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Abstract
Decoherence is well understood, in contrast with disentanglement. According to common lore,
irreversible coupling to a dissipative environment is the mechanism for loss of entanglement.
Here, we show that, on the contrary, disentanglement can in fact occur at large enough
temperatures T even for vanishingly small dissipation (as we have shown previously for
decoherence). However, whereas the effect of T on decoherence increases exponentially with
time, the effect of T on disentanglement is constant for all times, reflecting a fundamental
difference between the two phenomena. Also, the possibility of disentanglement at a particular
T increases with decreasing initial entanglement.

PACS numbers: 03.65.Ta, 03.65.Ud, 03.65.Yz, 05.40.−a

Entanglement, which describes correlations between two or
more particles or subsystems, is an essential characteristic of
quantum mechanics and plays a key role in all applications
related to information science [1–4]. But entanglement is
poorly understood, so here we attempt to learn more about
it by carrying out an exact calculation for the simplest non-
trivial system and we will contrast our results with those
from an analogous calculation that we have already carried
out for decoherence. In common with decoherence (which
can occur for just a single particle in a superposition
state), entanglement can be destroyed by interaction with a
dissipative heat bath. But, motivated by the fact that, as we
have previously shown, decoherence can actually occur at
non-zero temperatures T for vanishingly small dissipation
[5, 6], our purpose here is to show how disentanglement is
affected by T .

In a previous paper [7], which was concerned with
comparison of entanglement measures, we considered an
entangled system without a heat bath and at zero temperature.
We now extend our analysis of this model to incorporate
non-zero temperatures and we present an exact calculation
showing that disentanglement can in fact occur in the absence
of dissipation. As we emphasized previously [5, 6], the
situation is like that for an ideal gas in that collisions
(dissipation) are necessary to bring about an approach toward
equilibrium but are so weak that they do not appear in the
equation of state or in the velocity distribution.

Before proceeding, we should perhaps remark that our
method contrasts with the usual master equation approaches
where, in general, one starts with an initially uncoupled
quantum state, say, a free particle. Thus, the free particle is
essentially at zero temperature with no cognizance of even
the zero-point oscillations of the electromagnetic field. In
addition, the initial state of the heat bath is in equilibrium
at some temperature T but not coupled to the free particle.
Next, the free particle and heat bath are brought into contact
and, as we have shown explicitly [11], the free particle
receives an initial impulse with the result that the center of
the wave packet drifts to the origin. However, since for a
free particle the origin cannot be a special point, we see
that the translational invariance of the problem is broken
by the assumption that the initial state corresponds to an
uncoupled system. This problem exists in the so-called ‘exact’
master equation formulations, which are exactly only in the
sense that they incorporate time-dependent coefficients but
suffer from the same defects as the more conventional master
equations; in fact, the same results arise more easily from
the use of the initial value Langevin equation, which enabled
us to obtain solutions of these ‘exact’ master equations
in a much more simplified form than one finds in the
literature [11].

As in [7], we consider two free particles, each of mass
m, at positions x1 and x2, in an initially entangled Gaussian
state, but we extend our previous analysis to allow both
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particles 1 and 2 to have velocities v1 and v2, respectively,
which we will eventually take to be the random velocities
associated with a bath at temperature T . Thus, we are dealing
with a system with continuous degrees of freedom applicable
to particle position or momenta or to the field modes of
light (of interest in connection with linear optical quantum
computing).

The most general initial Gaussian wave function that is
symmetric in the two particles has the form

ψ(x1, x2; 0)=
(a2

11−a2
12)

1/4

√
2π

exp

{
−

a11x2
1 + 2a12x1x2 + a11x2

2

4

+ i
m

h̄
(v1x1 + v2x2)

}
. (1)

In order that this state be square-integrable, we must of course
assume that a11 is positive and that a2

11 − a2
12 > 0. With this

wave function we find the following expressions for the initial
correlations: 〈

x2
1(0)

〉
=

〈
x2

2(0)
〉
=

a11

a2
11 − a2

12

,

〈x1(0)x2(0)〉 = −
a12

a2
11 − a2

12

,

〈
p2

1(0)
〉
= m2v2

1 +
h̄2

4
a11,

〈
p2

2(0)
〉
= m2v2

2 +
h̄2

4
a11, (2)

〈p1(0)p2(0)〉 =
h̄2

4
a12,

〈x1(0)p1(0)+p1(0)x1(0)〉

2
=

〈x2(0)p2(0)+p2(0)x2(0)〉

2
= 0,

〈x2(0)p1(0)〉 = 〈x1(0)p2(0)〉=0.

