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ABSTRACT

Reactor noise analyses are conventionally performed by using neutron

detectors to make direct observations on the fluctuations in the neutron

distribution within a reactor core. The purpose of this paper is to pre

sent a theory for the interpretation of a noise experiment performed

instead by using a photon detector to measure the fluctuations in the

high energy radiation distribution from the reactor core. In practice

one whould choose to detect the high energy CE0 > 5 MeV) radiation, be

cause in many instances there is a negligible fraction of delayed photons

at these energies. The many groups of low energy delayed photons only

complicate an otherwise practical and direct interpretation of such an

experiment.

To deal theoretically with fluctuation phenomena a deductive approach

is employed in which the Liouville equation is used to generate a coupled

set of transport equations for the first and second moments of the appro

priate numbers (in fact densities) of particles and photons that are ade

quate to describe the entire system of interest. The type of system that

is considered here is one in which a photon detector (and its associated

discriminating, counting, and recording equipment) is placed outside a

reactor core. It islikely that a photon detector may be positioned outside

the core proper, in contrast to conventional noise experiments in which

neutron detectors are usually placed in—core, because the mean free path
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of photons in the core is very much greater than that of neutrons in

the core.

Particular attention is devoted to the theoretical description of

the observables of an experiment. Two commonly used measures of fluctu

ations are a variance and a power spectral density; our analysis is

accordingly couched in these terms. Applying consistent P—i approxi-.

mation procedures to the neutron distributions, the set of transport

equations is solved for the type of system described above and spatially

dependent expressions for the power spectral density of detected par

ticles are obtained. Upon comparison with the corresponding expressions

from a conventional neutron noise analysis, it is found that the same

neutron correlation information is obtainable in principle by a photon

detecting noise analysis as by conventional techniques.

INTRODUCTION

In this paper we present a theoretical interpretation of a reactor

noise analysis based upon observations on the high energy radiation

distribution emitted from the reactor core. This is in contrast to the

more conventional means of performing reactor noise experiments in which

neutron detectors make observations directly upon the neutron distribu

tions within the core. It will be shown that striking similarities

exist in the results obtained for these two approaches. In fact, that

information which can be obtained from studies of fluctuations and

correlations in the neutron distributions by observations on the neutrons

themselves will be shown to be equally accessible, in principle, from

observations on fluctuations in the high energy photon distribution.

The class of systems that we consider in this paper are nuclear

reactor systems in which the radiation of interest is generated by fission
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and (n,y) interactions. It can be shown that photons produced by (n,y)

interactions behave as prompt gammas accompanying fission events. In

the type of experiments that we discuss (those in which the power spec

tral density is measured for the charged particles arising from detection

events) considerable convenience of interpretation is achieved by restrict

ing attention to just the prompt radiation of the, system. So far as the

delayed photons are concerned it is expected that only those delayed

—k
photons emitted in the time interval between 10 seconds and 1 second

after a fission event would adversely affect the interpretation of a

measurement. Therefore those photons emitted in time intervals shorter

than 10 seconds following a fission event are taken to behave as prompt.

Maienschein et al.’ indicate that delayed gamma radiation arising from

the fission products in the time interval l0 seconds to 1 second after

fission is a negligible fraction of the total gamma energy emitted per

fission event. Of course very long—lived delayed photons present problems

also. However, Chapman et al.2 show for the Bulk Shielding Reactor II

that the delayed gamma radiation with energies greater than 5 MeV is

considerably less than that arising promptly (within 10 seconds) from

fission and (n,y) interactions. Thus to achieve a practical, directly

interpretable experiment we have suggested that high energy CE0 > 5 MeV)

prompt photons be observed.

It is recognized that present discriminating techniques (to allow

the observation of only high energy photons) cannot avoid the adverse

effect caused by the pile—up of low energy photons. Furthermore, shield

ing against these low energy gammas due to long lived fission product decay can

be achieved only at the expense of detector efficiency. It therefore

appears that photon detecting noise experiments will be limited to cold,

clean reactor cores for the present as are neutron detecting noise experiments.



