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101 INTRODUCTION

I would like to review the derivation of the reactor kine

tics equations for the purpose of determining whether they are

applicable for very fast transients, and to see if they can be

used for studies of stability. By studies of stability, I mean

the derivation of criteria which can be verified experimentally

and which can be used to determine whether the reactor power is

stable or unstable.

In order to study the dynamics of a reactor, or for that

matter the dynamics of any physical system, one has to take

four interrelated steps. The steps will not necessarily be

listed in their order of importance but rather in a sequence

appropriate to this discussion.

The first step is to decide which variables will be used to

characterize the system. For example, a system of a battery and

a resistor is usually characterized by a voltage, a current, and

a value for the resistance. In the same sense some variable

must be chosen to characterize a nuclear reactor.

In making this choice there are several conflicting factors

that have to be accommodated. At one extreme one could consider

the position and velocity of every single particle in the

reactor, Thus, one could have a complete characterization of

the system but a characterization which is impossible to analyze.

At the other extreme one could consider the reactor as a black

box and characterize it by only one variable, say the average

power. This may result in a simpler analytical problem but it

does not distinguish either between hot and cold spots or between
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establishment of general and exact solutions is practically

impossible. For this reason, one is forced to consider approxi

mations to the equations and/or to the solutions. Approximate

solutions are very practical provided they are used in their

range of applicability. Approximations and evaluations of their

range of applicability require a thorough understanding of the

physics of the system.

The fourth step, of course, which underlies the previous

three steps, is to end up with results which can be interpreted

and/or verified experimentally. Here also there are serious

difficulties, particularly for problems in dynamics which involve

nonlinearities. Little is known, for example, about the identi

fication problem of nonlinear systems, not only in the reactor

field but also in system dynamics in general.

1.2 BALANCE RELATIONS

In the light of the previous remarks let us now examine

how we derive a balance equation for, say, the neutron density.

The conservation of neutrons in a reactor may be expressed

analytically by means of transport theory. Admittedly, transport

theory equations do not necessarily lead to specific and explicit

results. However, these equations do provide a vehicle for

setting up a frame of reference for what is to follow.

The variable which seems appropriate in writing a balance

equation for neutrons is the neutron density N(r,E, £L ,t) as a

function of position, r, energy, E, the solid angle in which the

neutrons move, Li , and time, t. Since we are not interested in

—3—



specific solutions at this point, we will write down a very

general equation describing the time rate of change of N at

every point in the reactor and for every energy and every solid

angle. In fact we can be so general as to write the equation on

one line only:

F Production Destruction 1 N — dN[ Operator Operator J —

There is, of course, some ambiguity as to what constitutes a

production or destruction mechanism since we can change one to

the other merely by changing its sign. We won’t belabor this

point any further except to say that as a consequence of this

ambiguity there are certain reactor parameters (such as lifetime

for example) which cannot be uniquely defined.

To recall what is involved in these production and destruc—

tion operators consider the number of prompt neutrons produced

by fission. We take the neutron density, N, multiply it by the

fission cross section, E and the relative neutron velocity, v,

to find the differential reaction rate. This reaction rate is

then multiplied by the average number of neutrons per fission,

r(E) , and by the fraction which appear as prompt neutrons,

(1— 3 ). The result is integrated over all energies and all

solid angles to obtain the total number of neutrons produced.

To account for only those neutrons which appear per unit energy

in the energy range E to E+dE the integral must be multiplied

by the prompt neutron spectrum, f0(E), Similarly, in order to

account for only those neutrons which are in a unit solid angle

-4—



in the angle range 2 to + d2, the integral is also

multiplied by the neutron emission angular spectral function or

by l/4ir if the emission is assumed isotropic. Thus the

prompt neutron production term is

f0(E)fdfdE’(I_)v(E’)vf(E’, t) N(r, E’,Ic2’, t).

(2)

Similar terms can be written for scattering, total absorption,

leakage, delayed neutron production etc., but we will forego

these terms and keep the symbolic representation of Equation (1).

It should be pointed out that if E’ in Equation (2) is

regarded as the relative energy between targets and neutrons,

then one has to include a probability distribution in the inte

gral either for the relative energy or for the target velocities.

Another way of looking at this problem might be through consider

ation of cross sections that are averaged over the velocity

distribution of target nuclei.

Returning to Equation (1) we recognize that the difficul

ties encountered in trying to solve it stem from the fact that

seven independent variables are involved and from the fact that

the macroscopic cross sections depend on the very quantity, N,

which we want to find. This dependence arises because N deter

mines the energy released in the reactor and thus is coupled to

the cross sections.

One way to simplify the problem might be to attempt to

reduce Equation (1) into a form which does not depend, at least

explicitly, on all seven independent variables. This is

—5—



essentially what is formally achieved when we reduce Equation

(1) (and the associated delayed neutron precursor equations)

into the form of the point reactor kinetics equations.

1.3 REDUCTION TO THE POINT KINETICS EQUATIONS AND EFFECTS OF

SHAPE CHANGES

The reduction can be achieved by a large variety of methods.

We will describe only three of these methods.

For the first method suppose that we write

N G(t)Ng(r,E,,t) (3)

with the restriction that G(t), which we might call the growth

function, is so selected that Ng(iEiLit) remains always bounded

for any and all values of its arguments. Ng is in a sense a

shape function because it is related to the relative distribution

of neutrons in the phase space of the reactor as opposed to

G(t), which presumably accounts for any overall growth or decay

tendencies of the neutron population.

Next assume that we have an arbitrary critical reference

reactor in which the adjoint density is N*(r,E,Q). The equation

describing N* is

Steady State Steady State

Production — Destruction N* = Q . (4)

Operator Operator

Multiply Equation (1) by N*, multiply Equation (4) by N,

subtract the two resulting equations, and then integrate over

all r, E, , to obtain an equation of the form:

—6—



P’8G+XC [Infd3rdEdN*N9]G.

