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Abstract
Discrete models are consistently used as practical models for image restoration.
They are piecewise constant approximations of true physical (continuous)
models, and hence, inevitably impose bottleneck model errors. We propose
to work directly with continuous models for image restoration aiming at
suppressing the model errors caused by the discrete models. A systematic
study is conducted in this paper for the continuous out-of-focus image models
which can be formulated as an integral equation of the first kind. The resulting
integral equation is regularized by the Lavrentiev method and the Tikhonov
method. We develop fast multiscale algorithms having high accuracy to solve
the regularized integral equations of the second kind. Numerical experiments
show that the methods based on the continuous model perform much better than
those based on discrete models, in terms of PSNR values and visual quality of
the reconstructed images.

1. Introduction

Integral equation models are an important mathematical tool for image processing. However,
these models are usually not used directly in the image processing community due to difficulties
in dealing with the integral equations. Instead, discrete (matrix) models which are certain
piecewise constant approximations of the integral equation models are usually used due to
their convenience in implementation and consistence with usual sampling methods. The
use of the piecewise constant approximation imposes a bottleneck model error which cannot
be compensated by any image processing method. For example, for high resolution image
reconstruction, the model of Bose and Boo [4] was obtained by using the piecewise constant
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approximation of the integrand of the integral that defines the continuous model. The error
contributed by the piecewise constant approximation in this model will never be overcome no
matter what methods we use to recover the original image. Further, the discrete models make
the realization of adaptive approximation very difficult if it is not impossible. In comparison
to the ideal integral equation models, the matrix models give much less theoretical insights.

Most of the discrete models have their continuous counterparts. In such a case, we
propose to use directly the continuous model instead of an existing discrete model. Here, we
list several advantages of using continuous integral equation models. First of all, continuous
models are derived directly from physical laws; therefore, they are physically meaningful.
Second, continuous models allow us to discretize them with higher order accuracy, and
therefore the resulting model error in comparison to the model error associated with piecewise
constant discretization can be significantly reduced. Finally, continuous models are necessary,
particularly for medical imaging processing, in the development of adaptive mesh approaches
for solving the related equations [5, 29].

Direct use of an integral equation model brings new challenges. The integral equation
model requires availability of a continuous function which represents the observed image.
However, the only available data for the observed image are discrete. How do we obtain
the continuous function from the observed discrete image? This is the first challenge which
we will face when we use the integral equation model. The study of this problem itself is
an active and important research area related to sampling [28] and reconstruction of signals
[21]. The second challenge comes from the ill-posedness of the integral equation related to
the continuous model. Since in image processing kernels of integral operators are normally
smooth, the integral operators are compact in appropriate Banach spaces. Thus, the solutions
of the related first kind integral equations are not continuously dependent on the given data,
that is, a small perturbation in the data may result in a large perturbation in the solutions.
How we can find an appropriate regularization method to turn the ill-posed integral equation
to a well-posed equation becomes a challenging issue. The third challenging issue is how we
efficiently solve the resulting regularization equation. The new discrete equation normally
has a dense coefficient matrix of a large size. We postpone the discussion on the first issue to
our future work. In this paper, we mainly focus on the third challenge and at the same time
address the second issue to a certain extent. In particular, for the out-of-focus model [13]
we use the Lavrentiev regularization and the Tikhonov regularization principles to convert its
ill-posed integral equation of the first kind into a well-posed integral equation of the second
kind and develop fast solution methods with high accuracy for solving the resulting integral
equation of the second kind.

This paper is organized in nine sections with an appendix. In section 2, we describe the
integral equation model for out-of-focus image restoration in terms of the Gaussian kernel.
The model is expressed in the form of an integral equation of the first kind, which is an ill-
posed problem due to the compactness of the corresponding integral operator. To overcome
the ill-posedness, we apply the Lavrentiev regularization and introduce a modified Tikhonov
regularization for the ill-posed integral equation. Section 3 is devoted to a description of
multiscale Galerkin methods for solving the regularized integral equations. We use the
piecewise polynomial spaces and the Galerkin principle to discretize the regularized integral
equation of the second kind. This allows us to develop high accuracy numerical methods by
choosing piecewise polynomials of high orders for solving the image restoration problem. The
discretization of the integral equation leads to a linear system with a dense coefficient matrix.
A truncation strategy is derived in section 4 (based on properties of the Gaussian kernel)
to approximate the dense coefficient matrix by a sparse matrix. We provide in section 5 the
convergence analysis for the proposed method. The nonzero entries of the truncated matrix are
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integrals involved with the Gaussian kernel. Because high-order derivatives of the Gaussian
kernel grow rapidly, numerical integration of such integrals requires careful treatment. We
develop in section 6 a numerical quadrature strategy for computing the nonzero entries of the
compressed coefficient matrix. In section 7, we show that the quadrature strategy requires
only linear (up to a logarithmical factor) number of functional evaluations for computing
all nonzero entries of the matrix and preserves the optimal order of convergence for the
resulting approximate solution. Numerical examples are presented in section 8 to demonstrate
the performance of the proposed algorithm. The numerical performance of the proposed
algorithm and the visual quality of the recovered images obtained with it are compared with
those of the discrete methods including the discrete Lavrentiev regularization, the discrete
Tikhonov regularization and the discrete TV regularization methods. Both numerical and
image results show that the proposed method outperforms the well-known discrete methods
mentioned above. We draw conclusive remarks in section 9. In the appendix, we include
piecewise linear, quadratic and cubic multiscale functions for convenient reference.

2. Integral equations for image restoration

We describe in this section integral equation models for image restoration. In particular, we
discuss the regularization of the integral equation which governs out-of-focus image models.

Many image processing problems are modeled via integral equations. They can be
formulated as follows:

Kv = f, (2.1)

where f is an observed image with noise and v : � ⊂ R
2 → R represents the original image.

In image processing, � is usually chosen as a rectangle domain. In this paper, we will assume
that � = E × E with E := [0, 1]. In the context of image analysis, K is called a blurring
operator. Typically, it is a Fredholm integral operator defined in terms of a kernel k by

(Kv)(x) :=
∫

�

k(x, x′)v(x′) dx′, x ∈ �. (2.2)

The choice of the kernel depends on the specific application context. We list below a few
examples of equation (2.1) with specific kernels. In remote sensing and astronomical imaging,
the atmospheric turbulence blur (see [15]) is modeled by (2.1) with the kernel

k(x, x′) = 1

2πσ1σ2
exp

(
−1

2

(
x − x ′

σ1

)2

− 1

2

(
y − y ′

σ2

)2
)

,

where σ1, σ2 are model parameters characterizing the degree of blurring in the x and y
directions, respectively, and where x = (x, y) and x′ = (x ′, y ′). In medical image processing,
confocal microscopy [2] is modeled by (2.1) with the kernel

k(x, x′) = sin(πw(x − x ′))
πw(x − x ′)

· sin(πw(y − y ′))
πw(y − y ′)

,

where the model parameter w represents the width of an aperture of the collector lens in
confocal microscopy. An out-of-focus image is usually modeled (cf [13]) by (2.1) with the
kernel

k(x, x′) = 1

2πσ 2
exp

(
− (x − x ′)2 + (y − y ′)2

2σ 2

)
, (2.3)

where σ is the model parameter characterizing the degree of accuracy and clearness of the
image in the system. In this paper, we will focus on the development of basic concepts of
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using integral equation models in the numerical process of image restoration. For this reason,
we will use the out-of-focus image model as an example. Image restoration based on other
models can be similarly developed.

Out-of-focus image restoration is an important problem in image processing. When a
detector in the imaging plane of an optical imaging system is out of focus, we will obtain an
out-of-focus image. This physical phenomenon is modeled by equation (2.1) with a blurring
operator. By considering practical physical effects, especially aberration and diffraction, the
corresponding blurring kernel is approximated by a Gaussian kernel having the form (2.3)
(cf [6, 24]). In this case, the blurring operator can be written as a product of two univariate
integral operators. The related integral operator is defined for u ∈ L2(E) by

(Kσ u)(x) :=
∫

E

Kσ (x, y)u(y) dy, x ∈ E, (2.4)

where

Kσ(x, y) = 1√
2πσ

e− (x−y)2

2σ2 , x, y ∈ E.

Clearly, the operator Kσ depends on the standard deviation σ . However, when there is no
need to highlight the dependence, we will drop the subscript and simply write K. In terms
of operator K, we write Kv = K1K2v, where Aj denotes the operator A applied to the j th
argument of the function. Consequently, equation (2.1) becomes

K1K2v = f. (2.5)

For a given observed image f with noise, we may obtain the true image by solving two
one-dimensional integral equations. Mainly, we first solve

(Kv1(·, y))(x) = f (x, y), x, y ∈ E,

and then solve

(Kv(x, ·))(y) = v1(x, y), x, y ∈ E.

Hence, we will focus on the study of the one-dimensional integral equation of the first kind

Ku = h, (2.6)

where h ∈ L2(E) is a given function. For h ∈ R(K), the range of K, we let u∗ ∈ L2(E)

denote the unique minimum norm solution of equation (2.6) in the sense that

Ku∗ = h with ‖u∗‖ = inf{‖v‖ : v ∈ L2(E),Kv = h}.
Since the integral operator K is compact on L2(E), the integral equation (2.6) is ill-posed in
the sense that its solution does not continuously depend on the given data h. Thus, a small
perturbation in the given data may cause a large perturbation in the solution. Therefore,
the integral equation (2.6) needs to be regularized in order to find its approximate solution.
Ill-posed problems are normally treated by regularization methods such as the Tikhonov
regularization [31] and the Lavrentiev regularization [14, 25, 26].

Being a convolution-type operator, K is self-adjoint. Hence, the Lavrentiev regularization
may be applied to (2.6). It leads to the regularization equation

(λI + K)uλ = h, (2.7)

where I is the identity operator on L2(E) and λ is a regularization parameter. We consider
the unique solution uλ of (2.7) as an approximation of u∗.

By using the Plancherel theorem and the properties of the Fourier transform of the
Gaussian function [30], it can be shown that the operator λI +K is strictly coercive and hence,
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it has a bounded inverse for any positive number λ. This leads to the following regularization
for equation (2.5) for image restoration:

(λI + K)1(λI + K)2vλ = f. (2.8)

The Tikhonov regularization solution vλ of (2.6) is obtained by solving the following
equation:

(λI + K∗K)vλ = K∗h, (2.9)

where K∗ is the adjoint operator of K. The regularization solution vλ can be interpreted
in terms of minimization (cf [14]). Since K is self-adjoint, that is K∗ = K, equation (2.9)
becomes

(λI + K2)vλ = Kh. (2.10)

The operator λI +K2 is strictly coercive and has a bounded inverse for any positive number λ.
Note that equation (2.10) involves the operator K2 which is defined by a double integral.

Calculation of such an operator is computationally costly. For this reason, we propose a
modification. We define a linear operator K̃∗

σ for u ∈ L2(R) by

K̃∗
σ u(x) =

∫
R

Kσ(x, y)u(y) dy, x ∈ E.