It might then be asked, “Why consider a photon—detecting noise experi

ment?” There are at least two good reasons for this consideration. First,

it may be possible to perform noise analyses with a photon detector placed

outside the reactor core proper. The fact that the mean free path of high

energy photons in the core is much greater than that of neutrons allows this

possibility. Thus the perturbing effect of a detector placed in—core,

such as is the case presently in neutron detecting noise experiments, may

be eliminated. This is especially desirable in low power experiments when

the total number of neutrons in the core is small. Also since a photon

detector is capable of effectively “seeing’t an appreciable volume of the

reactor core, it may be possible to smooth out or perhaps in some instan

ces to remove spatially—dependent effects. Of course this would be a dis

advantage if one is in fact trying to observe space—dependent effects.

We therefore retain spatial dependence in the results we obtain so that

their importance may be assessed in given instances.

With these qualitative remarks in mind on the practical aspects of

the problem the remainder of this paper deals mainly with a more detailed

theoretical analysis of the problem of obtaining neutron correlation in

formation by the observation of fluctuations in the high energy radiation

distribution from the reactor core. Since a connection between the theory

of fluctuations and their measurement is conveniently established through

the variance of the particles arising from detection events or through the

power spectral density of their detection rates, this investigation pro

ceeds from the appropriate coupled set of balance equations for the relevant

particle and photon densities that describe the system to the order that

the observations are performed. We obtain these equations by a deductive

quantum mechanical approach in which the joint probability density for the
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system satisfies the Liouville equation. The joint probability density

referred to above is one which describes the probability for all “particles”

(this term is extended here to include photons as well as ordinary par

ticles) of the system to be jointly distributed in phase space in a given

manner as a function of time. The set of transport equations is then re

duced to a form consistent with the conditions imposed by the model of

the system we have discussed above. Finally a solution for the power spec

tral density of detected particles is obtained and analyzed in terms of

corresponding results from a conventional neutron detecting noise analysis.

DEDUCTION OF THE SET OF WORKING EQUATIONS

To discuss appropriately fluctuations about a mean density (singlet

density) it is necessary to consider second order stochastic quantities

which we will refer to as doublet densities. In the quantum formalism

the singlet density, for instance, of a given type of “particle” is ex

pressed theoretically as the expectation value of the appropriate number

operator for that type of “particle”. This is just the first moment of

the joint probability density with the number operator. Doublet densities

are in turn just expectation values of second àrder rnonomials of appropriate

number operators. A measure of the fluctuations of a given distribution

of particles or photons is obtained through a variance, where the variance

is defined as the difference between the doublet density of interest and

the product of the corresponding singlet densities. It can now be noted

that the techniques which we employ to deduce the appropriate set of trans

port equations have been presented in sufficient detail previously in appli—

3 k 5,6cations to reactor systems , neutral gases , and plasmas . Therefore we

will attempt here to present just the essence of the principles involved

and to abbreviate the calculational detail in light of the references given
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above that deal specifically with these details.

This computation is initiated by dividing the six dimensional phase

space into hypercells of volume (2?r)3. (This is just coarse graining in

phase space.) Configuration space is divided into non—overlapping cells

of volume L and K space into cells of volume ‘ — . Here is the wave
L-’

vector associated with a momentum iK. The center of a hypercell is loca

ted by co—ordinates (X,K), and all “particles” (recall that photons are

included in this set as well as ordinary particles) in the cell are lo

cated by giving these co—ordinates. It is noted that the hypercells are

of sufficient volume that the uncertainty principle is not violated.

The singlet densities for particles of kind “A” are defined by

F, K, a, t) E - Tr 2A(X, K, a)D(t), Ci)
(2)

and the doublet densities for particles of kinds “A” and “B” are defined

by

FB(XKa; X’,K’,b,t)
-

Tr PA(XKa) px’K’bOCt) . (2)
(271)

The operators p (X,K,a) are number operators whose eigenvalues in a diagona—

lizing representation represent the possible numbers of particles of kind

“A” in the phase—space hypercell centered at the point (X,K). The lables

“a” (and “b”) specify the quantum numbers necessary to complete the descrip

tion of the particle’s state. They designate such things as polarization,

spins, and internal states. All particles in a given phase cell are assigned

the coordinates of the center of the cell, their momenta being given by

P = !i K. Evidently these phase points are discretely distributed. How

ever, whenever appropriate, they will be assumed to be sufficiently dense

to be regarded as a continuum. The quantity D is the density operator for

the system.
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The density operator is assumed to satisfy the Liouville equation

given by

ao(t) — ,!. rD H1 (3)at t1 J

where H is the Hamiltonian of the system. It is useful to write H as

H=HA+V. (k)
A

In this case HA describes the kinetic energy of the “A”—type particle

(this is the contribution from the free photon field when “A” refers to

photons), and V represents all other contributions to the energy of the

system.

