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ABSTRACT
THE APPLICATION OF THE FINITE ELEMENT METHOD
TO THE NEUTRON TRANSPORT EQUATION
by
William Russell Martin
Chairman: James J. Duderstadt

This paper examines the theoretical and practical application of
the finite element method to the neutron transport equation.

The theoretical examinatjon which is applicable to the general
transport equation in arbitrary geometry includes a derivation of the
equivalent integral law (or weak form) of the first order neutron trans-
port equation, to which the finite element method (Galerkin approach)
is applied, resulting in a system of algebraic equations. We show that
in principle the system of equations can be solved with certain physical
restrictions concerning the criticality of the medium. The convergence
of this approximate solution to fhe exact solution with mesh refinement
is examined, and a non-optimal estimate of the convergence rate is ob-
tained analytically. It is noted that the numerical results indicate a
faster conVergence rate and several approaches to obtain this result
analytically are outlined.

The practical application of the finite element method involved the
development of a computer code capable of solving the neutron transport
equation in 1-D plane geometry. Vacuum, reflecting, or specified in-
coming boundary conditions may be analyzed, and all are treated as nat-
ural boundary conditions. ‘The incorporation of the reflecting boundary

conditions is seen to result in an ambiguity, which must be resolved by



consideration of the direction inVWhich ngutrons'travel.' Discontinuous
phase space finite elements are introduced, and it is seen that discontin-
uous angular elements effectively match the analytical discontinuities

in the angular flux at 4 = 0 for plane geometry. In addition, the use

of discontinuous spatia1Ae1ements is shown to result in treating contin-
uity of the angular flux at an interface as-a natural interface condition
in the direction of neutroh travel.

The time-dependent transport.equation is also examined and it is
shown that the appTication of the finite element method in conjunction
“with the Crank-Nicholson time discretization method results in a system
of algebraic equations which is readily solved. |

Numerical results are given for several critical slab eigenvalue
problems, inc]udiﬁg anisotropic scattering, and the results compare ex-
tremely well with benchmark results. It is seen that the finite element
code is more efficient than a standard discrete ordinates code for cer-
tain problems. Precise numerical tests are made on the convergence rate
of the approximate solution (L2 norm) with mesh refinement and also with

hk*T)

the eigenvalue error. These results indicate 0O solution error in

(h2k+1) error in the eigenvalue, where h is the mesh

the Lo norm and 0
spacing and k the degree of the finite element. A problem with severe
heterogeneities is considered and it is shown that the use of discon-
tinuous spatial and angular elements results in a marked improvement in
the results. Finally, time-dependent problems are examined and it is
seen that the phenomenon of angular mode separation makes the numerical
treatment of the transport equation in slab geometry a considerab1e
challenge, with the resu]t‘that the angular mesh has a dominant effect on

obtaining acceptableisolutions to the_time—depehdent transport equation.
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CHAPTER I
INTRODUCTION

I.A. Opening Remarks

The finite element method is one of the most powerful and versatile
methods available for solving -partial differential equations encountered
in engineering and physics. Originally created in the mid 1950's by
civil engineers for application to the Targe and complicated problems
that are commonly analyzed in structural mechanics, the finite element
method in the time since has developed into a commonly used tool in such
diverse areas as fluid mechanics, electrostatics, magnetohydrodynamics,

neutron diffusion, and heat transfer. As noted by Zienkiewicz]’2

, one
of the early investigators, the finite element method has in this rela-
tively short period become a standard tool in engineering science.

The popularity of the finite element method has been in part due to
the remarkable success most users have had with the method, although in
many cases where complicated, irregular domains must be treated, the
finite element methéd is the only recourse. This success with the finite
element method is due to the firm mathematical foundations that the method
is based upon, which guarantee success for a large class of problems.
Although early investigators who employed the finite element method were
certainly not aware of the mathematical basis for the method's success,
they were guided by physical intuition and understanding that were later
‘to be confirmed mathematically. As noted by Strang and Fix3; once it

was discovered that the finite element method was in fact a Ritz approxi-

mation wherein the potential energy was minimized over a class of suit-



able trial functions, the method obtained instantly a sound theoretical
basis.

The finite element method is in actuality a special case of a very
general method of obtaining approximate solutions to partial differential
equationsd--the expansion of the solutions in terms of a set (possibly
infinite) of trial functions, where the expansion cqefficients are de-
termined by some criterion. For example, one could expand the solution -
in terms of polynomials of a given degree and then ask that the least
squares error over the domain of interest be minimized by the approximate
solution. Or, as in the classical Ritz method, one might require that
the approximate solution minimize a functional that has the original par-
tial differential equation as its Euler equation. In any case, the cri-
terion (least squares ‘error, minimization of a functional, etc.) deter-
mines how the expansion coefficients are to be determined and the approxi-
mate solution (generally) will be close in some sense to the actual solu-
tion being sought. The major departure the finite element method makes
from the traditional trial function expansion methods is that the domain

of interest is first subdivided into small regions, or finite elements.

The solution is then expanded in terms of a specially constructed finite
dimensional subspace (the finite element subspace). This space has as
its basis a set of polynomials (or other convenient functions) which are
individually local over a specific collection of finite elements. That
is, the basis functions are non-zero only over a localized part of the
physical domain. This ioca] structure leads to computational advantages
in that the resultant matrix of coefficients is sparse (i.e., contains

a large number of zero entries). But perhaps more importantly, this



choice of Tocal basis functions results in approximation of the solution
by piece-wise polynomials, over the domain of interest, rather than an
expansion in terms of functions defined (and non-zero) over the entire
domain. As mathematicians have discovered in recent years, piece-wise
approximation is generally preferable to region-wise approximation, and
precise error bounds can be found which guarantee convergence of the
approximate solution for quite general problems. Thus the choice of
local basis functions defined over a few adjacent finite elements was
origina11yvmotivated by conveniénce because interface conditions and
boundary conditions are much more easily imposed on the trial functions
over a small regular domain (f.e., a finite element) than over a large
irregular domain that might characterize a typical problem. This choice
~ has since proven to be an optimal choice in terms of approximation
theory.

The finite element method then consists of expanding the solution
in terms of trial functions which are piece-wise polynomials (or other
functions) over the domain of interest. For most applications, the
expansion coefficients are determinéd by a Ritz (variational) or Galerkin
(residual) technique. In most applications it can be demonstrated theor-
etically that the approximate solution is as “"close" (in an appropriate
norm) to the actual solution as ény member of the approximating sub-
,sbace. But if the approximating subspace is a space of piece-wise poly-
nomials of degree k, which are typical finite element subspaces, and the
mesh spacing is h, then a priori one knows from approximation theory

k+1)

that the approximate solution will agree within 0{(h of the exact



solution, if the exact solution is sufficiently we]T—behaved3. Thus the
convergence of the finite element method is well-established for a large
class of problems and one typically does not need to worry about converg-

ence to the actual solution.

I.B. Application of the Finite Element Method in Nuclear Reactor Analysis
Although the development of the finite element method has paralleled
the development of the nuclear industry and the resultant need for num-
erical solution of neutron diffusion and transport equations, it has
1érge1y been ignored by nuc}ear reactor analysts until relatively recently.
In hindsight, this is somewhat surprising in view of the superior results
5

obtained when Kaper, ‘Leaf,. and Lindeman™ applied:the finite element method

to the 2-D neutron diffusion equation, compared with a conventiOna]'finiie,
differencewccde‘.fﬂﬁﬁgeﬁ{éﬁa KahQGQéin a recent review of the finite
element method in reactor analysis, also note that numerical results have
generally shown the overall superiority of the finite element method,

at least when applied to the diffusion equation. These results included

7

the investigations made by Kang and Hansen’ and Semenza, Lewis, and

Rossowg. But the situation with the neutron diffusion equation is quite
different than with the neutron transport eguation, which is the subject
of this work. The neutron diffusion equation is similar to the partial
differential equations for which the finite element method has been
successful--elliptic, self-adjbint systems which result in symmetric,
positive-definite matrices which are known a priori to have positive

solutions which are guaranteed to converge to the actual solution as the

mesh is refined.  However, the neutron transport equation, which is not



self-adjoint and not ellintic (at least in the conventional sense), does
not possess these desirable properties and is somewhat of an unknowﬁ quan-
tity as far as the finite element method is concerned.

However, the need for a reliable, efficient means of so]vfng the

9~of the Timitations

neutron transport equation is strong. In a review
of existing transport methods, Lathrop notes that the finite element
method is a promising method for solving the neutron transport eguation
in multi-dimensional form. In addition, Froeh]ithlo notes that current
app]icqtions of the finite element method to the 1-D and 2-D transport
equations appéar promising. The finite element method is regarded by
some experts as having such promise for a number of reasonsf

(1) Non-orthogonal meshes are readily treated- since triangular
and/or rectanqular elements are typically used. In addition, triangular
or rectanguiar isoparametric elements (having one or more curved sides)
have been widely used in structural analysis to analyze curved boundaries.
(The restriction to orthogonal meshes is inherent in conventional dis-
crete ordinate codes and also in finite difference methods in generaT).
It should be noted that this freedom to represent quite general config-
urations is of particular significance for applications to hexagonal fuel
-assemblies and core geometrieé (i.e. LMFBR, GCFR, HTGR) which are very
crudely represented by orthogonal meshes.

(2) The ray effect!]

and related phenomena of flux oscillations and
instabilities (well-known problems in discrete ordinates codes) have been

shown to be suppressed or eliminated in finite element codes.



(3) The system of algebraic equations resulting from a finite
element treatment of the transport equation is characterized by a sparse
structure which facilitates storage and solution. (This is 1n‘c0ntrast
to the full matrices which arise in integral transport equation solu-
tions.)

(4) Boundary conditions are conveniently and rigorously included
(formulation of boundary conditions is an ongoing problem in spherical
harmonic (PN) methods) .

(5) Treathent of anisotropic scattering and sources appears to
be readily feasible within the finite element method (anisotropic scat-
tering is not conveniently handled by integral transport methods) when
applied to the first order transport equation.

(6) The order of convergence can be varied depending on the
choice of approximating polynomials. Thus, the use of higher order
finite element methods (e.g., cubics, quartics, quintics) may drastically
reduce computing times to achieve a given accuracy (generally finite
difference techniques result in a fixed order of convergence equivalent
to Tinear finite elements).

On the basis of the above considerations, it appears evident that
the finite element method has several advantages over conventigna]
transport methods. However, to date the finite element method%has not
been extensively examined for application to the neutron transport equa-
tion. Such ah investigation is the subject of this dissertation. The
following section summarizes the previous work that has been done in this
area and this chapier is then concluded with an outline of the remainder

of this dissertation.



I.C. Previous Applications to Neutron Transport
The application of the finite element method to transport calcula-

12

tions was 1hitia11y proposed in 1971 by Kaper, Leaf, Lindeman © and

Ohmsm]3 ]4.

Kaper, et al., formulated a finite element solution of
the variational principle associated with the second-order even-parity
form of the one-dimensional transport equation in slab geometry {mono-
energetic, isotropic sources and scattering). Although no actual com-
putations were presented, a specific a1gorithm for setting up and solving
the resulting set of algebraic equations was included.  Ohnishi discussed
possible variations in application of the finite element scheme to the
transport equation. For example, Ohnishi noted one could apply finite
elements either in space or angle alone, retaining discrete ordinates
methods and conventional finite difference methods for the angle and space
variables, respectively.

15 examined the theoretical bases for the application

In 1972, Ukai
of the finite element method to the multi-dimensional transport equa-
tion with enehgy dependence, and anisotropic scattering. Ukai employed
the more general'ihtegra] law (Galerkin or residual) formulation of the
finite element method rather than the variational (Ritz) approach taken

by others. The advantage of the Galerkin method is that the transport»

equat1on and boundary cond1t10ns are used d1rect3y,whereas the R1tz

method cannot be app]1ed because the transport equation 1is not se]f—
adjoint. (In order to employ the Ritz procedure, one is forced to use
the even-parity form of the transport equation, which is se}f-adjoint
and hence has an aséociated variational principle).. Ukai derives the-

oretical error bounds and orders of convergence for the finite element



-8-

method in addition to proving that a unique solution exists to the finite
element formulation of the transport equation.

Miller, Lewis, and Ross.ow]sq7

have investigated the use of the fin-
ite element method in phase space for both the one-dimensional and two-
dimensional transport equations (monoenergetic, isotropic scattering and

18 examined the applica-

sources). In addition, Lewis, Miller, and Henry
tion of the finite element method to the integral transport equafion.
Numerical studies indicated that the finite element method compares quite
favorably with traditional methods. Specifically, Briggs, Miller, and
Lewis]9 found that the finite element approach eliminated the ray effect
and that computing times were comparable to that of conventional discrete
ordinates codes for a given solution accuracy. Moreover, one achieves con-
siderably more flexibility to examine problems w{th non-orthogonal geo-
metry. However, the attendant problem with finite element methods, the
need to store the coefficient matrix and invert it directly, is magnified
with the extremely large problems encountered in multi-dimensional neu-
tron transport. This problem is considered by Kaper, Leaf, and Lindeman20
to be a major obstacle in the application of the method to transport
problems. In this study, Kaper, et al have utilized the second order

16-17 4, incorporate the

approach similar to Miller, Lewis, and Rossow
finite element method, although a direct LU decomposition solver was used
rather than the conjugate gradient tecﬁniqueremp1oyed by Miller, et al.
In an attempt to neutralize the concerns with the direct inversion
of the finite element coefficient matrix, Yuan, Lewis, and Mi11er2] in-

vestigated the use of block iterative methods to solve the resultant



-9-

system of algebraic equations. VHowever, these resﬁ]ts were not conclu-
sive and it would appear at this time that direct inversion of finite
element coefficient matrices is st%l] the most favorable solution tech-
nique.

Reed, Hill, Brinkley, and Lathrop22 successfully applied the finite
element method to the spatial variables of the 2-D transport equation,
retaining the discrete-ordinates method for the angular variables. Since
the discrete ordinates method involves solving fdr mesh fluxes along the
Tines of neutron flight, the mesh was restricted to triangles which lay
on horizontal bands. This method has been incorporated into the produc-
tion level 2-D discrete ordinates code, TRIPLET?Z. In addition, TRIPLET

allows the use of discontinuous spatial trial functions at the triangle

boundaries. A 1-D analog of TRIPLET, ONETRAN23, has recently been re-
Teased.

24,25

Pitkaranta and Silvennoinen examined both the one-group and

The Ritz procedure was used (applied“téiéﬁé evenfparityAform Qf'
the transport equation), and thé numer%ca] results demongtrated the
applicability of the finite'element method to realistic multigroup
transport calculations. In addition, the finite element solutions they
obtained converged considerably faster than the solutions obtained from
discrete ordinates methods.

Pitkaranta26 has also applied the finite element method to the
second-order transport equation with a non-self-adjoint variational
principle that effectively solves both the even and odd parity equations

simultaneously in selected sub-regions of the physical domain. For
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certain problems with strong heterogeneities Pitkaranta found that this
method offered advantages compared to a finite element formulation in-
volving only the even parity equation. In addition, the solution of both
even and odd parity equations allows the calculation of the angular flux
which is generally not computable when only the even parity equation is
solved, although the scalar flux can be obtained without solving the

odd parity equation.

In summary,_the major applications of the finite element method to
the neutron transport equation have included a variational (Ritz) for-
mulation of the second order (even parity) form of the transport equa-
tion, and a residual (Galerkin) formulation to treat the spatial variables
of the transport equation combined with a conventional discrete ordinates
treatment in the angular variables. Both of these applications have been
extended to 2-D geometries. However, the application.of phase space
finite elements to the first order transport equation has only been

examined theoretically--no numerical results have been reported.

I.D. Outline of Remaining Chapters

This section outlines the remainder of this dissertation which con-
tains the results of the investigation into the apé]ication of the finite
element method to the first order neutron transport equation.

Chapter II begins with a derivation of the integral law formula-
tion {weak form) of the gehera] neutron transport equation. The nec-
essary mathematical concepts and definitfons are introduced and then the
finite element approximation is applied to the equivalent integral law.

The resulting system of algebraic equations is examined to ensure unique-
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ness of the solution and a discussion is presented concerning the con-
vergence of the approximate solution to the exact solution.

Chapter III considers the specific application of the finite ele-
ment method to the transport equation in 1-D plane geometry. After the
desired form of the equation is presented, the equiva]ent integral Taw
is derived and the finite element approximation is applied. A discussion
of the treatment of boundary conditions as natural or essential is in-
cluded, along with specific calculation of the matrix elements for the
various boundary conditions. The choice of the finfte element subspace
is explained, indicating thé construction'of the basis functions. Ob-
servafions are made concerning the mathematical properties of the re-
sulting system of algebraic equations and a discussion of the 1-D error
analysis is made. - Some of the difficulties in the analysis are mentioned
and then an explicit demonstration of the convergence rate is made.

Chapter IV extends the formulation of the finite element method pre-
sented in Chapter III to include use of discontinuous angular and spatial
finite elements. The additional matrix elements needed to incorporate
discontinuous spatial elements are explicitly calculated.

Chapter V examines the application of the finite element method to
the time—dependent neutron transport equation. It is seen that once the
time-independentfé;;ﬁg;é;;?kquation is solved with the finite element
method, this exteﬁsion fo-ihclude time dependence is quite straightfor-
ward.

Chapter VI discusses the structure and properties of the coefficient

matrix and the method which is used to invert it.
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Chapter VII discusses the implementation of the method on the com-
puter, including the methods used to minimize execution time and com-
puter storage.

Chapter VIII presents the numerical results obtained with a computer
code (FTRAN) written to apply the finite element method as formulated in
the earlier chapters. These results include: verification of the code;
precise numerical tests to examine the convergence of the method with
mesh refinement (including eigenvalue convergence rates); application to
some classic problems of neutron transport (critical sTlab problem and the
Milne problem); app]ication to a problem with strong heterogeneities;
and two typical problems in time-dependent neutron transport (equilibrium
decay and wave propagation).

Chapter IX presents.the conclusions based on the results of this in-
vestigation and also recommendations for future effort.ih this and re-

lated areas of transport problems.

'



CHAPTER 11
ANALYTICAL FORMULATION OF THE FINITE ELEMENT METHOD AS
APPLIED TO THE NEUTRON TRANSPORT EQUATION

This chapter contains results which are applicable to the general
time-independent first order neutron transport equation in arbitrary

geometry.

IT.A. Integral Law Formulation {Weak Form) of the Neutron Transport

Equation

27,28

Consider the steady-state neutron transport equation in arbit-

rary geometry with a specified angular flux on the incoming boundary:

A7 QUGA) + T A, &)
G F 1L FEW DN ARVENY

4T + §(x, 4 (1)
subject to
U, 0 = Q21,8) on 7 (2)
where

6%&3,1{\ - angular flux
fﬂis)fi\ - volumetric source
Z«(n) - total cross-section

:Z;CK,ERA£Q— differential scattering cross-section

-13-
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and the terms re]atiné to the geometfy of the phase space are defined
7§L - spatial domain

47

"/ - phase space, B x 41T

)R - boundary of ﬁ\ |

A .
M - unit outward normal to BR

0. R X UT

[t - outgoing boundary, all (2,A )e " such that _O0-h > 0

angular domain

"™ - incoming boundary, all (dei Ye[' such that f-n €0
Although specified incoming flux boundary conditions are assumed, the |
analysis is genera]iiab]e to reflecting boundary conditions or vacuum
boundary conditions (e.g., set @0()1,_?1) = 0).
The goal of this section is to derive the integral law (or weak form)
corresponding to Eqs. (1) and (2) and demonstrate the equivalence of the
two formulations of the neutron transport equation.

3,29,30

First we must introduce the concept of a Sobolev space , which

is crucial for the analysis of the finite element method. Using standard

30, a zero order Sobolev space is the space of all

notation and terminology
square integrable (in the Lebesque sense) real functjons defined in the
phase spaceqﬁr. This is also seen to be the definition of the usual

real Hilbert space, and is denoted ?*o. The first order Sobolev space,
¥i1 , 15 that space of real functions whose generalized first spatial

derivatives are in k*o. The concept of a generalized derivative is not
to be considered in this work, but suffice it to say that if derivatives

defined in only the ordinary sense are considered, the space F¥1w0u1d not

“be comp]etezg. Including functions whose generalized derivatives are
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o}
square integrable completes the space, similar to the completion of ﬂ

by extending ordinary integration with the concept of Lebesque integra-
tion.

These Sobolev spaces can then be concisely defined:

e = {\P@,m fdxda [, )\ < co%

(3)
Vv

R =< {W@.,ﬁ)ﬂXlwa,ﬁ)\af—\vw@,aﬂ«@} "

The following inner products and norms are defined:

inner product = (@)L\)) = K(t\f_( 4a @QA ,ﬁ)&\)@ ,fm

(5)
vV
o _ 'a ‘
L, norm = “&\\o = (@,@) (6)
/2.
one-norm = || Q}|, = {(@)&3 + (v& ) U(Dﬂ -
boundary inner product = <@ ,WP>+
= (deddla-alop,Ave.d) ©
rt

boundary norm (semi-norm) = < Q34

Q.03 /2

m

(9)
To develop the integral law, multiply Eq. (1) by an arbitrary

1
Y (JJ;.?\ )€ ﬂ , and integrate over the phase spacev:
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(dnda a-vaG,) v, 2) + {(c\m\ Z.) 0. 0VG. )
i1

((d;( 44 Yo, A) (A.:\ 7;(11 L) Qh AN
v 4T

ﬂc\aé.ﬁ S, A Y, Q)

v

Now, using the definition of the "collision operator" K’

KE@,A) = TeaMa,8) - [§8' G 8-0%,8) ()

(10)

il
and the inner product notation above, Eq. (10) can be concisely stated:
A . . :
(- ve W) + K&V =(S,¥) (12)

Now integrate the first term of Eq. (12) by parts to find

(&, a-vP)@ Wy - <@ +kOY)=(§,9) |

Substituting the known boundary conditions, Eq. (2), into Eq. (13), and
rearranging, we arrive at the final integral law, or weak form, of Egs.

(1) and (2): .
{8,479+ @9 + (Ke¥)

:(S,\'\)) 4 <©.DJW>—
| Ye Héi (14)

A solution QQi ,-ﬁjé R of Eq. (14) which 1is valid for all

15,31

g 1
W ,2) e R™ 45 then termed a weak solution to the original PDE +

b.c., Egs. (1) and (2). The modifier “weak" expresses the fact that
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Egs. (1) and (2) are being satisfied in an integral sense, rather than a

pointwise sense, hence a weaker requirement is being fu]fi11ed3]. How-

A 3 » -
ever, if the solution éx211iﬂ to Eq. (14) possesses a derivative in the
usual sense, then in fact ngljﬁﬂ is also a solution to Egqs. (1) and (2).

To demonstrate this, assume Q@A) satisfies Eq. (14),
_®R, 4wy + <R, 4>« (K@,‘P)
| = §9) + o,
Al ‘{’Aé Wt

Integrate the first term of Eq. (15) by parts,
(ﬁ \7&,4}> +<§~ 3KV>- "'Zé‘q))f *‘<&‘w>+ (16)
+(K5;‘(’)=(§ W)+ 48e, WX, Al @ et .

. N .

Now since k\')1'5 arbitrary, choose a subspace ﬁs (H such that “P = 0 on
- 4

r if‘ye'ﬂs (actua]]ylv vanishes in a generalized sensego). But then

we have

AJ e - 4
(3-8 9 +(B P =(S,0Y, all We by
But for this to be valid in general,
A ~ Y . ,\)’
0.8 +K& =35 w . (18)

Now to retrieve the boundary conditions, substitute Eq. (18) into Eq. (16)

SR = LR Vet
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But again, for this to be valid in general, it must hold that

But Egs. (18) and (19) are identical to Eqs. (1) and (2), and by the
uniqueness of the solution to the transport equati0n32,52eumigimust be
identical. Hence the solution to Eq. (14), if it possesses a derivative

in the usual sense, is also a solution to Egs. (1) and (2).

I11.B. Remarks on the Integral Law Formulation

Using the standard notation for a bilinear form,a(®,¥), the trans-

port operator contained in Eq. (14) can be written

0@ ¥ = S(0,8-79)+ @03, + KO, (20)

and the integral law, Eq. (14), is then conveniently expressed

Q(@)\D) = (S;w) +<®0‘q)>- jﬂ"\ LP@ ai . (21)

First, it should be noted that the boundary condition, Eq. (2), is
embodied in the integral law and is not imposed as an additional restric-
tion on the space of admissible trial functions Fii. Thus the boundary

conditions are natural boundary conditions3.

An alternate integral law formulation of Egs. (1) and (2) could have

been derived by using Eq. (12)
(ﬁV@,\VB + (KO;LP) = (S ,q)) (12)

and requiring the space of admissible trial functions to satisfy the

29)

boundary conditions (in a generalized sense“”), i.e.,
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We = %“P(fixﬂ)\we N5 b = Qo Vl} (22)

. The integral law would then be
@R.vo W) +Kow) = SW), 41l YelY . o

Now the boundary conditions would be essential boundary conditions be-

cause they are imposed directly on the space of trial functions3.

