winter 1998 

through Fall 2009 (see Appendix C), provides insight into the students’ attitudes and feelings towards 

their course experience, the effectiveness of teaching and quality of the instructor. A common claim is 

that instructors give good grades in order to receive good student evaluations. However, the average 

grade, controlled by the instructor, remains quite similar term to term. Then why do student evaluations 

fluctuate? Do the attitudes that arise in these evaluations correlate to subtle gender trends in course 

performance? 

Second, we would like to probe the students’ reactions to key events throughout the semester. The first 

exam, for example, is quite challenging for most students. The literature suggests that males tend to 

blame external factors for their lower than expected performance, claiming that the exam was too 

difficult or unfair.  On the other hand, females tend to internalize blame, assuming that they could’ve 

have studied more, tried harder, and done better. With these expected reactions, first exam scores may 

be revealing of overall course success (final grade). If the first exam does have this predictive value, 

expected grades could be determined as early as a month into the course. 

Thus far, we have yet to explore persistent enrollment between first and second semester physics. 

Isolating students who took Physics 125 and 126, 125 and 240, 140 and 240, and 140 and 126, in 

consecutive terms, we could compare the performance of persistent students to those that take only 

one semester or two, non-consecutive semesters. With this data, we could also look into the retention 

rate from semester 1 to semester 2, examining if this differs by gender, race, etc. 

For the SLC studies, we could expand this work by including more terms, adding earlier SLC data or later 

physics data to the original structure.  Additionally, we could examine the impact of SLC participation on 

retention. Are students in SLC study groups more likely to continue to the second term course? We can 

also examine the impacts of the SLC study groups on subgroups of students, especially divided further 

by academic level (first, second, third year…). 

Finally, while we chose to focus on gender in this thesis, it is important to recognize the several other, 

non-academic factors that have been shown to influence student performance. Such topics include but 

are not limited to, race (Steele, 1997), socio-economic status (Raizada & Kishiyama, 2010) and parents’ 

education level. These parameters are also likely to be predictive of student success and therefore 

should be given adequate attention. 
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XI. Appendix 

A. Term Codes and Descriptions 

Term 
Code 

Term Description Term Code Term Description 

1070 Winter 1996 1510 Fall 2004 

1080 Spring 1996 1520 Winter 2005 

1210 Fall 1998 1530 Spring 2005 

1220 Winter 1999 1560 Fall 2005 

1230 Spring 1999 1570 Winter 2006 

1260 Fall 1999 1580 Spring 2006 

1270 Winter 2000 1610 Fall 2006 

1280 Spring 2000 1620 Winter 2007 

1310 Fall 2000 1630 Spring 2007 

1320 Winter 2001 1660 Fall 2007 

1330 Spring 2001 1670 Winter 2008 

1360 Fall 2001 1680 Spring 2008 

1370 Winter 2002 1710 Fall 2008 

1380 Spring 2002 1720 Winter 2009 

1410 Fall 2002 1730 Spring 2009 

1420 Winter 2003 1760 Fall 2009 

1430 Spring 2003 1770 Winter 2010 

1460 Fall 2003 1780 Spring 2010 

1470 Winter 2004 1810 Fall 2010 

1480 Spring 2004     
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B. External Data Parameters 

Variable as Listed 
in SD 

Description Values 

UMID 
UMIDA 
UMIDS 
UMIDAGE 
UMIDP 
UMIDSLC 
UMIDC 
UMIDAD 

A system assigned number to uniquely 
identify a person at U of M. 

e.g. 25582542 

ACADLEVELB The academic level of the student at 
the beginning of the course. 

Freshman 
Sophomore 
Junior  
Senior 

ACADLEVELE The academic level of the student at 
the end of the course. 

Freshman 
Sophomore 
Junior  
Senior 

CURGPA A number representing the student’s 
grade point average for the term. 

e.g. 2.14300 
 

CUMGPA A number representing the student’s 
cumulative grade point average at the 
end of the term.  

e.g. 1.73200 
 

NGPA A number representing the student’s 
cumulative grade point average at the 
beginning of the term. 

e.g. 3.81000 

TOTCUMULATIVE The student’s cumulative total of credit 
hours passed and all transfer credit 
hours. 

e.g. 14 
 

TOTTAKEN The cumulative number of credit hours 
taken that count toward the grade 
point average. 

e.g. 16 

UNTTAKEN The number of credit hours that have 
not yet been taken that will count 
toward the grade point average. 

e.g. 12 
 

UNTTAKENPRGSS The number of credit hours that are 
currently being taken that will count 
toward the grade point average. 

e.g. 12 

ACTENGL The score which the student achieved 
on the English component of the 
American College Test. 