The first step in the present derivation of a transport equation

is to display (generically)

F(t+t)—F(t) — + t a2F/at2
— at ‘ 2 3F/at at ‘

for sufficiently small t and for densities which do not vary too rapidly

in time. For example, if F(t) et’T, then the above approximation implies

the neglect of a series of terms, the largest of which is O(t/T) for < 1.

An obvious lower limit for t is interaction times; which, in the case that

we will consider, will not likely exceed lO_ seconds. It is to be noted

that this approximation (coarse—graining in time) is a necessity and not

ierely a calculational trick, since it is meaningless to compare densities

at two instants closer together than an interaction time. It can then be

shown3’7 that the equation for the singlet density of “A”—type particles

can be written as:

vA.VIFA(XKa;t) =

3(2) nn
(6)

+ terms off—diagonal in D(t)

We have introduced to represent the velocity of the”A”—type particles.
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Note that v’ hK/m when “A” applies to an ordinary particle, and mA is
V

It,,the mass of the particle. Ten A applies to photons, v c and c =

3 x iO cm/sec because the medium is non-dispersive for the radiation of

interest. The direction vector for the photons is given by £2. T, stands

for the probability per unit time for a transition to occur between an

initial state designated by a and a final state designated y n’. The

summation over n and n’ includes all initial and final states. Expressions

for T, can be obtained by conventional perturbation techniques. Many

approximations are required to go from equations (1), (3), and (5) to

equation.(6). All of these approximations have been displayed elsewhere

explicitly, some interpreted qualitatively, but few estimated quantitatively.

Many of these considerations have been dealt with specifically in refer

ences 3, 6, 7, which are directed more toward the actual development of

a transport theory. We therefore proceed at this point to writing the

generic doublet equation (neglecting terms proportional to off—diagonal

elements of D(t) henceforth) as:

+ vA.v÷vB.v,jF (X,K,a;A’,K’,b,t) 6 T,(x)
(2ir) nn’

(7)

Note that the gradients which appear in the equations at this point are

symbolic and have the meaning of a finite difference in the density of

interest at two adjacent cells in configuration space, divided by the linear

dimension of the cells. They will take on the usual meaning of gradients

when we pass to the continuum for densely spaced points.
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SPECIALIZATION OF THE TRANSPORT EQUATIONS

Before finally specializing the set of working equations to their

most useful form for our purposes, it may be helpful to further define

the model of the system with which we are dealing. Recall that a judi

cious choice of energy threshold for observing prompt photons is E0 > 5 MeV

because only a small tail of the distribution of delayed gammas occurs

above 5 MeV in comparison with the number of prompt gammas in this energy

range. It is also reasonable to assume that only avery small fraction

of the photons in this high—energy range have previously undergone a

scattering interaction and maintained a final energy greater than 5 MeV2.

Also bremsstrahlung (mean energy of .5 MeV) is a negligible photon source

for E0 > 5 MeV. For the sake of discussion it is assumed that a scintilla—

tor is used to detect photons, and the photoelectrons that result from the

scintillations interacting with the photocathode material are simply re

corded and accumulate in time. Photofission is neglected, and photons are

assumed not to interact with other photons. The only photon interactions

that are considered to be relevant in this model are those events by which

a photon appears to be absorbed. Detection processes, photoelectric ab

sorption, and pair production are the obvious photon absorbing interactions.