The notation K̃∗
σ u for u ∈ L2(E) should be understood as K̃∗

σ applying to the extension ũ of
u, where ũ equals u on E and zero outside of E.

Using the operator K̃∗
σ to replace K∗

σ in the above Tikhonov regularization method yields
a modification of the Tikhonov method. The following proposition shows that K̃∗

σKσ can be
computed by an integral operator with a Gaussian kernel with standard deviation

√
2σ .

Proposition 2.1. There holds the relation K̃∗
σKσ = K√

2σ .

Proof. For u ∈ L2(E), by the definition of K̃∗
σ and Kσ , and by the Fubini theorem, we have

that

K̃∗
σKσ u(x ′) =

∫
E

1

2πσ 2

∫
R

e− (x−x′)2
2σ2 − (x−y)2

2σ2 dx u(y) dy. (2.11)

The desired formula is obtained by using the above equation and the identity∫
R

exp

(
− (x − (x ′ + y)/2)2

σ 2

)
dx = √

πσ.

�

Making use of proposition 2.1, the modified Tikhonov regularization method becomes

((λI + K√
2σ )v1,λ(·, y))(x) = (K̃∗

σ f (·, y))(x), x, y ∈ E (2.12)

and

((λI + K√
2σ )vλ(x, ·))(y) = (K̃∗

σ v1,λ(x, ·))(y), x, y ∈ E. (2.13)

Both the Lavrentiev and the modified Tikhonov regularization methods led to
consideration of solving the following equation:

(λI + K)u = h, (2.14)

where h ∈ L2(E) is a given function and u ∈ L2(E) is the solution to be determined. For any
positive parameter λ, equation (2.14) has a unique solution u ∈ L2(E).
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3. Multiscale Galerkin methods

The focus of this section is to describe the Galerkin method for solving equation (2.14) by
using multiscale piecewise polynomial bases constructed in [19, 20]. We will adopt the
multiscale Galerkin method developed in [22] for Fredholm integral equations of the second
kind. General information of Galerkin methods for solving Fredholm integral equations of
the second kind is found in [1]. Multiscale methods for solving ill-posed problems were
considered in [9, 10].

We begin a review of the Galerkin method for solving equation (2.14). Let N denote
the set of all natural numbers and Z+ the set of all nonnegative integers. For n ∈ N, let
Zn := {0, 1, . . . , n − 1}. Suppose that Xn, n ∈ Z+, is a sequence of finite-dimensional
subspaces of L2(E) such that

L2(E) =
⋃
n∈Z+

Xn.

Let Pn be the orthogonal projection from L2(E) onto Xn. The Galerkin method for solving
equation (2.14) is to find un ∈ Xn such that

(λI + Kn)un = Pnh, (3.1)

where Kn := PnK. When a basis of the space Xn is chosen, the finite-dimensional operator
equation (3.1) is equivalent to a system of linear equations. We will choose Xn as a piecewise
polynomial space and use its multiscale orthonormal basis for equation (3.1).

We now review the construction of a multiscale basis for Xn, n ∈ Z+, of L2(E), originally
introduced in [19]. There are two important ingredients in the construction of the multiscale
analysis for a given integer μ � 2. The first one is a set of contractive mappings on E defined
by φε(t) := (t + ε)/μ, t ∈ E, ε ∈ Zμ. Note that E is the invariant set of these mappings, that
is E =⋃ε∈Zμ

φε(E), where φε(E) is the image of the set E under the mapping φε . Associated

with the mappings φε , we define linear operators Tε : L2(E) → L2(E) for v ∈ L2(E) by

(Tεv)(·) = √
μ
(
v ◦ φ−1

ε

)
(·)χφε(E)(·), ε ∈ Zμ,

where χV is the characteristic function on a set V ⊂ E. The second one is a subspace,
denoted by X0, of L2(E). We choose X0 = 	p which represents the space of all polynomials
of degree � p − 1. With the given subspace X0 and linear operators Tε , according to [19],
we form a sequence of subspaces of L2(E) by the recursion Xn+1 := ⋃

ε∈Zμ
Tε(Xn) and let

s(n) := dim Xn. The sequence of subspaces so constructed has the properties

Xn ⊂ Xn+1 and L2(E) =
⋃
n∈Z+

Xn.

Furthermore, let Wn+1 be the orthogonal complement of Xn in Xn+1, n ∈ Z+. With a convention
W0 := X0, we have that

Xn = W0 ⊕ W1 ⊕ · · · ⊕ Wn. (3.2)

Moreover, when W1 is available, we have for n ∈ N that

Wn+1 =
⋃
ε∈Zμ

Tε(Wn), (3.3)

see [19]. A general construction of W1 through solving matrix equations may be found in
[20].

We next describe a construction of bases for Wj , j ∈ Zn+1. To this end, for a
vector s := (s0, s1, . . . , si−1) in Z

i
μ := Zμ × · · · × Zμ (i folds), we define a composition

6
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operator Ts := Ts0 ◦ Ts1 ◦ · · · ◦ Tsi−1 . For any number j ∈ Zμi , there is a unique vector
s := (s0, s1, . . . , si−1) ∈ Z

i
μ such that j = μi−1s0 + · · · + μsi−2 + si−1. We call s the (μ, i)-

form of j and write j = μ(s). For j ∈ Zn+1, let w(j) := dim Wj . We choose a basis of X0

as the (normalized) Legendre polynomials e0j of degree j , for j ∈ Zp. An orthonormal basis
{e1j : j ∈ Zw(1)} for W1 can be constructed from a basis of X1 by requiring every element to
be orthogonal to the space X0. It is easy to verify that w(0) = p and w(1) = r := (μ − 1)p.
For j = μ(s)r + 
 with i > 1, s ∈ Z

i−1
μ and 
 ∈ Zr , we define

eij := Tse1
. (3.4)

From (3.3), we know that {eij : j ∈ Zw(i)} forms an orthogonal basis of Wi and w(i) = μi−1r .
Upon defining the index set Un := {(i, j) : i ∈ Zn+1, j ∈ Zw(i)}, we see from (3.2) that
{eij : (i, j) ∈ Un} forms a multiscale orthonormal basis for Xn.

We now show how a partition of E is generated by the contractive mappings φε , ε ∈ Zμ.
For s := (s0, s1, . . . , si−1) ∈ Z

i
μ, we define �s = φs0 ◦ φs1 ◦ · · · ◦ φsi−1 . For each i ∈ N, we

define Eij := �s(E), j ∈ Zμi , where s is the (μ, i)-form of j . Clearly,⋃
j∈Zμi

Eij = E and meas(Eij ∩ Eij ′) = 0, j �= j ′.

In other words, for each fixed i ∈ Z+, {Eij : j ∈ Zμi } forms a partition of E.
We list below properties of the partition {Eij : j ∈ Zμi }, subspaces Xi , and the

orthonormal basis {eij : (i, j) ∈ Un}. In what follows, the notation a ∼ b means that
there are two positive constants c and c′ such that ca � b � c′a. We use c to denote a
universal constant which can be distinct at different occurrences.

• If d(i) := max{meas(Eij ) : j ∈ Zμi }, then d(i) ∼ μ−i , w(i) ∼ μi and s(i) ∼ μi .
• For i ∈ N and j ∈ Zw(i), if we write j = μ(s)r + 
, where s ∈ Z

i−1
μ and 
 ∈ Zr , then

eij (t) = 0, t /∈ Ei,μ(s). Denoting Sij := Ei,μ(s), we see that the support of eij is contained
in Sij .

• For i ∈ N and j ∈ Zw(i), eij has the ‘vanishing moment’ property, that is 〈eij , v〉 = 0,
v ∈ 	p.

• There exists a positive constant c such that ‖eij‖ = 1 and ‖eij‖∞ � cμi/2.

Let In denote the s(n) × s(n) identity matrix, introduce an s(n) × s(n) matrix An :=
[〈Keij , ei ′j ′ 〉 : (i, j), (i ′, j ′) ∈ Un] and define vectors hn := [〈h, ei ′j ′ 〉 : (i ′, j ′) ∈ Un],
un := [uij : (i, j) ∈ Un]. Using these notations, the operator equation (3.1) can be written as
an equivalent linear system:

(λIn + An)un = hn. (3.5)

The choice of the parameter λ was discussed in [18] for a general wavelet approach. Upon
solving system (3.5) for un, we obtain the solution un of the integral equation (3.1) by setting

un =
∑

(i,j)∈Un

uij eij .

Noting that An is a dense matrix, when its size s(n) is large, it is expensive to generate it. The
use of the multiscale basis allows us to compress the matrix An to a sparse matrix, upon which
a fast numerical algorithm can be developed. This will be discussed in the next section.

4. Matrix compression

The main purpose of this section is to develop a matrix compression scheme for the matrix An

that appears in system (3.5), based on properties of the Gaussian kernel.
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We first estimate the absolute value of the entries ai ′j ′,ij := 〈Keij , ei ′j ′ 〉, (i, j), (i ′, j ′) ∈
Un, of the coefficient matrix An. For this purpose, we denote by g the normalized Gaussian
function, that is

g(x) := 1√
2π

e− x2

2 , x ∈ R.

In terms of the normalized Gaussian function, the kernel Kσ of the operator K has the form
Kσ(x, y) = σ−1g((x − y)/σ ).

The next lemma has the same spirit of lemma 3.1 in [22].

Lemma 4.1. There exists a positive constant c such that for all n ∈ N, all indices
(i, j), (i ′, j ′) ∈ Un and all parameters σ > 0:

|ai ′j ′,ij | � cμ(i+i ′)/2(didi ′)
pσ−(2p+1)

∫
Si′j ′

∫
Sij

∣∣∣∣g(2p)

(
x − y

σ

)∣∣∣∣ dy dx, (4.1)

where p is the order of vanishing moments of the multiscale basis used, and Sij and Si ′j ′ are
supports of eij and ei ′j ′ , respectively.

Note that Dm
x Dl

yKσ (x, y) = (−1)lσ−(m+l+1)g(m+l)
(

x−y

σ

)
for any positive integers m and


. By using this relation of the high-order derivative of the normalized Gaussian function, the
proof of lemma 4.1 is essentially the same as that of lemma 3.1 in [22]. Hence we omit its
proof here.

Lemma 4.1 shows that when the distance of the supports of two basis functions eij and ei ′j ′

is large enough, the absolute value of the entry ai ′j ′,ij of An is very small. Hence, the distance
of the supports is a suitable indicator to predict the magnitude of ai ′j ′,ij . This observation
leads us to proposing a truncation strategy for the matrix An by using the distances of the
supports of the two basis functions which define the entry. For the given matrix An, a matrix
truncation refers to keeping some of its entries unchanged and making others zero according
to a pre-given rule. The effect of the matrix truncation is that the resulting matrix, denoted
by Ãn, is sparse in the sense that most of its entries are zero. By doing so, we are able to
develop a fast algorithm for solving the linear system (3.5) with the coefficient matrix An being
replaced by Ãn. Clearly, the more sparse the matrix Ãn is, the more efficient the algorithm
would be in terms of computational cost. However, the matrix truncation may result in an
error in the solution. Therefore, a truncation strategy should be designed to balance two
requirements, namely the sparseness of Ãn and the closeness of the solution of the system
with the truncated matrix to the solution un of the original equation (3.5). In the rest of this
section, we will propose a matrix truncation scheme and discuss the first requirement. We
postpone the discussion of the second requirement to the next section.