Ukai]5 notes that the essential boundary condition formulation may

be more difficult to use from a computational standpoint, and this for-
mulation tends to make the mathematical analysis somewhat more difficult
as well. As the numerical results to be presented later will indicate,
the overall accuracy of the methodAis also decreased somewhat with the

use of the essential boundary condition formulation.

I1.C. Properties of the Bilinear Form a(Q,¥)

The properties of the bilinear form a(@:W), which is a representa-
'tion of the transport operator, will now be discussed.

First consider the collision operator K D

K& = 'Zﬁ@)@_@)jﬂ - (éﬁ'fg@_;f('-».&) Q@ ,a)
4

Assuming that the scattering cross-section only depends on the angle

AL A
between the incoming and outgoing neutrons, (2L,

Zo(n, /'S 4) = Z(n,R0-4) (28)

we can expand ffs Q} rf{‘uﬁA in terms of Legendre polynomials in
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But by the addition theorem™", this can berexpress’eqmin terms of_,;s‘phe)tical

(harmonics | L Vi N/ _
| (A4 = 2 (Mf\__)__\/““@"') )
Hence | o +d

Q= 7,080, j 43, L) e \amm

Now form the inner product ((Q Q) and consider the scattemng term

(MO,8), where (<Q\©§~ (itmé)\@\ (M@,@) N

Q\*\@»M & K‘\ Q(&f\ ( :3_\%(’1 Yﬂmtﬂ)\(!zm( )@(ﬂ, )

Interchanging summation and integration, which is valid because the

expansion in Eq. {25) is a uniformly convergent series

o y{ .
000 - |1 2 )2 1R 80, ) am(@)

R R=o0 m=-~0 Y]
) K&ff\\\ Qr, ) Yom (')
41

But either angular integral can be bounded from above using the Schwartz

H'nequa] ity33: "
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‘ UE&-_WW_MW\\
g&ﬁ\ &, 1) \(Lm(.f\l‘ IK ASll@Ql, ‘)\ jA.ﬁ \\{m\(_n.)q .

4T | 4T

hence |

ma,0) & | dx ‘2 S 34 160, 832 Mem@
R L=0 m=-2 4T 4T |

But by normalization of the \eﬂun(fi) )

(A Mem@)]? -

Hence
oo -
LN\@ ‘(9) L g dn X&ﬁ \&(& ,fﬂ\a z @9 40 \SQ_Ql\ (26)
1$\ =0
But the total cross-section term is readily obtained
(72 ©,0) :&M q(;\ﬁ 7.8, O o
i

therefore combining Eqs. (26) and (27),

Koo s Tdn [daloe D § 2 - el
L\

4

Defining % = %Zt@)- E;,@hﬂ \D’Q(ﬂ%‘ )
Q«w) > % ol 2 )

Therefore, if ﬂ > 0, the collision operator is positive bounded
0

4

below™. Physically this can be related to the critica]ity of the region

B o m

o ] MZ(RQH) balX) Yo=min |U-CNZ ll_t‘)}
m (?wf e C(A) i{-(ﬂ) . Then ’Iéﬁ[ ~t
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and clearly 750 > 0 is a sufficient condition for‘ﬁit@ be sub-critical,
since the net number of secondary neutrons per collision is <1, and
leakage frcn&@lmﬁ1] cause the system to be more sub-critical. For a

single region problem with isotropic scattering,
Yo = Z:(-0) = Za

and Bo = 0 corresponds to pure scattering, which will result in crit-
icality only in an - medium.
Now consider a(®,8) in the form of Eq. (20) and after an integra-

L

tion by parts:

O@\O%* @)31"70)*’®*&>+ *'<K‘Q}©) (20)

(€,0) = (- v0,0) +<€,8> +(KO,®)

(29)

Noting that the inner product is real and &Lis real, Eqs; (20) and

(29) can be combined to obtain:
| 2 3
a(@,8) = (KQ,0) + *\1{4@>+ H&”‘] (30)
and clearly if Eq. (28) is valid, then

ol@,8) > s el 2 e

because of the positivity of the boundary norms. Hence for bo >0,
a(éQ;EL) is positive bounded below?. It is interesting to note that if
éQ were complex and a complex inner product is used, then Eq. (30) can-

not be obtained. This can also be shown in a negative sense by showing
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that if Eq. (31) is valid for complex & then a(Q,¥ ) is symmetric, which
is a contradictions

Assume Eq. (31) is valid for all complex & . Express & in terms of
~its real and imaginary parts,’

&:: L\.i’,.(*\y

where u, v are real, and substitute into a(&,&):

a.Q,8) = AL+t yu, LrLo)

oa(uw) + (U, Lo) + oo, U) £ alty, iv)
o(w,w) ~ L (U, + Lo(o,w) + oo, v)
auw,W+ a@,v) + LLa,w-a@,ul)

Now Eq. (31) implies a( & ,&) is real; therefore,

-~
—

-

als,u) = afw,u)

and a(& @) is symmetric for real functions. But clearly a(&@¥) is
not symmetric due to the transport term and therefore we are restricted

to real function spaces when Eq. (31) is used.

A physical explanation may suffice to show that a(dD,Q) is positive
definite for EO = 0. For ‘KO = 0, Eq. (30) becomes

a(@,0)2 4«05 v 0]

Now assume a{ & &) = 0.

(32)

But Eq. (32) implies &= 0 on P*and P~.
Hence the physical situation is a finite region with no net production

or Toss of neutrons within the interior with identically zero incoming
and outgoing fluxes. Clearly this can be satisfied only when the flux
is identically zero, or,
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Q(@,&}\:o = Q=0 . (33)

\

This relation expresses the fact that a(éﬂ,é}) is positive defim‘te4

for
a system with pure scattering (c = 1), although the stronger condition
of boundedness from below cannot be shown. Mathematically this differ-
ence is significant because Eq. (31) ensures a unique solution exists,
while Eq. (33) ensures that if a solution exists, it is unique?. Since
on physical grounds we expect a solution to exist for reasonable source
configurations, this difference is minimal.

Thus the problem of finding the (weak) solution to Eq. (14) is
well-posed in that a unique solution exists which depends continuously
on the data. The next section will discuss the method by which Eq. (14)

is to be solved.

I1.D. The Finite Element Approximation

Equation (14) is as formidable to solve as the original partial
differentfa1 equation and boundary conditions, Eqs. (1) and (2). But
Eq. (14) is in a convenient form for obtaining an approximate solution.
This is done by choosing a specially constructed finite-dimensional sub-
space Shc**]. Sh is a finite element subspace with the superscript h
being a parameter dependent on the mesh spacing. Mathematically the
approximation consists of a sequence of approximate solutions in the
subspaces Sh as the mesh is refined (h=»0). This sequence { &zﬂx
will be guaranteed to converge to the actual solution (in the energy

norm) because:
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(i) (9 is in F\] which is complete by construction
(1) The sequence of subspaces S'CH! are dense in §]
(iii) By (ii) there exists a sequence {\th that converges
to Qor (WY& ash=o0 | .
(iv) (to be shown) The finite element method yields a solution
that is as close to the actual solution as any member
of the subspace (sequence of subspaces) Sh, hence
{&&*& as h-»0.
In practice, of course, one chooses a given mesh refinement and computes
the approximate solution, but it is reassuring to know that the process
of refining the mesh leads to the actual solution.
The details of the construction of a finite element subspace will
be deferred to the section concerning the application in plane geometry.
For this general discussion, assume that a subspace Shc\* 1 has been

constructed, and Sh is N-dimensional with basis:

WML, &) L t=n2, e, N

where again the superscript h corresponds to the mesh spacing. The ap-

proximation then consists of finding a 6Qh(!1,£i )€ Sh such that
0@, W) = (S, 90 + AQeWhS | all Wheth . (3)

This is now the approximate integral law and can be seen to be equivalent
to a Galerkin approximation because since ShC‘* }, the actual solution

also satisfies Eq. {34), which implies

o (&-8n, W)= O
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which is the usual Ga]erkin25 requirement that the residual (error) be

orthogonal to the space of trial functions with respect to the energy

inner product.

A
Since S" s finite dimensional, and éDh € sh, élh(xa,s.) can be
expanded

N N A
Q. 1, &) = 32 O; VM, Q)
=1

and Eq. (34) only has to hold for the basis functions of sh.

N
g( &, A (W) = (S,9) :\4 So’,.\?;’“ :. , 5)

Or, defining the matrixlé,
and the vectors

b = ‘col LQH&)?; )&’M\ ) S_ = CO\ (S‘)Saw"" :SN)

where Si = (33\&1\’\ + A &o,‘\)éh’>~ , the following system of

algebraic equations is obtained:

Ag-s

(36)
Writing ou; the terms explicitly, one obtains
A= T + By « Ky where
A ™ Ay A LY | A
TLQ - - “A;_\Q\SL Q{\ Q},Q.)_Q-V\Vc (n, ] ()

N
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Riy= | 400 QAR Wi, 0) Yo, )

A (38)
Kig = fdndd 2 Ve W, )
Vo _(Gdavre A Te s ke 8
o 41T (39)

and

s_&(&n A8 Yo, 0) %2 2)
- (dac\_?x Aem 4, OV ,.9.)

IT.E. Properties of the Matrix of Coefficients A

-,
T—"

The following properties of the matrix:é will be demonstrated:
1. A is non-singular (i.e., det A # 0)

2. is non-symmetric

= j>

3. is off-diagonal dominant for decreasing mesh (h -»0)

To show that det é # 0, it is sufficient to show
Ac=0 = ¢=0 (41)

i.e., the only solution to the homogeneous problem is the trivial solu-

tion, hence A can be inverted and det A # 0. To prove Eq. (41), assume

Ac = 0O a2)

for some C # 0. Pre-multiply Eq. (42) by C* to obtain

C'AC = (43)
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h

Now choose the .element § h e sM that has C as its expansion vector and

form

N
ol9®, ¢~ = E Cafx ,_ﬁ Cb“"ﬂ
R=1 Jll

N N

DN IEIR AR
,h;g J.:J
N

= 2 il: CalijAyr = C_j‘_ﬁg
k=1 3:1

Thus by Eq. (43) a($™$") = 0. But by Eq. (32), §°= 0. Since the
\¥1h, i=1, ..., N are linearly independent basis functions, we con-
clude C = 0 and Eq. (41) is proven. ii is therefore non-singular and the
system of Eqs. (36) has a unique solution.

An alternate proof]S

of the non-singular nature of;i is given be-
cause it yields information concerning the stability of the solution
with its data. |

Define &y to be the solution to Eq. (34) and combine the data into

one term:

ot = (B, 9" | Al N e Sh

In particular, this holds for th==GQh , hence
o (@n ,QQ = (¥ ) ©h,\

But by Eq. (30),

(KQnbn) + % @t = (§,0,)
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By the Schwartz inequality,

G Q) 4 \\ W\,

and by Eq. (28),

(KO 8y > Bo B>

thus since 4@h>a 20,

Bo WO > € AR MO,

0

or

lawll, & % 1%, (44)

Since we also have

GIONR + 5 <00 & T, ol (a5)

then Eq. (44) and (45) yield

Vs \\Q\d\oa\ N 3‘* J\Q >3 4 {;“; \\Q'\\; (46)

which is the desired inequality. Note that an immediate consequence of
Eq. (46) is the non-singular nature of A: (assuming X ~ 0)

If f = 0, then the matrix equation is

A= 0

—

\
But by Eq. (46), g)\\= 0, thus its expansion vector 2 = 0 because the
basis functions are linearly independent. Hence __&_f_“ = 0=> ‘g_“= 0

which -implies A is non-singular.
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Another consequence of this is that Eq. (44) expresses the contin-
uous behavior of the solution on the datalsz

If &1, Qz are solutions for data f1 and f2 respectively, then
how-Qle & & - &), (a7)

and this is independent of the mesh spacing h. Thus the system of equa-
tions, Eq. (34), should have a stable solution as the mesh is.refined
(h—=0), assuming \60 2 0.

In most applications of the finite element method, the matrixgi is
symmetric. However, in this application the transport term destroys the

symmetry of ﬁg

Defining 1}6 :-(QV3N,f%?Wk“} (transport term) (48)
Kig= KEMe™  (cortision tern) (49)

.. LY
%LJ = U‘J\\ 3\{)‘* >-f- (boundary term) (50)

we have Ay = T¢j + BL3 + K'Lj
Now integrate Tij by parts,
T = - (Y, Q.08
: A
(A 78 ) <R - Y,

Since the basis functions \Vih are all real,

Ty =g+ LGN Eh) bR M,
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. For a typical finite element subspace Sh, only a few q)jh will be non-
zero on the boundary (1t, since the basis functions are Tocal. There-
fore, Tij = 'Tji for most i, j, and I is nearly anti-symmetric. In
addition, Tii = 0 for most i and T is off-diagonal dominant. Also, since
Tij involves a derivative, its "size" is larger than the remainder of
Aij for small enough mesh. Thus A can be off-diagonal dominant.

The boundary term Bij is clearly symmetric and the collision term
Kij will be symmetric if the scattering cross-section depends only upon
the angle between the incident and outgoing neutrons:

KL:\ - (K%N\q&k\ - S(é’i&ﬁ iem“éa“‘@,,é‘d\\’;“‘(&ﬁ)
Y
- (dnd WM, 8 §‘\§‘ 2,5 840, 1)
~

41T

and interchange of }i,fyﬁnm1ies , _
Kig= Koo id Z{n,8's8)= 20, 4R)

Therefore A consists of a symmetric portion and a nearly anti-symmetric

portion due to the transport term.

II.F  Convergence and Error Analysis for thé Diffusidﬁuﬁduatién

The key reason for the success of the finite element method is that
the approximate solution, whether it be obtained from a variational (Ritz)
finite element formulation or the residual (Galerkin) finite element for-
mulation used in this investigation, generally is as close (in a suit-
able norm) to the actual solution as any member of the approximating sub-

space Sh. Thus the error ana]ysis may rely on standard results of ap-
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proximation theory, using sh (i.e., piece-wise approximation), independent
of the particu1ar physical problem being considered. Therefore the con-
vergence of the solution is génera11y guaranteed and the order of con-
vergence with mesh refinement may be predicted in most cases. These
~ remarks are certainly valid for second-order, elliptic, self-adjoint
systems, such as the one-speed or within-group neutron diffusion equé—
tions, the heat conduction equation, Laplace's equation, etc. However,
when one attempts to derive theoretical error bounds and convergence rates
for the neutron transport equation, which is first-order and non-self-
adjoint, certain problems are encountered.. To appreciate these problems
and provide some insight as to where progress may be achieved, the error
analysis for a typical second-order, elliptic, self-adjoint system will
be briefly reviewed. It is also worthwhile to note that F1'x34 has exam-
ined the eigenvalue problem for the multi-group diffusion equations, which
are not self-adjoint, but this will not be discussed.

Consider the_mono-energetic neutron diffusion equation with zero
flux (Dirichlet) boundary conditions on ft and zero current (Neumann)

boundary conditions on [y :
SRR+ Ta)Q@) = S wm R (s
subject to &Q}) =0 , Ne U

- DVAQW=0 , 1e Va

where (1= (n + (3 is the boundary of EX .
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To develop the integral law, we can proceed as we did with the

4
transport equation, and multiply Eq. (51) by an arbitrary \PG“B where

gw\ (dn[‘%u\‘ \wmﬂm
ond ¢@-o o s

(note the Dirichlet boundary conditions are imposed on the space ki%é)

and integrate over }k:

(dn (-DP2Q W+ Za@P) < [dn S
R R
Now integrate by parts, using the boundary conditions to eliminate the

(ar bvave + vaob ~3X

surface term:

or

D70, 7%) + (Ta0 P) = (5,9 )

It is éasily shown that the Neumann boundary condition is a natural
boundary condition for this problem while the Dirichlet boundary condi-
tion is an essential boundary condition that must be imposed on the space

of trial functions3.

In addition, if there are internal boundaries,

say between two dissimilar materials with diffusion coefficients DA and
DB’ then it is also seen that the current continuity -DA E7QA = —DB V7@B '
at the 5nterface is a natural boundary condition and therefore can be

ignored.
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In any event, we have the bilinear form

, A
O\(@\\\’\ =5,9) Al e ‘:\@, (54)
where Q(&)\\}) - &D \7@; V\\)) + CZoJD\\P)
to which the finite element approximation is made Sy choosing a subspace.
sh ¢ WG and finding the solution &eS" for which Eq. (51) is valid

for a11 bhe S

It is a standard ca]cu]ation3

to show there exist positive constants .

Cy and C, independent of Q andqg such that

a@ ) > el (55)

0¥ & Cal@l, W, (56)

A
for any &,Ug € ﬁg . This js a statement to the effect that the energy

al, = Vo@,0)

and the one-norm, \\@N\{ , are equiva]ent3. The error estimates are then

nori,

obtained with Eqs. (55) and (56) by starting with the energy norm of
the error in the approximate solution and then adding and subtracting

an arbitrary element \P“ € SN 3

0 (8-0n, 000 = AQ-Ok, Q-WN 4 Wh-Qn)
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Since the bilinear form is linear in either function,

a0-On, 00 = BE-0x, &Y + QD0 WM& ()

But the residual S}‘Qk is orthogonal to the space sh in the energy norm,
i.e.,

oo (Q, WM
o (@ VM)

(R, WY
R

. (@~0, 0N =0 |, Al WhesM.

[

" hence

* Therefore, the second term on the RHS of Eq. (57) is zero, and we have

Q. &‘OV\| &)‘@‘\) = &_(@*@-I\; @‘q)hB ' (58)
xl Whe SN

Now using Eq. (55), the LHS of Eq. (58) is bounded from below

Co Q-0 & 0(@-0n,8-0n (59)
and the RHS of Eq. (58) is bounded from above using Eq. (56)

oLQ-On, B-WN) & Ca 10~ Oull, 10-VM,

Combining Egs. (59) and (60),

NQ-Qnll L € WQ-WMIy | Ay PheSA
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which is the crucial estimate, because this states that the approximate
solution @K is as close to the actual solution & (in the one-norm), as
any arbitrary ‘Vhé-sk. But from the approximation theory of piecewise

polynomials, we know _
W@ -, 4 K DAY \ ke (62)

that is, sh can approximate the so1utionf§\to within O(hk) in the one-
norm, where k is the degree of the piecewise polynomials, K'is a constant

independent of & and \@( is the semi-norm (for k = 1)

X

\gl\g‘.:_ QSQRH_\‘7aéQK a.

which is constant for a given &2.
It is a standard procedure (the Nitsche "trick") in numerical analy-
5153’35 to obtain the error estimates in the Lz-norm, which adds 0(h)

to the error estimate:
(Q-Ql, & Ch* \ @y, (63)

This step is not a natural result of the finite element approximation but
must be obtained with some additional analysis. The reason for this is
that the approximate solution is optimal in the "energy" norm a(&,@l)
which is equivalent to the one-norm, and not the L2-norm.

In addition, the eigenvalue convergence rates may be computedsz

PV N e -

i.e., the error in the eigenvalue is equivalent to the error in the eigen-

function, measured in the one-norm. Therefore, using Eq. (62)



-37-

\)\-h~>\\‘=- C\f\a’k (65)

or 0(h2) convergence for linear elements, 0(h%) for quadratic elements,

etc.

I1.G6 Convergence and Error Analysis for the Transport Equationv

To the extent possible, the analysis above will be repeated for the
transport equation. As we will find, however, the rigorous analysis
yields a convergence which is not optimal in the exponent of h, i.e., the
Lo-error for the approximation solution decreasés as O(hk) rather than

o(h**h

as with the diffusion equation.
To obtain the rigorous error bounds, begin with Eq. (30) combined

with Eq. (28),

QQSI\Q) > 5,101, + -‘-5&4 Q3> + l‘g»-g} (66)

Thus a(&Q,@L ) is bounded from below by the Lp-norm.and the boundary norms.
Comparing this with the equivalent bounds Eq. (55), for the diffusion
equation, where a(®,& ) is bounded from below by the one-norm, we see
that Eq. (66) is a considerably weaker condition.

To bound a(éb‘i)) from above, start with Eq. (20)

6@V - -(@,8.v¥) (KoY Q> (20)

Noting that the collision operator is a bounded operator:

(K8.0) =(Zc0,0) - (Ma,0)
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where (W,Q) is the scattering term defined in obtaining Eq. (26). Since
(MOB )20,

KE,D) & (mw) . 080 >

wherez° is the maximum value of the total cross-section in the domain

19\. Now use the Schwartz inequality and the symmetry of k:to obtain

(ko)) & (KQXKQ)VQ @, ¢ )4
o |KOOY & T, e, el

(67)
using Eq. (66). Similarly, using the Schwartz -inequality,
A ,

and

\4© W4 \ L LQ>, by (69)

Now using the following identity!>

Lol \b\ & \odi -‘-— i\ | e¢s0

Eqs. (67) and (68) become (with &= T%)

ko) & B o2 « T et 70
| (o, oWl B OIS« ety
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and Eq. (69) becomes (with €‘=%; )

oW & Lo 4 anr

Therefore, using Egs. (70)-(72) to bound the terms on the RHS of Eq. (20),
we obtain the desired upper bound (using I\\Wl, & \4l), , < @>2>0)

Lol & T e « L (1eZ2 ) vl
4+ -\q E{@&? +40>_.;}+ S\
(73)

Now let us consider the error in the approximate solution measured in

the energy norm:

"energy" error = (_ @,*—OK, &lw@;\)
and noting that the residual 834Qk\15 orthogonal to Sh,

O@~Ok, ©-0) = A(O~0u, @-Lh+A-0) (74)

or

0@~ 0u,0-00) = O ~0n, @ V1) + CU&-0r,V"-00)
tbe second term on the RHS of Eq. (74) vanishes. Therefore,
(L(@\@m@\@m) = O\(&~©h\&~\\2k’3 (75)

for arbitrary bh e P, Now apply Eq. (66) to the LHS of Eg. (75) and

Eq. (73) to the RHS of Eq. (75) to obtain the inequality:
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%o 10~y + 4 {<®;©,\>3 L+ AQ- @p.ﬂ

€% 8- 07 ¢ L (T2 g

O

£ 4 LRS02 ¢ L 40-002 1 ot

Now using the following 1nequa1ity]5

*
AU (VA
and rearranging, we obtain

To 002« 4 [eso0s .,.4@—-0,»1
L {:6\— Q-F 7:1) + \\ (D"%)k.“ia

Now defining C =2‘;—L Q-&- ftﬂ*‘IJ we obtain the final
o
inequality ("energy" inequality)

%o 1O- @1\\\: + -\_3_ LQ-On>™
Lo O-OMLY Al Whe SH

(76)

This energy inequality states that the finite element approximation,
when measured in the L,-norm, is as close to the actual solution as an
arbitrary element of Sh when measured in the one-norm. Therefore, the
inequality is not as sharp as for the diffusion equation, where both

sides were measured in the same norm (see‘Eq. (61)).
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This results in a loss of O(h) for the convergence rate because
from approximation theory, Sh can approximate a sufficiently smooth func-

tion § to within 0(hK) in the one-norm:
h@ -0 2 « c AR \Q Ly, (77)

where ‘mk‘js defined as before with the diffusion equation. Equation
N _
(77) and the energy inequality, Eq. (76), immediately yield for the error

in the approximate solution in the L2-norm:
\\@‘QK\\O =S C/l‘\“k \Q\jm

where C1 is a constant independent of h.
Thus the error estimate for the transport equation is decreased by
0(h) compared to the estimate for the diffusion equation, Eq. (63).
However, the numerical results, which have been reported previously
as a part of this iﬁvestigation36 and which are discussed in detail in a

later section, would indicate that the convergence rate is actually

\o-~ai\, & M 0L, (78)

ie., o(hk'h

convergence for finite elements of degree k. Therefore,
one might expect that the analytical proof may be sharpened to obtain this
more rapid convergence.

One approach to demonstrating this is to consider the truncation
error associated with the finite element approximation and thain ex-
plicit bounds on the resulting error in the approximate solution. This
has been done in Chapter III for linear elements and the results, which
" rely on numerical results for the norm of the inverse of the coefficient

hk*Ty

matrix, support the 0 convergence.
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However, this approach is not entirely satisfying due to the need
for obtaining numerical estimates for the norm of thé inverse of the
matrix of coefficients, ér- It would bé desirable to obtain an improved
estimate of the convergence rate in a more rigorous manner, similar to
the preceding proof for the non-optimal estimate. However, a rigorous
demonstration of this optimal convergence ratevwas not obtained during
the course of this investigation and the following discussion is there-
fore devoted to Severa] possib]é approaches for obtaining the optimal

result.