Photon scattering is also taken to behave as a means of absorption here,

because we assumed that a photon is removed from the energy range of interest

by a scattering interaction. The emission of photons and particles by

neutron interactions is taken to be isotropic, and extraneous neutron and

photon sources are assumed to be isotropic and constant in time. Finally

we neglect delayed neutrons and delayed photons for expediency of calculation.
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In this system we are interested only in charged particles from de

tection events, neutrons, and photons. All other distributions in the

system are assumed to be known. To deduce the interaction terms on the

right hand side of the balance equations, it is well to restrict our

attention to the dominant interactions that affect the system. In the

present case the dominant processes are neutron fission, capture, and

‘scattering; the production of gamma radiation by fission and (n,y) events;

the absorption of gammas by the medium; and the detection process. Neu

trons scattered by neutrons are neglected. It has also been ffl35 that

about all the information that is needed regarding transition probabilities

is their dependence upon occupation numbers. In the present application

is neglected compared to unity, because measurements on this system will

be insensitive to quantum statistical effects.

The final reduction of equations (6) and (7) is carried out in the

same manner as employed previously in the literature3’7. Upon performing

that task and passing to the continuum, where one assumes that the discrete

points in phase space are sufficiently closely spaced that they can be

treated as continuous, we can write out the set of working equations com

pletely for this system, starting with the doublet density of detected par

ticles, as

(KV+K’•V’)]f’(X,K;X’K’;t) fd3’’rD(K’’)(x)

‘(X,K;x’K’’;t)](x) (8)

(x)H(t)+(X—X’ )(K—K’ )fd3K’ rDC
I )(K’ ‘-‘K)f(X,K’ ‘

where(’-*K)d3Kis the probability that a photon with wave vector ‘ will,

upon detection by a photoelectric detector, produce a photelectron with wave

vector K€d3K, and H(t) is the unit’step function.
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The equation for the singlet density of detected particles is

written as:

ik÷ —KV]f(X,K,t) fd3K’’rD(K’’)°(K’’÷K)f(XsK’’,t)H(T). (9)

The equation for the cross doublet density of charged particles and photons

is written:

- [ + cc’•v’+ —K’V+r(c’)jf(X,K;X’,K;t)

= f ‘r(’’ )(‘ ‘K)f(X,c’ ‘ ;X’ Kt ;t)H(t)
(10)

+ Jd3kI rf(k ‘)f’(X,K;x’ ,k’ ‘ ;t) E G(k’
Q, n

+ K)f(X,,c’,t)H(t),

and f ‘(X,c;x’,K’;t) is obtained by interchanging arguments. The quality

is defined as the probability that a fission event induced

by a neutron at k’’ will produce exactly Q photons, n of which have ‘c

and r(x’,K’)d3x’d3’is the expected number of photons produced per second

in d3X’ about X’ and in d3ic’ about K1 by extraneous photon sources.

The equation for the singlet density of photons is:

+ c.V+r (KHf(X,K,t) fd3k”rf(k’’)f(X,k’’,t)(x)

(11)

(x) rG(k’’ ,K)+F(X,K),
Q,n

and the photon doublet equation is written as:

+ c(c2’V+c2’ •7’ )+r (sc) (,c’ )Jf’(X,;X’ ;t)

= f(x,K,t)r(x’ ,K1 )+r(x,K)f’(x’ ,K1 t)÷Jd3kt rfCk ‘)(x)
(12)

(x)n fGQ(kt ‘,K)f’(X,k’ ‘;X’ ;t)+G(k’ ‘ ,‘ )f’(X,;X’ ,k’ ;t)J
(x’-x’ )fd3kt ‘rf(k’’ )f(x,k” ,t) G(k’ ‘I’ )+(x-x’ )(x)

Q,i,.i
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(12)

Q 3 3
(con’t.)