We now introduce a truncation strategy for the matrix An. Corresponding to the
decomposition (3.2) of the subspace Xn, An is partitioned as a block matrix:

An = [Ai ′i : i ′, i ∈ Zn], where Ai ′i = [ai ′j ′,ij : j ′ ∈ Zw(i ′), j ∈ Zw(i)].

We use dist(U, V ) := min{|x − y| : x ∈ U, y ∈ V } to denote the distance between two
compact sets U and V of R. For (i ′, j ′), (i, j) ∈ Un and a given parameters δi ′i , we define

ãi ′j ′,ij :=
{
ai ′j ′,ij , if dist(Si ′j ′ , Sij ) � δi ′iσ,

0, otherwise.
(4.2)

For each block Ai ′i , we truncate it into a new block Ãi ′i = [̃ai ′j ′,ij : j ′ ∈ Zw(i ′), j ∈ Zw(i)] and
define the truncated matrix Ãn by letting Ãn := [Ãi ′i : i ′, i ∈ Zn]. We then replace the matrix
An in (3.5) by Ãn and solve the compressed linear system

(λIn + Ãn)̃un = hn. (4.3)

8
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Due to the sparsity of the matrix Ãn, system (4.3) leads to a fast algorithm for solving
equation (3.1).

We now discuss the choice of the parameters δi ′i . In the context of image analysis, we
normalize an image so that its domain is [0, 1] × [0, 1]. For this reason, the standard deviation
σ is assumed to be a positive number smaller than 1. The choice of the parameters δi ′i in
(4.2) will depend on the standard deviation σ . To introduce the parameters δi ′i , for a positive
integer p, we define a function

G2p(t) :=
∫ ∞

t

|g(2p)(ξ)| dξ, t ∈ [0,∞).

Clearly, G2p is monotonically decreasing and G2p(t) → 0 as t → ∞. For the given positive
numbers a, α and α′, we let

εi ′i := a−2pμ−2p(−n+α(n−i)+α′(n−i ′))σ 2p. (4.4)

If

εi ′i < G2p(0), (4.5)

we choose δi ′i such that

G2p(δi ′i ) = εi ′i (4.6)

and otherwise, we choose

δi ′i := 0. (4.7)

With the proposed truncation strategy and the suggested parameters δi ′i , an estimate of
the number N(Ãn) of nonzero entries of the Ãn is presented in the next theorem.

Theorem 4.2. Let α, α′ � 1. If δi ′i is chosen as in (4.6) and (4.7), then there exists a positive
constant c such that for all σ > 0 and n > 0

N(Ãn) � cs(n) logϑ(α,α′) s(n),

where ϑ(α, α′) = 2 for (α, α′) = (1, 1) and 1 otherwise.

Proof. Let N(Ãi ′i ) denote the number of nonzero entries of Ãi ′i . Following [22], we have
that

N(Ãn) =
n∑

i=0

n∑
i ′=0

N(Ãi ′i ) � c

n∑
i=0

n∑
i ′=0

μi+i ′(di + di ′ + δi ′iσ ). (4.8)

Since di ∼ μ−i and di ′ ∼ μ−i ′ , we obtain that
n∑

i=0

n∑
i ′=0

μi+i ′(di + di ′) � c

(
n∑

i=0

nμi +
n∑

i ′=0

nμi ′
)

� cnμn. (4.9)

It remains to estimate the third term of the sum on the right-hand side of (4.8). Noting
that limξ→∞ g(2p)(ξ)ξ 2p+1 = 0, there exists a constant c > 0 (independent of σ ) such that
|g(2p)(ξ)ξ 2p+1| � c, which implies that

c

|ξ |2p+1
� |g(2p)(ξ)|.

Integrating both sides of the inequality above over [δi ′i ,∞) yields∫ ∞

δi′ i

c

ξ 2p+1
dξ �

∫ ∞

δi′ i
|g(2p)(ξ)| dξ.

9
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If δi ′i �= 0, computing the integral on the left-hand side and using (4.6), we have that
c

2p
δ

−2p

i ′i � a−2pμ−2p(−n+α(n−i)+α′(n−i ′))σ 2p.

This ensures that there exists a positive constant c such that for all σ > 0 and n > 0

δi ′iσ � caμ−n+α(n−i)+α′(n−i ′).

Hence,
n∑

i=0

n∑
i ′=0

μi+i ′(δi ′iσ ) � caμn

n∑
i=0

μ(α−1)(n−i)

n∑
i ′=0

μ(α′−1)(n−i ′) = cμnnϑ(α,α′),

which together with (4.9) proves the desired result of this theorem. �

Next, we discuss the choice of the truncation parameter δi ′i . Choosing the truncation
parameters δi ′i requires solving the nonlinear equation

G2p(t) = εi ′i , (4.10)

for a positive solution when 0 < εi ′i < G2p(0). Since G2p is a positive strictly decreasing
function on R

+, when 0 < εi ′i < G2p(0), equation (4.10) has a unique solution. However,
the main difficulty of finding its solution lies in dealing with the absolute value of derivatives
of the Gaussian function which defines the function G2p. This difficulty can be overcome by
using root properties of g(2p).

We now recall useful root properties of g(m) for a nonnegative integer m. The normalized
Gaussian function g is related to the Hermite polynomial. Specifically, the mth derivative of the
Gaussian function g is related to the Hermite polynomial of degree m through the Rodrigues
formula:

Hm(x) = (−1)m e
x2

2 g(m)(x), x ∈ R. (4.11)

It is well known (see, e.g., [3]) that the Hermite polynomial has the following properties: (i)
H(1)

m = mHm−1; (ii) Hm+2(x) − xHm+1(x) + (m + 1)Hm(x) = 0 (recursive relations); (iii)
H2m−1(0) = 0 and H2m(0) = (−1)m(2m)!/m!2m

√
2π ; and (iv) the Hermite polynomial Hm

has exactly m simple real roots. The roots of Hm and Hm+1 strictly interlace. Moreover, Hm

has exactly �m
2 � negative roots and exactly �m

2 � positive roots. In particular, when m is odd,
the origin is an additional root of Hm. These properties together with the Rodrigues formula
yield the corresponding properties of the Gaussian function g:

(1) g(m+2)(x) + xg(m+1)(x) + (m + 1)g(m)(x) = 0 (recursive relations);
(2) g(2m−1)(0) = 0 and g(2m)(0) = (−1)m(2m)!/m!2m

√
2π;

(3) the set of roots of the Hermite polynomial Hm is identical with the set of roots of the mth
derivative of g.

We now return to solving equation (4.10). Note that g(2p) does not change its sign between
its any two consecutive roots. We split the integral interval [t, +∞) for t > 0 according to the
roots of g(2p). Let ri, i ∈ Zp+1\{0}, be the positive roots of g(2p). For notational convenience,
we let r0 := 0. We consider three cases.

Case I. If εi ′i = G2p(rp), we simply choose δi ′i = rp.
Case II. If εi ′i < G2p(rp), since g(2p) does not change sign on the interval (rp, +∞), we

have that

εi ′i =
∫ +∞

t

|g(2p)(x)|dx =
∣∣∣∣∫ +∞

t

g(2p)(x) dx

∣∣∣∣ = |g(2p−1)(t)|.

10
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Equation (4.10) becomes

|g(2p−1)(t)| = εi ′i , t > rp. (4.12)

Note that the largest zero rp of g(2p)(x) is a local extreme point of g(2p−1)(x), and g(2p−1)(x)

converges to zero when x goes to infinity. Hence g(2p−1)(x) does not change sign and is strictly
monotonic on (rp, +∞), and equation (4.12) can be easily solved by using the bisection method
in the following fashion. Define xn := (n + 1)rp. Let n0 be the smallest integer such that∣∣g(2p−1)(xn0+1)

∣∣ < εi ′i . We find the root of (4.12) on the interval [xn0 , xn0+1] by employing the
bisection method.

Case III. If εi ′i > G2p(rp), we then find the largest positive zero rj of H2p such that
G2p(rj ) < εi ′i � G2p(rj−1). Since G2p is strictly decreasing, the solution t0 of (4.10) lies in
[rj−1, rj ). We rewrite (4.10) as∫ rj

t

|g(2p)(x)| dx = εi ′i − G2p(rj ).

Noting that g(2p) does not change sign on the interval [rj−1, rj ), we have that

|g(2p−1)(rj ) − g(2p−1)(t)| = εi ′i − G2p(rj ). (4.13)

Because rj and rj−1 are two consecutive extreme points of g(2p−1), g(2p−1)(rj ) − g(2p−1)(t)

is strictly monotonic and does not change sign for t ∈ [rj−1, rj ). Therefore, we can use the
bisection method to solve (4.13) on the interval [rj−1, rj ).

For a given tolerance 10−5 in the bisection method, the number of iterations used by the
bisection method for finding δi ′i in Ã8 for σ = 0.01 and σ = 0.02 are reported respectively,
in the following two arrays:⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

3 3 3 3 3 3 7 9
3 3 3 3 3 7 9 11
3 3 3 3 7 9 11 10
3 3 3 7 9 11 10 14
3 3 7 9 11 10 14 13
3 7 9 11 10 14 13 16
7 9 11 10 14 13 16 17
9 11 10 14 13 16 17 9

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
and

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

3 3 3 3 3 9 11 12
3 3 3 3 9 11 12 13
3 3 3 9 11 12 13 12
3 3 9 11 12 13 12 14
3 9 11 12 13 12 14 13
9 11 12 13 12 14 13 18

11 12 13 12 14 13 18 17
12 13 12 14 13 18 17 20

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

σ = 0.01 σ = 0.02

In either case, we choose the parameter δi ′i to be the solution of equation (4.10). The
method described above requires evaluating the function G2p at the roots of g(2p). The
following lemma gives a convenient way of evaluation of G2p at a root of g(2p).

Lemma 4.3. If the set of nonnegative zeros of H2m is given by {xi : i ∈ Zm+1\{0}} with
x1 < x2 < · · · < xm, then for i ∈ Zm\{0},

G2m(xi) = |g(2m−1)(xi)| + 2
m∑

j=i+1

|g(2m−1)(xj )|.

Proof. Since the Hermite polynomial H2m has simple real roots, H2m does not change
sign between its any two consecutive roots. Furthermore, for any two consecutive positive
roots xq < xq+1 of H2m, H2m−1 has exactly one root in the interval (xq, xq+1). Hence,
H2m−1(xq)H2m−1(xq+1) < 0, that is g(2m−1)(xq) and g(2m−1)(xq+1) have different signs.