One approach might be to split up the transport bilinear form,

0@ 9)=-(Q,4.7¥) + <Q¥
+ (kKQ,¥)

(79)

into its symmetric and anti-symmetric portions, which is possible be-

cause any bilinear form can be reduced to a sum of a symmetric bilinear

form}and an anti-symmetric bilinear form3?,

o (@,9)= 0@+ 0,09 @
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where
(l.s<§> qu> = symmetric bilinear form (81)

N CELCL(§Q )q)) = anti-symmetric bilinear form (82)

By the definition of symmetric and anti-symmetric bilinear forms,

a8 )\m = O (\P) Q) ' (83)

ch(@ )\{)\: = a-&(q()l (Q) (84)

Now, using the following identity, which is merely an integration by parts

of the first term in Eq. (79),

(-@,ﬁ‘\7W= (fL'VO)\P) (85)
- 0B+ LO,W ,

the symmetric and anti-symmetric parts in Eq. (80) are readily obtained

Q s(@ }W)}:(KQ )KP» AN % {4 Ql\p%ﬁ' 4 QN}% (86)

&&@ ]\D\: - (Q,QL'V‘P) + %%QJ\V% -4 O;W% (87)
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It is easily verified that

0s @V G5 W,0) | (88)

Gal@ W)=~ Ca%d) (89)
and

@ W) = Ac©,9)+ Ga®9) . (@

Now if one assumes that the anti-symmetric portion of a (<Q,¢>) is

bounded by the symmetric portion of a (d?ﬁ% ), i.e.,

@) & [ase V)
Al Q¢ e R

(91)

then it is easy to show'that the approximate solution minimizes the error

1

in the energy over the subspace Sth . That is, if dz‘is the approxi-

mate solution and \Pk is an arbitrary element of Sh, then

0.(@~0n ,0-0,) ¢ o (@M 0-Wh)

all  Wh e Sh . (52)

However, the validity of Eq. (91) is questionable because it involves
bounding the derivative terms by surface terms and volume terms, which

at first glance does not appear valid. Therefore this approach will not
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be pursued any further, except to remark that the result--minimization
of the energy over the space Sh, would appear to be valid.

A more promising approach may be to employ a method similar to that
used by Lasaint and‘Raviart38 to analyze the rate of convergence of tﬁé.

solution method employed in TRIPLET22

» which is the finite element trans-
port code which utifizes discontinuous elements in space and conventional
disérete ordinates methods in angle. Although thevanaTysis is concerned
with a somewhat different set of equations, involving only spatial terms,
some of the results should certainly be applicable to the current analy-
sis. For example, the general results obtained by Lasaint and Raviart
were also not optimal in the convergence rate, in that O(hk) rates were
predicted. However, when they restricted the spatial domain to be par-
titioned into an orthogonal mesh, then they were able to prove 0(hk+])
convergence for finite elements of degree k. Thus this approach may be
a fruitful means of obtaining theloptima1 convergence fate for this ap-
plication. | |

The final attempt to reconcile the predicted and observed conver-
gence rates involves an examination of the eigenva1ue convergence rate
and its relationship to the solution convergence rate. As will be seen,
an eigenvalue convergence -rate which is consistent with the O(hk+1) solu-
tion coﬁvergence rate is observed numerically, which adds additional
credence to the argument for the improved error estimate, which is

O(hk+])

convergence for finite elements of order k on a mesh with spa-
cing h. To do this, the discussion will consist of the following.
First, we will assume that the finite element solution is the best approxi-

mation to the actual solution within Sh, with the L2 norm being the
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measure of error. Using this assumption, fhe error in the energy will
be derived.. Then the eigenvalue problem is formulated and the error in
~the eigenvalue is derived, using the error in the energy. It is then seen
that this predicted eigenvalue convergence rate, which depended of course
on the optimal convergence in the solution, agrees with the numerical
results for the error in the eigenvalue. Thus the numerical results for
the eigenvalue problem are consistent with the imprdved estimate in the
error in the solution and of course they are also consistent with the
numerical results for the error in the solution.

The eigenvalue convergence rate will depend on the predicted error

in the energy, or ‘ y
A
\\@“@N\\E = {O\(Q%Qn,@%?nﬂ ()

As was noted above, it appears reasonable that in fact the finite element

solution @h minimizes the error in the energy over the space Sh; how-
ever, the proof of this has not been'performed. To obtain the eigenvalue
prediction, it will be assumed that indeed the finite element method
yields the optimal solution in the space Sh. That is, if d@p\is the
abptoximate solution and él is the actual solution, then

‘\Q«Oh\\o_& C\!\'M\ \(Q\kﬂ | (94)

" where \Q\ K is the usual semi-norm as used previously, h is the mesh

spacing, and k is the degree of the finite element. Using the results

38

: 1/2
of Lasaint and Raviart™, the approximate solution loses O(h*4 } in the

error on the boundaries,
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(R-Cn>y 4 C ks \Q\&H . (99)

Again, it should be noted that we are assuming ézk is the optimal solu-
tion, which is consistent with the observed numerical results. We will
‘now derivé the eigenvalue convergence rate using Eqs. (94) and (95), and
compare with the numerical results, which are independent of the numerical
results obtained for the error (L2 norm) in the solution.

To obtain the eigenvalue error, first consider the error in the

energy,

\\&~@M\: = a(8~64,Q-84) (96)
Using Eq. (30), Eq. (96) becomes
10-0u1\2 = (K@-0.) 0~0n)
+ % [k@~0k>+9‘ + 4(9_.@}\8] (97)
But the first term of Eq{‘(97) may be bounded from above using Eq. (67),

(K®~@s\\ «‘©~0w8 £ 3 00-0u0, (98)

and therefore with Eq. (98), Eq. (97) becomes

1002 & 7 (e-0u&
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But now Egs. (94) and (95) can be applied immediately to Eq. (99), yield-

ing

e-0nl\> <« cﬁ\”‘”‘ TolP

C&\'\}k*\ \@\}kﬂ : (100)

which expresses the error in the energy, assuming the approximate solu-
tion dzkis indeed the optimal choice over the space Sh. For decreasing
mesh (i.e., h —» 0), one then obtains O(h2k+]) convergence in the energy,

2k+2) term, since the

but we will carry along for now the additional O(h
numerical results appear to substantiate this term as well.

Now we will use the error in the energy, Eq. (100), to derive the
error in the eigenvalue.

The eigenvalue problem is formulated in the following manner. The
physical situation consists of a physical domain R\which for simplicity
is assumed to be a homogeneous medium with isotropic scattering. In order
for this region to be critical, the number of neutrons being produced in
5R must be equal to the number of neutrons being Tost via collisions or

leakage. If there is a net loss of neutrons, the region R\is said to be

sub-critical, and if there is a net gain of neutrons, the region & is said

to be super-critical. The eigenvalue problem then consists of a balance

relationship, with the eigenvalue € bejng the factor by which the produc-
tion term is scaled to achieve criticality. This relationship is the

following
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1{\2" U&(&pgl\ * Q(}:\. 13\-\
= C—(k&ji} €l<21 ,j%})
Bl

where the unit of length is taken to be mean free paths, — . The
€

(101)

eigenvalue C is defined

C'—-‘- vf; +ZS

'Zt (102)

where 7:; is the fission cross section and 2 is the average number of

neutrons prodﬁced per fission event. Of course, as defined C would ap-
pear to be a fixed number; however, in practice one would adjust the fis-
sion concentration, thué effectively changing the value of C. Therefore,
for the ensuing discussion, it will be assumed that C is the term which
is scaled to achieve criticality in the given region k,

To derive the equivalent integral law formulation of the eigenvalue
problem, multiply Eq. (101) by an arbitrary 4)(§g,3) e 1 ahd intégrate
over the phase space'\f: AftekAan integration by parts as with the ear-
lier formulation with the source problem, the equivalent integral law may
be phrased:

Find (1, & )€ WY and a real number ¢ such that
Ck(&“\)) = ch@)&P) , all e qt (103)

where

@ W)= - (@,5\1'7\0) + (@,0) (104)
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m@ @)= ( 148" €0, &), \P) (og)
g o

and it has been assumed for convenience that vacuﬁm boundary conditions
are imposed on F-i

Now consider the scattering bilinear form m(@a\()), which is defined
-1in Eq; (104) for the case of isotropic scattering. Although the present
analysis is restricted to isotropic scattering; the ana1yses‘can be gener-
alized to include a genera1 anisbtropic scattering kerne] of the form:

Snaea) - (A by (@)

L=0
For the present analysis, though, we shall assume the Legendre coefficients

are zero, except of coufse for by, which is the total scattering cross-
section 2{ s (plus zfiff when applicable). However, for the eigenvalue
problem, the b0 term is included within the eigenvalue C, as noted in
Eq. (102).

Writing out the scattering bilinear form,

m@ vy= 82 {a_q% R LEYION
R

€M

and Tetting W’ dQ » we have

(AL A |

/‘M@ @\ \Hh K&Sl@( ﬂ\(‘éﬂ 8,5 (105)
yti YT

Applying the Schwartz 1nequa11ty to both angular integrals of Eq. (105),
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.f X | ‘/’A . ) R VZI
e, < Q&na@@,aﬂ (Lo
'} il Y1
= X\AM gé-ﬂ Q-JI\“
= 41 Nl
Therefore, the scattering bilinear form is bounded from above,
m@.0) LT ol (106)

The significance of Eq. (106) is that one obtains O(hk+]) error in

the solution when the scattering "norm" is used:
, ' 2
M(@-0n, 0~Cn) ¢ 47 10-O4ll,

or

. (@-0n 0-00) = O(FY?)

Thus the error in the scattering bi1ineaf form is
Q-0n, ©~0n)= O (h22*3)
M Q-Us, ©~Un)= O (108)
while the error in the energy 1is

o (&"@M.@*QK) = OUI\”‘HX “ (109)
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a(@;\ On)
m\(@ht @‘\.)

Then the error in the eigenvalue could be calculated as

~ o leoenl L | 2@0) (l(@m@m
€= lC C \_ l/w\@\o\ /m@h,\&)ﬁ) \l

h
chs

(112)

(113)

and then if one could show

O\@h\@h\ = al@,0) + Ol >R+) (114)

, , ‘3
/W\((QMQK) = m\(@ l&\)\f O G\?k ) (115)
the'resultant error € would be easily calculated to be

€= (C—C"\ ~ OQ\M‘“) (116)

This estimate of the error is consistent with eigenvalue results re-
ported in other applications, in that the error in the eigenvalue is

equivalent to the error in the energy, i.e.,

A)\N Q(@ ”Oh,@‘@h.) (117)

and since
O\QQ *-Om\@‘@v\\ ~ O "\m+l)

the result seems plausible. Also, as will be reported in Sec. VIII.D.,

the observed eigenvalue convergence was 0(h2k+]) (at least for k = 1)
and thus there is additional numerical evidence for this estimate of

the eigenvalue error.
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These estimates will now be used to substantiate an estimate of the
error in the approximate eigenvalue which is obtained by the finite ele-
ment approximation. Of course, Eq. (103) is not the eigenvé1ue problem
which is actually solved by the finite element method. The finite ele-
ment approximation is to choose a finite element subspace Sh CF@1 and
seek a solution (Qhésh, as stated below:

Find a real number C" and a solution @hé sh such that for all

Yhesh
&@g‘@’\f& (@, ™) | (108)

where

A @n 0™ = = (Qn, &-7YH)

(109)
I (N

and

Cmlend = ( ({802 90
| qr

(110)

If the actual eigenfuhctiondQ and the approximate eigenfunction

éﬂrlwere known, then the eigenvalues could be computed

Q GD*{O\

(111)
m@,o)

=
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However, the proof of Eqs. (116) and (117) could not be completed,
although similar results could be obtained by a simple application of

the triangle inequality ' (
- Y/ f Al
[Ok@“\@“\%/a = [Q@\‘Qﬂ T4 OG‘M *) (118)

e s M@0 o *) o

but these expressions were not helpful in obtaining the eigenvalue esti-

mate.

To summarize the results of this section, a non-optimal estimate
of the convergence rate is obtained rigorous]yl However; numerical
results indicate that the optimal convergence is achieved in practice
and thus there is incentive to obtain the opt{mal rate analytically.
Several approaches are outlined to obtain this optimal estimate but
none were successful in predicting the numerical evidence;'In‘addition,
it is also noted thét~the eigenvalue rates are consistent with the
V obseryed L2 solution cdnvergence rates, thus providing additional
assurance thét indeed oné should be able to demonstrate the optimal

convergence rate analytically.



CHAPTER III
SPECIFIC APPLICATION TO 1-D PLANE GEOMETRY

IIT.A. Derivation of the 1-D Neutron Transport Equation

Consider the plane geometry illustrated in Figure 1, where the in-
dependent variables are the spatial coordinate x and the angular coordin-
ate I, where Al = cos®© and ©is the angle that the neutron velocity sub-
tends with the positive x-axis.

The general geometry neutron transport equation, Eq. (1),

A . A c .
- \7&(& \.Q) + 7{;@3) &()l ,§l\
- (A T A=) 0@, A +S(h.,Q)
4T - (1)
is transformed to plane geometry as follows. Assume the scattering

kernel may be expanded in Legendre polynomials:

To(n, f002) = z(mnm
20,84 2 ’AQH bxzm} p&@l\'ﬁ
=0

or

A A ,
Now the directions {} and _(L‘ correspond to the angular coordinates (©,'}),
QWR‘ ) respectively, where © is as defined in Figure 1 and ® is the
azimuthal angle around the x-axis.. Now since there is aximuthal symmetry,

A
@Q does not depend onQ? . The volume element d&jl‘can be expressed

Aﬁ\ = 30O A6'd ¥
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[
and the scattering integral may be integrated over d%’, after substi-

tuting for E>2.C£i‘2f{} .

gi\-ﬁ‘ ESQJ-\ —&\ﬁ) M&,ﬁ\)
Y ‘W\o‘ T2 b0 PBla)
= E} & \ &:a‘q—ﬁ. 2 Q Q
| avw
- gQ\M‘ng‘?’ Cad bu\{\)a(}ﬂ%@*‘
~t > L0 W -

+a 2 @ ik 5 Pe W\ @) Cos {m(h?d?'ﬂ% & u)

A
But X‘ QR\Q‘ QADS,/VPJ§Q~\P‘§ ——C) IQ' m¥x 0 )

o
( ote that m is an integer)

therefore,

K Q' 0 &) &(n,sd
= 2ATY \ Q\M m \D alX) Dwxbm Q)

—t ,ﬂ—43

Z 227 00 Dyl Kdu Do) Qfy u)

Also
A oW
Qv —= M= <
?:Qﬂ@@ S\) —= 2K @(Y M\
S 8) — S
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and Eq. (1) becomes

M0 3 Q= 3 A L Bl | w i Q)
* &0 S 4 s@)

Assuming for the purposes of the present analysis that x varies from 0

to 1, then the allowable boundary conditions at x

= 0 and x=1 are as
follows:

(i) Vacuum boundary conditijons at x = 0,1:
Qo) =0, M>O0
80 M)y=0, M40

(i1) Specified incoming flux at x = 0,1:

QM) = o0, M) ;M>0
QM) = Qo0 M), M40
Reflecting boundary conditions at x=0 and (i) or (ii) at x=7:
Qo) = Q,-m)
plus QL M) = O
oo QM) = Qo)

II1.B Integral Law for Plane Geometry

(iii)

{i

Define the space of allowable ;ria1 functions
}
5 = (o] (8 duorup el coo§
0

and proceed in an analogous manner with the general formulation, multi-

plying Eq. (120) by\v (XIAL) where qfis arbitrary and integrate over the

phase space:
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Yt\% § e w8 ©uy Kq\x(duﬂm QUMY 1)
(&\z %MW n Z 4y 0Dl [A» Dyl Q)

< | =0 (121)

{t\x (c\,ua W, ) S A

0

Now integrate the first term of Eq. (121) by parts

gé\{& T ubQ W(X W= - &61 Réu_ Q) JJ\W
c\uu {&o\m%m &xom&v@ﬂ

(122)

For simplicity, assume specified incoming boundary conditions at x = 0

and x-= 1 and substitute them explicitly into Eq. (122):

Kéx Kc\u ubQ %( m = ~§(\xg m &) b“‘) /bL

~{

(&MMV Q0 ) W) ~ &A““ Qouow) (1)

-

(ua Qa0 u) - [ 0,000 (o0
-~ o |

and substitute Eq. (123) into Eq. (121) to yield the final form of the

integral Tlaw
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~ i‘t\x X‘(\M QM) ?%i gc\xgciﬂ 21y 86 ¥

-t o

| o
) S 60 ) “u) - (C&MM Q1) W)
Séxgé»%u) 2 A by ) el (e\u Pt Qx )

= HX((ML Sy W, ) {-KAMM 8o (0,u1) Yo, m)
- KdMM Q&\ﬂ)%;&l) wGH (124)

Thus the task is to find the solution &l(X,L()é:¥*13uch that
Eq. (124) 1is satisfied. Although Eq. (124) is valid only for specified
incoming boun@ary conditions, only changes in the boundary terms are
needed to account for vacuum or reflecting boundary conditions. These
specific changes will be included in the next section which treats the
finite element approximation to solve Eq. (124).

The remarks made earlier concerning the equivalence of the integral
law and the partial differential equation + boundary coﬁditions hold for
the 1-D case, as wou]dvbe expected, and no additional comments will be

made.

II1.C  Finite Element Approximation
Proceeding in an analogous manner with Chapter II, choose a finite

element subspace Sh CQ*Q'with basis

Q&NQL‘O ‘iw'&\}as 1")
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and seek a solution

Onm) = Z &y 0N (X u)

(124) is valid for the QQL
generates a system of equétions

such that Eg.

3 1’ = .'92’

AQS - TL& % KLJ X %L\J |
N Y‘c\\{ (QUL SOy YR ay + R
and .
Ty = W gc\u A & ny W‘*
Ky =

0 \ —

| dy 3 L m&m Polaty ¥ )
0 Rso

Q\t\u‘ Py(uh) M"’(X.M‘)

\ 1
| (c\x& gc\u DT AICBNN !

(x)

AR =S '

This

(125)
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and the boundary matrix elements {gij and boundary source term Iki

depend on the boundary conditions as explained below.

(1) Vacuum boundary conditions N P

= (a0 - (Tuuton o

-1

Re=0

IO B . ;o

(ii) Specified 1ncom1ng flux

Ry = gmt\) G - jam 0,i%M,1)

same B jas for vacuum b.c.),

Ry= gi\uu o) Q00 jduu‘& )R (4)

(iii) Reflecting boundary conditions

- In this case there is an ambiguity that must be resolved
on the basis of physical reasoning. Note that the boundary inte-

gral in Eq. (122) prior to incorporation of a boundary condition-

‘ | ,
boundary term = gd,bu&, [&(\\M\\PQM&} - &G]U)&Ka}ﬂi}

is

The term at_x = 1 is evaluated in the same manner as above, depend1ng
on whether vacuum or specified boundary conditions are imposed at x = 1

and will not be further considered. However, the term at X =‘0

{
- {db\ﬂv Q.0.m) YO, (126)
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can incorporate the reflecting boundary conditions

LOM) = QG,-M)
in two ways (both clearly allowed mathematically):

| (1) Set & 6,m = &(o}wﬁ , M >0

and substitute into Eq. (126)

R, = _g A 06 WY, Y - &du e &o,-1Y Yo, n)

_ ( e 600, 1) o ) + Q duu QO WYG, -A)

-t

or

(127)

Rez - gbdum &(o,u)[&k)@\m-‘%rﬂﬂ

which generates matrix elements (assuming vacuum b.c. at x = 1)

(128)

By = g C\MAL% @m)&%’“@;u} wk@"‘%
g Qoo U™ (Lmy Wy K(

Ri= O

, The a?ternat1ve approach to incorporate the reflecting boundary

conditions at x=0 is


http:I,,(\\.IA
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2) set  QOWM) = QO,-u) |, ML D

and obtain
| | .
- & C\M M ®®110 Q((O»,U)
'(’)‘ 1 ,
= - g (\Mkk &(0,-10 ‘{(0‘10 *SQ\U\M &@;U\QQ@]M)

\ | |
0 0

or

: {

o= X&ULL @@)U}[Ueé; "M\\Q)Q)MS’X
0]

(or equiva1ent1y, Re= ~ god-b\bb @@\"M\(}V@)u} ‘W@l"“ﬂ

comparison with Eq. 127).

This will generate matrix elements

%iﬁ; K(\MuQ\) %O,Ju) {\\)b KC) ‘"M &Pt, @?»‘;ﬂ
° + (c\uu“& ) M ) (129)

Ri=0O

Clearly the matrix elements E; are different for the two possible

iJ
methods of incorporating the reflecting boundary conditions. However,
one can differentiate between the two on the basis of physical arguments

and arrive at the decision as to the proper choice.
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The first choice,

A0 wmYy= QO -M) | M>O

sets the incoming flux at x = 0 equal to the outgoing flux at X = 0.
Thus, if a neutron leaves the region at x = 0, it returns at x = 0 in the
reflected plane. Clearly this represents the physical phenomenon of

specular reflection. However, the second choice
Qow) = &o, -w , MLO

sets the outgoing flux at x = 0 equal to the incoming flux. This does
not represent the physical situation, since one would not expect the out-
going flux to be determined\entire]y by the incoming flux. In addition,
mathematicalTy this leads to an ill-posed problem because now the in-
coming boundary is the "free" boundary whereas the fiux on the outgoing
boundary is known. Physically this does not make sense and it is inter-
esting to note that the numerical results support this observation in
that correct results are obtained with the first choice whereas erroneous
results are obtained with the second choice. Thus, it is important to

incorporate the reflecting boundary condition in the direction of neutron

travel. As will be discussed in a later chapter, this distinction
between incorporating a condition in the direction of neutron travel ver-
sus against the neutron travel must be kept in mind when allowing discon-

tinuities in the spatial mesh.

IIT.D. Construction of Finite Element Subspace

No specific mention has been made concerning the specific construc-

tion of the subspace Sh, or, equivalently, the construction of the
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kyi“(x,}k), i=1,2,...., N. The purpose of this section is to examine

the possible choices and indicate the reasons for the final selection.

In general the finite element method is employed in a nodal fashion,
that is, the expansion coefficients for the solution are nodal para-
meters which are typically the value of the solution at the node or the
value of one of its derivatives. Typically one speaké of a Lagrangian
finite element scheme as a scheme that employs Lagrange interpolating
polynomials over each finite element and the value of the solution at
the nodes are the expansion coefficients and hence are the unknowns in
the system of equations. One could also employ Hermite interpolation
polynomials on a given finite element mesh; however, in this case each
node would include additional parameters representing the value of the
solution derivative(s) as well as the solution. Légrange finite ele-
ment schemes typically result in continuity of the solution eQerywhere
in the mesh, although derivatives may be discontinuous across interele-
ment boundaries. Hermitian schemes typica11y result in continuity of
one or more partial derjvatives everywhere within the mesh.

Since the transport equatioh is only first order, one can expect
at most continuity of the angular f]uannd even thfs may be too restric-
tive for the angular Variab]e in slab geometry. Therefore, the use of
Lagrangian elements, which preserve continuity but no derivatives,
would appear to be a proper choice for the transport equation.

One may also choose between a tensor product formulation versus a
general formulation dependent on the geometry of the finite elements.
For example, multi-dimensional finite element basis functions may be

easily constructed from a one-dimensional basis as follows.
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Assume the x-axis is partitioned into a mesh with nodes Xps Xos -
K the y-axis is partitioned with nodes Yis Yoo -oes Yy3 and the z-axis
with nodes Z1s ZZ"”’ZM' \Now the total number of nodes is LMN and with
Lagrangian elements one will need LMN basis functions, one for each node.

A convenient representation is to choose a one-dimensional basis

G 8\, W5(8),

and form a basis function for the (1,1,1) node as a tensor product of

three 1-D basis functions

L{)\,l,\ (yl \5,2) = w{ ) q)l (‘j\ \P&Z)

or for the (4,9,2) node

qug@algs‘l) = Yuly Va9 Ya@) . Thus

the so1ut1on will be expanded as

Qy.2) = Z‘N q; J(xﬂj Z]
J"l

where each

b, 6(\\3\1) = by Wy () Y3 @)

whére jx is the x-node corresponding to the global node j, etc. If the
one-dimensional basis consisted of linear finite elements, then the 3-D
basis would be trilinear. An obvious restriction here is that the mesh
must be orthogonal, similar to a finite difference mesh, although a

39

variation on this has been reported”™ which allows local mesh refine-

ment of small rectangles (or cubes) which Tie entirely within a larger
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element, hence bypassing the restriction thai all nodes lie on unbroken,
orthogonal coordinate Tines.

The more general method is to shape the basis functions to the par-
ticular element. For example a triangular element, since it has three
nodes, can uniquely represent a linear polynomial over a 2-D surface,
with each node contributing a piece of data. That is, a general linear

polynomial in two variables
,?(¥)§SS = Op+ QX #+ Cka(Ej\

needs the value of three parameters to be uniquely determined. If the
values of the solution at the nodes of a triangle are taken to be the
three parameters, then the linear polynomial is uniquely determined
within the triangle. With Lagrangian elements, where the nodal para-
meters are the values of the unknown solution, a convenient basis for a
triangle consists of three 1inear po]ynomia]s; each of which is unity at
one node and zero at the other nodes. This will result in the expansion
coefficients being identical to the solution values at the nodes. This
concept of choosing a basis consisting of functions which are unity at a
particular node and zero at all other nodes is typical of Lagrangian
elements, and is used for the tensor product basis functions discussed
earlier or for quite general multi-dimensional schemes.