In equation (12) we have introduced G (k’’I,’)d ,cd K1 to be the proba

bility that a fission event induced by a neutron at k’’ will produce Q

photons9 n of which have Ked3 and of which have ‘d3K’. When

G (k’’lK,K’)- (K—c’)G(k’’,K)
—— TV —— —

The neutron singlet equation is:

h÷ —k.v+L(k)]f(x,k,t) = s(x,k) , (13)

where

L(k)f(X,k,t) = rt(k)f,,t)_fd3k’I[r5(kh’)Q)

+rf(k) aB(k’’,k)]f(X,k’’,t) . (114)
J ,a

The quantity S(x,k)d3Xd3kis the expected number of neutrons produced per

second in d3X about X and in d3k about k by means other than the fission

process; B(k’’,k)d3kis the probability that a fission induced by a neutron

with wave vector k’’ will produce J prompt neutrons of which a have kEd3k;

SC 3 .and.9 (k’’-k)d k is tne probability that a neutron with an initial wave

vector k’’ will be scattered intoked3k. The equation for the neutron

doublet density is given by:

[ + !L (kV÷k’ V+L(k)+L(k’ ) ]f(Xk;X’ ,k’ ;t)

= f(X,k,t)S(X’,k’)+S(X,k)f(X’,k’,t)+5(X—X’)(x) (15)

(x)5(k—k’ )S(X,k)+’5(X—x’ )A(x;k,k’ ;t)

where

A(X;k,k’ ;t) = (k-k’) frt(k)f(Xkit)+fd3k’ r(k” ))cck, ‘k)f(x,k

[r(k)k)r(k) aB(k,k’)Jf(X,k,t) (i6)
J,cz
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-[r (k1)2(k’k)+rf(kt) aB(k’,k)Jf(X’,k’,t)
S

J,ct
a

(16)
(con’t.)

+fd3k?trf(kt) E a6B(k’’lk,k;)f(X,k’’,t)

In this equation we have introduced BJ(ktIk,kI)d3kd3k? as the probability

that a fission induced by a neutron at k’’ produces J prompt neutrons of

which a have ked3k and have k’d3k’. When k=k’, B (k’’Ik,k’)- (k—k’)— —
—— aB— —— cz, ——

B(k’’,k).

Finally the equation for the cross doublet density of detected particles

and neutrons is

a !! i’•Y’ BN’
+ !i C—

+ mN
) + L(k’)]f2 (X,K;X’,k’;t)

(ii)

+ f(x,K,t)s(x’,k’)

ana the cross doublet equation for photons and neutronsis given by:

[.. ÷ cQV+ k’ .V’+r (K)+L(k’ ) ]f (X,ic;X’k’ ;t)

= r(x,K)f’(x1ktt)÷f(xK,t)s(xt,k’)+fd3k’’rf(k1’)(x)

(18)

(x)f(x,k”;x’,k’;t)

Q,n

(x)f(X,k’,t) E G(k’,)
n

To this point the multiolet densities are general for all real times.

However, experiments will be interpreted in terms of accumulations of charged

particles in view of the fact thata physical measurement is to run positively

in time starting from, say, t0 to time t. Thus the step function 11(t) is

employed above in expressions describing the detection of photons. It is



seen that the charged particle multiplet densities are continuous functions

in time and represent accumulations of charged particles. The rates of

accumulation, i.e., the first time derivatives of charged particle multiplets
‘J.

are discontinuous, having been zero at times prior to t0 and non zero for

t>0 due to the observation starting at t=0. It is then noted that the

second time derivatives of charged particle multiplets are singular at

t0. Thus we have seen that the consequences of this restricted validity

are conveniently accounted for by interpreting the counting rate per photon,

as proportional to the step function, H(t), which has the properties:

H(t) = 0 t < 0 (19)

= i t > 0, (20)

and

d}I(t)
= (t) . (21)

The following list defines the quantities appearing in the above equa

tions that were heretofore undefined:

a) The superscripts on the densities designate the type of “particle”

referred to as:

N -‘ neutrons

8 -‘ photoelectrons (are the detected particles)

-* photons

b) zs(k) is the probability per unit path for small paths that a

neutron with momentum of magnitude k will be scattered. The

interaction rates expressed by r’s are just the product of the

macroscopic cross sections and the mean speeds of the relevant

particles. The subscripts for interactions of interest are:

S neutron scattering

- fission

aN -‘ neutron absorption
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t + total neutron events

c + capture of neutrons

a ÷ photon absorption

D + detection of photons by photoelectric material.