11
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Combining the above facts together, we have that

G2m(xi) =
m−1∑
j=i

∣∣∣∣∣
∫ xj+1

xj

g(2m)(x) dx

∣∣∣∣∣ +

∣∣∣∣∫ +∞

xm

g(2m)(x) dx

∣∣∣∣
=

m−1∑
j=i

(|g(2m−1)(xj+1)| + |g(2m−1)(xj )|) + |g(2m−1)(xm)|,

proving the desired formula. �

Using lemma 4.3, we can easily compute the values G2p(ri). In fact, according to
lemma 4.3 and (4.11), we have that G2p(ri) = |g(ri)H2p−1(ri)| + 2

∑p

j=i+1 |g(rj )H2p−1(rj )|.
That is, computing G2p(ri) can be performed by evaluating the Gaussian function and the
Hermite polynomial H2p−1 at the roots rj, j � i, of the Hermite polynomial H2p. This can be
efficiently implemented.

5. Convergence analysis

We establish in this section the convergence order of the compressed Galerkin method. The
solution ũn := [̃uij : (i, j) ∈ Un] of equation (4.3) defines a function in space Xn by

ũn :=
∑

(i,j)∈Un

ũij eij .

It is an approximation to the exact solution u of (2.14). The main purpose of this section is to
estimate the convergence order in which ũn approximates u.

The function ũn satisfies an operator equation. We let K̃n be the operator from Xn to Xn

such that its matrix representation under the basis eij , (i, j) ∈ Un is Ãn. Then, ũn is a solution
of the operator equation

(λI + K̃n)̃un = Pnh. (5.1)

We will estimate the error between the solution u of (2.14) and the solution ũn of (5.1) by
studying the error between two operators Kn and K̃n. To this end, we consider the difference
between the matrix blocks Ai ′i and Ãi ′i in matrix norms.

Lemma 5.1. Suppose that εi ′i and δi ′i > 0 are chosen according to (4.4) and (4.6),
respectively. Then, there exists a positive constant c such that for all σ > 0

‖Ai ′i − Ãi ′i‖∞ � c(didi ′)
pμ(i−i ′)/2σ−2pεi ′i

and

‖Ai ′i − Ãi ′i‖1 � c(didi ′)
pμ(i ′−i)/2σ−2pεi ′i .

Proof. We present the proof of the first estimate only, since the other one may be similarly
obtained. By (4.2), the set

Z(i ′ij ′) := {j : j ∈ Zw(i) and dist(Sij , Si ′j ′) > δi ′iσ }
consists of the indices of nonzero entries in the (i ′, j ′)th row of Ai ′i − Ãi ′i . By lemma 4.1, we
have that

‖Ai ′i − Ãi ′i‖∞ = max
j ′∈Zw(i′)

∑
j∈Z(i ′ij ′)

|ai ′j ′,ij | � c(didi ′)
pμ(i+i ′)/2σ−(2p+1)�i ′i , (5.2)

12
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where

�i ′i := max
j ′∈Zw(i′)

∑
j∈Z(i ′ij ′)

∫
Si′j ′

∫
Sij

∣∣∣∣g(2p)

(
x − y

σ

)∣∣∣∣ dy dx.

By the definition of Z(i ′ij ′), we observe that

�i ′i � c max
j ′∈Zw(i′)

∫
Si′j ′

∫
E\∪{Sij : dist(Sij ,Si′j ′ )�δi′ i σ }

∣∣∣∣g(2p)

(
x − y

σ

)∣∣∣∣ dy dx.

Using a change of variables, we obtain that �i ′i � cσ maxj ′∈Zw(i′) meas(Si ′j ′)G2p(δi ′i ).
Noting that meas(Si ′j ′) = O(μ−i ′) and employing the definition of δi ′i , we conclude that
�i ′i � cσμi ′εi ′i . Upon substituting the above inequality into (5.2), we have the first estimate
of this lemma. �

For an integer γ � 0, we denote by H
γ the Sobolev space of functions v for which

‖v(γ )‖ < ∞, where v(
) is the 
th weak derivative of v. The space H
γ is equipped with the

norm

‖v‖H
γ =

(
γ∑


=0

‖v(
)‖2

)1/2

.

The following lemma gives an estimate of the residue of Kn − K̃n. The proof of this
lemma is adopted from that of theorem 3.3.4 in [7].

Lemma 5.2. Let α and α′ be real numbers satisfying the condition

α � p + γ

2p
, α′ � p + γ ′

2p
, (5.3)

where γ, γ ′ ∈ Zp+1. Let u ∈ H
γ (E) and v ∈ H

γ ′
(E). If δi ′i is chosen such that (4.6) holds,

then there exists a positive number θ such that for all positive integer n and for all σ > 0

|〈(Kn − K̃n)Pnu,Pnv〉| � θa−2pμ−n(γ +γ ′)nν‖u‖H
γ ‖v‖

H
γ ′ ,

where ν counts the number of equalities held in inequalities (5.3).

Proof. Since the subspace Xn is a piecewise polynomial space, there exists a positive number
c such that for all n ∈ N

‖(I − Pn)u‖ � cdγ
n ‖u‖H

γ , (5.4)

where Pn is the orthogonal projection from X onto Xn. It follows from (5.4) for i ∈ N0 that

‖(Pi − Pi−1)u‖ � ‖(I − Pi )u‖ + ‖(I − Pi−1)u‖ � cd
γ

i−1‖u‖H
γ , (5.5)

where P−1 = 0 and d−1 = 1.
Let εn := 〈(Kn − K̃n)Pnu,Pnu

′〉. Since

Pnu =
∑

i∈Zn+1

(Pi − Pi−1)u, (5.6)

we have that

εn =
∑

i,i ′∈Zn+1

〈(Kn − K̃n)(Pi − Pi−1)u, (Pi ′ − Pi ′−1)v〉.

Since both Pi −Pi−1 and Pi ′ −Pi ′−1 are projections and Pi ′ −Pi ′−1 is self-adjoint, we observe
that

εn =
∑

i,i ′∈Zn+1

〈[(Pi ′ − Pi ′−1)(Kn − K̃n)(Pi − Pi−1)](Pi − Pi−1)u, (Pi ′ − Pi ′−1)v〉.

13
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Using the Cauchy–Schwarz inequality, we conclude that

|εn| �
∑

i,i ′∈Zn+1

‖(Pi ′ − Pi ′−1)(Kn − K̃n)(Pi − Pi−1)‖‖(Pi − Pi−1)u‖‖(Pi ′ − Pi ′−1)v‖.

It can be verified that

‖(Pi ′ − Pi ′−1)(Kn − K̃n)(Pi − Pi−1)‖ = ‖Ai ′i − Ãi ′i‖2.

From lemma 5.1, we have

‖Ai ′i − Ãi ′i‖2 � (‖Ai ′i − Ãi ′i‖1‖Ai ′i − Ãi ′i‖∞)1/2 � c(didi ′)
pσ−2pεi ′i . (5.7)

It follows from (5.5) and (5.7) that

|εn| � c(didi ′)
pσ−2pεi ′id

γ

i−1d
γ ′
i ′−1‖u‖H

γ ‖v‖
H

γ ′ .

Because of di ∼ μ−i and the choice of εi ′i , we have that

|εn| � ca−2p
∑

i ′∈Zn+1

μ(p−2pα′+γ ′)(n−i ′)
∑

i∈Zn+1

μ(p−2pα+γ )(n−i)μ−(γ +γ ′)n‖u‖H
γ ‖v‖

H
γ ′ .

By using the assumption (5.3) for the right-hand side of the last inequality, we obtain the
desired estimate of this lemma. We rename the constant c to θ since it will be specifically
used later. �

Lemma 5.2 leads to the following result regarding the stability of the compressed Galerkin
method. Since its proof is similar to that for [22, p 267], we skip the proof.

Lemma 5.3. Let α and α′ be real numbers satisfying the strict inequalities in (5.3). Let θ

be the constant in lemma 5.2. For a fixed λ, if a is chosen such that a � (2θ/λ)1/2p and δi ′i
is chosen such that (4.6) holds, then there exists a positive constant q such that for all n � q,
v ∈ Xn and σ > 0

‖(λI + K̃n)v‖ � 1
2λ‖v‖. (5.8)

Lemma 5.3 implies that for all n � q and a � (2θ/λ)1/2p, (λI + K̃n)
−1 exist and are

uniformly bounded. Thus, for sufficiently large n, the compressed Galerkin method has a
unique solution.

Next, we estimate the condition number of the matrix λIn + Ãn. For a nonsingular square
matrix A, we denote by cond(A) its condition number.

Theorem 5.4. Let α and α′ be the real numbers satisfying the strict inequalities in (5.3). Let
a be chosen such that a � (2θ/λ)1/2p. If δi ′i is chosen such that (4.6) holds, then there exist
positive constants c and q such that for all n � q and σ > 0

cond(λIn + Ãn) � (1 + λ−1)c,

where c is independent of the parameter λ.

The proof of this theorem based on lemmas 5.2 and 5.3 is similar to that for [22,
theorem 4.5]. Thus, we omit it. It can be observed from theorem 5.4 that when the
regularization parameter λ is small, the condition number of the matrix λIn + Ãn can be
large. In such a case, preconditioning the matrix λIn + Ãn may be needed (see e.g. [11] for
more information).

By using lemma 5.2 and following the proof of [22, theorem 4.6], we establish the
convergence order of ũn, which is stated below.
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Theorem 5.5. Let u ∈ H
γ (E), γ � p, be the exact solution of equation (2.14). Let a be

chosen such that a � (2θ/λ)1/2p. Suppose that α and α′ satisfy the conditions

α � p + γ

2p
and α′ >

1

2
. (5.9)

If δi ′i is chosen such that (4.6) holds, then there exist positive constants c and q such that for
all n � q and σ > 0

‖u − ũn‖ � cs(n)−γ logν s(n)‖u‖H
γ ,

where ũn is the unique solution of (5.1) and ν counts the number of the equalities in
inequalities (5.9).

We close this section with comments on the regularity hypothesis on u. In our setting, u
is a restriction of the true image in the x or y direction. The Sobolev regularity requirement
imposed in the last theorem seems too restricted, since there is a large class of images whose
restrictions to the x or y direction are not in a Sobolev space. Hence, there is a need to extend
the above method and theory to a Besov setting because a Besov regularity hypothesis seems
more realistic for images. This will be our future project.

6. A numerical quadrature scheme

The nonzero entries of the matrix Ãn are defined in terms of double integrals whose integrands
involve products of Gaussian functions and piecewise polynomials. Although Gaussian
functions are sufficiently smooth, they behave like singular functions when the variance is
small. Hence, integration of the double integrals requires a careful numerical treatment. The
main purpose of this section is to develop numerical quadrature schemes for computing the
double integrals.