Range: 01-36 
e.g. 14 
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ACTENGLPER The percentile in which the student 
placed on the English component of the 
American College Test. 

e.g. 89 

ACTREAD The score which the student achieved 
on the Reading component of the 
American College Test. 

Range: 01-36 
e.g. 25 

ACTREADPER The percentile in which the student 
placed on the Reading component of 
the American College Test. 

e.g. 67 

ACTMATH The score which the student achieved 
on the Math component of the 
American College Test. 

Range: 01-36 
e.g. 25 

ACTMATHPER The percentile in which the student 
placed on the Math component of the 
American College Test. 

e.g. 77 

ACTSCIRE The score which the student achieved 
on the Science component of the 
American College Test. 

Range: 01-36 
e.g. 14 
 

ACTSCIREPER The percentile in which the student 
placed on the Science component of 
the American College Test. 

e.g. 39 

ACTCOMP The aggregate score which the student 
achieved for a single administration of 
the American College Test. 

Range: 01-36 
e.g. 16 

ACTCOMPPER The percentile in which the student 
placed on the Composite component of 
the American College Test. 

e.g. 42 

SATMATH The score which the student achieved 
on the Math component of the 
Scholastic Aptitude Test. 

Range: 200-800 
e.g. 650 
 

SATVERB The score which the student achieved 
on the Verbal component of the 
Scholastic Aptitude Test. 

Range: 200-800 
e.g. 450 

SATTOTAL The aggregate score which the student 
achieved on one administration of the 
Scholastic Aptitude Test. 

Range: 400-1600 
e.g. 1560 

GPAHS* High school grade point average. e.g. 3.785 

RNKHS* High school ranking percentile. e.g. 0.90 

ESTGROSSIN* A number representing the Estimated 
Gross Income of the student’s family (in 

20=[value unknown] 
25=under 25 k 
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1000s). 50=under 50k 
75=under 75k 
100=under 100k 
110=over 100k 

NUMBERDEPS* The number of dependants in the 
student’s family. 

e.g. 5 

SINGLEPARENT* A number representing the number of 
parents in the student’s family. 

800=single parent 
900=not single parent 

PRNTLVLED* Parental level of education. 19=[value unknown] 
25=[value unknown] 
201=[value unknown] 
202=[value unknown] 
203=[value unknown] 
204=[value unknown] 
205=[value unknown] 
206=[value unknown] 
207=[value unknown] 
208=[value unknown] 
209=[value unknown] 
210=[value unknown] 
211=[value unknown] 
212=[value unknown] 

RNKQL* A number representing the ranking of 
the student’s high school. 

1=[value unknown] 
2=[value unknown] 
3=[value unknown] 
4=[value unknown] 
5=[value unknown] 
32=[value unknown] 
89=[value unknown] 
92=[value unknown] 
96=[value unknown] 
98=[value unknown] 

AGE The age of the student. e.g. 18.2055 
 

GENDER The gender of the student. ‘F' = female 
'M' = male 

CITIZENSHIP The citizenship of the student. e.g. 'United States' 
 

*This parameter available only for Spring 2008 through Fall 2010 (terms 1680-1810) 

(Lai, 2009); Most definitions copied or paraphrased from 

http://www.mais.umich.edu/reporting/download/dwsrdict.doc 

It is important to note that the variable ‘CUMGPA’ does include the grade from the physics course of the 

term. ‘NGPA’, the cumulative GPA which excludes the physics course grade, differs from ‘CUMGPA’ in 

that resulting correlations are slightly shifted, with a more dramatic effect seen in students with fewer 

accumulated credit hours towards their cumulative GPA. 
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C. Internal Data Parameters  

Variable as Listed in SD Description Values 

UMID 
UMIDA 
UMIDS 
UMIDAGE 
UMIDP 
UMIDSLC 
UMIDC 
UMIDAD 

A system assigned number to uniquely 
identify a person at U of M. 

e.g. 255811047 

TERM 
TERMCODE 

A code representing the administrative 
time period within which students are 
billed and statistics are accumulated. 

See Appendix A 

TERMDESCRIPTION A description of the time period within 
which students are billed and statistics 
are accumulated. 