For this investigation, tensor product Lagrangian basis functions
are used in the spatial (x) and angular (ALl) directions. The reasons
for the choice of Lagrangian type elements was discussed earlier and the
reasons for the choice of tensor product basis functions are simplicity
of application and the computational ease with which the matrix elements

are calculated.
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The explicit construction of the basis functions is based on the
nodal numbering scheme illustrated in Figure 2. Assuming N + 1 spatial
nodes S S ERRRERY ranging from x = 0 to x = 1 and M + 1 angular nodes
Mo> Mys-- sy from_ALo = -] to,ALM = +]1, a basis function at a glo-
bally numbered node j is entirely determined by the corresponding x-node
jx and fk-node jw . Thus j = 1,2,..., (M+1)(N+1) and to each node j
corresponds the nodal pair (jx, j® ) which uniquely determines the basis

functionAcorrespdnding to the node j:

&VAN Q(Ml\ = ij(x\ %M(A‘\

where the superscript h is suppressed for the individual 1-D basis func-
tions qﬂhﬁ?).

The one-dimensional basis functions are constructed as follows.
For linear elements, a basis function is unity at the node it is ijden-
tified with, and ;erd at the adjacent nodes, varying linearly between the
nodes. For a mesh ZgsZyee- the basis function corresponding to the

node 351 has the following functional dependence:

O, Z¢& &~
% & .
C. (@) = ’-Z,,——ZL:.-'( y, Zu &ZE ZL
Zn-Z ; Zi £ ZL Ein

Ziv - Ee

O , T2 ?Z‘L+|



=+’ * -
M= 17 14 21 | 28 35 42
6 13 20 27 _ 34 41
M ot NOTE :
-Discontinuous Angu]af
T 12 - 19 (26 33 40 Elements at 4&=0
My N -Discontinuous Spatial
';U-3=+0 la I 18 |25 32 39 | - Elements at X=Xy
A==V 13 10 17 7|24 31 38 g
(e
i
2 9 16 |23 30 37
/a] b
#1 #8 15|22 29 36
/a,o:’] . _ _': _ i
X Xo=Xg  Xg=Xp Xy Xg=1
XO=O

FIGURE 2. Nodal Numbering
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Note that k{"i(z"ﬁ:g'ﬂ as desired and the q)i,(?)is continuous

but does not possess a derivative at ‘i . Figure 3 illustrates the
basis functions on a typical mesh, which indicates why these functions
are called "tent" functions or "hil1l1" functions in the finite element
literature.

For quadratic basis functions, the two nodes of either end of an
interval are not sufficient to uniquely determine the polynomial. There-
fore, an additional node, termed an interior node, is placed midway
between the given nodes, which are referred to as principal nodes. Again
the prescription is that the basis function is unity at the given node
{whether interior or principal) and zero at the others. The functional
dependence for the quadratic basis functfons is easily determined be-
~cause the zeroes are known, and the normalization of unity yields the

constant:

For a principal node, (Zi-l’ z. ., are then interior nodes)

(R3]

O, Z2E&Zia or Z2Zi+a

“t)rl(%) = (Z Ziaf2-2 ) y Fu-a 424 Ei
@e- ZoN Z-2e)

(? 2LMX2 ?L-t:) ZZ L%‘Zua
(Zec- %L«-\\(ﬁ-’é;*))

and for an interior node (ZL+]’ z;_4 are principal nodes)

_ _ O ) %£ :Z'L:.g OR z 2 %i-n
\JYL (EE\ - <;3- §§£¥;ﬂi§f'~35i?{\
(’2'5—?(_‘..}\( 28-2‘&-&4)

Figure 4 illustrates the quadratic basis functions.. Note that the basis

T L F LTy

functions are continuous and have derivatives except at the principal
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nodes, although the basis function corresponding to the interior node
has derivatives of all orders within (21-1’>Zf+1) .

The cubic basis functions arg‘the obvqus generalization of thek
quadratic funcfions, with two evenly spaced interior nodes.
The process of obtaining their functional dependence is similar to the
quadratic case and wi11‘not be repeated, although Figure 5 illustrates
the functional form. Also, one never needs this explicit functional form

anyway because all basis functions are only considered on the standard

interval [-,1], as will be discussed shortly.

IIT.E. Calculation of Matrix Elements

This section discusses the explicit éomputation of the matrix ele-

ments Ai" including methods for minimizing the calculations required of

J
the computer,

With a tensor product formulation, thé matrix elements become:

~(

\ | [ | |
Tiy= - g@x%x(ﬂ%’i X(\uuwuwwwm)

K\.J = g &X Ze(x)%"u (X\‘-\’\‘lx(x) S &MT \Vx'u(‘u\ %’M Wi

6

_ § LB%! > fa,(%u;\?jxcxmu} gmlun%um

R=0

{
) K dut’ Pl Wjulas”)

-1
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Bi; - S‘c\uu Qo @) Fjamt) ?[%Al)%(\)]

- {QM M&rLMQ") \PJM@“) \_\VLxLo)ij (O)AX .

Note that the uncoupling of the spatial and angular integrals significantly
reduces the number of unique integrals to be computed.

Although the range of integration for the integrals is shown to be
over the full angular or spatial interval, in actuality the basis func-
tions are local, extending only over a few mesh intervals as discussed
above and most of these matrix elements are zero. There is a notable
exception though with the scattering term, where the coupling between

two angular nodes is (suppressing the P, (L))
| |
[ du ‘YLM du Vet
- =

which is a product of integrals rather than an integral of the product
of basis functions which appears in all of the other matrix elements.

Therefore, the presence of scattering couples all of the angular nodes,

although the spatial coupling is not affected. Computationally this
results in an increase in the number of non-zero matrix elements.
Although at first glance it might appear that the computation of
these matrix elements is still a formidable task, in practice the task
is relatively easy. The reason for this is that all integrals are done
on the standard interval [-1, 1] by Gaussian quadrature and then mapped

into the particular mesh integral by a simple linear transformation.



Sy iy g

For example, if an integral (I) is being performed from x. to x

i j+1 (or

/ai to /4(“_1) then one has the transformation:
Y = Y- Xi g + Yo +X¢
2 2
which results in

¥is1 ’ ‘ |
(&bt = Koo =K (gg 4,001 9, )
X1 N v.-(
or for an angular integral

Aduet _ _. ; { .y
[0 e ) = A g Al
Ak ¢ oL a

. /U‘uw/«fil Cal) 9,5
2

el

where kﬁif),&Ki?)are generic basis functions of which there are only
k+1 for the entire system, where k = 1,2, or 3 for linear, quadratic, or
cubic elements, respectively. Figure 6 illustrates the generic basis
functions on the standard interval [-1,1] for quadratic elements.

Thus the construction of the (N+1)(M+1) dimensional subspace sh of
trial functions corresponding to a mesh of N+1 spatial and M+l angular
nodes, has been reduced to specifying a few unique basis functions {e.g.
2 un1que basis functions for linear elements in space and angle). MWMore
important though, the computation of the matrix elements Aij is immensely
simplified. For example, a linear finite element mesh with 100 spatial
nodes and 10 angular nodes will result in 30,000 non-zero matrix ele-
ments A i’ each of which may be composed of up to 7 different integrals,

or perhaps 150,000 integrals to be computed. However, use of the standard


http:Al+~+.aq

-78-

14 - — — = —I T " -
¥, (f) | '
Wa3) |
1
: Yt)
!
Y
|
1
| .
4
¥=0
$=-1 f=+|
FIGURE 6

Quadratic Basis Functions On Standard Interva]%[-1,1] i




-79-

interval results in only 20 unique integrals to be evaluated, clearly a

considerable savings in effort.

ITT.F. Equivalent Finite Difference Relations

This section derives the equivalent finite difference relations which
correspond to the use of Tlinear finite elements on 5 uniform mesh. These
relations are obtained for three typical nodes--one in the interior, one
on the incoming~boundary, and one on the outgoing boundary of a homogen-
eous slab in a vacuum. Figure 1 indicates a typical ﬁesﬁ‘ | -
with the three nodes indicéted. The reason>for obtaining these equiva-
lent relations is twofold. First the truncatfon error associated with
the approximation can be determined.immediately and can be. used for esti-
mates of the pointwise error, as will be done later. Secondly, the re-
lations offer insight as to the manner in which the solution is propa-
gated from one node to another.

To determine the equivalent finite difference relations, one only
needs to evaluate those matrix elements AIJ which are non-zero, assum%ng

node I (with coordinates xi’</(;j) is the node in question. That is, the

equation in which @I appears is
(N4 M#l)

> Aisbr = St
PEN!

and the calculation of the AIJ will immediately yield the finite differ-

ence relations, which relate the nodal fluxes to one another.

!
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Interior Node (A) The nodes which interact with node I are shown

in the following diagram:
{(all angular nodes coupled by scattering)

i I |
A ’ujﬂ
37 /"j
M
] Y |
ier N i+

Thus the 8 surrounding nodes and all of the angular nodes within the in-
teracting spatial distance will interact with node (xi, ALj). Note that
the global indexing I, J is completely different from the local nodal

numbering i,) which is used in this section for convenience. (i.e., d)l =

@L,S ). The summation ZAx—;G)_J is then calculated

(N4 M) |
S Axy &“:Y ‘-’-K’u)“ + My Qtﬂ,gﬂ "&M;JH (AXAM
2 2 AX G

J=1

+ Y A ( Qs j =i \ X D
' 2 X J

+ /‘u\) hu&! & Ly~ = (bw )~ AY U
C VAV 6

* zf: &(")5*‘ + q{béjﬁi*&)m;jﬁ

(130)
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+ H Q‘U-t,j + 16 @L,& + Y QLH,j
t ‘(’Q'H{Jﬂ + H Qi+ f\?m,j:} AR

36
+ E_{_ {&cl,o-« +&’LaMA‘u + ZQH)A&%
P J=

+ L\KQ‘.O—“ A &03 --—-' + E&L,Jﬁﬂ

+ {@L-&-\)D + &U‘{ M 2@{*'” A AXM

Since the'original partial differential equation is
/(/(%%i + E'b @(X(ﬂ)‘- %(dﬂiQGQU" - S()(,[l)
~

the approximation to each term can be obtained by inspection. In parti-
cular, M%% is replaced by a weighted (in angle) centered space differ-

ence SCheme, or "]eap_frog" SCheme(4D):

M?l_@. ~ _L,(M_]H *U\}\(& L'HL]*H = &(.-—!;Jf-«( )
A

0X 2 ) 2 DX
+ 2 Ay ( Qir1\j - Qe ) \ (131)
3 2K

4+

\ JUJ +/U AL =1~ (OG:JJM 5
LAY
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The collision term Yt&(xlu) becomes

E&Q(le ~
| . CL
?t[ -,-3-2 (QL—!,JH + —%&L,)ﬂf%é@m)}ﬂ

(132)

+ < (Q'ul,j + i@i,j + @:};JJ‘

AN
9 q 9
\ N . { -
g Qe+ RO e $ 00|

which is a cell average of the total collision term. The scattering term

is approximated as

2s deu‘ Q')
=
~ 2s e x\ t~;0 +&’—"‘JMAA +-E @L l ‘]
= |

=y G

(133)

M-
g@m~+&M 2@4@]
J=!

M- '
+ -lg(@m,o +&L+t,m ol +‘)2@L+;,JN—IK
=

which is exactly a mid-point rule for the scattering integral, weighted

by the spatial node location.


http:average.of
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Qutgoing boundary node (B) The nodes which interact with B are

shown in the following diagram:

{ |
/uj+1 S 0
cuums
vacu ‘g(xo’ﬁﬁ)
Miq ¢ 0
Y i .
X X1

and an evaluation of the Ith equation yields the following approximations

for the various terms:

MO8 L(UA-H *M;K &ujw-@o,ju)

DX 6 £ AX
+ 2 A ( 81,3 -8, >
3 NX (134)
+ _L( A AL~ (Q\ yi-t = 0o,y |
3\ T NV S

which is identicé] to the approximation for the interior node except the
derivative is taken over one cell.

The approximate relations for collision term 'EQ&XYJO and the
scattering term 22—‘5 dU' &(X :,U') are similar to the relations for
the interior node (A) and will not be repeated. The interesting point
is that the transport term is treated similarly for the interior node and

the outgoing boundary node.
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Incoming boundary node (C) The nodes which interact with node C

are shown below:

vacuum

J(xo’ﬂj) '—-/(/(J >0

and the approximations to the various terms are as follows:

08 ~ ._L(Mgﬂg\’f%\)(&hjﬂ +®0,5H )

oX 6 7SK
: 1+ Ko,
i % /u“( &)J/j\"x ~ (135)
+ ._L{JU&*U\)”( &h)ﬂ + &o,‘}ﬂ )
6\ 2 X

which is significantly different than the corresponding term for nodes
A or B. Note that the derivative term is no longer replaced by a dif-
ference, but a sumywhich accounts for the fact that a transportive term
is not desired at the incoming boundary. The reason this difference

relation results. in a natural vacuum boundary condition may be motivated

as follows:
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.. Qi+ Qo - Q.
Requiring ————— ~ to approximate — over the interval
- 4X P X
[xa,x1] is tantamount to requiring
@| 'f' @o —_ @‘ - ©0
AT DX
which can only be true in general if @ = 0. Thus this relation at-

tempts to force & to be zero on the incoming boundary, which is desired.
The other terms, Et& x. M) and Zs (d,u & (x, L") are similar
to the expressions for the boundary node (B).
To calculate the truncation error associated with these approxima-
tions, consider the ,U%?( term for the interior node A.
Expand the terms in a Taylor series about (xi,;yj), é.g.,
>
B 2 Qi+ 0o 2@ [y + L X8| g2
AN N AR~ Y A
X U o~ *
L) Ly Gy

L0 _¥e \ 3
;L DU \ u? OX 0 AA XU + OG\>

(where h~AX and h~ AJL)

and substitute into the approximate relation, Eq. (131), for /Ugg;

MW Ly aa) 2B AX RG] oo o)

DX G =) 7\AX
3&)@ 3
?/SX S




-86-

or TR Y M ?._Q KoM a

thus the truncation error for the transport term is O(hz).

Similarly, the collision term, Eq. (132), is
. . 3 a
S, Ay ) x T80 + W)
and the scattering integral, Eq. (133), becomes
{ !
Ze (o o x 2 faw @'+ o(h?)
L >~
~( el
The boundary transport terms are not quite as accurate as the interior
terms, because the derivative term is essentially a one=sided differ-
ence which has 0(h) error. However, for the mesh cell (on the boundary),
the overall accuracy is still O(hz). In addition, this apparent loss

of accuracy is only within 0(h) of the boundary, thus the overall trun-

cation error will remain O(hz) for linear elements.

I11.6. Explicit Demonstration of 0(h?) Convergence with Linear Finite

Elements
As the numerical results presented in Chapter VIII indicate, the
observed convergence rate to the actual solution for finite elements of

degree k is O(hk+])

when the error is measured in the Lp-norm. However,
as discussed in Chapter II this estimate is difficult to show theoretic-
ally. This section is intended to provide more evidence that indeed

o(hk* T

convergence should be obtained, by explicitly demonstrating that
0(hZ) convergence is obtained with linear finite elements (k=1). This

is done by calculating the truncation error in the finite element ap-
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proximation and bounding the error in the solution with the truncation

error result and the observed norm of the inverse of the matrix of co-

efficients. A similar procedure has been suggested by Fm‘ed41

42

and by
Kang and Hansen = in applications in other areas.

Define the approximate solution vector as_ézk, which is the vector
of the nodal angular fluxes which are determined by a linear finite ele-
ment scheme on a uniform mesh with mesh spacing h. Define the vector of
the exact nodal fluxes as'ég. Now the results of the previous section
indicate that the ]ineat finite element scheme on a uniform mesh is
0(h?) accurate, hence

_ﬁ__(g“ Q’\S = C \\q | (136)

where the additional h? is due to the scaling of the elements of éz(a11
integrals are (rhxdﬂ.= 0(h?)) and C is a constant vector independent
AX DL
of h.
Define the "sup" norm as the maximum absolute component of a vector,

ji.e.,

iy

leh, = max (eI o, - led)

then the matrix norm consistent with this norm is defined as fo11ows43:

lAll, = wex [gw

i.e., the maximum absolute row sums of the matrix A.

v

Using these definitions, formally solve Eq. (136) for the error

.@‘Qh = éﬂxg_kq (137)
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which is possible because A is non-singular. Now take the sup-norm of

each side of Eq. (137):

H.@“ anoo % “é_:\“w “C“@ }\q (138)

The left hand side of Eq. (138) is the maximum nodal error in the
approximate solution.” At this point, since Tittle is available in the
Titerature concerning the norms of asymmetric matrices (let alone their
inverses), numerical results are used to estimate ‘\2:1“00 . The matrix
A was assembled for several different meshes and the inverse was explic-
itly calculated using the LU method (to be described later) and back-
solving for N right hand sides, each of which being a unit vector. Then
the norm of:égl was calculated in accordance with the definition above.
The results are illustrated in Figure 7 , whiéh also has an insert tab-
ulating the results. Note that a good fit is obtained with all of the

data points, and this fit indicates

-1 _ A
“ é “00 - O( hﬁ}
which when substituted into Eq. (138) yields

l-0nle ¢ Coh® o (139)

where Cg is a constant. Thus the pointwise (nodal) error is 0(h2) for
linear elements.

This error estimate can be extended to the Lo-norm as follows.
Define &(x,,u) as the interpolant of the exact flux & (x,x) in sh.

N
Thus, & (x, M) = @(x,,u) at the nodes. From approximation theory one

obtains
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Figure 7. Matrix Norm "é—]uco vs. Mesh Spacing
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l@-Q] <« Ch
o (140)
AJ ~N
But the vector of Qis exact]y_Qas used above, since € and Qcoincide
Ve
at the nodes. But G&(x,,;) and &(x, u) are each piecewise linear func-

tions which differ at most by C e h2 at the nodes. Therefore,

“&‘Qkuo = g’dy E((Lu_( éé(lu\ - QA(Y,,U) \;J ’/&.

£ V& Co W
sut from the triangle inequality
he-Oulf, = Il &~8+8&~8Qxl,
c 1 e-Ql, « Ta-aul,
L Coh? 403 Cph®
w 1Q-0al & Ch?

which is the desired error estimate in the Lp norm. Thus this explicit
demonstration of the convergence, which depended on a numerical esti-
mate for the inverse matrix norm, supports the numerical results.

These results would seem to indicate 0(hk+]) for general finite
elements of degree k because one wog]d not expect[légqlhb to alter its

dependence on the mesh spacing. This coup]ed'with the decreased trun-

cation error in the approximation, which should be 0(hk+]), will result
in the expected 0(hk+]) pointwise error estimate, and therefore the
o(h*tTy Lo estimate.



CHAPTER IV
DISCONTINUQOUS PHASE SPACE FINITE ELEMENTS

IV.A. Discontinuous Angular Finite E]éments

In plane geometry it is we]]-kﬁown that the transport equation may
have discontinuities in the angular flux at AL= 0, such as at an inter-
face or boundary27. An extreme example of such a discontinuity would be
streaming in an absorbing region, where the flux may change abruptly
upon a small change in direction. This will also be true in general for
2-D or 3-D orthogonal geometries because fhe geometry allows situations
where a continuous change in angle (e.g., from incoming to outgoing
direction) can result in a discontinuous change in the angular flux.
Thus angular discontinuities in the angular flux are a frequent occur-
rence in transport in orthogonal geometries.

The finite element scheme we have developed thus far assumes con-
tinuity of the angular f]qx in both space and angle. For the angular
variable, continuity is not required during the derivation of the inte-
gral law. However, use of Lagrange basis functions (see Sec. III.D)
will result in an approximate solution which is continuous throughout
the angular domain, even though the actual solution is discontinuous.
Thus the actual discontinuous solution is being approximated by a con-
tinuous function, and poor results will probably occur, especially near
interfaces or strong absorbers. This will be demonstrated later -with
actual computations.

As noted above, the presence of an angular flux discontinuity in

the angular domain does not affect the validity of the integral law

formulation of the transport equation in 1-D plane geometry. Analyt-
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ically this is expected because the transport equation in plane geometry
(or orthogonal geometries in general) has no angular derivatives, hence
continuity éf the solution in the angular domain is not a requirement.
Secondly, the derivation of the integral law only involves (for the an-
gular variable) simple integrations, which are valid in the presence of
discontinuities if care is taken to evaluate the integrals properly.

Therefore, we can rather easily extend our finite element treat-
ment by allowing the approximate solution to be discontinuous in angle
(e.g., at /K¥ 0). The most straightforward approach, since there are no
angular derivatives to consider, is to add an additional node at M= O,
splitting the basis function into two parts, one part for A <0 and one
part for M20. Figure 4 illustrates the procedure assuming a quad-
ratic angular finite element. Note that 4= 0 must correspond to a
principal node for the higher ordér elements since otherwise there will
be basis functions which span the assumed discontinuity. Thus M= 0 is
a double node with two unknowns, the angular fluxes fgr/1=0+ andjéééo-.
The obvious consequence of this is the complete decoupling of thé for-
ward and backward directions, which were strongly coupled with the
original scheme because of the forced continuity at A= 0. Now only
scattering can couple nodes ccrresﬁonding to AA<0 and J¢(§0 (a phy-
sically desirable situation).

It should be kept in mind that it is acceptable to separate the
discussions of discontinuous angular and discontinuous spatial elements
because of the>tensor product formulation of the basis functions.

Thus, changes in the angular basis functions to allow discontinuities

will have no effect on the spatial basis functions, and vice versa.
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IV.B. Discontinuous Spatial Finite Elements

Although analytically the solution to the transport equation must
be everywhere cﬁntinuous in the spatial domain, there may be points at
which the solution exhibits a near-discontinuity. For example, the
simple problem of a strong source of neutrons in a strong absorber sur-
rounded by a vacuum will result in an angular flux with nearly discon-
tinuous spatial dependence at the vacuum boundaries. This is due to the
fact that the analytic solution is a constant everywheré in the interior
of the slab, but near an incoming boundary the spatial dependence of
the flux must drop to zero within a few mfp in order to meet the vacuum
boundary condition. However, it is difficult for the approximate solu-
tion to follow this discontinuous behavior because it is constrained to
be continuous by the choice of the approximating subspace {(Lagrange
basis functions).

Initially one might try to proceed as with the angular variable
and simply place double nodes at the desired spatial positions, thus
allowing the approximate solution to be discontinuous. This naive
approach is, in fact, incorrect for several reasons. Analytically, the
procedure used to derive the corresponding integral law implicitly made
use of the continuity of the solution and the arbitrary member of the
subspace because an integration by parts was performed over the entire
domain. In fact, if these functions are allowed to be discontinuous,
then the integration by parts must be done in a piecemeal fashion over
the subdomains in which continuity is obeyed. This will then result in
- surface terms or interface terms at each point of discontinuity in the

spatial mesh, which are ignored in the naive approach taken above.
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Secondly, the addition of the double node decoub]es the solutions to
either side of the discontinuity, and the interface becomes a free
boundary for both sides. But physically, the regions are coupled by
transport, which is embodied in the term &&,fb x and hence the decoupling
of the regions by adding a double node eliminates the physical process
of transport across the node, unless the surface terms at each discon-
tinuity are properly accounted for.

These interface terms can be properly accounted for in the following
manner, which allows the use of discontinuous basis functions, as for
the angular variable, but in such a way that the regions are coupled
neutronically.

Beginﬁing with the 1-D transport equation in plane geometry, (see

Figure 1 ) |
A Qfg + "ﬁfQ&éQ{X,,AQ = lﬁ i.dtﬂ T QY £ S, 4)
X -

with arbitrary boundary conditions, consider only the transport term
,L{%% » Since the other terms‘wi11 be treated in an identical manner
as before.

Multiply JA%% by an arbitrary We Hi, and integrate over the
phase space. Calling this quantity'7*, we have

T= gdx {duu %?( NN | | - (141)

-

Now assume there is a discontinuity (near-discontinuity in & ) at x = Xp

Y X g(iu/o& %?{\P(y,,«)

i
+
Xp o~

and integrate Eq. (141) by parts:

- )
D
_ \dy \d O8 e, u) +
T= gx(u,ubx‘&{xa)

~{
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X5 ! o
T - dx gi{u.,u Q@,A)%“Z - {dx (AMM Q(Y;ﬂ)%?x

0 — W<
X=Xg
1
\ gc\um Qe u) Y, )
- ‘
\ : X= O
| X=
N (c\ua Qv u) Y )
= X-= YB‘

or, combining terms,

! ‘
T= - de ((‘\MM Q(Y:M) %‘—i + S{dUM @(‘lﬂ)%m}*mzﬂ)%@

—f

(142)

!
4 4 - -
_ {duae) Qs s ) - L5 ) 4GS 1)
~{ :

Note that Eq. (142) is identical to the transport term + boundary
terms derived earlier in Ed. (122), except for the additional term due

to the interface discontinuity, denoted by
A \ ‘
T= - ((\MM[@(\(D",MK\)Q(\?W) ~@@S,M)W§ai;ﬂ (143)
-

It is this interface term which must be carefully treated to allow use

of discontinuous spatial elements.