Recall that the nonzero entries ai ′j ′,ij of Ãn have the form

ai ′j ′,ij =
∫

Si′j ′

∫
Sij

gσ (x − y)eij (y) dy ei ′j ′(x) dx. (6.1)

Since gσ (x) := 1√
2πσ

e− x2

2σ2 is not an elementary function, one has to resort to numerical
methods for evaluating ai ′j ′,ij . We first partition Sij according to the knots of the piecewise
polynomial eij , that is

Sij =
⋃

s∈ζ(i,j)

�i
s, (6.2)

where �i
s is a maximum interval on which eij is a polynomial and meas

(
�i

s ∩ �i
t

) = 0, if
s �= t . By the construction of the basis functions eij , the cardinality of ζ(i, j) is bounded by a
positive constant. We then rewrite ai ′j ′,ij according to the partitions of Sij and Si ′j ′ as

ai ′j ′,ij =
∑

t∈ζ(i ′,j ′)

∑
s∈ζ(i,j)

∫
�i′

t

∫
�i

s

gσ (x − y)eij (y) dyei ′j ′(x) dx. (6.3)

By using the mapping (x, ξ) = (x, x − y), we change the xy-plane to the xξ -plane. A
similar mapping was used in [12] in dealing with the double integral appeared in the Galerkin
method. We write �i

s := [y1, y2] and �i ′
t := [x1, x2]. The rectangle domain [x1, x2]× [y1, y2]

is mapped by the above mapping onto the parallelogram domain with vertices (x1, x1 − y1),
(x2, x2 − y1), (x1, x1 − y2) and (x2, x2 − y2). The image of [x1, x2] × [y1, y2] under the
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mapping can be described by the set {(x, ξ) : ξ ∈ Ist = [x1 − y2, x2 − y1], x ∈ Dstξ }, where
Dstξ is the interval varying with ξ ∈ Ist . Hence,∫

�i′
t

∫
�i

s

gσ (x − y)eij (y) dy ei ′j ′(x) dx =
∫

Ist

gσ (ξ)

∫
Dstξ

ei ′j ′(x)eij (x − ξ) dx dξ. (6.4)

For ξ ∈ Ist we define a function by the integral

hi ′j ′,ij (ξ) :=
∫

Dstξ

ei ′j ′(x)eij (x − ξ) dx, ξ ∈ Ist . (6.5)

Since both ei ′j ′(·) and eij (· − ξ) are the polynomials on Dstξ , for each ξ ∈ Ist , hi ′j ′,ij (ξ) can
be evaluated exactly. Defining a function fi ′j ′,ij (ξ) := gσ (ξ)hi ′j ′,ij (ξ), ξ ∈ Ist , we note that
computing the integral in (6.4) reduces to evaluating the integral∫

Ist

fi ′j ′,ij (ξ) dξ. (6.6)

Understanding the interval Dstξ is crucial for computing the above integral. For each
ξ ∈ Ist , we denote by c(ξ) and d(ξ) the left and right endpoints of the interval Dstξ ,
respectively, that is

Dstξ := [c(ξ), d(ξ)].

It is ready to verify that both c(ξ) and d(ξ) are continuous piecewise linear functions of ξ .
Specifically, we have that

c(ξ) =
{
x1, ξ ∈ [x1 − y2, x1 − y1)

ξ + y1, ξ ∈ [x1 − y1, x2 − y1]
(6.7)

and

d(ξ) =
{
ξ + y2, ξ ∈ [x1 − y2, x2 − y2)

x2, ξ ∈ [x2 − y2, x2 − y1].
(6.8)

Due to the representations (6.7) and (6.8) of c(ξ) and d(ξ), the function hi ′j ′,ij is a continuous
piecewise polynomial.

Next, we describe a numerical quadrature for computing (6.6) according to the standard
deviation σ of the Gaussian function involved in the integrand. To this end, we let � := [−1, 1]
and note that when x and y lie on the interval E, we have that ξ = x − y ∈ �. We observe that
the values of high order derivatives of gσ (ξ) decay rapidly when ξ goes away from the origin.
This motivates us to subdivide the interval � into nonuniform subintervals according to the
change of the derivatives of gσ and apply numerical quadratures with precision of different
degrees to different subintervals. Similar ideas for integration were used in [8, 16, 27].

Let ε > 0 be a given fixed number and m be a positive integer. For the standard deviation
σ , we choose β such that

1 − β < σβ1+1/ε . (6.9)

Clearly, there exists a β ∈ (0, 1) satisfying inequality (6.9). We then let

t0 := 0, tι := βm−ι, ι ∈ Zm+1\{0} (6.10)

and choose a sequence of nonnegative integers

kι := �ει� + 1, ι ∈ Zm, (6.11)

where �x� is the largest integer less than or equal to x. We define the set of nodes by

	β,m := {±tι : ι ∈ Zm+1} (6.12)
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and we let

Tst := (	β,m ∩ Ist ) ∪ {x1 − y1, x1 − y2, x2 − y1, x2 − y2}. (6.13)

Clearly, the set Tst forms a partition for the interval Ist. For every two consecutive points
τ1 < τ2 in the set Tst, there exists ι ∈ Zm such that [τ1, τ2] ⊆ [tι, tι+1] or [τ1, τ2] ⊆ [−tι+1,−tι].
In either case, we compute an approximation of the integral∫ τ2

τ1

fi ′j ′,ij (ξ) dξ (6.14)

by using a numerical quadrature with a precision of order kι. For each subinterval [τ1, τ2] of
Ist, we compute an approximate value of the integral (6.14) and sum all such values over all
possible subintervals defined by the partition Tst. This leads to an approximate value of ai ′j ′,ij .

We describe below the algorithm for evaluating entries of Ãn by summarizing the above
discussion.

Algorithm 1 (Adaptive numerical quadrature scheme). The following steps are used to
evaluate the entry ai ′j ′,ij of Ãn in (6.1).

Step 1. For a fixed parameter ε and a positive integer m, select β according to (6.9),
choose a sequence of nonnegative integers kι using (6.11) and define the set 	β,m of nodes
according to (6.12).
Step 2. Find the partitions

{
�i

s

}
of the supports Sij of eij and the partitions

{
�i ′

t

}
of the supports Si ′j ′ of ei ′j ′ using (6.2). For �i

s = [y1, y2] and �i ′
t = [x1, x2], define

Ist = [x1 − y2, x2 − y1] and generate the set Tst using (6.13).
Step 3. Evaluate ai ′j ′,ij using (6.4), (6.3) and the approximation of (6.14).

We denote by Em,k(fi ′j ′,ij ) the error of the approximation of ai ′j ′,ij . In the next theorem,
we present an estimate of the error.

Theorem 6.1. Let ε > 0 be a given fixed number and m be a positive integer. Suppose that
σ < 1/2. Let β be a number satisfying (6.9). If p is the order of the polynomials in X0, then
there exists a positive constant c such that for all m, σ and β,∣∣Em,k(fi ′j ′,ij )

∣∣ � cμ(2p−1)(i+i ′−1)βm.

The proof of this theorem requires four technical lemmas. The first one presents an
estimate of high order derivatives of hi ′j ′,ij .

Lemma 6.2. If q � 0 and ξ ∈ Is,t\{x1 − y1, x2 − y2}, then there exists a positive constant c
such that for all i and i ′ with i � i ′,∣∣h(q)

i ′j ′,ij (ξ)
∣∣ � cμq(i+i ′−1).

Proof. For simplicity, we write h := hi ′j ′,ij . For ξ ∈ Is,t\{x1 − y1, x2 − y2}, we have from
(6.5) that

h(1)(ξ) = ei ′j ′(d(ξ))eij (d(ξ) − ξ)d(1)(ξ) − ei ′j ′(c(ξ))eij (c(ξ) − ξ)c(1)(ξ)

−
∫ d(ξ)

c(ξ)

ei ′j ′(x)e
(1)
ij (x − ξ) dx. (6.15)

From (6.7) and (6.8), we know

c(1)(ξ) =
{

0, ξ ∈ [x1 − y2, x1 − y1)

1, ξ ∈ (x1 − y1, x2 − y1],
d(1)(ξ) =

{
1, ξ ∈ [x1 − y2, x2 − y2)

0, ξ ∈ (x2 − y2, x2 − y1],
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and clearly

c(1)(ξ)(c(1)(ξ) − 1) = d(1)(ξ)(d(1)(ξ) − 1) = 0.

By using these facts, we differentiate (6.15) recursively and obtain that

h(q)(ξ) =
q−1∑
r=0

(−1)q−1−r
[
e
(r)
i ′j ′(d(ξ))e

(q−1−r)

ij (d(ξ) − ξ)(d(1)(ξ))r+1

− e
(r)
i ′,j ′(c(ξ))e

(q−1−r)

i,j (c(ξ) − ξ)(c(1)(ξ))r+1
]

+ (−1)q
∫ d(ξ)

c(ξ)

ei ′j ′(x)e
(q)

ij (x − ξ) dx.

(6.16)

Recalling that p is the order of the piecewise polynomials in W1 = span{e1,j : j ∈ Z(p−1)μ},
we see that the quantity

� := max
{∥∥e(q)

1j

∥∥
∞ : q � p, j ∈ Z(p−1)μ

}
is finite. Furthermore, from (3.4), we have that∣∣e(q)

ij (t)
∣∣ = ∣∣μ(i−1)/2μq(i−1)e

(q)

1j

(
φ(−1)

s (t)
)∣∣ � �μq(i−1)+i/2, s ∈ Z

i−1
μ .

Since the length of the interval [c(ξ), d(ξ)] is bounded by |Si ′j ′ | � cμ−i ′ with a constant c
independent of i ′ and j ′, we have from (6.16) and the condition i � i ′ that

|h(q)(ξ)| � 2�2
q−1∑
t=0

μ(q−1−t)(i−1)+i/2μt(i ′−1)+i ′/2 + c�2μq(i−1)+i/2μi ′/2μ−i ′ � cμq(i+i ′−1),

proving the lemma. �

In the next three lemmas, we present some useful properties of the Gaussian function.

Lemma 6.3. Let q be a positive integer.
(1) If the nonnegative roots of H2q+1 are denoted by {xi : i ∈ Zq+1} with 0 = x0 < x1 <

· · · < xq , then

|g(2q)(x0)| > |g(2q)(x1)| > · · · > |g(2q)(xq)| and |g(2q)(xq)| > |g(2q)(x)| for x > xq.

Furthermore, |g(2q)| assumes its global maximum at x0.
(2) If the positive roots of H2q are denoted by {xi : i ∈ Zq+1\{0}} with x1 < · · · < xq ,

then

|g(2q−1)(x1)| > |g(2q−1)(x2)| > · · · > |g(2q−1)(xq)| and

|g(2q−1)(xq)| > |g(2q−1)(x)| for x > xq.

Furthermore, |g(2q−1)| assumes its global maximum at x1.

Proof. We present the proof for the first part of the lemma only.
Using the recursive relation of derivatives of the Gaussian function g, for every nonnegative

integer j we have that

d

dx
(g(j)(x))2 = − 1

j + 1

d

dx
(g(j+1)(x))2 − 2x

j + 1
(g(j+1)(x))2. (6.17)

Integrating (6.17) from xi to xi+1 with j := 2q yields

(g(2q)(xi+1))
2 − (g(2q)(xi))

2 = −
∫ xi+1

xi

2x

2q + 1
(g(2q+1)(x))2 dx < 0, i ∈ Zq .
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This leads to |g(2q)(xi)| > |g(2q)(xi+1)|. By (6.17), for x > xq , we have that

(g(2q)(x))2 − (g(2q)(xq))
2 = − 1

2q + 1
(g(2q+1)(x))2 −

∫ x

xq

2s

2q + 1
(g(2q+1)(s))2 ds < 0,

which implies that |g(2q)(xq)| > |g(2q)(x)| for x > xq . Since g(2q) is an even function and
has x0, x1, . . . , xq as its critical points in the positive x-axis, we can further conclude that
‖g(2q)‖∞ = |g(2q)(0)| = (2q)!

q!2q
√

2π
. �

Lemma 6.4. There exists a positive constant c such that for all 
 ∈ Z+,

‖g(
)‖∞ � c‖g(
+1)‖∞.