See Appendix A 

COURSE 
COURSEAGE 
COURSEC 

The number of the physics course, as 
listed in the LSA course guide. 

125 = Physics 125 
126 = Physics 126 
140 = Physics 140 
240 = Physics 240 

SECTION 
DISCSECT 

The number of the student’s discussion 
section. 

e.g. 4 

LECTSECT The number of the student’s lecture 
section. 

e.g. 1 

LETTERGRADE 
LETTERGRADEC 

The letter grade assigned to the 
student at the end of the term. 

e.g. 'B' 

INCLUDEINGPA The description of grade inclusion in 
CUMGPA. 

‘Y' = the letter grade for the course 
is included in CUMGPA 
'N' = the letter grade for the 
course is not included in CUMGPA 

GRADE A value representing the grade the 
student received in the course. 

e.g. 3.75000 

SG A description of the student’s 
involvement with a Science Learning 
Center study group. 

‘      ‘= no participation in a Science 
Learning Center study group. 
‘PHY###’ = participation in a 
Science Learning Center study 
group for the course Physics ### 
e.g. ‘PHY125’ = participation in a 
Science Learning Center study 
group for Physics 125 
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HOMEWORK A fraction representing a student's 
grade on the homework portion of the 
course. 

0.00000-1.00000 
e.g. 0.850000 
 

LECTURE A fraction representing a student's 
grade on the lecture portion of the 
course. 

0.00000-1.00000 
e.g. 0.670000 
 

DISCUSSION A fraction representing a student's 
grade on the discussion portion of the 
course. 

0.00000-1.00000 
e.g. 0.950000 
 

EXAM1 A fraction representing a student's 
grade on exam 1. 

0.00000-1.00000 
e.g. 0.650000 
 

EXAM2 A fraction representing a student's 
grade on exam 2. 

 0.00000-1.00000 
e.g. 0.675000 
 

EXAM3 A fraction representing a student's 
grade on exam 3. 

0.00000-1.00000 
e.g. 0.520000 
 

FINALEXAM A fraction representing a student's 
grade on the final exam. 

0.00000-1.00000 
e.g. 0.7750000 
 

TOTALOTHER A fraction representing a student's 
grade on other elements of the course. 
This may include extra credit 
opportunities. 

0.00000-1.00000 
e.g. 0.760000 
 

TOTAL A fraction representing the total points 
the student earned in the course. This 
is calculated by adding HOMEWORK, 
LECTURE, DISCUSSION, EXAM1, EXAM2, 
EXAM3, FINALEXAM, and TOTALOTHER. 

0.00000-1.00000 
e.g. 0.842500 
 

BASESUM The total possible points in the course. e.g. 100.000 

PERCENT A percent which represents the 
student's final percentage in the 
course. This is calculated by dividing 
TOTAL by BASESUM. 

e.g. 84.25% 
 

INSTRUCTORNAME** Name of the instructor. e.g. Timothy McKay 

INSTRUCTORGENDER** Gender of the instructor. 0=male 
1=female 

NRESPONDING** Number of students who took the 
student evaluation survey. 

e.g. 55 
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NENROLLED ** Number of students enrolled in a 
course. 

e.g. 140 

PERCENT 
RESPONDING** 

Percent of students who responded to 
the student evaluation survey. This is 
calculated by diving NRESPONDING by 
NENROLLED. 

e.g. 0.40 

Q1** A number representing the response to 
the first question on the student 
evaluation survey: “This was an 
excellent course.”  

5=strongly agree 
4=agree 
3=neutral 
2=disagree 
1=strongly disagree 

Q2** A number representing the response to 
the second question on the student 
evaluation survey: “The instructor was 
an excellent instructor.”  

5=strongly agree 
4=agree 
3=neutral 
2=disagree 
1=strongly disagree 

Q3** A number representing the response to 
the third question on the student 
evaluation survey: “I learned a lot from 
this course.”  

5=strongly agree 
4=agree 
3=neutral 
2=disagree 
1=strongly disagree 

Q4** A number representing the response to 
the fourth question on the student 
evaluation survey: “I had a strong 
desire to take this course.”  

5=strongly agree 
4=agree 
3=neutral 
2=disagree 
1=strongly disagree 

**This parameter available only for Winter 1998 through Fall 2009 (terms 1170-1760) 

 

(Lai, 2009); Most definitions copied or paraphrased from 

http://www.mais.umich.edu/reporting/download/dwsrdict.doc 
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