The object now is to use known information to reduce the interface
term, in a manner similar to the reduction of the boundary terms by
explicitly substituting in the known boundary conditions. Since the
only known condition at an interface is that the solution éi(x,;x) is

- continudus (albeit strongly varying) let us use this condition:
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&(XDMI) QUG u) , —Teuel

But this is a similar situation to incorporating reflecting boundary
conditions into the boundary terms (see Sec. III.E). Analytically there
is an ambiguity‘because efther angular flux could be eliminated in terms
of the dther. However, wé now appeal to the physics of the situation

and impose continuity in the direction of neutron travel, as was done

with reflecting boundary conditions:

QXS 4) = Qg , u) , M20
QXxg, )= QXg,u) , M4 O

These substitutions are made in Eq. (143) for I, yielding

( Ak Qe 4)| Vot ) - W(Xs,]

(144)

( dinin Qx5 ,M)EW(XD y M)~ W(YD;M]

This term is additive to the 1-D integral law in Eq. (124) which
was derived earlier. Now app1ying the finite element approximation by

choosing a subspace sh C ki , expanding éléx ) , ’
Q. (Ku) = 2 39 Wd (X, 1)

and requiring the revised 1ntegra] law to hold for all LVJN(X,AK),

= 1,2,..., N, the additional term in the integral law results in the

1

following matrix element


http:f/\I(x,,.Gt
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Tog= - [ et 0 0,0

{
~ | G %w()(o*m%%b‘(y&% e

0

which is additive to the earlier matrix element Aij defined in Eq. (125).

Note that the matrix element Ii results in the following addition

J

to the ith equation: ‘
N
Ei. = 2 ILJ (bd
J=t

Using this observation and Figufe 8, which illustrates the incoming and
outgoing boundaries for the interface, the following remarks may be
made:
(1) If node i is on the outgoing boundary of the LHS
region ( AA20, x = x3) then only the second term
of the second integral in Eq. (145) is non-zero

and Ijj is
|
W
Liy = ? dua "t{; (XS,M)‘P:‘,R‘O(SW)
0

which is identical to Bij in Eq. (125) for the out--
going boundary contribution to the matrix element.
Thus the outgoing boundary of the interface is
treated in the same way as the outgoing boundary

i

of the entire region.



-98-

A
oo A =41
OUTGOING BOUNDARY INCOMING BOUNDARY
NODES FOR X< X NODES FOR X >Xp
[——— ¥ ——
AL =0+
: : ﬂ =0__ o X
INCOMING BOUNDARY . OUTGOING BOUNDARY
"~ NODES FOR X< Xy JLa NODES FOR X > X
VS A =-1
X=XD | X=X}
X=Xp

FIGURE 8. Interface Boundaries
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If node i is on the outgoing boundary of the RHS region

(= g, A £0) similar results are obtained for the

other portion of the outgoing boundary.

If node i is on the incoming boundary of the LHS region
(x=xg, AA€0), then the non-zero portion of Iij is
due to the second part of the first integral of Eq.(145)

Tip = § S NEE U A

This will contribute the following terms to the ith
equation
€= X Tydp
J et oL RHS
However, note that the summation
. ‘b“l’
2 baq)o X))
je [ of RUS

is exactly the angular flux expansion for the
outgoing boundary of the RHS region. Defining this
term as
' B NA
@B(XS-):“) E. ZQJWJ O(D ,M)
et »f RUS

then the term‘»Ei is
' ° + Ny —
- B = y({MM &g(xb ) Y; <XDV“)
-1

Comparing this with Eq. (125), it is seen that £,
is identical to the incoming boundary contribution

to the source vector obtained earlier.



-100-

Similar results are obtained when node i is on the
incoming boundary of the RHS region (x = xg,.A&BO).

Thus the effect of the discontinuous spatial finite element scheme
is to solve a set of coupled source problems, each of which has an in-
coming angular flux which is treated as a natural boundary condition.
However, in actuality the incoming fluxes are not known, and the entire
system of equations must be solved simultaneously.

Since the space of trial functions Sh is no longer continuous at
the specified spatial discontinuity Xp> but continuity in the direction
of neutron travel is imposed within the integral law, the net result is

" that continuity of the angular flux in the direction of neutron motion

is a natural boundary (or interface)condition. Although there was no

need to mention it earlier, the previous formulation treats continuity
of the angular flux as an essential condition because continuity was
imposed on the space Sh. This discontinuous scheme allows more flexi-
bility for the approximate solution to match the actual solution, as
we will demonstrate later when numerical results are presented.

Implicit in the above discussion has been the fact that discontin-
£ uous angu]ar elements were also used. Although their use is not nec-
essary for thé scheme to work, the discussion concerning the specific
contributions for the incoming and outgoing boundaries becomes less
precise because of the interaction of the basis funcﬁion at =0 in
both halves of the angular domain. As will be seen in the section on
numerical results, though, the use of discontinuous angular elements
at M= 0 should be a routine matter bécause of the significant im-

provement in the results with the small increase in effort. Therefore,
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in practice one would denerally use both discontinuous spatial elements
and discontinuous angular elements, or the latter alone, and the above
discussion is valid in its entirety.

‘There is a close relationship between the method used in this in-
vestigation to incorporate spatial discontinuities and the methods used
to jncorporate spatial discontinuities in the discrete ordinates codes
TRIPLET22 and ONETRANZB. These codes both employ discrete ordinates
methods for the angular variables and finite element methods for the
spatial variables. Although the finite element method is not employed
in the manner used in this investigation, it does have the hai]marks
of a finite element method in that the spatial domain is partitioned
into subdomains and the solution is expanded in terms of polynomials
over the subdomain. However, the algebraic equations resulting from
the method used in ONETRAN or TRIPLET are somewhat different due to the
fact that they are derived by different weight and integrate procedures.

As far as the equivalence of the ONETRAN/TRIPLET approach and the
‘approach used in this investigation to treat spatial discontinuities
is concerned, each method allows the incoming flux an a boundary of an
e¢lement fo be different than the corresponding outgoing flux of the
adjacent element, but conservation of neutrons is ensured by use of
surface terms. In TRIPLET this is done by explicitly expressing the
jump in the angular flux at the incoming boundaries and when this term
is differentiated (due to the transport term) Dirac delta functions
result. Then when this resulting equation is integrated with the
weighting function, the Dirac delta functions kick out the appropriate

surface terms, and these terms are similar to the terms obtained above


http:ensur.ed
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in this investigation. In ONETRAN the method is slightly different but
the end result is the same--allowing the angular flux on the incoming
boundary to contribute to the effective source of neufrons within fhe
element contributes a surface term, if the angular flux is allowed to

be discontinuous on the incoming boundary.



CHAPTER V
TIME-DEPENDENT TRANSPORT

V.A. Introduction

The previoué chapters have been concerned with the finite element
solution of the time-independent transport equation. This restriction
ta steady state problems is understandable since most areas of reactor
analysis are not concerned with time-dependent transport. Also, of
course, the addition of the time variable complicates the equation to
be solved and generally results in solution times which become excessive
for even small problems. However, the time-dependent transport equation
is an interesting equation and the resulting solutions can be enlight-
ening because of the physical phenomena involved in wave propagation,
reflection, scattering, etc. It is also of great significance in other
applications of radiation transport {e.g., pulsed neutron experiments,
laser fusion). Therefore, this brief chapter will formulate the method
by which the finite element method may be applied to solve the time-
dependent transport equation. The next chapter wi11 discuss the methods
by which the actual system of equations is to be solved, and numerical

results are presented in Chapter VIII.

V.B. Formulation of Time-Dependent Integral Law

Begin with the general neutron transport equationz?

%% + ﬁ V&(&,S’\l‘t) + Se({l\ &(Qr}t ;t%

|
I
= (A& T A0 Qe At (146)

41
+ S, a,t)

-103-



-104-

subject to the initial condition
A , A
&({S , Sl ,0\ = ®o()3. :*-ﬂ) (147)

and boundary conditions

A, A,0: Q@ , Aten [T (48]

Specified incoming boundary conditions have been assumed with no
loss 1in genera11ty

Defining the space ﬁ as in Chapter 11, choose an arbitrary Weﬁl
and multiply Eq. (146) and integrate by parts over the phase space 1U—:

A ,K\)) &@ V\P) 'f‘(\(@ kp) (149)

U‘“b{-

+ 4@, ¥, =<S)\V) P L&,V

‘where the inner product (& W) is as defined earlier
For thé‘time-independent case, we proceeded by choosing a finite
dimensional subspace Sh (.&&1hnd expanded @L(Q,ii) in terms of the
basis functions for sh.
@@m-zbwma\
§=1

A similar procedure will be followed for the time-dependent case,

except we now allow the expansion coefficients to be time-dependent:

e\(“ t) 2 ‘b (t) w\) é‘ -ﬂ-) (150)
J=t
Substitution of this expansion into Eq. (149), and requiring Eq.

(149) to hold for a1l of the WMh, &), =12, ..., N, one obtains

the matrix differential equation


http:C~IJt.I7
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\ ~
v .—E Q t _A_ @- - —S—- (151)
G L G S &
here = ! = i - 1
whe @ = &'3 G»'J el &a(‘t\ Sg(‘t\
& o) '5~&] Y@

and A is identical to the A for the steady-state equation.
Rather than a system of algebraic equations, the time-dependent
equation results in a system of ordinary differential equations to be

solved. An efficient method to solve Eq. (151) is the Crank=Nicholson

scheme3

, which approximates the time-derivative with a forward differ-
ence,and other time~dependent terms are averaged over the present time

and the incremented time:

P Il 10

— _{:m-ﬂ” tm
S = S + S(™)
- 3

Using obvious notation, Eq. (151) becomes

+) (my (m41) :
~ & . JEHO L

At 2

S@M)+S®1 | (152)

X

1P @m
v —

(=

——
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Since Eq. (147) gives (b(O, then c]ear1y we solve for‘b (n1) in
terms of @i(n), or
V- At \ A1) UAE ) (m )
+ = = —
(BB n) 8™ <[p- vha)b
| (153)

Q“**) (m)
S +3" pat

from which dD n+1) can be solved for in terms 0f‘(t> and the known
source term S.

Thus with éi(o) known, éi(]), d?(z), ... etc., can be calculated
using Eq. (153). This is eépec1a11y efficient if the LU decomposition
method is used to solve Eq. (153), as will be discussed in more detail
in the next chapter It should be noted that it has been assumed that
A 1s”t1me 1ndependent This will generally be the case for neutron trans;>
port in reactors because for time scales of interest for the propaga-
tion of disturbances in the neutron flux, cross-sections or other macro-
scopic constants should not change appreciably. Ifég.is time-dependent,
then the efficiency of the LU scheme is decreased somewhat. This is
also discussed in the next chapter.

| Note that the time-dependent incoming boundary conditions are in-

ciuded within the source vectorég, along with the time-dependent volu-

metric source.

V.C. Time-Dependent Transport in Plane Geometry

In plane geometry the general time-dependent transport equation,

Eq. (146), becomes
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Q
7\1} %jc ~ %—% + 2.0 @—<Y\Ml't)
L . Vo
= S 32’? beoPe (W) gé,u‘ Peu") QX ' t) (154)
- R=o0 —t
+ S, ML)

subject to initial conditions
Q(X,M]O\ = Qo()(,)ﬂ (155)

and boundary conditions
&(O}Uft) - &o(olujf}
Q (hm,t) =& (\,,t)

Applying the finite element approximation to the equivalent inte-

(156)

gral law results in the following system of ordinary differential equa-

tions: .
LPO +A0® = S
VT =" = - (157)
The specific matrix elements are
Aij = Tiy+ K + B | (158)

. (
o = 6 e oca e m

= (159)

and the source vector is


http:Bjt)P.lt
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& \
Sit\= %.(\X géM S(X,M,t‘] WL‘\’(’X,M\

|
s ( dutin Q0,1 8) YV 0, u)

(160)
o o |
~£6uMdeWﬂWﬁ@A)

These terms have been explicitly written out because the finite
element code FTRAN solves the equations. Chapter VIII contains numerical

resuits for a few time-dependent problems, indftating the potential of

the method.



CHAPTER VI
NUMERICAL SOLUTION OF SYSTEM OF EQUATIONS

VI.A. Possible So]ution Techniques

There exist a myriad of techniques for solving the system of alge-

braic systems represented by the matrix equatioh

A =S o

‘which results from the finite element approximation to solve the integral
law form of the transport equation. For example, one might choose an
iterative method, such as the Gauss-Seidel or Successive Over-Relaxation
(SOR) methods, or a direct method such as Gaussian eliminiation or one
of its many variants (e.g., LU decomposition , Crout decomposition, -
etc.). The initial attempt in this jnvestigation was to emp]oy'the SOR
iterative method since it is relatively easy to 1mp1ement28. However,
it was observed fairly quickly that iterative methods would not be sat-
1sféctory for application to the matrices obtained when solving the
transport equation. For example, the SOR method worked quite well with
a relatively coarse spatial mesh but would not converge if the mesh were
refined to any extent. Noting that the results of Sec. III.E. indicate
that §=becomes increasingly off-diagonal dominant as the spatial mesh
is refined; this non-convergence of the iterative methods is not sur-
prising. It is well-known that iterative methods work very well with
matrices obtained with second-order self-adjoint applications (e.g., the

diffusion equation) because the matrices are diagonally dominant. How-

ever, convergence of an jterative technique for asymmetric, off-diagonal

-109-
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dominant matrices characteristic of finite element transport methods
cannot be shown and will probably not occur on the strength of the
numerical evidence observed during this investigation.

Therefore, since the convergence of iterative methods could not be
guaranteed in general for the type of matrices encountered with the
transport equation, it was decided that a difect method should be used.
The method chosen was the LU decomposition method, which is a well-
known variant of Gaussian elimination and offers a number of advantages
for the transport application. The details of the LU method and its

implementation will be discussed in the next section.

VI.B. LU Decomposition Method>>

The principle behind the LU decomposition method is to factor the
matrix A into a product of a Tower triangular matrix L and an upper

triangular matrix _gz

[l
"
I~

U (162)

where L is zero above the main diagonal (which is unity), and g:is zero
below the main diagonal. Once:g has been factored, the solution of Eq.
(141) is performed with two back-substitutions as follows.

The solution of

l, \_J (t) = j§§ (163)

can be obtained by first solving

Lx=S (

)<
13
I

! §2‘> (164)
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and then solving

ud=x (@&

:gqiﬁ (165)

for b Note that Eqs. (164) and (165) simply express

=0 S | (166)

which is the formal solution to Eq. (163).

The key to the method is that the solution of Egqs. (164) and (165)
is simple because!i and g:are triangular matrices and hence are readily
inverted. In particular, if the order oféiis N (N rows and N columns)
then the matrices L and U are of order N and the solutions to Eqs. (164)

and (165) are:

¥,= S, (al La<1)
Xa = Sa-LaX,

X3 = S3 - LaXi~-Lia Xa (167)
" N~
X.u x SN - TE; L;Nj >(J
and =1
Cb,dl XU/UNN

C\?N~&= (XM-\‘UN-\,M XN\)/UN~\,M—\

(168)

J= L+

: ,
§i = (-3 LG XY [uig

”,

N
& = - SU'JXJ)/UH
j=a
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One obvious consequence of the LU method is that once é:has been
factored into LU, the solution of problems with different source vec-
fors is quite convenient because only back-substitutions are needed.
Since the bulk of the effort is the factorization of A, not the back-
substitutions, this can result in significant savings in computational
time for applications involving solution of é@ = S for many different
S. In :particular, this is seen to be true for eigenvalue problems
aﬁé for time~dependeht-préb1ems, both of which are considefédwi_ a
in Chapter VIII.

Let us now consider the factorization process for decomposing A
into -E-l-f-. It is easily seen?’5 that iféis non-singular then E and y__
~will also be non-singular. In additién, é:and g:afe unique. In the
discussion that follows, it will be assumed that pivoting (interchange
of rows and/or columns) js not needed. _In general pivoting is not re-
quired for positive definite, symmetric (hence diagona11y dominant) |
matrices. However, we have also found that p1vot1ng was genera]]y not
required for our matr1ces, although p1vot1ng would have been benefwcwa}

for some of the precise numerical experiments, as will be discussed later.

To begin, wrfte the original matrix A as

h) () v
&u Qua ’ : o im
——»c—-w‘ "
v Y
(1 f | ' ‘ ;
F\ - b : ;
—_—= | ] i \
i &
P
| 1
| i
) (l} (r) (1]
Loffi aM% ToTw e T ‘ Mn‘
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where the superscript will refer to the current step in the factoriza-
tion process. The object of the first step is to replace the boxed-in
elements of__(]) by zeroes. To do this, multiply row 1 (pivotal row) by

the multiplier - in, where

and add to row j, j = 2,3,...,n. This will then eliminate the first

column under the diagonal. The matrix A will then be

(2 () )
CL[\ Cha - = - - s Ql?
(3) 2
O Gax - - - *m
== (3 .
O IOéﬁi - - ‘
pfﬂ _ o
== L
——— ]
[ * I 5
I |
; n .
t Qa]: (3 | @
O LO\.mg_i m3 - 7 mm
———

Now we proceed in the same fashion to replace the boxed-in column
of Aﬁa) with zeroes. Proceeding in this manner for successive columns,

the inductive step is to replace the boxed-in column of:étkj by zeroes,

hr«k:h?, ------ , M~ .
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Clearly the matrix will be upper triangular at the end of (n-1)

steps, or

) (m\ (m) (ml
(l{\ Clxa v oo o T Clqna
’ "™ e

C) (183( Ckéz\ e 2

Al
O«
: . (ml

AN

hnsssrn.
——

This matrix é}n) is the upper triangular matrix U. The lower triangular

matrix L is the array of factors .Q ij which multiplied the pivotal row

to eliminate a; Or,

j.
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It is é straightforward exercise™ to show that indeed

where L and U are as defined above.

VI.C. Eigenvalue Calculations

As will be derived in Sec. VIII.C, the critical slab eigenvalue

problem results in a generalized matrix eigenvalue problem

A@ = 022& : (169)

where C is the smallest number of secondary neutrons required per
collision to achieve criticality in the,given'slab.

Since the LU method‘has been used to chtor:é? the solution of

Eq. (169) is considerably simplified if the inverse power iteration35

method is used.

k3

To implement the inverse power jteration meth0d45, first guess an i

- initial angular f1ux~dD(0) and eigenvalue C(O). Calculate an effective

source vector (0),

——

g(o‘; - C(o’.)k N\ @(0)

(170)
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and solve for the next flux iterate @_(])

Aé})(‘\ = _S.(o) (171)

Now calculate the new estimate for the eigenvalue C,

() | '
(1 - C(O) (_-M_-&—) ’ _&Q(O))

C ( N\Q_m ;M b(n} (172)
where the vector inner product (a, b) is defined
M
(Q>§> = 2 Q:ibi
' L=t
The general procedure may then be summarized:
(1) given §(0), ¢(0)
(2) Forn=1,2, ..... , ITMAX
‘ - -\
solve Ag(n) = C(m ) M@f_’“ )
; Q) ch-“‘) -}
aere ¢® = (ME™ MO ) CQ ) (173)

(M@, ME™
(3) Proceed until n is greater than some predetermined 1imit
on the eigenvalue iterations (ITMAX) or until successive
values of C(k) and/or gi(k) agree to within a specified
error € (may be different).
The motivation for the updated value 6f the eigenvalue in Eq. (173)

is that combining Eqs. (169), (170}, and (171) is equivalent to solving

C(m\ & Q(N\? - C(NH\ \_\/\T— QQ«\-«O (a7

and taking the vector inner product of Eq. (174) with _[4__6_)(”) results in

Eq. (173) when ¢(n) 45 solved for.
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The advantage of this method is that once:ﬁ is factored into hg
for the first iteration (solving forf§(])) then each succeeding jtera-
tion only consists of back-substitutions, assuming:é and g&are stored.
Thus the eigenvalue iterations are very efficient, oncezﬁghas been fac-

tored.



CHAPTER VII
COMPUTER IMPLEMENTATION

The purpose of this chapter is to discuss briefly the basic organi-
zation of FTRAN and then to discuss details of the two most significant
features of FTRAN--the use of dynamic allocation of storage to allow :
tailoring of arrays to fit the current problem size and the use of sparse
matrix technidues to take advantage of the fact that the matrix A may
be predominately zero.

w "in“addition to a d%scussion o% the organization of FTRAN, :
rvfﬁgé Ehapter includéé é‘dfséuséfon)of the cabébi]&ties of FTRAN

and timing re$u1£s from séme typical FTRAN runs.

VII.A. Basic Organization

The computer code FTRAN (Finite Element Transport) which imple-
ments the solution of the transport equation with the finite element
approximation, consists of several modules which are linked together
by a driver module which controls thé overall flow of the code. The
basic organization of FTRAN is illustrated in Figure 9, which also in-
dicates the flow of information to achieve the final answer.

FTRAN is capable of treating the fo]1owihg neutron transport prob-
lems in 1-D plane geometry:

(1) Multiple regions (£10)

(2) Anisotropic scattering (up to Pg) with different

Legendre coefficients in each region
(3) Non-uniform spatial and/or angular meshes
(4) Vacuum, reflecting, or specified incoming boundary

conditions

-118-



START (Driver)

Calculate 4 )
required —= MAIN [ -Read input data S(X, Ast)
storage - Partition main arrays .
Call other subroutines FUNCTION
MSHCON o SORCE
Constructs { 1
mesh
] 1 1
INTGRL MATRX SOURCE
perform intermediate Constructs A, also Calculates S due to
calculations M (if eigenvalue) source and incoming
Pu (if time-dep) boundary flux
SOLVE , MARCH PLOT / PRINT
Solves AQ=,§0 or Solves o . o 4
A®=cM@ or . ;
ao(. S&))C €0 A d(m1)_g(n) _ Writes out results
Time-dependent FUNCTION FUNCTION Time-dependent
source S(X, 4,t) SORCE BDYFLX incoming boundary
~ conditions

FIGURE 9.

FTRAN Flow Diagram
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(5) General distributed anisotropic sources

(6) Discontinuous angular finite elements at Al= 0

(7) Discontinuous spatial finite elements at arbitrary

spatial Tocations (discussed in Chapter 1IV).

(8) Time-dependent problems with general diétributed

anisotropic time-dependent sources and/or time
dependent incoming boundary conditions

(9) Critical slab eigenvalue problem with multiple regions,

anisotropic scattering, and vacuum or ref]ecting
boundary conditions.

In addition, FTRAN has been coded to allow precise timing studies
by numerous calls on the MTSnclock at various points during the execu-
tion of the code.

As is discussed in detail in Appendices A and B, the input is handled
by use of NAMELIST statements, which allows convenient interactive use
of the code from remote terminals.

Using Figure 9 as a guide, we will briefly discuss the basis or-
ganization of FTRAN. The MAIN program is acutally a very short pro-
gram (5 1ines) and only serves to dimension two vectors (one real and
one integer) of sufficient length to treat the specific problem being -
solved. Generally the MAIN program is compiled at run time with rea-
sonable estimates of the required lengths of the two arréys included 1in
the DIMENSION and CALL statements. MAIN then calls START, which is the
driver subroutine for FTRAN. START reads in the input data and writes:
out a summary of the input data for the convenience of the user. START

also partitions the two main arrays dimensioned in the MAIN program
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into a number of smaller vectors corresponding to the matrix of coeffi-
cients (A), the scattering matrix (M) (if eigenvalue problem), various
vectors for intermediate calculation of matrix elements, and other vec-
tors to contain the solution, source, etc. By use of dynamic dimen-.
sioning, as is to be discussed in the next section, these vectors are
made eguivalent to vecters or arrays (of various orders) in other sub-
routines.

START then calls sequentially on MSHCON (construction of mesh),
INTGRL'(ca1cu1ationAof various integrals for matrix e]ementé), MATRX
(actual computation of matrix elements), SOURCE (computation of source
vector S, including contributions due to incoming fluxes), SOLVE (solu-
tjon of system of equatjons) and MARCH (advance solution through time
. for time-dependent problem). Other subroutines are also used for spec-
ial purpose calculations such as INTERP (interpolate function between
~nodes with linear, quadratic, or cubic interpolation in either variable),
NORM (calculation of the}m;;;ﬁgrh(of the inverse of A, “ é:‘“a>)’ and
ERROR (calculates Ly error of the computed solution with respect to the
exact solution, which is input via FUNCTION TEST.

For convenience, a distributed anisotropic source (also may be
time~dependent) may be input with FUNCTION SORCE, and a time-dependent
incoming flux may be input with FUNCTION BDYFLX. These functions are
convenient for the user because they allow quite complicated source
distributions to bé input without inputting any numbers. Of course,
if used, these functions are compiled at run time.

The next two sections concern the most significant features of the

computer implementation--the use of dynamic dimensioning and the use of
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sparse matrix techniques to allow only a fraction of the matrix A (the

non-zero part) to be stored.

VII.B. Execution Time/Storage Considerations

The solution of the 1-D transport equation, which is analytically
a two-dimensional problem (x, ), can involve an extremely large matrix
A. For example, a problem with 100 spatial nodes and 10 angular nodes,
which is a small problem, involves 1000 unknowns and hence the matrix
A is 1000 x 1000, or 106 storage locations. Clearly the storage require-
ments for realistic problems can easily éxceed the available storage and
fast memory of most cbmﬁuter installations, let alone the CPU time re-
quired to factor a matrix of that size. Thus there is ample incentive
to develop a1g0rithm$ and computer procedures to minimize the actual
storage required to solve these large problems.