Proof. We first consider the case 
 = 2q − 1 with q being a positive integer. From
lemma 6.3, it suffices to show |g(2q−1)(x1)| � c|g(2q)(0)|, where x1 is the smallest positive
root of H2q .

Because H2q−1(0) = 0 and H
(1)
2q−1(x) = (2q − 1)H2q−2(x), one has that

H2q−1(x1) =
∫ x1

0
H

(1)
2q−1(x) dx = (2q − 1)

∫ x1

0
H2q−2(x) dx.

This result together with the fact ‖g(2q−2)‖∞ = (2q−2)!
(q−1)!2q−1

√
2π

gives

|H2q−1(x1)| � (2q − 1)x1 ex2
1 /2‖g(2q−2)‖∞ = x1 ex2

1 /2|H2q(0)| = x1 ex2
1 /2|g(2q)(0)|.

Since the smallest positive zero of Hq is bounded for all q [23], we have that

|g(2q−1)(x1)| � x1|g(2q)(0)| � c|g(2q)(0)|,
where c is a constant independent of q.

Likewise, we can handle the case 
 = 2q. �

Lemmas 6.3 and 6.4 yield immediately the following result.

Lemma 6.5. If 
 and q are nonnegative integers and 
 − q � 1, then there exists a positive
constant c such that for all 
, q and for all x ∈ R∣∣∣∣ 1


!

(



q

) (
g(
−q+1) (x) + (
 − q)g(
−q−1)(x)

)∣∣∣∣ � c.

We are now in the position to prove theorem 6.1.

Proof of theorem 6.1. Since ai ′j ′,ij = aij,i ′j ′ , we consider only the case i � i ′ in this
proof. We know that fi ′j ′,ij = gσhi ′j ′,ij . For simplicity, we write h := hi ′j ′,ij . The error
Em,kι,τ1,τ2(fi ′j ′,ij ) of the numerical quadrature for the integral (6.14) has the bound

Em,kι,τ1,τ2(fi ′j ′,ij ) � c

kι!
|(gσh)(kι)(η)|(τ2 − τ1)

kι+1, (6.18)

where η is a number in (τ1, τ2).
By the Leibnitz formula for the kιth derivative of a product of two functions, we obtain

that

1

kι!
|(gσh)(kι)(η)| � 1

kι!

min{kι,2p−1}∑
q=0

(
kι

q

) ∣∣g(kι−q)
σ (η)

∣∣ |h(q)(η)|. (6.19)
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Note that g
(kι−q)
σ (η) = σ−(kι−q+1)g(kι−q)

(
η

σ

)
. For kι − q = 0, we have that∣∣g(kι−q)

σ (η)
∣∣ = ∣∣∣∣η−1

( η

σ

)
g
( η

σ

) ∣∣∣∣ � c|η|−1.

For kι − q � 1, the recursive relation of derivatives of the Gaussian function gives

η

σ
g(kι−q)

( η

σ

)
= −g(kι−q+1)

( η

σ

)
− (kι − q)g(kι−q−1)

( η

σ

)
.

Hence, we conclude from lemma 6.5 that

1

kι!

(
kι

q

) ∣∣g(kι−q)
σ (η)

∣∣ � c|η|−1σ−(kι−q), (6.20)

where c is a positive constant independent of kι or q. Therefore, from lemma 6.2,
equations (6.18), (6.19), (6.20) and the fact of

min{kι,2p−1}∑
q=0

σ−(kι−q) � σ−kι

1 − σ
,

we have the estimate

Em,kι,τ1,τ2(fi ′j ′,ij ) � cσ−kι

1 − σ
(tι+1 − tι)

kι (τ2 − τ1)|η|−1μ(2p−1)(i+i ′−1). (6.21)

For ι �= 0, from the definition of tι in (6.10) and the fact of |η|−1tι < 1, we get

(tι+1 − tι)
kι |η|−1 �

(
1

β
− 1

)kι

t kι−1
ι .

Since ι/kι � 1/ε and condition (6.9), we obtain

(1 − β)kι

βkι+ι
σ−kι �

(
1 − β

σβ1+1/ε

)kι

� 1.

We denote by Em,kι
(fi ′j ′,ij ) the total error of the numerical quadrature for the integrals in

(6.3) whose integration domains lie in [tι, tι+1] or [−tι+1,−tι]. From (6.21) and the above two
inequalities, we have

Em,kι
(fi ′j ′,ij ) � c

1 − σ

(
1

β
− 1

)
t kι−1
ι βmμ(2p−1)(i+i ′−1). (6.22)

Moreover,

∑
ι∈Zm

tkι−1
ι =

�1/ε�∑
ι=0

t kι−1
ι +

m−1∑
ι=�1/ε�+1

t kι−1
ι � �1/ε� +

m−1∑
ι=0

tι � �1/ε� +
β

1 − β
.

Since σ < 1/2 and β satisfies (6.9), we derive that 1/(1 − σ) < 2 and β > 1/2. From the
above inequality and (6.22), we have that

Em,k(fi ′j ′,ij ) =
m−1∑
ι=0

Em,kι
(fi ′j ′,ij ) � c(�1/ε� + 1)μ(2p−1)(i+i ′−1)βm,

completing the proof. �
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7. Analysis of the fully discrete method

This section is devoted to a complete analysis of the fully discrete method developed in
the previous sections. Specifically, we will prove that the method has the nearly optimal
convergence order and it requires only linear (up to a logarithmic factor) number of functional
evaluations for generating the coefficient matrix for the linear system.

Recall that Ãn = [Ãi ′i] is obtained by applying our proposed truncation strategy (4.2)
for the matrix An = [Ai ′i]. The entries ai ′j ′,ij of Ãi ′i are numerically evaluated by the
numerical quadrature scheme described in the last section. The resulting matrix is denoted by˜̃An = [˜̃Ai ′i]. The operator K̃n associated with Ãn was defined in section 5 and the function ũn

satisfies an operator equation (5.1). We define ˜̃Kn to be the operator from Xn to Xn such that
its matrix representation under the basis eij , (i, j) ∈ Un is ˜̃An. Associated with the operator˜̃Kn, we consider the following operator equation:

(λI + ˜̃Kn)̃̃un = Pnf, (7.1)

where ˜̃un :=
∑

(i,j)∈Un

˜̃uij eij

and ˜̃uij , (i, j) ∈ Un, denote the components of the solution of the fully discrete system. We
will estimate the error between the solution u of (2.14) and the solution˜̃un of (7.1) by studying
the error between two operators Kn and ˜̃Kn. To establish our main result, we estimate the 1-
and ∞-norms of the error Ãi ′i − ˜̃Ai ′i . Theorem 6.1 immediately leads to the following result.

Lemma 7.1. Let ε > 0 be a given fixed number and m be the positive integer used in the
numerical quadrature. Suppose that σ < 1/2. If β satisfies (6.9) and p is the order of the
polynomials in X0, then there exists a positive constant c such that for all m, σ , β and for all
i, i ′ ∈ Zn+1 and n ∈ N,

‖Ãi ′i − ˜̃Ai ′i‖∞ � cμiμ(2p−1)(i+i ′−1)βm

and

‖Ãi ′i − ˜̃Ai ′i‖1 � cμi ′μ(2p−1)(i+i ′−1)βm.

To ensure that the approximation solution ˜̃un preserves the nearly optimal convergence
order, the integer m used in the numerical quadrature (also in lemma 7.1) should vary for
different blocks ˜̃Ai ′i . The integer m for the block ˜̃Ai ′i is denoted by mi ′i .

Theorem 7.2. Let ε > 0 be a given fixed number. Choose mi ′i to satisfy

mi ′i � log μ

log β
(−(2p − 1)(i + i ′ − 1) − (i + i ′)/2 + (p − 2pα)(n − i) + (p − 2pα′)(n − i ′)).

(7.2)

Let p be the order of the polynomials in X0. Suppose that the exact solution u of equation
(2.14) is in H

γ (E) with γ � p. If α and α′ satisfy condition (5.9), then there exists a positive
integer q, a positive constant c such that for all n � q, 0 < σ < 1/2 and β satisfying (6.9):

‖u − ˜̃un‖ � cs(n)−γ logν(s(n))‖u‖H
γ , (7.3)

where ν counts the number of the equalities in inequalities (5.9).
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Proof. Note that

‖u − ˜̃un‖ � ‖u − ũn‖ + ‖̃un − ˜̃un‖,
where u, ũn and ˜̃un are solutions of (2.14), (5.1) and (7.1), respectively. The estimate of
‖u − ũn‖ has been provided in theorem 5.5. By following the proof of [22, theorem 4.6], we
only need that there exists a positive constant c such that for all i and i ′,

‖Ãi ′i − ˜̃Ai ′i‖2 � cμ−p(i+i ′)μ−2p(−n+α(n−i)+α′(n−i ′)). (7.4)

This is obtained from lemma 7.1 and the choice (7.2) of mi ′i . �

Now we turn to estimating the computational complexity for generating the matrix ˜̃An in
terms of the total number Mn of functional evaluations used in computing all nonzero entries
of the matrix. We denote by Mi ′i the number of functional evaluations for computing the
nonzero entries of ˜̃Ai ′i . Thus, Mn =∑i ′,i∈Zn+1

Mi ′i . The following theorem gives an estimate
of Mn.

Theorem 7.3. If δi ′i is chosen according to (4.6) with α � 1 and α′ � 1, then there exists a
positive constant c such that for all σ and δi ′i , i, i ′ ∈ Zn+1, and for all n ∈ N

Mn � cs(n) logϑ(α,α′)+1 s(n),

where ϑ(α, α′) = 2 for (α, α′) = (1, 1) and 1 otherwise.