Our final reduction of the above set of transport equations is accom

plished by integrating the equations over photoelectron energies and over the

relevant photon energies (E0 > 5 MeV). Streaming of the photoelectrons is

neglected, and consistent P—i approximation procedures will be applied to

the set of all neutron densities and cross densities. Neutron quantities

are integrated over all neutron energies, and energy averaged system para

meters, such as interaction rates, are taken to be independent of the

density that is used as the weight function in the average taking process.

The emission of photons and neutrons by neutron events has been assumed

to be isotropic, and the emission of neutrons by external sources is taken

to be isotropic, uniform, and constant in time. Photon and neutron den

sities and neutron currents are assumed to be stationary and the extraneous

gamma source, r, Is neglected from here on for expediency. Performing

this last set of reduction steps the set of working equations is written

finally as:

af(x,t)
= M’I(X)H(t) (22)

af(x,x’,t) I 6 ‘

at = j1f (x,x’t)÷’f2
(x,x?,t?JH(t)

C23)

+ (x—x’)M(x)H(t)

+ B ,]f’ (X;X’,2’;t) = tf (X;X’,Q’)H(t)+ f(X,X’,t)

(24)
— iS(X—X’)r f’(X,Q’)H(t)



Bf(X,c2) = 4(x) (25)

= ffNY(x;xt,I)+fN(x.xt)I

(P -‘ (26)

+ (X—x’)
2 4()-E’)r f’(X,c2)

al

The following new notation has been introduced:

Af(X) Efd3KrD(K)f(X,K) . (27)

The subscript has intentionally been deleted, because this notation applies

for all photon densities and cross densities. Also

?f(Xt) Efd3KrD(Kt)fY(X?,KI) (28)

B c7’V+r (29)

B , cc2’•V’+r (30)y ——a

fN() - p()fN(x) fd3khtrf(ktt)<n(Q)>fN(X,kt)
- <n>rf

fN(x) (31)

where

expected number of photons that are born into dc
(32)

about Q by a fission event.

P 1

2
= (QI)fN(X) Jd3k’’r (kt,)<n(Q)(t)>fN(X,ktt)

(nr) YY J
(33)

r fN(X)

(yr)

where

expected product of the number of photons, n,

born into about 2 jointly with v born into (3)3)

df2’ about c2’ by a fission event.

• It has been shown by Akcasu8 that the class of distributions to which

<n(2)\?(c2’)> belongs has the property:

fdJdt = <,2> (35)
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SOLUTIONS OF THE EQUATIONS

It is worthwhile at this point to devote further attention to the

observables of a noise experiment. So let us consider the power spectral

density of the detected particles. The power spectral density, is

the cosine transform of the autoorrelation function •(r).

The autocorrelation function relevant to the measurements with which

we are concerned is the autocorrelation function of the output current,

1(t), from the photon detector. The computation of (w) can be performed

analytically by processing the raw data from an FM tape, for instance,

which might be used to record the output current from the detector; or

suitable electronic equipment utilizing a. succession of.filters among

other circuitry can be used to give (w) directly from the output current.

The autocorrelation function is given for stationary currents by:

= <I(t)I(t+t)> . (36)

It can be shown9 that

a2f(t)

2 (37)
at

which then gives the power spectral density as:

a2f(t)

= dt cos wt
2

(38)

It is apparent that the connection between the experimental quantity (t)

in (36) and the theoretical q(t) in (37) is through the observable quantities

and f(r). These are seen to be:

ff(t)
= f d2X ff(,t) (39)

D • V.

and.

= I d3X fd3x’f:cx,x’,t) , (ho)
D.V. D.V.
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where

D.V. detector volume. (ni)

As was indicated previously, f(r) and f(t) represent accumulations over

the interval r because of the initial conditions that were applied to all

B densities.

These initial conditions are:

f(O) = o (2)

f(O) = 0 p43)

f(o) = f(0) = 0 (1)

f2(0) = f(0) = 0 . (45)

The power spectral density may also be written (for the sake of cal—

culational convenience) in terms of the detected particle variance,

(for stationary photoelectron currents) as:

2B’
dt

v(t) (k6)

(valid for non—zero frequencies), where the photoelectron variance,

is defined as

v’(t) f d3X Ia3X’{f(x,x’,t)-f(x,t)f(x’,t)} (i)

The equations for the variances that are needed are obtained directly

from our previously reduced multiplet equations. They are

= vY(x,x,t)+vB1’(x,x,,t) (k8)

+ (xxt)f(x)} H(t) ,

and by differentiating

a2vBB’(x,r,t = f. v’(,’,t) ,V”(X,X’,t) ) H(t) (149)
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+ (x—x’)M(x)(t) . (k9).1
— (con’t.)