The obvious first step would be to store and manipulate only the
non-zero élements of A, since they may be only a fraction of the total
number of elements ofiL To see this, note that the coupling of nodes
to one another can be separated into two parts, angular coupling and
spatial coupling, when tensor product basis functions are used. In
general, a node wi]ﬁ not be §lobally coupled to.another node unless it
is coupled both in space and angle. However, as noted earlier, the
presence of scattering couples all of the angular nodes since there is
a finite probability of being scattered into any direction for any ini-
tial direction. Therefore, the global coupling is determined entirely

by the spatial coupling if there is any scattering present.”

* If there is no scattering (i.e. ¥ S(&,?§»§)=O), then the global

coupling is determined also by the angular coupling. However,
this special case is not accounted for in this investigation.
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Precise calculations of the number of non-zero elements of é=wi11

~now be made The spat1a1 coupling of nodes can be determined by in-

| spect10n of Fxgures 3-5, which 111ustrate 11near, quadratic, and cubic

~ basis functions, respect1ve1y. It is seen that at most 21 + 1 nodes

e

|

are coupled to a given node, where I, is the degree of the spat1a] fin-

SO

' iteue1ement. Hence, the use of linear spatial elements implies that a

e —d

j node is coup1ed to its 1mmed1ate neighbors, wh11e the use of cubic

‘ spat1a] e]ements may result in the node being coup1ed to its three

nearest ne1ghbors on e1ther side. Since the angu1ar cdup]ing is fufi,

" the tota1 number of nodes that may 1nteract with a given node (countingx

1tse]f)

B = (& Te+V)Na (175)

where Iy = degree of spatial element
. Na = no. of nodes in angular mesh.
Note that B will then be related ‘to the bandwidth of the matrix, which
is here defined as the maximum row length of é; In fact, with this
definition,
B = bandwidth = (2Iy + 1) Na

Because of the dnder1y coupling of nodes with the tensor product
basis functions, the matrix:é,wi11 have a very precise structure which
consists of blocks of length B and height Nu distributed along the
main diagonal, except near the corners of:é: Figure 10 illustrates a
typical matrix A, and this structure is clearly seen. With scattering

present, there wiT] be in general no zero elements within these blocks.
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Although this cannot be considered an advantege, it does allow one to use
standard banded matrix techniques for elimination without concern for
fil11-in of zeroes.

Using the-well-known estimate of the number of operations (multiplies

or divides) to factor a full N x N matrix>?

3
Fops ~ N | (176)

the number of operations for the banded matrix discussed hene is con-
siderably smaller. That is, the number of multipliers to eliminate each

column be]ow the d1ag0na1 is 1n1t1a11y B(Nii -1) because there are B

’e1ements in the first row which are mu1t1p11ed to eliminate one e]ement in

the co]umn, and there are (Ny - 1) e1ements in each co]umn to be e11m1nated.

VS1nce there are N co]umns, th1s resu]ts in (us1ng Eq. (175))

# C)QS; ~ “}khi
ok £ 0ps ~ NNua (alx”)

Thus the number of operations is linear in the number of spat1a1

L I OV S — G

unknowns and cubic in the number of angu]ar unknowns, versus cub1c in

(177)

" each 1f A were fu]] Th1s dependence is 111ustrated in Figure 11 and

’ typ1ca1 t1m1ng data are tabu]ated in Tab]e I Thus given an anéu]ar mesh,

t the execut1on time is Tinear w1th prob]em size,

However, the key point is that the zero elements outside the bands

must be ignored in the e]imination process, because multiplication by

zero takes as much computer time as multiplication by a non-zefo. There-
fore the coding musi take into account the block structure ofé;tn en-
sure that only non-zero elements are considered. This has been done in
subroutine SOLVE for both the factorization and the back substitution

algorithms.
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DESCRIPTION OF RUN
(SS-steady state,TD-time dep)

CPUTime (sec) /. .subroutine

INTGRL

MATRX

SOLVE

| MARCH

49 X-nodes (1inear)
4 u-nodes (linear)
196 unknowns, SS

.004

.05

.09

58 X-nodes {linear)
10 M4-nodes (linear)
580 unknowns, SS

.005

.26

.90

101  X-nodes (linear)
12 M-nodes (linear)
1212 unknowns, SS

.008

.53

2.50

101 X-nodes (quadratic)
6 M-nodes (quadratic)
606 unknowns, SS

.007

.29

.94

6 X-nodes (linear)
5 #U-nodes {linear)
30 unknowns, SS

. 001

.008

.017

21 X¥nodes (1inear)
4 M -nodes (linear)
84 unknowns, TD (50 steps)

.002

.02

.02

1.4

21 X-nodes (linear)
13 M-nodes (linear)-
273 unknowns, TD (50 steps)

.004

.19

.63

7.5

23 X-nodes (linear)
10 Y«-nodes (linear) '
230 unknowns, TD (100 steps)

.004

4

.32

7.2

AAMDAHL 470V/6

!

" TABLE I. Timing Data
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Thus the above analysis indicates that considerable savings in
execution time can be realized by taking advantage of the sparse struc-
ture of;i}during the factorization and back substitution steps. How-
ever, one must also ensure that in addition tq 1gnoring Ehglzerp e]et“*
ments of A during the solution process, one never stores the zero
elements in the first place. |

Since the blocks are full, the most efficient scheme of storing the
blocks would appear to be to simply move them to the left to form a rec-
tangular array with N rows and B columns, as illustrated in Figure 10.
This turns out to be rather simple to implement because simple indexing

will transform-the square array to the rectangular array: (using FORTRAN

array terminology)
AT, — A(Il T*"D\)Cfl)) (178)

where INC(I) is an integer array indicating the horizontal indexing that
must be done to move row I to the left side of the array. Thus the sub-
routines that compute matrix elements and which perform the LU decom-
position and back substitutions can all be coded as if é{were square
and then modified via the simple index change to accomodate the fact
that A is actually rectangular (and is dimensioned as such).

A simple example illustrates why this concern for zero elements is
actually very important. A typical transport problem with Tinear
finite elements may involve 100 spatial nodes and 10 angular nodes, or
1000 unknowns. If the matrix A were to be dimensioned as a square

array, then 106 storage locations would be required just to ho1d=§.
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However, if the non-zero blocks were stored, then A would be a rectan-
gular array of size 1000 x 30 or 30,000 locations, which is 3% of the
storage required for the square array.

But as dischssed above, the savings in execution time is also a
considerable advantage. An estimate of this savings for the factori-
zation alone can be made with a simple ratio of the operation counts for

the full matrix, Eq. (176), and the banded matrix, Eq. (177),
N N> (3 Ty+)
“33
_ (1000)C10*)(2)
100073

which, while only a crude estimate, is the motivation behind expending the

JU =

3 %107

additional coding effort to account for the sparse structure of A. In
fact, for the solution of even moderately sized problems, this becomes a

necessity, not a luxury.

VII.C. Dynamic Allocation of Storage

In the last section the advantages of storing tpe N x N matrix A
as a rectangu]ar N x B array were explained. However, the dimensions
of N and B can vary widely for the types of problems to be solved in
neutron transport. For example, for the sample problem discussed in tha:
previous section, N = 1000 and B = 30, while a problem with cubic spa-
tial elements on a 25x25 mesh would require N = 625 and B = 175. Or a
small problem with 10 spatial nodes and 3 angular nodes with linear

elements would require N = 30 and B = 9. Thus it would be impossible
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to dimension a fixed array for é:that would allow for a wide variety of
problems yet would not result in a large amount of wasted storage.

To overcome these disadvantages with fixed dimensional arrays, dy-
namic dimensioning was used. Dynamic dimensioning is simply a method
by which arrays may be dimensioned within a subroutine in accordance
with parameters passed with the argument list. Thus the driver subrou-
tine (in this case, START) can decide on the cérrect array dimensions .
for the specific problem being solved, and then can pass on to the
appropriate subroutine(s) the size of the array which is to be dimen-
sioned in that subroutine. The only restriction is that there is suf-
ficient storage dimensioned so that all of the variably dimensioned
arrays can fit within the allowed storage for that run.

The specific details will now be given for the dynamic dimensioning
of real arrays in FTRAN. As noted earlier, the MAIN'program dimensions
a vector V with sufficient Tength to handle the specific problem. For
example, V may be dimensioned V(20000). MAIN then calls START with the
statement

CALL START (V(1), 20000, IV(1), 400)
where the last two arguments are for the integer array, which is treated
in a similar manner and will not be discussed any further.

The above statement passes the first element of the vector V and -
the length of V. The key point is that START (or any other called sub-
routine) only cares where the initial element of the argument array is,
because the length of the array within START will be determined by an
appropriate dimension statement. For example, the first 1ine in START is

SUBROUTINE START (V(1), IDIM, ...)
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and the dimensidn statement in START,

DIMENSION V(IDIM), ...
will dimension the vector V with length IDIM, which is the second para-
meter passed by the calling statement. Thus in this case the vector V
is identical within MAIN and START.

Now, however, START processes the input data and decided the cor-
rect dimensions for 28 separate 1-D, 2-D, and 3-D arrays, all of which
are contained in the vector V. START then calls the various subroutines
with the location of the element of V which is the first element in the
appropriate array to be dimensioned in the called subroutine. START
also passes the dimensions which the subroutine is to use. For example,
thé\Ca111ng statement in START,

CALL INTGRL (V(IP1), M1, ..., V(IP28), M28, N28, L28, ...)
and the corresponding parameter 1list in INTGRL,

SUBROUTINE INTGRL'(XP, M1, ...., ASX, M28, N28, L28, ..)
with the dimension statement

DIMENSION XP(M1),...., ASX (M28, N28, L28), ....
imply that within the subroutine INTGRL, the vector XP will have length
M1 and the 3-D array ASX will be dimensioned M28 x N28 x L28, and these
dimensions are determinéd by START from the input data. Also, the
array XP begins with element V(IP1) and the array ASX begins with ele-
ment V(IP28), although this knowledge is never needed by the user (once
the ‘code is debugged). Note that the effect of this is to COMMON the
vector V with the 28 arrays of various sizes and shapes, thus requiring

only one fixed dimension statement--the one for V in the MAIN program.
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The advantage of this is that one can compile the MAIN program with
V of sufficient length to contain the 28 arrays.into which it is parti-
tioned {an error message alerts the user if the arrays will not fit in

V). Since MAIN is so short, this cost is negligible ( £ 10 cents).

VIII.D. Algorithm for Calculation of Matrix Elements

‘éeétfénﬂEfi;E_a%scﬁséed.ihe ca1;dia£%on76f the matrix elements Aij
by means of a transformation to the standard interval [-1,1], which re-
sults in a considerable reduction in the number of unique integra]s to
be calculated. However, no mention was made of the actual algorithm for
computing the matrix elements. Because of the large number of matrix
elements that have to be computed, care must be taken to ensure that the
algorithm is relatively efficient.

The principle behind the algorithm used in FTRAN is to make all
decisions at the earliest point possible during the process of computing
the Aij‘ That is, the Aij depend on the location of the nodes i and j,
the region in which the nodes reside if a multi-region problem is being
solved, whether or not nodes i and J are principal or internal nodes,
etc. Thus if one were to naively set up a 1pop which cycled through
all nodes i, and for each i, cycled through all the nodes j, and then
made the decisions noted above to determine the matrix element Aij’ the
total time to calculate the Aij could easily be prohibitive. This
would be an example of making decisions concerning the nodes i and j
at the worst time--during the main loop which can easily include 105-106
cycles, even when only the non-zero elements of:é are computed. The

solution is to make the decisions at a lower level and then when the

main loop is cycled, very few decisions have to be made during each
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cycle. The specific way in which FTRAN was constructed to do this will
now be discussed.

Since each Aij is made up of four or five {or more) integrals cor-
responding to the transport term, co11ision\term, scattering term, {or
sum of scattering terms forAanisotropic scattering), boundary term, and
interface term (if discontinuous spatial elements are used), consider a

typical integral term .

- g&x Z.() S Qe % o N0 )
O

O -
J <
-or, using the tensor product basis functions,

T(j = W 200 Pex ("\%x@‘\‘lgﬁ A Wealu Wu )
0 =

where ix is the x-node corresponding to node i, iw is the y -node cor-
responding to node i, etc.

Defining the factors of Tij as

{
TXy = | & 700 Wi 0300
0

t
'T'\)lﬂ = K.(&AL kQCA&(H)&¥JA&Qu)

the problem of calculating the 2-D integral Tij is reduced to two sep-
arate 1-D integrals Txij and Tuij‘ This in igsevasignificantly reduces
the effort because the spatial and angular integrals are done separately
over their respective éxes. For example, with.100 spatial nodes and 10
angular nodes, the number of integrals Tij is ~9000 (assuming linear

elements, each node interacts with 8 other nodes) while the number of
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v Txij integrals is ~300 and the number of TU]-\j integrals is ~20. Thus
the effort is reduced from computing 9000 integrals to computing 320

integrals, which are simply multiplied together to obtain
Ty = TXKy > TUy

Another important consequence is that different material properties
(e,g.fi.t(x)) can be factored into the integral Txij. However, the cal-
culation of the integrals Txij and TUij can also take advantage of lower
level calculations. Using the notation of Sec. III.E, a typical inte-
gral TX . {or TU ) can be expressed in terms of the genefic basis func-

tions over the standard interval [-1,1]: (assume j = i + 1)

X<
TY\,S = Y dy Wi W &)
ch

g 43 Wl kva(x)

-

where ¥, (%) and Y2 (¥ ) are as shown in Figure 3.

Since there are only two generic basis functions for linear ele-
ments, every TX. i3 or TU i can be obtained from the three integrals

{ 38 U1 Y SETHRNG AN S A NRN
Thus the computation of the 9000 integrals for the example above has
been reduced to the computation of 3 integrals.

Once the Txij and TUT. are computed, the calculation of T i is
done in an efficient loop which now only needs to identify the x-nodes
and a-nodes corresponding to i and j, so thét the Txij and TUij can

be retrieved. Once these are known, T.. is formed by taking the pro-

iJ
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duct of the tyo array elements TX].'j and TUij' No other decisions need be
made in this main loop to calculate the Tij' Of course, symmetry {and
anti-symmetry) of the contributions to Aij can be used, as can the finite
interaction distance between nodes to cut down the number of cycles in
the main loop.

For example, as indicated in Table I, a problem involving 41 spatial
nodes and 22 angular nodes will result in 902 unknowns and 59,320 non-
zero matrix elements Aij or ~250,000 integrals to compute. The actual
time required to do this was .671 sec for the main loop, or~3 ,usec per
integral. The time required in the intermediate calculation loops (for
Txij, TUij, etc.) was .005 sec, which is neg]igibTe. If this earlier
calculation had not been done, the time in the main loop might have been

doubled or tripled.



CHAPTER VIII
NUMERICAL RESULTS

The previous chapters of this dissertation have been devoted to a
thorough examination of the finite element method and its application to
transport problems. This examination has included theoretical discus-
sions concerning convergence rates as well as practical aspects such as
the method by which the resultant system of equations is solved. So
far, though, no numerical resu]ts have been presented to support a claim
that the method is even successful, let é]one substantiating the various
claims and assertions concerning convergence rates as a function of
mesh refinement or the improvement to be realized if one employs dis-
continuous finite elements in both space and angle. Thus, this chapter
is intended to serve as the vehicle to substantiate the findings and
results obtained in the earlier chapters.é

This chapter includes confirmation that the method is applied and
implemented correctly aS well as examples to demonstrate the effective-
ness of the method for solving eigenvalue problems, prob1ems with strong
heterogeneities, and time-depehdent problems. In addition, numerical
results are given to substantiate the claims made in Chapter II con-
cerning the solution convergence rates and eigenvalue convergence rates

as a function of mesh refinement.

VIIT.A. Verification of Code

A nécessary task in the development of any analytical procedure
or computer code is to ensure that correct results are obtained when

the code or procedure is applied to a problem with a known solution.

-136-
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However, this is not conveniently done in neutron transport because
exact solutions aré khown for only a few problems, and these prob]ems
generally are very simplified, such as semi-infinite mediums, pure ab-
sorption, etc. Even in these cases, the solution may exist in the form

of an expansion that can only be evaluated numerically, thus introducing

possible errors in ‘the exact solution. If one wanted to examine the
correct operatién of a code that could handle multiple-region aniso-
tropic scattering with arbitrary boundary conditions, then comparisons
would have to be made with existing codes that people have confidenée
in or compariédns made with experimental data. If the goal ié to ob-
taiﬁ precise numerical results concerning convergence to an exact solu-
tibn, then these methods would not suffice because of the errors in-
herent in each approach.

However, there is a method available that allows exact solutions
to any general integro-differential, non-linear, inhomogeneous problem
to be computed. The method is quite simple, although in practice it
may require a more flexible code to use the method than would be re-
'Aquired for the application the code was intended for. This method had

46 and has been

V begn suggestedéear]ier for the neutron transport equation
found to béAbf extreme usefulness, both for debugging the code and for
obtaining precise numerical convergence results. The method consists
of assuming a solution to the transport equation and then computing the
source necessary to balance the equation. Since the solution is known,
the incoming boundary conditions are known. The code is then run with
this source/boundary conditionfconfiguration as 1nput,‘w1th the Qoa] of

obtaining the assumed angular flux (or some approximation to it) as

output.
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The observation that makes this method useful for a code that in-
volves a numerical approximation technique is that if a solution is
assumed that the method is able to approximate exactly, then a correctly
written code should reproduce the assumed solution exactly (within
machine precision). For example, if a bilinear angular flux {(in x and

AA) is assumed then the finite element method with linear or higher order
elements should yield the assumed flux exactly. Any discrepancies in the
solution which cannot be attributed to machine round-off probably indi-
cate errors in the coding or in the formulation of the numerical approxi-
mation. .

For example, the following test problem was used to verify several

capabilities of FTRAN. The assumed flux was
QU a) = - (X=-1W)X+5~M3) , 0LX&(0

which is a biquadratic polynomial in x and A{. Reflecting boundary con-
ditions are automatically satisfied at x = 0 although x = 0 could also
be a specified incoming flux boundary. The incoming flux at the right

boundary is

QUo, u) = 55 -NM* | Uio

and if the assumed flux is substituted into the 1-D transport equation
with isotropic scattering, the resultant source is easily calculated
to be o o
S aY = = A (RX= 1053 ~ L (e s
| +Zs -1+ (1/3)
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When FTRAN was run with S(x, ) above as the source (via;EUNCTIDN
SORCE) and the above incoming boundary conditions at x = 10, tQ; com;
puted solution agreed with the assumed solution (within 8-10 decimal
places) everywhere when gquadratic or cubic finite elements were used.
This close agreement must be obtained because quadratic or cubic ele-
ments can approximate the assumed flux exactly and since the trahsport
equation in this case reduces to an algebraic identity with a unique
solution, this exact solution must be the only solution: |

The simple assumed flux

Qx M, t) = |-t , t20 , 0LXel,

is capable of testing the time-dependent portion of FTRAN, as well as
the steddy state portion, because the Crank-Nicholson scheme is capable
of approximating this linear function of time exactly. This

assumed flux leads to the source

Shym,t) = (7° is)(“’t)

and boundary conditions
Q@ Mt)z (-t, M20
&(‘}M;ﬁ) ot \—'t) ME. O
plus initial conditions

di (XTYAJI GW = |

When FTRAN was run with the above as input, the angular flux at

t =1 was identically zero, independent of the time step chosen.
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. A more g]aborate test problem, called ULT—TEST, is capable of test-
ing all of the capabilities of FTRAN simultaneously, and thus is a use-
ful tool for checking the code after changes have been made. ULT-TEST
consists of a three-region slab with different anisotropic scattering
coefficients in‘each region. The assumed flux is similar to the bi-

quadratic flux above except time-dependence has been added:

Q& amt) = = XaDX=11) (5~ Y (1 -1)
forn  0ext (0
t20

which generates the initial conditions
Qo(x M) = - X+ X~UX5-m2)

[

and time-dependent boundary conditions (ref]ecting at x = 0)

&((O,M,ﬂ = (6‘3““&(9)((—’() S MLED

When this assumed flux is substituted into the time-dependent
trnasport equation with anisotropic scattering (Lmax = 4), Eq. (154),

the following source is calculated:
Serompy = & G- (5-13)
— (AX~10) Ak (5~ D) (I-t) = T L =11 5-®) (- 1)
+ [‘-‘% ho ~ (A=) b;}(xmax-mu%)

Depending on which region of the slab is being considered, appro-
priate values of 2 ¢, by, and by are substituted into the above to ob-

tain the specific source for each region. Note that the source


http:X-\O).AA
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S(x, 4,t) is independent of the Legendre expansion coefficients b1, b3,
and b,. This is clearly true because the assumed flux consists of PO
and P2 Legendre polynomials, and P], P3, and P4 are orthogonal to PO and
P, over the interval [-1, 1]. Hence these terms do not contribute to
the scattering expansion.

When this source is input via FUNCTION SORCE and tﬁe time-dependent
incoming flux is input via FUNCTION BDYFLX, FTRAN will yield a flux at
t = 1 which is identically zero, which is the correct solution. Thus
the test is easily run and checked at a glance.

| Also, the correct operation of discontinuous spatial and angular
elements can be verified because the computed solution should be con-
tinuous even if discontinuous elements are used. One could also choose
an assumed angular flux with a discontinuity at 4= 0 to check the
correct operation of the discontinuous angular elements, which was done.
However, the same could not be done with the discontinuous spatial ele-
ments because in fact continuity of the angular flux is a natural in-
terface condition and if the assumed flux is analytically discontinuous
(which it is not for real problems) the step during fhe calculation of
the interface matrix elements where the flux is assumed continuous in
the direction of neutron motion is no longer valid. The point is that
the discontinuous spatial elements can approximate a rapidly varying
angular flux but not a.discontinuous angular flux.

To summarize,the above method is admittedly of no use for calcu-
lating actual solutions to the transport equation, but it has resulted
in considerable savings in time and effort for checking out and de-

bugging FTRAN, both initially and after the multitude of options were
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added. However, the assumed flux method also contributed significantly
to the study of the numerical convergence of the finite element method,

as is discussed in the next section.

VIII.B. Angular Flux Convergence Results

The assumed solution method also a11ows’for'the performance of
precise numerical convergence tests, because the exact solution is known
and one can compute the error in the approximate method as the mesh is
refined (as Tong as exact agreement is not possible). This was done

with a single region problem with the following assumed angular flux:
. -X
QX M) = 100 e C,OSC“*“/&), oL X L

with

T,.= %

:f;::03\321 (to examine dependent of convergence rate
on the scattering ratio C = Zs/zt)

This results in the following source and incoming boundary con-

S M) = ﬁoo e~* Cos(“f“/aﬂ@-/‘“ft)* %Z;)

&, 0, M) zimcos(ﬂ,u/a\ LM 0
Qo) = 10e™ cosMA) , meo

ditions:

The Lp-error in the approximate solution éQh(X,jA) was calcu-

lated as


http:6lh,(x,.,.lA
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Ya

160, [dew 06 ay - @ ey )|

and was donevwithvdoub1e 4, 5, or 6 point Gaussian quadrature over each
mesh element, when linear, quadratic, or cubic finite elements were used,
respectively. (The normal quadrature for the integrals in the matrix
elements 15 double 2, 3, or 4 point on each element). The. mesh spacing
h was defined as %— where N was the number of mesh intervals which was
the same in both the spatial direction and the angular direction. (A
mesh interval is defined as an interval between any two adjacent nodes,
whether interior nodes or principal nodes.)

The results were obtained with several mesh spacings for each of
the finite elements (1inear, quadratic, cubic) and with C = 0, 1/2, 1
and with the boundary conditions treated as essential boundary condi-
tions and as natural boundary conditions. The numerical results have

been plotted in Figure 12 and they motivate the following remarks:

1. The observed convergence rate (in the Lp-norm) is clearly

ha~aull, = ok

where k is the degree of the finite element.

2. The observed convergence rate is independent of the
scattering ratio C and is independent of how the
boundary conditions were treated (natural vs. essential).

3. Although the error convergence rates are the same, the
absolute error is less with the use of the natural boun-
dary condition formulation versus the essential boundary

condition formulation of the integral law. This might
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be expected because with the natural boundary conditions,
the system is not reﬁtricted as to its choice for the
solution on the incoming boundary, thereby allowing for a
better overall solution to minimize the error throughout
the region.

-4, Again, the error rates are identical, but the absolute

error is less with more absorption (small c).