Proof. From (6.1), (6.3) and (6.4), the entry ai ′j ′,ij of Ai ′i is

ai ′j ′,ij =
∑

t∈ζ(i ′,j ′)

∑
s∈ζ(i,j)

∫
Ist

gσ (ξ)hi ′j ′,ij (ξ) dξ,

where ζ(i ′, j ′), ζ(i, j), Ist, Dstξ and hi ′j ′,ij are defined in the preceding section. Since both
ei ′j ′ and eij are polynomials of degree less than p on the set Dstξ , for a fixed ξ , the total number
of functional evaluations for computing the integral

hi ′j ′,ij (ξ) =
∫

Dstξ

ei ′j ′(x)eij (x + ξ) dx

is bounded by a positive constant dependent only on p.
We denote by M(h) and Mi ′j ′,i , respectively, the number of functional evaluations used

in the numerical quadrature of the integral h and the number of functional evaluations in
computing the components of the i ′j ′th row of Ãi ′i . That is,

Mi ′j ′,i � c
∑

j∈Zi′j ′ ,i

∑
t∈ζ(i ′,j ′)

∑
s∈ζ(i,j)

M
(∫

Ist

gσ (ξ)hi ′j ′;ij (ξ) dξ

)
, (7.5)

where Zi ′j ′,i := {j ∈ Zw(i) : dist(Si ′j ′ , Sij ) � δi ′iσ } and c is a constant dependent only on p.
For a fixed t ∈ ζ(i ′, j ′), we have that∑

j∈Zi′j ′ ,i

∑
s∈ζ(i,j)

M
(∫

Ist

gσ (ξ)hi ′j ′,ij (ξ) dξ

)
� c

∑
j∈Zi′j ′ ,i

∑
s∈ζ(i,j)

∑
[τ1,τ2]⊂Istι

kι,

where Istι = Ist ∩ ([tι, tι+1] ∪ [−tι+1, tι]) and [τ1, τ2] is the interval that appeared in (6.14).
Since the number of integrals over the interval [τ1, τ2] is bounded by a constant

independent of j ∈ Zi ′j ′,i and s ∈ ζ(i, j) for fixed (i ′, j ′) and t, we get∑
j∈Zi′j ′ ,i

∑
s∈ζ(i,j)

M
(∫

Ist

gσ (ξ)hi ′j ′,ij (ξ) dξ

)
� c

∑
[τ1,τ2]⊆⋃j∈Z

i′j ′ ,i
⋃

s∈ζ(i,j) Ist

kι.
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The compression strategy and supports of functions ei ′j ′ and eij ensure that⋃
j∈Zi′j ′ ,i

⋃
s∈ζ(i,j)

Ist ⊆ [−(δi ′iσ + di + di ′), δi ′iσ + di + di ′]
⋂

[−1, 1].

Associated with the geometric partition in (6.10), there is a unique L ∈ Zm such that

tL < min{δi ′iσ + di + di ′ , 1} and tL+1 � min{δi ′iσ + di + di ′ , 1}.
Therefore, ∑

j∈Zi′j ′ ,i

∑
s∈ζ(i,j)

M
(∫

Ist

gσ (ξ)hi ′j ′,ij (ξ) dξ

)
� c

L∑
ι=0

kιμ
i
(
βmi′ i−ι−1 − βmi′ i−ι

)
.

Using the facts that card
(
ζ(i ′, j ′)

)
� c for all j ′ ∈ Zw(i ′) and kι < ει + 1, we have from (7.5)

that

Mi ′,j ′,i � c

(
1

β
− 1

)
μi

L∑
ι=0

(ει + 1)βmi′ i−ι � cμi

L∑
ι=0

(ει + 1)βmi′ i−ι.

By theorem 7.2, we can set mi ′i = cn for a constant c which is independent of i and i ′.
From the above inequality, we obtain that Mi ′,j ′,i � cμinβmi′ i−L, which implies that Mi ′i �
cnμi ′+iβmi′ i−L. Since βmi′ i−L = tL < δi ′iσ + di + di ′ , we observe that Mi ′i � cnμi ′+i (δi ′iσ +
di + di ′). By using (4), we further have that Mi ′i � cnμi ′+i (μ−n+α(n−i)+α′(n−α′) + μ−i + μ−i ′).
Following the proof of theorem 4.2, we conclude that

Mn � cn
∑

i ′∈Zn+1

∑
i∈Zn+1

μi ′+i (μ−n+α(n−i)+α′(n−α′) + μ−i + μ−i ′) � cμnnϑ(α,α′)+1,

completing the proof. �

To end this section, we summarize the procedures for solving (2.14) into the following
algorithm.

Algorithm 2. Input σ and λ.

Step 1. Compute εi ′i by (4.4) and solve (4.6) for δi ′i .
Step 2. Use the compression strategy (4.2) to obtain the compressed matrix Ãn.
Step 3. Compute the entries of matrix ˜̃An by algorithm 1 with parameters mi ′i .
Step 4. Solve equation (4.3) with Ãn being replaced by ˜̃An.

8. Numerical experiments

In this section, we present numerical examples to compare the approximation accuracy of the
integral equation model with that of the discrete models for deblurring out-of-focus images.
The approximation accuracy is measured by both the peak signal-to-noise ratio (PSNR) and the
relative L2 error. Specifically, we will compare the numerical performance and image quality of
the continuous Lavrentiev regularization (CLR) and the continuous Tikhonov regularization
(CTR) with those of the discrete Lavrentiev regularization (DLR), the discrete Tikhonov
regularization (DTR) and the discrete TV regularization (DTV). We also illustrate through
a numerical example that the proposed continuous models are suitable and convenient for
enlarging the restored images.

We first briefly describe DLR, DTR and DTV methods. We generate a symmetric discrete
Gaussian filter[
Kσ

(
− 1

256

N − 1

2

)
,Kσ

(
− 1

256

N − 3

2

)
, . . . , Kσ

(
1

256

N − 3

2

)
,Kσ

(
1

256

N − 1

2

)]
,
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with an odd positive integer N, where σ will be specified later. We then generate a 257 × 257
symmetric Toeplitz matrix B whose first row is a vector formed by the last (N + 1)/2 elements
of the discrete Gaussian filter, followed by 257 − (N + 1)/2 zeros. With the matrix B, we
define A := B ⊗ B. The discrete model is formulated as

Av = f , (8.1)

where v is the original image and f is the observation in the discrete form. Note that in this
section the image will be either considered as a matrix or a vector formed by vectorizing the
matrix in the lexicographical order. The DLR and DTR are to solve the following systems:

(λI + A)v = f (8.2)

and

(λI + AT A)v = AT f , (8.3)

respectively. The DTV is to find the minimizer of the following functional:

‖Av − f ‖2 + λ

256∑
i,j=1

√
(vi+1,j − vi,j )2 + (vi,j+1 − vi,j )2, (8.4)

where the homogeneous Neumann boundary condition is applied to obtain the pixel values
vi,j outside the range 1 � i, j � 257. We adopt the numerical implementation of the total
variation regularization proposed in [32] due to the availability of its source code.

Next, we explain the necessary details of the CLR and CTR methods. The CLR method
refers to solving (2.8) while the CTR method refers to solving (2.12) and (2.13). To solve these
equations, we need to discuss how the observed continuous functions (images) are generated
from the observed discrete images. To this end, we assume that the pixel values of the
observed image are the samples, on the uniform grid {(i/256, j/256) : i, j = 0, 1, . . . , 256},
of a continuous intensity function

v(x, y) =
256∑

i,j=0

vijψi(x)ψj (y), (8.5)

where for 
 = 0, 1, . . . , 256:

ψ
(t) =
⎧⎨⎩

(256t − (
 − 1)), (
 − 1)/256 < t � 
/256,

((
 + 1) − 256t), 
/256 < t � (
 + 1)/256,

0, otherwise.

Then the observed continuous function is generated by (2.2) with the kernel k given by (2.3).
Specifically, by using (8.5), we have that

f (x ′, y ′) =
256∑

i,j=0

v̄ij

∫ 1

0

∫ 1

0

1

2πσ 2
e− (x−x′)2+(y−y′)2

2σ2 ψi(x)ψj (y) dy dx.

The CLR and CTR methods will be combined with the multiscale piecewise linear (L),
quadratic (Q) and cubic (C) bases. The corresponding methods are abbreviated as CLRL,
CLRQ, CLRC, CTRL, CTRQ and CTRC, respectively. The multiscale piecewise linear,
quadratic and cubic bases are explicitly given in the appendix.

Two measures are used in evaluation of the quality of the recovered images by various
methods. The first measure is the peak signal-to-noise ratio (PSNR). The larger the PSNR, the
better the objective quality of the reconstructed image. The discrete form of the reconstructed
images from CLR(L,Q,C) and CTR(L,Q,C) methods is samplings of the reconstructed images
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(a) (b)

Figure 1. (a) Original ‘Satellite’ image. (b) Original ‘Resolution Chart’ image.

Table 1. The values of PSNR and the relative error for σ = 0.01 with various methods and noise
levels for the ‘Satellite’ image.

Noise DLR CLRL CLRQ CLRC DTR DTV CTRL CTRQ CTRC

PSNR (dB)
Free 27.44 29.26 35.20 36.68 27.21 27.45 27.54 29.64 29.65
Noise Std1 19.16 21.89 20.90 20.28 25.67 26.31 26.84 26.90 26.92
Noise Std2 18.10 20.99 19.38 19.02 25.20 26.05 26.60 26.66 26.66
Noise Std3 17.51 20.53 19.07 18.10 24.88 25.83 26.41 26.46 26.47

Relative error (×10−2)

Free 4.15 0.63 0.05 0.07 4.55 4.08 0.92 0.30 0.47
Noise Std1 24.65 9.31 12.85 14.30 4.97 4.50 2.32 2.29 2.29
Noise Std2 31.86 14.34 15.24 16.85 5.43 4.64 2.52 2.50 2.50
Noise Std3 36.69 15.44 17.48 21.07 5.86 4.82 2.72 2.68 2.67

on the uniform grid {(i/256, j/256) : i, j = 0, 1, . . . , 256}. The second measure is the relative
error defined as RE := ‖u − v‖2

2/‖v‖2
2, where v is the original continuous function and u is

the reconstructed continuous function. When this measure is used, the reconstructed images
u by DLR, DTR and DTV will be considered as piecewise constant functions to compute the
relative error. The smaller the RE, the better the objective quality of the reconstructed image.
Numerical experiments are given for the ‘Satellite’ image (figure 1(a)) and the ‘Resolution
Chart’ image (figure 1(b)), respectively.

In the experiment for the ‘Satellite’ image, we consider restoration of the ‘Satellite’ image
from the Gaussian blurring kernels having the standard deviations σ = 0.01 and σ = 0.02,
separately. One of the reasons for choosing the ‘Satellite’ image in our experiment is that
its pixel values in the vicinity of the image boundary are zeros or close to zeros. This meets
the boundary requirement of the proposed algorithms. The image originally consisting of
256 × 256 pixels is extended by simply repeating its last row and column to form an image of
size 257 × 257, in order to fit the numerical requirement of our algorithms.

In our simulation, all regularization parameters are chosen within the range from 10−8

to 1 such that the corresponding regularization method produces the best PSNR values. All
numerical results are obtained by using a 1.7 GHz Intel Pentium M Processor machine with
1 GB of memory running Windows XP. The summary of the results are tabulated in tables 1–2
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(a) (b) (c)

(d) (e) (f)

Figure 2. Reconstructed results in the noise-free case (with σ = 0.01 in the blurring kernel). (a)
Samplings of the continuous observed ‘Satellite’ image at a uniform grid; reconstructed ‘Satellite’
images by using (b) DLR (λ = 2e − 2); (c) DTR (λ = 2e − 4); (d) CLRC (λ = 1e − 7); (e) CTRC
(λ = 5e − 7) and (f) DTV (λ = 3e − 3), respectively.

Table 2. The values of PSNR and the relative error for σ = 0.02 with various methods and noise
levels for the ‘Satellite’ image.