To get this equation we have used the properties of the step function and

the initial conditions given as

v’(o) = v’(o) = v’(o) = v’(o) =
B’(0)

= a . (50)

In like manner we have

[+ BJV (X,;x’;t) = fMV’(XQ;xt) (51)

+ V H(t),

and V’(x;x’,2’;t) is obtained by interchanging arguments. We also have

tk BN]V (x,x’,t) = V(X,X’)H(t) . (52)

Applying consistent P—i procedures to reduce the neutron equations,

we can write the neutron Boltzmann operator, BN, as

BNf’(X)
= [a1D1V2]f’(X) , ()

where

(51)

mean speed of neutrons (55)

b1 raN+l_<P>lrs = r_<11>r5 (56)

<p> first angular moment of the neutron scattering frequency (57)

a1 r_cJ>rf = r(lkco) • (58)

The details concerning the reduction of the neutron equations have

been given careful attention by Osborn and Natelson3 and others10, and will

not be belabored by us at this point. The equation for VB’(X,Xt,t) is

obtained by interchanging arguments of equation (52).

Thesolutions for these variances can be obtained by Fourier—Laplace
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transformation. In transform space we have

‘V’(k,c2;X’ )—e’f(X’ ,Q)r

___________________________

/ ick.2+r
—— a

(59)
P V’(k;x’;s)

— 1 ——

)-rr s+ick.c2+r
—— a —— a

where it is noted that k is the Fourier variable from here on, and s is the

Laplace variable..

If we now transform equation (52) and let

b a1+01k2 (60)

we get

A’v (k,x’)
V (k,X’,s)

= s(s+b)
(61)

Then going back to equation (59) and taking the inverse Laplace

transformation, it can be shown that upon inversion the first term which

is proportional to [.- — ÷iç÷1 in equation (59) will not contribute

to the power spectral density at observable frequencies and can therefore

be neglected. This is because the first term in brackets gives something

proportional to cS(w), and the second term will give something proportional

to 21
2

which is constant and small over the observable frequency range

of (w). Substituting (6i) into the remaining expression for

X’;s), taking the inverse transforms, and using V’(X,2;x’;t = 0) = 0,

weget

v(x,g;x’;t) P ?e_bt J dR
—R/A ,

— = -

a (x—Rc,x’) . (62)

We have neglected terms roDortional to e
a

and b comDared to r • We

can also now make use of the solution for (X—E;X’,’) which can readily
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be found to be

v’(X-Rc2;x’,2)
= f eaf_ ;NN’(x,x,RIQ,) (63)

- -Rc2-(X’-R’’)) f(XB2)

However the neutron variance and the neutron singlet density have been

worked out in detail in the work of Natelson, Osborn, and Shure10. They

found:

N’
<J(J_l)>rfAp (X—Ra) (‘—R’a’)

‘ (._.;..‘_R’a’) = . °inm 2 2
n,m,i 2a +01(B +B )

fl m (61)

+ o(X—EQ—(x’—P’))f(x—R)

where

C
= fd3X.(X)(X)(X) (65)

and

fC.,t) = A(t)p(x) . (66)

By using (62), (63), and (61) in (19) we get

2 C

2 = f d3X f d3X’
‘“2

‘ e_bt I’ f (x)
at (o.v.)1 (D.v.)2 (k) R=O i’=o

—ER -R’/X r <J(J-l)>r A (X-Ec2) (x’—R’c2’)a at ç’ fin— — m— —(x)e e j2 c. H(t)

L n,m,i
mm

2a1+D1(B2+32)

—ER
+ (x-x’) £ e afNcxF2)(t)J (67)

To evaluate this expression further, consider a general case with de

tectors 1 and 2 placed outside the reactor core. The set of points (X1}

define the volume occupied by detector 1, and the set of points {X2} corres

pondingly obtain for detector 2. Detectors 1 and 2 will be able to “seer’

photons from within some given volume, V1 and V2 respectively, of the
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reactor core,