These results are standard quantum mechanics. Next, we
consider an ensemble of particles in thermal equilibrium at
a temperature T , and so we regard v1 and v2 as random
velocities generated by thermal motion. Also, we consider
that the particles are so weakly coupled to a heat bath that
we can neglect dissipation in the equation of motion. In order
to ensure that a normalizable thermal state exists for our
field-free Hamiltonian, we first put the two particles in an
oscillator potential and later take the limit of negligibly small
oscillator frequency. Noting that the initial correlations have
no linear terms in the velocities but simply have quadratic
terms, we thus obtain the corresponding expressions by
averaging over our thermal distribution of initial velocities
such that

v2
1 →

kT

m
, v2

2 →
kT

m
. (3)

Using this in expressions (2), we have

〈
p2

1(0)
〉
=

〈
p2

2(0)
〉
= mkT +

h̄2

4
a11. (4)

To obtain the time correlations at time t , we introduce the
time-dependent (Heisenberg) operators

x1(t)= x1(0)+
p1(0)

m
t, p1(t)= p1(0),

x2(t)= x2(0)+
p2(0)

m
t, p2(t)= p2(0).

(5)

With this it is a simple matter to construct the correlations
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4
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Next, we address the question of entanglement. Since we
are dealing with a Gaussian state, we can use the necessary
and sufficient condition of Duan et al [9]. A zero-mean
Gaussian state is fully characterized by its second moments,
which, for the symmetric case, can be represented by the
following variance (correlation) matrix [9, 10]:

M =

(
G C
C G

)
, (7)

where

G=


〈
x2

1(t)
〉
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2h̄
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2h̄
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,
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h̄
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h̄
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(8)

and L is a constant of dimension length introduced to make
the matrix elements dimensionless.

In order to discuss entanglement, Duan et al perform a
sequence of rotations and squeezes to bring M to a form in
which

G =

(
g 0
0 g

)
, C =

(
c 0
0 c′

)
. (9)

Since the determinants are invariant under these trans-
formations, we have the following simple relations for deter-
mining the quantities g, c and c′ in terms of these invariants:

det G = g2, det C = cc′, det M =
(
g2

− c2
) (

g2
− c′2

)
.

(10)

2
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With expressions (6) for the correlations, we find

det G =

(
a11 + 4mkT

h̄2

)
a11

4
(
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11 − a2
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) ,

det C = −
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12

4
(
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) , (11)
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4
+
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) (
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4
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.

Putting these in (10) and solving, we find

g =
1

2

√√√√(
a11 + 4mkT

h̄2

)
a11(

a2
11 − a2

12

) ,

c =
|a12|

2

√√√√ a11 + 4mkT
h̄2(

a2
11 − a2

12

)
a11
, (12)

c′
= −

a11 |a12|

2

√(
a2

11 − a2
12

) (
a11 + 4mkT

h̄2

)
a11

.

Duan et al have obtained a necessary and sufficient
condition that a Gaussian state is separable. In terms of these
quantities, their condition is equivalent to the inequality

(g − c)(g − c′)> 1
4 . (13)

With expressions (12), this becomes

a11 − |a12| + 4mkT
h̄2

a11 + |a12|
> 1, (14)

so that

|a12|6
2mkT

h̄2 . (15)

It should be emphasized that this condition for distanglement
is independent of time. This is in stark contrast with the
corresponding result for decoherence where the temperature
effect increases exponentially to the power of t2 [5].
Moreover, if |a12|> 2mkT /h̄2, the system remains entangled
for all times.

Our conclusion is that whereas decoherence and disent-
anglement always occur for the same system in the presence
of dissipation, this is not the case for negligible dissipation
at temperatures such that |a12|> 2mkT /h̄2, in which case
decoherence still occurs but disentanglement does not. It is
clear that they are very different phenomena but, whereas
decoherence is well understood, the opposite is true for
disentanglement.
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