VIII.C. Eigenvalue Problems

(1) Critical Slab Problem (Isotropic Scattering)

This application of our method concerns the classical eigenvalue
problem of neutron transport theory--the calculation of the number of"
secondary neutrons, ¢, required per collision to achieve criticality in
a slab of given half-width (measured in mean free pat%s). The spec-
ific eigenvalue equation to be solved is then

8 f !
M?ﬁ + & M) = % g du' Qi) (159)

~{

with boundary conditions
80u) = Q0,-u)
. é;LQ¢* M)y = O, me0
where a is thg half-width in mfp.
Proceeding in an analogous manner with the derivation of the 1-D
integral law in Sec. III.B., the equivalent integral for the eigenvalue
problem is

Find &(x,,u)e Hi and C such that for all W(x,u) e 4T
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L&, x) 40,93, + (0 W)
= C(aidu'&?(xiuf),q’>

where 40,\% is the surface term after the boundary conditions have
been explicitly included (in the direction of néutron travel for the
reflecting b.c.).

Now apply the finite element approximation to solve Eq. (160), as
was done in Sec. III.C., to obtain the generé1ized matrix eigenvalue

problem:

AQ’“CL\Q (161) .

where Aij is the same as in Eq. (125) except the scattering term Mij
has been subtracted. Equation (161) is then solved using the inverse
power iteration method 1in accordance with Sec. VI.C.

The following discussion contains the results of several different
eigenva]ué calculations, including comparisons with the production-
level 1-D discrete ordinates, code, ANISN'46

Four different slabs were analyzed with various order finite ele-
ments and mesh spacings. Discontinuous angular elements at /A= 0 were
used for all FTRAN runs, and uniform spatial and angular meshes were

used. The eijgenvalue prob]ems were also so]ved with ANISN to allow

comparison with a discrete ordinates code. The ANISN runs were per-

.5,“V:Z £ = .5 and the k-search option47, with ¢

1,1
PATI

formed with jis

calculated as ¢
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A1l runs were performed Qith single precision (32 bit) arithmetic
on The Unjversity of Michigan AMDAHL 470V/6 computer. The eigenvalue
error was chosen to be 18'6, which is approaching'the smallest error
»feq}iétj§§11y obtainable with single precision arithmetic.

Table II summarizes the FTRAN and ANISN results for the four slabs
and includes benchmark eigenva]qes rep?rteq by'Kapgr, Leaf, and Linde-
mah49 for the different slabs. Table II also includes actual solution
times for FTRAN and ANISN for the slabs of half-width 1.0 mfp and 100.0
mfp. For FTRAN, the time is the CPU time requiredAto fachn*éiand per-
form the inverse iterations, while for ANISN the time is that required
to perform the necessary outer-inner iterations to converge to the
eigenvalue. Because these codes are so dissimi]ar,»thesé timing re-
sults should be viewed as providing only an approximate comparison of
the relative efficiencies of the two methods for a specific application.
The comparison in Table II stimu]até; several observatiohs;

First, the convergence of the finite e1emeht method is extremely
rapid and excellent agreement Qith the benchmark eigenvalues of Kaper,

et a]48

was obtained for even the very coarse mesh of two spatial and
two angular intervals. For the higher order elements and/or the re-
fined meshes (which are still fairly coarse), the agreement approaches
the accuracy possible in single precision arithmetic. In fact, this
rapid convergence forced a restriction to cases with fairly coarse
meshes when single precision arithmetic was used. Secondly, the use of
higher order elements on the same mesh generally results in better

agreement; however, this increased accuracy results in significantly

longer running times due to.the increased coupling between the spatial



1 FTRAN Results-- L{Linear),Q(Quadratic),C{(Cubic)
2 width Benchmark® Number .of mesh intervals in x,i ANISN
(mfp) || (Ref.48) - ‘ .
4 LL (2,2) LL(4,4) LL(6,6) QQ(4,4) cC(6,6) 36’ Nx=6 S]G’ Nx=16
- 1.60319 1.61140 1.61462 1.61217 1.61539 1.65302 1.61554
.5 1.615379 (.75%) (.25%) (.05%) (.2%) (.0007%) (2.3%) (.01%)
: 1.27193 1.27676 1.27706 1.27708 1.27712 1.28417 1.27724
1.0 1.277102 »(.4%) (.027%) (.003%) (.002%) (.001%) (.55%) (.01%)
1.02479 1.02488 1.02493 1.02490 1.02489 1}02627 - 1.02496
5.0 1.024879 (.008%) (.0001%) (.005%) (.002%) (.001%) (.14%) i[ﬂ(.OOB%)
1.00717 1.00721 1.00718 1.00720 1.00717 1.00884 1.00726
10.0 1.007135 (.003%) (.007%) (.004%) (.006%) (.003%) (.17%) (.01%)
CPU Timeb 1.0 mfp .032 10 .22 .15 .46 .065 .26
(sec)
' 10.0 mfp .15 .37 .95 .50 1.7 .34 1.9
a . o ) -
Rounded to 7 figures TABLE II. Eigenvalues (Isotropic Scattering)

b

AiDAHL- 470V/6

-8y L-



FTRAN Reéu]ts (Same notation as Table II.)

] ANISN
Position |{Benchmark
Ref. 48 - -
( am (2,2) | LLe,8) | Qa8 | Lis,8) |cc(iz1zy | SetNeTA) | S16(NyT16)
0.0 1.00° 1.00° 1.00 1.00 1.00 1.00 1.00 1.00
0.25 . 9660 .9660b - .9827 .9691 .9658 L9663 .9645 .9660
: (.6%) (1.7%) (.3%) (.02%) (.03%) {.16%) (0%)
0.50 .8651 ".9200 . 8665 . 8666 .8646 8645 .8587 .8652
(6%) (.16%) (.17%) (.06%) (.07%) (.74%) (.01%)
0.75 .6982 .6728 7186 .7037 .6986 6985 .6840 .6984
(3.6%) (2.9%) (.8%) (.06%) (.04%) (2%) (.03%)
1.00 .434] .4256 .4415 L4412 .4405 .4368 .4401 .4346
(2.0%) (1.7%) (1.6%) (1.5%) (.6%) (1.4%) (.12%)

a

bRounded to 4 figures

Linear extrapolation

Center fluxes normalized to unity

TABLE III. Scalar Fluxes (Isotropic Scatterfng)

-6yL-
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nodes. Finally, a comparison of the ANISN results with the FTRAN re-
sults indicate that the finite element method yields more accurate eigen-
values on relatively coarser meshes, with at least comparable execution
times. |

The eigenfluxes were also compared for the slab of half-width 1.0
mfp. Table III contains a comparison of the nodal scalar flux corres-
ponding to the converged angular flux eigenfunction for each mesh
spacing. These results include different order finite elements as well
as two different ANISN runs. The comparison of the results with the.
benchmark fluxes of Ref. 48 should be viewed with some caution; however,
because the normalization used to compare fluxes was to set the flux at
the center of the slab (x = 0) equal to unity for all cases. In parti-
cular for the finite element results, where the best approximation to
the actual flux may not involve equality at x = 0, this normalization is
suspect.  However, a more satisfactory norma1izatioh, such as multiply-
ing the approximate solution by a constant which is chosen to minimize
the least square error (Lo error) between the benchmark flux and approxi-
mate flux, would involve more effort than justified for the limited con-
clusions that may beAdraQn.

Iﬁ any event, it would appear from Table III that reasonab1¢ agree-
ment is obtained with the éoarse FTRAN runs although the best results
were obtained with the 516 ANISN run. The 56 ANISN run compared favor-
ably with the LL(4,4) FTRAN run, which is unexpected on the basis of

the eigenvalue results for these cases.
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(2) Critical Slab Problem (Linear Anisotropic Scattering)

The second application was to repeat the above criticality problem
including anisotropic scattering. Furthermore, the 1imiting cases of
very thin and very thick slabs were considered with slab half-widths of
.01 mfp, 1.0 mfp, and 100 mfp being analyzed. FTRAN was run with ani-
sotropic scattering coefficients b1 = 0, +1/3, and -1/3 for each of the
three slabs (see Eq. (120) for definition of the bi)° Table IV com-
pares the results of the FTRAN runs with earlier nesu]fg‘reﬁorted by

Kschwendt??

» who used the SPN-PL method to calculate the eigenvalues.
Nofe that different mesh spacings and element types were used for the
individual slabs, since a thin slab requires a highly refiﬁed angular
mesh while a thick slab requires a relatively more refined spatial mesh.
A comparison of the results for the thin slab (.01 mfp) would indicate
that the eigenvalues reported in Ref. 49 are more accurate, since the
FTRAN eigenvalues appear to be approaching the Ref. 49 eigenvalues as the
angular mesh is refined. A comparison of the LL(1,24) and LL(2,?4)‘re~‘,

sults for the .01 mfp slab clearly. i1Tustrates the insensitivity to re-

B —

finement in {the spatial mesh. It is interesting to note that the

_LC(1,24)'ré;u1ts are significantly more accurate than the LL(1,24) re-

sults, although the number of unknowns and the execution times are
identical. This is due to the fact that the angular nodes already
being fully coupled by the scattering, cannot be coupled any more strongly
for the cubié angular elements; hence the increased accuracy is free
(neglecting the insignificant increase in time to asseﬁble the matrix).

As noted by Kschwendt49, the thin slab (.01 mfp) cannot be treated

by the SN method unless a large number of angular quadrature points are



3 width f"2§f§r°py Ref. 49 FTRAN Results
Element & Mesh Wa(n,20) | w(2,2) | Leze) | LLi,so) |
++ |20.9031 | 21.9064 | 21.8913 |21.6447 | 21.0512
01 o |20.6219 | 21.5839 | 21.5700 [21.3334 | 20.7634 '
(mfp) 1 = _
-+ |e0.3548 | 21.2810 | 21.2655 | 21.0405 | 20.4919
Element & Mesh LL(2,2) | LL(6,6) | Qu(4,4) | CC(6,6) '
+ 1.32147 | 1.31491 | 1.32141 | 1.32145 | 1.32149
e 0 1.27710 | 1.27193 | 1.27706 | 1.27708 | 1.27712
-3 1.20468 | 1.24085 | 1.24465 | 1.24466 | 1.24471
Element & Mesh LL(3,2) | LL(25,2) | cL(24,2) | LL(50,2)
+3 1.00012 | 1.00020 | 1.00040 | 1.00042 | 1.00035
100.0 0 1.00008 | 1.00014 | 1.00035 | 1.00035 | 1.00033
-3 1.00006 | 1.00011 | 1.00032 | 1.00030 | 1.00027

TABLE IV. Eigenvalues (Anisotropic Scattering)

=251~



EIGENVALUES FOR 1.0 mfp SLAB (ISOTROPIC SCATTERING) EIGENVALUES FOR .01 mfp ISOTROPIC SLAB

-£GL-

(For comparison of discontinuous vs. (Indicates sensitivity of angular
continuous angular elements at A=0) mesh & insensitivity of spatial mesh)
FTRAN : FTRAN FTRAN "y e b
MESﬂ (Continuous) (Discontinuous) MESH - (Discontinuoug) % Difference
|
6,6 28.46 38%
LL(2,2) 1.2538 (1.8%%) 1.2719 (.49%) 00(6.6)
QQ(6,8) 24.87 214
LL(4,4 1.2738 (.25% 12768 03%
( ) ( ) (.03%) QQ(6,16) 22.42 9%
i ' LL(14,14 22.86 11%
LL(6,6) 1.2761 (.08%) - 1.27706 (.003%) }! L ) ‘
LL(6,2) 34,22 66%
LL(8,8) 1.2766 (.04%) 1. 27708 (.002%)
: : LL(4,2) 34,22 66%
' LL(1,2 34.22 66%
LL(70;10) || 1.2768 (.02%) 1.27709 (.0009%) (1.2) ’
|l

bCompared with c# 1.27710 (Reference 48)
Compared with c= 20.62 (Reference 49)

TABLE V.. Miscellaneous Eigenvalue Results
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used, such as 532. Again, the reason for this is that the thin slab nec-
essitates a good angular approximation and the typical SN quadrature

sets (up to 516) db not suffice. Use of arbitrarily fine angular meshes
pose no problem with FTRAN, which is somewhat of an advantage for the
finite element method.

For the intermediate width slab (1.0 mfp), the FTRAN and Ref. 49
results are in excellent agreement, even though the most refined FTRAN
mesh had only 6 angular and 6 spatial mesh intervals. The results for
the thick (100 mfp) slab, however, do not agree as we11§ this might be
expected because the eigenvalues are very close to unity and a 10‘5
error effeétiQe]y changes the eigenvalue considerably. However, we
believe that the FTRAN results with the refined spatial meshes are more
accurate because the Ref. 49 results &ere obtained with a spatial trun-
cation equivalent td a éoarse spatial mesh and it was observed with
FTRAN that a coarse spatial mesh resulted in very small efgenva]ues (see
Table V ), similar to Ref. 49. In addition, the FTRAN.results with the
finer spatial meshes compared favorably with an ANISN 86 run with 25
spatial intervals which yielded C = 1.00041. Note that the use of cubic
spatial elements on the same mesh as linear elements does not appear to
yield any significant difference, although the computational effort is
increased substantially due to the stronger spatial coupling.

It is interesting to note that the execution times were independent
of the inclusion of anisotropic scattering. That is, the number of
eigenvé1ue iterations was independent of the anisofropy, and since the
direct solution time only depends on: the total number of nodes (which
was constantvfor the isotropic and anisotropic cases) the total execu-

tion was relatively constant with a given mesh.
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Several calculations were also performed using continuous angular
elements for comparison with the discontinuous elements. The resultant
eigenvalues were consistently poorer with the continuous elements, es-
peically for the .01 mfp slab where the eigenvalue is extremé?y sensi-
tive to the angular approkimation. These results are shown in Table Y,

along with several other miscellaneous eigenvalue results.

VIII.D. Eigenvalue Convergence Rates

The isotropic scattering eigenvalue problem considered
above was also analyzed with'the intention of obtaining precise numerical
results for the'eigenvalue convergence rate as a function 6f mesh
spacing (h) for linear, quadratic, and cubic elements with both contin-
uous and discontinuous angular elements at = 0. Therefore, FTRAN was
modified to incorporate double precision arithmetic for all calculations

and a 10710

error criterion was placed on the eigenvalue convergence.
Although a 1imit on the maximum angular flux error was not imposed; this
error was calculated and was within 1077 for the last two iterations for
all of the cases considered. Figure 13 illustrates the results for a
series of FTRAN runs with different mesh spacings, different finite
elements, and continuous and discontinnous angular elements. The re-
sults clearly indicate the improvement in the convergence rate with dis-
continuous angular elements, since »JU(h3) convergence was achieved with
discontinuous linear elements, while »«o(h2'5) conyergence“wa§’o§tained
with continuous linear elements.

Although the resuits are not shown, the observed convergence rates

for quadratic and cubic continuous elements was nearly identical to the
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-157-

observed rate for linear continuous elements, which indicates that the
effect of the singularity at (= 0 is dominating the error.

For the quadratic and cubic discontinuous elements, the error was
apparently too small to be resolved. That is, with guadratic elements

the smallest mesh configurations, 4 x 4 and 8 x 8, yielded errors of

5

2 4 x 1077 and 6.5 x 10*7, respectively, which indicates better than

(hs) convergence However, the 12 x 12 result was poorer than the 8 X 8

probab]y due to the fact that p1v0t1ng was not performed which became

1mportant for small errors. For cub1c e]ements, the sma11est -

-5 while the error for the next

-10

mesh, 6.x 6, y1e1ded an error of 1.2 x 10~
mesh, 12 x 12, which might have been near 10 on the basis of the
linear and quadratic results, was only nominally better at 1.7 x 10'6.
Also, the linear elements with the 12 x 12 mesh resulted in a higher than
expected error which supports the contention that other factors became
important for extremely small (< 10'6) errors. Regardless of the spec-
ific results for the higher order elements, though, we feel that the
_important conclusions here are that discontinuous‘angu1ar elements
effectively match the singularity at AL= 0, and linear elements appear

to yield 0(h3) convergence.

As discussed earlier in the section on the theoretical error analy-
sis, the observed eigenvalue convergence rates, which suggest O(h2k+])
convergence for finite elements of degree k, are 0(h) faster than pre-
dicted for the second-order, elliptic, se]f-adjofnt problem. Thus the
resu]ts may be viewed with some skepticism. However, as the results of

SeC IT.G iindicate, the predicted convergence rate for linear elements

is
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S Cthg + Ca[’\q = OO"\S) as h—=o0

where the 0(h4) term will, of course, be negligible as the mesh if re=
fined. But a look at Figure 13 reveals the interesting fact that the
initial dependence of the error is indeed 0(h%), and as h becomes
smaller, the 0(h%) term becomes negligible compared with the 0(h3) term.
Thus the numerical results, at least for the linear elements, would

appear to strongly sipport the predicted.convergence rate

e~ O(RBR)

VIII.E. Milne Prob1em»

The Milne problem is a classic problem in transport theory and is
one of the few transport problems that is amenable to an exact solution.
Therefore it is a typical test problem for trénsport codes in order to
compare numerical results with exact results. Originally the Milne
problem was formulated and solved to obtain the observed angular distri-
bution of radiation emitted by a star. However, the problem may also
be posed in terms of neutron transport, which will now be done.

The physical configuration is a vacuum for x £ 0 and a pure scat-

- tering medium for x > 0, as indicated in Figure 14. Deep within the
pure scattering region (x-» +©0) is an infinite source of neutrons and
these neutrons travérse the scattering medium until they reach the
vacuum, where they simply stream to —.a>. The problem is to find the
angular distribution of neutrons emerging from the scattering medijum at

X = 0. Also, the sbatial dependence of the scalar flux near the vacuum
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'VACUUM SCATTERING MEDIUM (0<X<e0)

(x<0) ‘
1/ -

Y
INFINITE ISOTROPIC .
X=0 SOURCE 'OF NEUTRONS
AT X=00
ACTUAL CONFIGURATION
| VACUUM SCﬁTTERING IE%OI}?EQG FLUX} ©o(5,,ll)=1/~’-)((; . U<o
e X (mfp)
X=0 X=5

EQUIVALENT CONFIGURATION

FIGURE 14. Configuration for Milne Problem
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is of interest because the position in the vacuum where the asymptotic
scalar flux extrapolates to zero is of considerable interest to nuclear
analysis (extrapolated end point).

The infinite medium may be approximated satisfactorily by using a
finite slab which is several mean free paths thick and a plane isotropic
source of neutrons at the right boundary. Neutronically this finite
slab behaves like an infinite medium because if it is thick enough the
angular flux will attain an asymptotiﬁ -form away from the source but
before the effect of the vacuum boundary at x = 0 is felt. Specifically,
FTRAN was used to solve the Milne problem assuming the slab was ‘5 mfp
thick with a plane isotropic source of unit magnitude at x = 5. Al-
though FTRAN 1is not specifically set up to handle a plane source, it
may be accommodated in the following manner.

Case, de Hoffman, and P]aczek50 note that for a problem where all

‘neutrons are due to a surface source (the present configuration), the
equivalent problem consists of specifying the value of the incoming flux.
That is, if S5 is the strength of the plane isotropic source then the

equivalent problem consists of an incoming flux with magnitude

A
Ys, ) = a-m 40

Se
A A !

L2 -
where N is the unit outward normal to the surface M;.

For a 5-mfp slab with a unit isotropic plane source at x = 5,
-the equivalent problem consists of a source-free slab and an incoming

flux

Qo (54) = \-}@\ MAD
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FTRAN was run with the above incoming flux distribution at x =5~
and vacuum boundary conditions at x = 0. The absorption cross-section
was zero end the scattering cross-section was unity, therefore x is
measured in mfp. The spatial mesh was uniform with spacing .05_mfp,
resulting in 101 seatiaT nodes. The angular mesh was also uniform with
[\ll=.20, reeuitingkin 11 nodes for continuous angular elements and
12 nodes for discontinuous angular elements. Thus the number of un-
knowns was 1111;or 1212 ,depending on the choice of angular elements.
To giee some fnformation concerning the efficiency of FTRAN, the CPU
time required to factor the matfix A and backsolve for the solution
was 4 2.5 sec, while the time required to assemble A was 4.6 sec.
This is consistent with most FTRAN runs with this approximate angular
mesh, ~#1-2 milli-sec per unknown to solve the system of equations
Ad=S. (Data is for 1212 unknowns.)

o —

The numerical results for the emergent angu]ar distribution’of

neutrons are tabulated -in Table VI for both the continuous and' d1scon-
- tinuous angular e]ements, along with exact va1ues from Case, et ai 50
The FTRAN results are normalized to g‘du&E(O;xi.) 1, consistent
with the normalization used for the exact results. Note that even with
the relatively coarse angular mesh { DU = .20), the FTRAN results
agree quite well with the exact results for the discontinuous angular
elements. Even the continuous results indicate good agreement, except
near AL= 0 where the forced continuity results in a numerical value

for the (/= 0 angular flux which is nearly half of the actea1 discon-
tinuity. In addition, the values for the angular flux on the vacuum

boundary for the discontinuous elements are much closer to zero (factor

of 10) than with the continuous elements.
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~M Exact® FTRAND FTRANC
0.0 .500 -514 .209
(2.8%) (58%)
0.2 .725 .727 .79
(.28%) (9%)
0.4 .915 .915 .929
(0%) (1.6%)
0.6 i.097 1.099 1.127
(.18%) - (2.7%)
0.8 1.276 1.278 ©1.308
(.16%) (2.5%)
1.0 i.454 1.446 1.48
{.6%) 1 (1.8%)

3Reference 50. A1l aﬁgu]a‘r fluxes normalized
to unit emergent f1 ux,

fod,u Qo, 1) =

D1sc0nt1nuous an u]ar elements at AL=0
11near(); AX=.05 (1linear)
‘Ccntmuous angular elements at 4=0, same mesh

b

C

TABLE VI. Nodal Emergent Angular Flux (Milne)
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Figure 15 illustrates the results for the FTRAN results versus the

50. It can be seen that the discontinuous elements approxi-

exaét.va]ues
mate the discontinuity at /= 0 quite well, which also allows an excel-
lent approximation to the {ncoming flux, which should be zero. It should
be noted that the results are almost identical to results from two dif-

ferent discrete ordinates so]UtionsS]

, one with a typical S]6 quadrature
and another with a quadrature (DP7) which allows better resolution of the
angular flux near A= 0.

Figure 16 is a plot of the scalar flux results from FTRAN (discon-
tinuous elements) versus position. Note that the extrapolated scalar
flux becomes zero at x ¥ -.7 , which is consistent with the exact value
of .710452. Figure 17 is a plot of several angular fluxes obtained with
the FTRAN run with discontinuous elements and it can be seen that the
fluxes dg achieve fheir asymptotic forms away from the boundaries, which
indicates that the choiée of a 5 mfp slab was satisfactory.

Thus FTRAN yields excellent results for the solution of the Milne

problem, which is further evidence for the successful application of the

finite element method to problems in neutron transpbrt.

VIII.F. Source Problem With Severe Heterogeneities

Since realistic problems in reactor analysis involve multi-region
problems with strong heterogeneities and localized sources, any viable
numerical method for solving the transport equation should be capable
of treating such problems. This section contains a détai]ed examina-

tion of the app]icatioh of the finite element method to a problem with
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strong heterogeneities, including the use of discontinuous spatial and
angular finite elements, which are shown to result in a marked improve-
ment. in the solution.

This particular problem was chosen because it has been considered
previously by other investigators to test their numerical methods for
treating heterogeneous problems. The initial treatment of the problem

q23

was performed by Reed””, who applied various spatial difference schemes

within the discrete ordinates approach to solve the problem. Pitkaranta26
subsequently used the problem to test the application of a finite element
method which effectively solved both the even and odd parity forms of

the second order transport equation by using a non-self-adjoint varia-
tional principle. The following is then a third solution of this prob-
lem, -and care will be taken to compare the FTRAN results with the results

obtained by Reed®® and Pitkaranta®. Also, a solution of this problem

23 code, which allows a direct com-

has been obtained with the ONETRAN
parison of the treatment of spatial discontinuities by FTRAN and ONETRAN.
The physical problem consists of 4 regions (see Figure 18)--a strong
absorber in region 1, a moderate absorber in region 2, a void in region
3, and a predominantly scattering medium in region 4. ARegien 1 also
contains avstrong isotropic sourcé of neutrons and part of region 4 con-
tains a weaker isotropic source. Reflecting boundary conditions are
'imposed on the left boundary and vacuum boundary conditions on the right.
The initial attempt to solve the prob]em'emp1oyed continuous linear
finite elements in space and angle. The mesh'consisted of 40 spatial
intervals and 8 angular intervals, which is consistent with the mesh

used by Reed?3 (38, 40 spatial intervals) and Pitkarantal. The results
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were extremely poor, as illustrated in Figure 19, where an extremely large
scaled plot had to be used to contain the huge oscillations. Attempts

to improve these results by using higher order finite elements in both
space and angle did not result in any impfovement of these results.

(Note that the scalar flux has been plotted, and generally an integrated
quantity will smooth out oscillations.)

Pitkaranta’® also observed significant oscillations in the scalar
flux when a uniformAspatia1 mesh was used, although his oscillations
were considerably smaller in magnitude than the oscillations in Figure
19. However, Pitkaranta noted that refining the mesh on either side of
the vacuum region resulted in a considerable decrease in the magnitude
of the oscillations, due to the fact that the rapidly varying flux in
these regions could be approximated better.