If we let the set of directional vectors extending from points (x1}

into V1 be denoted by {c21}, the detection rate has the following property:

r (x) = r for X in fX } and for photons along vectors {Q }

= 0 otherwise

If we consider the detection rate to be effectively constant over

the photon energies of interest, we can write for detector 1, using (27):

fA(X) fd3K rDl(X)f(X,K) (69a)

or

A
= r01(X) f dQ fA(X,) (69b)

{a1

and likewise for detector 2

AfA(Xe)
rD2(X’) f d’ fA(Xt,Q). (to)

{}

From here on we let rDl r02 = rD. The power spectral density can then

be written as:

= f d3X f r0(X)<n>rf f2rD(xI)<n>rf f dR(x)
(D.v.)1 (D.v.)2 R=O

r a P ?/a c. <J(J—l)>r AP (x_Rc2) (x’_R’c2’)
e i , j ,e ‘c’ mm fin— — m— —dB jd2- Cx)

{ R =0 c2 n,m,i 2e. +D (B +B—l —2 1 1 n m

B/A (71)

(x)
2b2 R

dRfd
e

a
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SU?Vil1ABY A CONCLUSIONS

It can first be observed that in an oversimplified model of a homo

geneous infinite reactor and infinite detector model, in which the photon

detector is assumed to be uniformly distributed over the entire reactor,

equation (Ti) can be reduced to the following form:

(C.B.) Ia(C.R.) <J(J—l)>k2
2

vi 1= — V +1 , (72)
<J>c(l_k ) w+a

1
where

- —11
a = 3x10 watts per fission/sec i73

P reactor power, watts (ik)

• (c.B.), E the count rate of gamma detection events.

The corresponding expression for the power spectral density from a neutron

detecting experiment is

(C.R.) 1a(C.R.) <J(J—l)>k2 a2 1
= 2

N N
2 2

212 (76)
I <J> (1—k) w+a

1

where (c.R.)N is the count rate of neutron detection events. Thus in this

idealized case the degree of observability of information from power spectral

density measurements by a photon detecting experiment and by a neutron

detecting experiment on a given reactor operating at a given power will

compare as the ratio of the count rates that can be obtained by each tech

nique. It is clear that there is no difference in principle in the type

of information that is available by these noise measurements.

Then going back to equation (Ti) which applies for more realistic

situations, it is again found by comparison with the results of Natelson,

Osborn, and Shure’° for neutron detecting experiments that the same basic

information relevant to dynamic reactor parameters is obtainable in principle

from a photon detecting experiment. Of course the degree of observability

is largely dependent upon the volume of the reactor core that the
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- photon detector is capable of “seeing”, This factor may be evaluated

for individual cases by computing the photon streaming integrals over

R and R’, the “solid angle” integrals over Q and f2’, and the integration

of X and X’ over detector volumes in equation (71). In general numerical

techniques would be necessary for such a calculation. However strictly

qualitative considerations indicate that äounting rates of a photon de-.

tector outside the core will be maximized by positioning the photon de—

tector such that there is not too large a thickness of moderator or some

other material interposed between the detector and the reactor core.

What we consider large here are thicknesses on the order of a mean free

path of a photon iri the interposed medium. The “solid angle factor” that

is involved here may be maximized by positioning the largest practical

detector as near the core as possible (and still avoid large perturbing

effects on the neutron distribution as well as avoiding damage to the

detector). That is, one simply wishes to maximize within practical

limits both the solid angle subtended by the detector as “seen” by the

reactor core and the solid angle subtended by the reactor core as “seen”

by the detector.

Since neutron detectors “see” only that volume of the core which

they physically occupy, whereas a photon detector may effectively “see”

a much larger volume of the core (due to the longer mean free path of

photons), it is conceivable that in some instances photon detecting noise

experiments may be as efficient as neutron dete.cting experiments for de—

termining information relevant to the reactor. It has been demonstrated

that the same stochastic information pertinent to the system resides in

the photon distribution of the reactor as in the neutron distribution.
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