Noise DLR CLRL CLRQ CLRC DTR DTV CTRL CTRQ CTRC

PSNR (dB)
Free 24.22 27.38 28.56 27.77 23.45 23.85 25.60 25.14 25.13
Noise Std1 18.09 19.93 19.60 19.12 22.67 23.74 24.06 24.06 24.06
Noise Std2 17.15 19.60 18.43 18.13 22.47 23.51 23.85 23.86 23.85
Noise Std3 16.66 19.15 18.16 17.55 22.23 23.43 23.63 23.62 23.62

Relative error (×10−2)

Free 6.83 1.90 1.38 1.65 8.05 7.22 3.63 4.17 4.16
Noise Std1 31.64 16.18 19.79 20.23 9.63 7.48 6.00 5.99 5.99
Noise Std2 39.74 20.46 21.47 23.23 10.34 7.78 6.39 6.38 6.38
Noise Std3 45.01 22.04 24.28 28.23 10.89 7.94 6.84 6.87 6.85

from the noise-free case to varying levels of noise cases with methods of DLR, DTR, DTV,
CLR(L,Q,C) and CTR(L,Q,C). In these tables, ‘Free’ means that the observed image is free of
noise. ‘Noise Std1’, ‘Noise Std2’ and ‘Noise Std3’ refer to the cases that the observed images
are corrupted by Gaussian white noise with standard deviations 1, 2 and 3, respectively. The
numerical results reported in these tables are the averages over five different noise samples.
It can be clearly seen that the methods with the continuous model are consistently better than
the corresponding methods with the discrete model in terms of PSNR and RE values. For the
noise-free case, CLR(L,Q,C) gives the best result. For the noise cases, the methods based on
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(a) (b) (c)

(d) (e) (f)

Figure 3. Reconstructed results for the noise case ‘Noise STD3’ (with σ = 0.01 in the blurring
kernel). (a) Samplings of the continuous observed ‘Satellite’ image at a uniform grid; reconstructed
‘Satellite’ images by using (b) DLR (λ = 0.4); (c) DTR (λ = 0.02); (d) CLRC (λ = 0.3); (e)
CTRC (λ = 0.004) and (f) DTV (λ = 0.02), respectively.

Table 3. The values of PSNR and the relative error for σ = 0.01 with various methods and noise
levels for the ‘Resolution Chart’ image.

Noise DLR CLRL CLRQ CLRC DTR DTV CTRL CTRQ CTRC

PSNR (dB)
Free 19.61 22.52 29.61 31.48 19.14 19.14 20.40 20.54 25.52
Noise Std1 14.65 16.66 15.32 15.14 17.93 18.87 18.77 18.54 18.82
Noise Std2 13.78 15.38 14.98 14.36 17.63 18.51 18.46 18.50 18.48
Noise Std3 13.26 15.25 14.43 13.89 17.41 18.41 18.24 18.34 18.32

Relative error (×10−2)

Free 11.99 2.11 0.14 0.17 8.56 2.68 3.41 0.63 0.95
Noise Std1 32.38 15.77 17.60 20.56 9.69 6.52 7.66 7.49 7.49
Noise Std2 42.49 20.44 24.64 25.40 9.91 9.66 8.36 8.22 8.22
Noise Std3 42.41 24.78 25.72 27.46 8.96 11.43 8.83 8.71 8.71

the Tikhonov regularization perform better than those based on the Lavrentiev regularization.
The visual quality of the reconstructed images are displayed in figure 2 for the noise-free
case and figure 3 for the noise case. We can draw the same conclusion as we did from
tables 1–2.

It is worthwhile to report computing time for generating the matrix and solving the related
linear system by using the proposed methods once the regularization parameter is chosen.
Both a direct method and an iterative algorithm are tested and they produce the same results
under a given precision for solving equation (4.3) in algorithm 2. The direct method here
refers to the Gaussian elimination method. With the direct method, the computing time used
to generate the numerical results in table 1 for the noise-free case by using the piecewise
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(a) (b) (c)

(d) (e) (f )

Figure 4. Reconstructed results in the noise-free case (with σ = 0.01 in the blurring kernel). (a)
Samplings of the continuous observed ‘Resolution Chart’ image at a uniform grid; reconstructed
‘Resolution Chart’ images by using (b) DLR (λ = 2e − 2); (c) DTR (λ = 2e − 4); (d) CLRC
(λ = 8e − 8); (e) CTRC (λ = 5e − 7) and (f) DTV (λ = 4e − 3), respectively.

linear basis, the piecewise quadratic basis and the piecewise cubic basis are 16 s, 25 s and
41 s, respectively. The iterative algorithm used is a shadow block iterative algorithm from
[17]. When the regularization parameter λ is large, the shadow block iterative algorithm works
well. However, the parameter λ is usually small in our experiments, the iterative algorithm
may have slow convergence. Preconditioning the matrix λIn + ˜̃An may be needed in such
a case [11]. It is our future project to develop a fast preconditioning iterative algorithm by
employing the sparsity property of the matrix ˜̃An.

We conduct the numerical experiment for the ‘Resolution Chart’ image under the same
setting as we have done for the ‘Satellite’ image. The performance of the proposed algorithms
for the ‘Resolution Chart’ image is consistent with that for the ‘Satellite’ image. Therefore,
we only list in table 3 the PSNR values and relative errors for σ = 0.01. The visual quality of
the reconstructed images are displayed in figure 4 for the noise-free case and in figure 5 for
the noise case.

Furthermore, we remark that the continuous integral equation model can be naturally
applied for enlarged reconstructed images. By solving the integral equation (2.1), we obtain
a continuous function vλ. To get a discrete image, we can sample the continuous solution vλ

on an arbitrary uniform grid. The advantage for enlarging images with continuous models
is illustrated in figure 6 for the noise-free case with σ = 0.01. In figure 6, all images are
portions of the enlarged images of size 2041 × 2041. Figures 6(a)–(c) are enlarged images
for the original image, the reconstructed image with DLR and the reconstructed image with
DTV, respectively, by using bi-cubic interpolation. Figure 6(d) is the enlarged image obtained
by directly sampling the reconstructed images from the continuous model CLRQ. The visual
quality of the images in figure 6(d) is much better than that of image in figures 6(b), (c).
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(a) (b) (c)

(d) (e) (f)

Figure 5. Reconstructed results for the noise case ‘Noise STD3’ (with σ = 0.01 in the blurring
kernel). (a) Samplings of the continuous observed ‘Resolution Chart’ image at a uniform grid;
reconstructed ‘Resolution Chart’ images by using (b) DLR (λ = 0.3); (c) DTR (λ = 0.01); (d)
CLRC (λ = 0.3); (e) CTRC (λ = 0.005) and (f) DTV (λ = 0.02), respectively.

(a) (b) (c) (d)

Figure 6. Zoom-in portions of the enlarged ‘Satellite’ images with size 2041×2041. (a) Enlarged
original image by using bi-cubic interpolation; (b) enlarged reconstructed image by using DLR and
bi-cubic interpolation; (c) enlarged reconstructed image by using DTV and bi-cubic interpolation;
(d) sampling of the continuous reconstructed image by using CLRQ.

9. Conclusion

Restoration of blurred images can be formulated as an integral equation of the first kind with a
Gaussian kernel, which is an ill-posed problem. We can treat it by the Lavrentiev or Tikhonov
regularization methods and obtain a well-posed integral equation of the second kind. The
regularized integral equation is then discretized by using a multiscale piecewise polynomial
basis. The resulting full coefficient matrix is compressed by a matrix compression strategy
to obtain a sparse matrix whose remaining nonzero entries are evaluated by a numerical
quadrature scheme specially designed for integrals involved with the Gaussian function. A
fast numerical method with optimal (high) convergence order for blurred image restoration
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is developed. Numerical experiments show that the proposed integral model performs much
better than the discrete models with either the Lavrentiev, Tikhonov or TV regularization.
Theoretical study and numerical results of this paper suggest that the continuous integral
equation is a good alternative model for image restoration.
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Appendix

In this appendix, for convenient reference we present multiscale bases used in our numerical
experiments. They may be found in [7]. According to the construction of a multiscale analysis
Xn, n ∈ Z+, of L2(E) presented in section 3, we only need to describe orthogonal bases for
X0 and W1. The normalized Legendre polynomials of degree j = 1, 2, 3 are chosen as bases
for X0. The corresponding multiscale analysis are called piecewise linear, quadratic and cubic
bases of L2(E), respectively.

Piecewise linear basis. For t ∈ E, we choose

e00(t) := 1, e01(t) := 2
√

3t −
√

3

and

e10(t) :=
{

6t − 1, t ∈ [0, 1
2

]
,

6t − 5, t ∈ ( 1
2 , 1
]
,

e11(t) =
{

−4
√

3t +
√

3, t ∈ [0, 1
2

]
,

4
√

3t − 3
√

3, t ∈ ( 1
2 , 1
]
.

Then, {e00, e01} forms a basis for X0 while {e10, e11} forms a basis for W1.

Piecewise quadratic basis. For t ∈ E, we choose

e00(t) = 1, e01(t) = 2
√

3t −
√

3, e02(t) = 6
√

5t2 − 6
√

5t +
√

5

and

e10(t) =
{

−6t + 1, t ∈ [0, 1
2

]
,

−6t + 5, t ∈ ( 1
2 , 1
]
,

e11(t) =
{√

93
31 (240t2 − 116t + 9), t ∈ [0, 1

2

]
,

√
93

31 (−4t + 3), t ∈ ( 1
2 , 1
]
,

e12(t) =
{√

93
31 (4t − 1), t ∈ [0, 1

2

]
,

√
93

31 (240t2 − 364t + 133), t ∈ ( 1
2 , 1
]
.

Then, {e00, e01, e02} forms a basis for X0 while {e10, e11, e12} forms a basis for W1.

Piecewise cubic basis functions. For t ∈ E, we choose

e00(t) = 1, e01(t) = 2
√

3t −
√

3,

e02(t) = 6
√

5t2 − 6
√

5t +
√

5, e03(t) =
√

7(20t3 − 30t2 + 12t − 1)
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and

e10(t) =
{

16
√

5t2 − 6
√

5t +
√

5/3, t ∈ [0, 1
2

]
,

−16
√

5t2 + 26
√

5t − 155
√

5/15, t ∈ ( 1
2 , 1
]
,

e11(t) =
{√

3(30t2 − 14t + 1), t ∈ [0, 1
2

]
,√

3(30t2 − 46t + 17), t ∈ ( 1
2 , 1
]
,

e12(t) =
{√

7(160t3 − 120t2 + 24t − 1), t ∈ [0, 1
2

]
,√

7(−160t3 + 360t2 − 264t + 63), t ∈ ( 1
2 , 1
]
,

e13(t) =
{

420t3 − 310t2 + 60t − 7/3, t ∈ [0, 1
2

]
,

420t3 − 950t2 + 700t − 503/3, t ∈ ( 1
2 , 1
]
.

Then, {e00, e01, e02, e03} forms a basis for X0 while {e10, e11, e12, e13} forms a basis for W1.
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