‘ Therefore, following the lead of Pitkarantaza, this mesh refinement
was made (adding nodes at x = 2.9, 2.95, 2.975, 2.99, 2.995, 5.005, 5.01,
5.025, 5.05, and 5.1) and FTRAN was run again with the continuous linear
elements in space and angle. The results, which are also plotted in
Figure 19, still exhibit gross oscillations and do not represent an im-
provement in the solution. Experimenting with higher order elements in
spaée and angle did not improve these results.

The next attempt was to use discontinuous angular elements (at #4=0)
although continuous spatial elements were used.* The result was a sig-
nificant improvement--the oscillations, though still objectionable, were

orders of magnitude less than before, as can be seen in Figure 20, which

At the time this problem was being investigated, the discontin-
uous spatial elements had not been considered, let alone incor-
porated into FTRAN.
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is drawn on a different scale than the two preceding plots. Now when
the minor mesh .refinement suggested by Pitkaranta was employed, as dis-
cussed above, the results were even better, as indicated in Figure 20.
Tﬁe magnitude of the oscillations was considerably reduced, similar to
that reported by Pitkaranta. However, the oscillations 6n the void are
still noticeable and the disturbing behavior of the flux at the inter-
face at x = 2 is still present. In fact, a persual of Figures 19 and 20
indicates that this behavior of the flux near x = 2 was not affected by
any of the above changes.

It is interesting to observe that the scalar flux oscillations and
negative values are due to oscillations in the backward angular fluxes
( ML K0) because the forward angular fluxes are quite well behaved.
Figure 21, which clearly shows the'reTative1y poor behavior of the & =-1
angular flux compared with the M= +1 flux, illustrates this remark.
This particular point will be discussed in more detail be]bw when the
physical discontinuities contained within this problem are discussed.

In an attempt to improve the results éven further, especially the
behavior of {he flux near the interface at x = 2, where the scalar flux
becomes negative, FTRAN was modified to allow treatment of near-discon-
tinujties in the angular flux at arbitrary spatial positions. The de-
‘tails on this modification have been discussed previocusly in Chapter V,
but the key point is that the principal effect of this change is to
allow continuity of the flux across the interface to be imposed as a

natural interface condition in the direction of neutron travel. FTRAN

was applied to the problem with the original uniform mesh, allowing

discontinuities at x = 2, 3, 5, and 6, which are the interfaces for
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the material and source discontinuities. The results indicated a sub-
stantial improvement in the solution, with complete elimination of the
oscillations in the void and elimination of the negative flux behavior
at x X 2 (the scalar flux results are plotted in Figure 22 and a few
angular flux profiles are plotted in Figures 23 and 24).

As the above discussion indicates, the use of diﬁcontﬁnuous spatial
and angular finite elements results in a vast improvement in the numerical
results for the solution of the heterogeneous problem. As noted, this
improvement was seen primarily in two regions--the void and the interface
at x = 2. The numerical phenomena in these two regions are unrelated,
although the use of the discontinuous spatial elements resu]ted in im-
pfovement in each region. The following discussion examines this point

in more detail.

First we note that the backward (A< 0) angular flux exhibits a
near-discontinuity at x = 2 because its behavior to the Teft is deter-
mined almost entirely by the source in region 1 while its behavior to
the right is determined almost entirely by the source in région 4, Con-
sequently the backward flux is nearly zero for x R 2 due to absorption
in regﬁon 2 and is a constant {unity) to within a few mean free paths
(mfp) to the left of x = 2. Since the mesh spacing in region 1 is 10 mfp
(due to the large absorption), the numericé] solution cannot resolve the
rapid variation of the flux near x = 2 and the net result of imposing
continuity on the backward flux at x = 2 is to force the outgoing flux
of region 2 to meet a boundary condition (unity) at x = 2 which is a
non-physical condition. Based on these arguments, the forward flux at

x = 5 will exhibit this effect although it is reduced somewhat by the
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relatively finer mesh (in mfp) in region 3. Also, the backward flux
at x = 6 is similarly affected, but to a much lesser extent due to the
substantial amount of scattering which couples the forward and back-
ward fluxes.

Thus the use of discontinuous spatial elements should relieve the
solution of meeting the restrictive conditions at x = 2 for the outgoing
flux of region 2 and the other interfaces as noted above, because now
this flux may be discontinuous in order to approximate the actual solu-
tion. However, continuity in the direction of neutron travel is still
a natural boundary condition to which the numerical solution will tend.

The coupling of one region to another in the direction of neutron
flow is clearly observed at x = 2 for the M= 1 angular flux, which is
plotted in Figure 23. The flux for x = 2+ tends to be the same as its
value for x = 2-; however, this condition is a natural interface con-
dition, not forced, and therefore continuity will in general not be
achieved. For the dl= -1 flux at this point, this natural interface
condition results in an effective vacuum boundary condition because

the backward flux at X 22 has traversed 5 mfp and is nearly zero. A

N ——— e P [ ————

Eook at Figure 24 111ustrates the advantage of the natura] 1nterface

) cond1t1on for the A{,--1 f]ux at th1s po1nt, in that the solution

s well- -behaved compared with the negative osc11]at1ons 0bta1ned with
‘ Continuous.elemenﬁs which force continuity. — .
The separate problem of the presence of the large oscillations in
the.void region, which are significantly damped by the mesh refinement
on either side of the void, will now be considered. In order to exam-

ine the cause of these oscillations, we will need to consider the finite
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difference relations which are equivalent to the linear finite element
scheme on a uniform mesh. These equivalent finite difference relations
were derived in Sec. III.F. For the vacuum region, where only the trans-

port term is non-zero, the relation coupling one node to another is

Mé_g > (..L)(Mﬁ*MJH)(@\L-H,_}«H ‘"@-Lﬂ}ji-\)
oX 6 N AN X

. —3 B MJ( @Lli"l“} “&(-|33>
3 2NX

n <__|_></U(d *MJ‘““) (&C‘H,j-l - (Q'L..g,\};;)
6)\. A 28X

= O

Note that i and j as used here do not correspond to the i and j as used
in the global numbering for Aij‘ This scheme is.seen to be a weighted

"leap-frog" scheme which has the well-known consequence54

of perpetuating
an initial error across the mesh. In particular, a flux differénce
between nodes immediately adjacent to the void will be propagated through
the void in a regular (1eap-froggfng) manner. Thus a rapidly varying
flux adjacent to the void will result in a large oscillation in the void.
Thereque, the reason for the partial success of the mesh refinement
discussed above is obvious--the difference between the nodal fluxes ad-

jacent to tpe void is reduced, thereby decreasing the magnitude of the

resultant oscillation in the void.
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The key observation for this application is that the discontinuous
elements decouple the void region and the adjacent regions except for the
surface terhs at each interface to account for transport of neutrons
across the interface. Thus the natural interface conditions on each side
of the vacuum region completely eliminate any trace of oscillations in
the angular flux because the flux within the vacuum now depends only on
the incoming flux at its boundaries, not on the angular fluxes adjacent
to its boundaries. In this case the "leap-frog" scheme propagates 0n1y
the incoming flux, rather than some combination of fluxes near the boun-
daries, across the void.

| The absolute necessity of using discontinuous angular elements is
clearly illustrated in Figure 25, which is a plot of the{[=0+ and M=0-
angular fluxes, which are quite different throughout most of the region. .
Clearly any numerical scheme which imposes continuity at /Z=0-w111 fail,
as illustrated by the earlier results with continuous elements.

There remains the numerical difficulty of the anticipation by the
numerical solution of the effective vacuum boundary condition at x = 2
for the backward flux in region 1. Since the mesh spacing in region 1
is 10 mfp, the numerical solution cannot resolve this behavior, and its
attempt to do éo results in the "bump" near x = 1.7. One obvious remedy
is to insert additional nodes near x S 2, which was done. As expected,
when this minor mesh refinement waé performed, the fbump” was eliminated.

The heterogeneous problem considered in this section was also

n23

solved with the 1-D discrete ordinates code ONETRAN“”, which employ dis-

- continuous finite elements in space. Although the actual problem solved
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4 NOTES (i) ONETRAN results obtained by
G. Naanep and W.F. Miller, Jr.
g (Los Alamos Scientific Laboratory)
&7 (ii) ONETRAN has discontinuous
' elements at each x-node; only
+ the Teft nodal value is plotted
o (except for x=2,3,5,and 6)
x<a (ii1) For this run, reflecting
3=T b.c. were imposed at x=8
o
o« + D— O — S D -
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Figure 26. Scalar Flux (ONETRAN)
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was s]ight]y{different because reflecting boundary conditions were im-
posed on the right boundary, the ONETRAN results may still be compared
with the FTRAN results because the dependence of the solution at the
interface at x = 2 and within the void are not affected. Figure 26 is a
plot of the scalar flux results from ONETRAN, and it can be seen that
they are nearly identical with the FTRAN results plotted in Figure 22,
including the magnitude of the numerical discontinuity at x = 2, disre-
garding the changes due to the use of reflecting boundary conditions on
the right boundary.

Thus the remarks made earlier in Chapter IV, concerning the equi-
valence of the FTRAN and ONETRAN approaches for incorporating spatial

discontinuities, would appear to be substantiated by these results.

VIII.G. Time-Dependent Problems

This section contains two examples in time-dependent neutron trans-
port--the decay of an equilibrium neutron distribution and the propaga-
tion of a neutron wave in a vacuum. |

1. Decay of Equilibrium Distribution

The physical configuration for this example, which is illustrated
in Figure 27, resembles an assembly of fuel, clad, and moderator. The
equilibrium flux distribution, which is present for t £ 0, is estab-
1ished by an isotropic source of neutrons in Region 1, which is a pure
absorber. Region 2 is a void and Region 3 is a pure scatterer. Re-
flecting boundary conditions are imposed on the left boundary and vacuum
boundary conditions are imposed on the right boundary.

At t = O the source in Region 1 is removed and the neutron distri-

bution then decays to its new equilibrium distribution, which is zero.



REFLECTING
BOUNDARY

-CONDITIONS .

AT X=0

X

PURE ABSORBING MEDIUM YOI SCATTERER
Z =1 | |
a 2 =0 Z =0 VACUUM
5 =0 a a =
S Zs_o_ Zs=2
ISOTROPIC SOURCE OF
UNIT MAGNITUDE FOR
t<0
0 X=3 X=0 X=5

- FIGURE 27. Geometry for Equilibrium Decay Problem
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FTRAN was used to solve this problem with linear elements in space and
angle. In addition, discontinuous angular elements at A= 0 were used
and discontinuous spatial elements were employed at x = 3 and 4. The
spatial and angular meshes were uniform with 4 x= .25 and 84L= .25,
which results in 23 spatial nodes and 10 angular nodes, or 230 nodes
total.

Figure 28 is a plot of the resultant scalar flux distribution at
various times during the transient and Figures 29-34 are plots of sel-
ected angular fluxes at the various times.

On the basis of the numerical results, the following remarks may
be made. First, the dominant decay mechanism is the absorption in
Region 1 although ieakage from the right boundary also contributes to
the loss of neutrons. Neutron wave propagation is clearly illustrated
by the motion of the disturbance in the scalar flux (or angular f]&xes)
atross the void, which reaches Region 3 at t = 1 second. Since the
neutron velocity is 1 cm/sec and the void is 1.0 cm thick, this is the
correct time. Also, the flux in Region 3 remains a constant until this
disturbance reaches it, which is also predicted because there is no
absorption in Region 3 and its boundary conditions remain constant until
the disturbance arrives. |

Figures 29-34 illustrate various angular modes.of the decaying neu-
tron distribution and the wave motion:%crggg the void is clearly seen.
Also, it is observed that the numerical éofut%ons are fairly well be-
haved, even at later times where oscillations are prone to occur. As
will be noted in the.next example, oscillations in time-dependent prob-
Jems occur quite readily, especially at long times, and one needs to be

careful with the choice of the angular mesh.
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2. Pulse Propagation in a Vacuum

The simple problem of the propagation of a neutron pulse .in a vac-
uum will now be considered. This problem will illustrate the phenomenon
- of angular mode separation with the advancement of time, and the num-
erical difficulties that are subsequently encountered.

The physical configuration is a Gaussian (in space) distribution
of neutrons traveling in the +x direction. The initial angular distri-
bution is isotropic in the forward { /A>0) directions and zero in the

backward (A4 0) directions. The specific initial angular flux is-

--tY 35
. _ : ye ", M20
@(X’,M,O) = QoQ’;/U) = \l o | , MEO (162)

which is a Gaussian centered about x = 1 cm with a half-width of .5 cm.
The neutron velocity is 1 cm/sec and the spatial domain considered is
0 £x £5. In order to resolve the pulse, the spatial mesh was chosen

to be

AY G 1

and the time step was .1 sec, which restricts the movement of the pulse
to less than one mesh cell per time step. Although their use would
appear redundant for this problem, vacuum boundary conditions are im-
posed at x = 0 and x = 5 cm.

Since the initial distribution is not continuous at .#4= 0, discon-
tinuous angular elements were used. Three different angular meshes
were used, keeping the spétia] mesh and element type (linear) constant.

The angular meshes were uniform in the forward directions (A{> 0) with



-194-

the only nodes in the backward directions (A(< 0) being the nodes at
A= -1.0 and M= 0.0-. The angular flux should be identically zero for
the M<0 nodes since thefe is no initial distribution of neutrons with
a velocity in the -x direction and no mechanism (i.e., no scattering)
to transfer neutrons from forward directions to backward directions.

The specific angular meshes chosen were {for 43 0) AM= 1.0, .25,
and .1. The results offer convincing evidence that the angular mesh
has a dominant effect on obtaining acceptable results. That is, with
the extremely coarse angular mesh ( AU = 1.0), the scalar flux, which
is plotted in Figure 35, and the angular fluxes at /4= 1.0 and 0.0+,
which are plotted in Figures 36 and 37, contain severe oscillations
which are amplified as time advances. With the finer mesh of D= .25,
the scalar flux {Figure 38) and angular fluxes (Figures 39-41) are
somewhat better but also develop severe oscillations within a few sec-
onds into the transient. However, as will be discussed in more detail
shortly, the oscillations do not appear as soon as with the AM= 1.0
case. The finest angular mesh examined, KiL&= .1, gave good results
for the scalar flux (Figure 42) and the angular fluxes (Figuresf£3—45)“‘
over the entire transient (0 £ t £ 5), although the forward peaked .
_an§u1ar fluxes (M=1.0) ‘were beginning to develop negati#e osc{llations
toward the later times. However, the scalar flux behaves quite well,
especially in comparison with Figures 35 and 38 for the coarser meshes,
in that the oscillatory behavior cannot be observed for'ény‘;fﬁét“&gée.
thatAthe,L&= 0.0+ flux (Figure 45) illustrates quite well thé stationary

behavior of this particular angular mode, which represents streaming

perpendicular to the x-axis.
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It should be noted that even for the coarser angular meshes, the
individual angular fluxes propagate along the x-axis with the correct
velocity, which is v for the flu; traveling in the direction é;=cos“1AL.
However, it is exactly this propagation of angular modes with different
velocities which results in the severe oscillatory behavior, especially
with the coarser meshes. This separation of the angular modes (which
is a numerical problem) is what causes the regular oscillations (or
waves) in the scalar flux, because these waves correspond exactly to
the location at that time of the individual angular modes along the
x-axis. The following discugsion will now consider this in more detai].

Let us consfder the above pulse propagation problem in more gen-
erality, by assuming the initial angular flux is a Gaussian with half-

width $ , ~ &
'©0<X,M): € X7

(162)

Now the exact solution to the time-dependent transport problem for

this situation,

v ot oX

(163)
is simply

Qi m b= Qo Xt ) (164)

which is readily verified by direct substitution into Eq. (163).
Using Eq. (164), the solution to the initial Gaussian pulse prob-

Tem is
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e
~(X-uvt)/§2
&(X,u,ﬂ = € (165)
which is valid for t 2 0.

Now define an equivalent temporal half-width ¥ corresponding to the

spatial half-width %,

T = LATS

and express Eq. (165) in the form

, o X 7“§3/ >
Qlx, m,t) = € G “t>/< t) (166)

which is now seen to be a Gaussian distribution in centered about
x/vt with half-width T/t. Physically, one expects the pulse to be
centered at U= x/vt since the neutrons propagate at a velocity v
along the x-axis. However, the half-width, T/t, is interestinglbe—
cause it decreases with time, which implies that the angular distribu-
tion is becoming narrower as time advances.

This poses a severe challenge for a numerical method because in
order to resolve the solution satisfactorily, the mesh must 5e finer thah
the width of the pulse. However, the above analysis indicates that no
mesh is capab]e of treating this simple transport problem because 1fA
one waits long enough, the half-width will certainly becomes:1ess than
the mesh. Thus the angular mesh will always fail to resolve the pulse
if sufficiently long times are considered.

An estimate may be made concerning the maximum tiﬁe that a given‘

angular mesh will resolve the pulse by requiring
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AU & Ul

i.e., requiring the angular mesh to be less than the half-width of the
pulse in the angular variable. For the problem solved above,

U= (.0 Msec

Y':: .5 em

which results in

o= S =5 sec

ar

o4 '6/,&4,

for satisfactory resolution of the angular dependence of the neutron
pulse. For the three cases solved, DiA=1.0, .25, and .1, thus re-

sults in

t 4.5 sec, 2.0sec , And 5.0 sec

respectively. Interestingly, the numerical results agree reasonably
well with thése estimates in that for D= 1.0, the oscillatory be-
havior occurs within 1 sec while for ODJUA= .25, the oscillations do
not begin until t = 2-3 seconds. Finally, for the ZXAA‘= .1 case, the
oscillations aré insignificant until t = 5, and then only for the for-
ward peaked angular modes.

The significance of this phenomenon is not restricted to pulses
of the type considered here. Since any distribution may be expressed

in terms of a superposition of such pulses, this problem will occur
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for any time-dependent transport problem. This discussion is 1imited
of course to orthogonal geometries where it is possible for a pulse to
be localized in spéce even after long times (e.g., the angular modes
near AL= 0 will remain near x=0). For spherical geométries, this will
not occur because the pulses will move away from the origin for any
angle, a]tHough the distribution may become forward peaked for large
radius. However, the separation of angular modes will not occur be-
cause the geometry does not allow streaming in specific directions

(i.e.,‘ALchanges as the neutron streams in spherical geometry).



CHAPTER IX
CONCLUSIONS AND RECOMMENDATIONS

IX.A. Conclusions

On the basis of the analytical and numerical results presented in
the preceding chapters, we make the following conclusions concerning the
applicability of the finite e}ement method to neutron transport, as
applied via the integral law approach to the first order form of the
transport equation.

The results of the eigenvalue calculations (with both isotropic
and anisotropic scattering) and the Milne problem indicate that‘the
%inite element method yields extremely accurate results with reasonable
size meshes. At the same time, the computational effort required to
attain a given accuracy would appear to be at least comparable to con-
ventional methods, and significantly less for those applications which
can be solved using repeated back substitutions.

As the solution of the heterogeneous problem in Sec. VIII.F.
indicates, when discontinuous spatial elements (arbitrary positions)
and discontinuous angular elements (at f{= 0) are used, the finite
element method is capable of analyzing problems involving severe hetero-
geneities. In particular, the use of discontinuous spétia1 elements
can eliminate the need for local mesh refinement to approximate a
rapidly varying solution near an interface or other discontinuity. For
problems that involve a large amount of angular uncoupling (such as the
problem considered in Sec. VIII.F), the use of discontinuous angular

elements at Al= 0 is necessary to obtain reasonable results. Moreover,

-210-
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the use of dfscontinuous angular elements atiji= 0 has genera]iy re-
sulted in superior results for all applications, including eigenvalue
problems, uniform source problems, etc., and should probably be used as
a matter of course.

Since one has considerable choice with the finie element method
when constructing the angular mesh, the only restrictions being a node
(preferably a double node) at AA= 0 and nodes at M = 1.0, the finite
element method is capable of treating extremely anisotropic problems
with few "wasted" nodes away from the angular region Qf interest. - If
one weré to employ triangular elements in the x - A phase space, this
would probably allow an exce]]eﬁt treatment of deep penetration prob-
lems. However, it would probably be necessary in this case to restrict
triangles froh crossing the 1ine }X= 0, so that discontinuous basis
functions could be used.

The finite element method works equally well for problems charac-
terized by pure absorption, pure scattering, voided regions, or prob-
lems with arbitrarily high orders of anisotropy, with no increase in
execution time for comparab1e size meshes. This is in sharp contrast
to discrete ordinates methods where solution accuracy and efficiency
are,quite sensitive to the physical problem being solved. Theoretically
there is no problem associated with its application to multi-dimensional
problems, even when anisotropic scattering is included.

If desired, higher order finite element approximations may easily
be used. For the angular approximation this presents no increase in
execution time since all angular nodes are coupled by scatteriné. How-

ever, for the spatial approximation, this results in more spatial
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coupling which leads to greater storage requirements and greater exe-
cution times. Thus the increased accuracy may not justify the increase
in cost to perform the calculation. This particular point has not been
examined carefully, however, and it is possible that for reasonably
homogeneous problems the use of higher brder spatial e]emenfs may allow
the use of a coarse enough mesh to result in a decrease in the execution
time required to achie?e a given accuracy.

For time-dependent transport, the finite element method in conjunc-
tion with the Crank-Nicholson discretization of the time dependence
would appear to yield acceptable results. This is true despite the fact
that transport in plane geometry'is seen to result in unique numerical
difficulties due to the separation of angular modes or, equivalently,
the sharpening of the neutron distribution in phase space. The time-
dependent solution method is seen to be extremely attractive because
only back substitutions were required once the coefficient matrix is
factored at the beginning of the solution process.

As far as the convergence of the finite element method with mesh
refinement is concerned, the numerical results indicate O(hk+]) con-

vergence for the Ly error in the approximate solution and 0(h2k+])

con-
vergence for the error in the smallest eigenvalue. Theoretically there
are difficulties with obtaining these estimates; however, plausible
arguments have been made to support these observed convergence rates.
In addition,‘the 0(hk+]) convergence was explicitly demonstrated for
linear elements (k = 1) by using the truncation error associated with

the finite element approximation and a numerical estimate for the norm

of the inverse of the coefficient matrix. Finally, it was shown that
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the observed convergence rates for the solution and the eigenvalue were
consistent, which is more evidence to support the conclusion that the
observed convergence rates are valid.

To summarize, the finite element method is an efficient, reliable
numericaf technique for obtaining stable and accurate solutions to both
steady-state (including eigenvalue formulations) and timé-dependent
transport equations. The main objection to the finite element method,

20,21 would appear to be the necessity to compute and

as noted by others
store the coefficient matrix and then to solve the corresponding system
of equations directly, at least for the first order approach. For large
problems, -especially multi-dimensional applications, the storage re-
quirement may become prohibitive for many computing installations.

However, as advances are made in data management techniques and computer

fast memory development, this drawback may be mitigated to some extent.

IX.B. Recommendations for Further Study

Since this entire investigation has been concerned with 1-D plane
geometry as far as the practical application of the finite element method
is concerned, the obvious generalizations are to examine 2-D or even
3-D geometries and curvilinear coordinates. The generalization to 1-D
spherical geometry should be straightforward, since only a few of the

integrals will change, as long as tensor product basis functions in
U”}i—jzispace are used. 1-D cylindrical geometry poses more of a chal-
lenge because two angles are required even though only one spatial
coordinate is needed; however, the generalization to treat the two
angles is a logical step on the way to a code capable of anaTyzing

transport in multi-dimensional geometries.
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However, the application to multi-dimensional geometries poses a
substantia1_cha11enge because of the size of the problems encountered.
For example, a 3-D transport problem involves five variables, ignoring
time and energy. Even a coarse'mesh with 10 nodes along each axis in-
volves 105 unknowns, and matrices requiring 106~107 storage locations
at least. Also, the structure of the matrices will be block-banded |
along the diagonal with bands of blocks in the interior, hence care will
need to be taken during the elimination process to avert fill-in of
zeroes (this was not a concern with the 1-D geometry).

Time-dependent transport could be examined with the multi-dimen-
sional geometries, since the method is quite general. However, the cost
of the solution could become quite exorbitant.

Energy dependence can easily be included since standard source
iteration techniques could be used to solve the multi-group transport
problems. It is possible that their solution could be made quﬁte effi-
cient if the Witﬁ%n-groublmatrix prob]ems‘are solved by the LU method,
and the LU matrices are stored on relatively efficient peripheral
storage. In this way, When the particular group equation is being’
sb1ved, the L and U matrices could be reca11ed.and the solution obtained
by simple back substitutions. Of course, this would require storage of
an g.and g.for each group; however, the increase in efficiency may jus-
tify the cost and effort to store the matrices. Since the acceptance
of the finite element method as an acceptable tool in reactor analysis
will probably not occur until a code is developed with the multi-group
capability of standard codes such as ANISN or ONETRAN, this generaliza-

tion to a multi-group treatment may be warranted.
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In summary, the recommendations for future effort would be to a11oﬁ
treatment of

(1) spherical geometry

(2) cylindrical geometry

(3) 2-D and 3;D geometries

(4) multi-group treatment
In addition, from a theoretical sfandpoint, a rigorous proof of the

2k+1

O(hk+]) solution error and O(h ) eigenvalue error should be given.
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