(5)

Similar equations can be obtained for the equivalent delayed

neutron precursor concentrations, C(t):

.14LGXIC + [-InJd3rdEdN*Ng]Cj
. (6)

For the exact definitions of i9 and A see Henry’s paper(i).

The difference between this formulation and that of Henry’s is

the retention of the terms in the square brackets. It is evident

that Equations (5) and (6) are, at least in form, the same as

the ordinary point reactor kinetics equations except for the

logarithmic rate terms.

The quantities p , and A are short hand notations for

many things which we quite often do not know how to express

analytically or measure experimentally. They are in general

time dependent and they involve integrals over all independent

variables except t. The integrands depend on N*, Ngi changes in

cross sections etc. For example, a typical term in p is of the

form

pfd3LdEd0NgN*
. (7)

1. A. F. Henry, Nuc. Sci. and., 3, 52 (1958).

—7—



The formal definitions of p , /3 and A involve a norma

lization factor which is completely arbitrary. Therefore, these

quantities cannot in general be interpreted as physically

meaningful. In other words it is only the ratios p/A or

/A which may be measured (when they can be measured)

experimentally and which may thus warrant a physical definition.

Let us now consider how we use Equations (5) and (6) to

study reactor transients. Suppose that we are able to ascertain

from experience that Ng is a weak function of time, i.e. the

variation of Ng is small over a long period of time (long

compared to the time of interest of the reactor transient in

question). Then if we approximate Ng by a time independent

function, the values of p/A and /3/A that are thus calcu

lated will be good approximations at least to second order. The

logarithmic term in Equations (5) and (6) can be neglected

altogether without appreciable errors, and thus G(t) is a fair

approximation to the average reactor power.

On the other hand, if we follow exactly the same procedure

in cases where Ng varies a little but over a short period of

time then the calculations of p/A and ,/A are still

good to second order, but Equations (5) and (6) involve serious

errors because of the neglect of the logarithmic term. To

appreciate this fact, note that the logarithmic term enters

the equations in the same manner as p/A and, therefore,

it may be considered as a reactivity term. “Back of the envelope”

type calculations show that it can be of the order of ½ to 1

dollar for transients which occur over 10 milliseconds in

—8—



shape as indicated by the solid line with a corresponding

measured current and inferred power. If the shape changes so

that the slope in the vicinity of the counter remains the same,

as indicated by the dashed line, then the reading of the counter

will remain the same while the power will be entirely different.

In summary then the growth factor, G(t), has a practical

interpretation only when the shape function is either constant

with respect to time or changes by a small amount over a long

period of time.

This brings us to the second way of reducing the transport

theory equations. If we were really interested in the reactor

power we should not have been weighting these equations with

the adjoint density but rather with the fission cross section.

If we repeat the same steps as before except that we use

instead of N* we obtain equations which look similar to Equations

(5) and (6), and they are practically identical when there are

no shape changes. The two sets of equations are not comparable

when shape changes occur, however, because one describes power

and the other describes the growth factor.

A third possibility of deriving kinetic equations from

transport theory is by multiplying the latter by the cross

section of a counter and integrating over all variables except

time. Again equations which have the same form as the kinetic

equations are derived. These have equivalent p. , A , etc.,

but have as a variable not G(t) but the counter readings c(t).

Although these equations describe the experimental readings of

a counter they have the disadvantage that they cannot be used

—10--



reactors which have lifetimes in the range of i04 — 10—5

sec.

From another point of view, it may be argued that the

logarithmic term may be made equal to a constant (and its rate

of change equal to zero) by selecting an appropriate variable,

Ng. If this variable, Ngi is used in the calculations of

p/A and $/A then of course there will be no approxi

mation stemming from Ng. If we assume that this can be done

in a practical situation then the resulting equations would

describe the time dependent behavior of the component of N

which has the same shape as N*. This is fine if we are interested

in following the amplitude of the fundamental mode. But if we

are interested in comparing the solution, G(t), of the equations

with the output of a counter then clearly when there are flux

shape changes during the transient this approach would be of

little practical value.

As an example of the effect of shape changes consider the

sketch below. Assume that the reactor originally has a flux

Counter

Reactor

—9—



L.
X0 = 60cm.

I 2 3

X0 = 240cm.

x-direction is subdivided in twelve mesh points. A transient

is introduced by changing the fast and thermal fission cross

sections of region 1 of each reactor in a manner shown below.

With the help of the computer code WIGLE, the fast and thermal

fluxes ‘1(x,t) and S3’2(x,t) are calculated as functions of

position and time. Since the time of interest here is only 10

msec, no delayed neutrons are considered.

On the basis of the knowledge of and ‘2 one can now

compute the G(t) function and the corresponding p/A assuming

that the logarithmic term is constant (the rate term equal to

lOms

—12--



for the description of the power when shape changes occur. This

is indeed a disadvantage, since one performs dynamic experiments

in order to determine power variations and thus calculate feed

back effects.

The results of this discussion indicate that in order to

describe transients involving fast shape changes we will either

have to modify the concept of reactivity or abandon it entirely

and attack the problem as a space—time dependent problem. A

lot of work has been done in space—time dynamics. One of the

main disadvantages of this work is that the results are not

suggestive of specific experiments. For example we know that

when the definition of reactivity is applicable, one can either

put a reactor on an asymptotic period or use oscillator experi

ments to measure p /A . Thus the results of computations

can be readily verified. Unfortunately this is not true for

many of the space—time techniques that have been developed. Thus

it seems to me that we must develop space—time models which are

amenable to direct experimental verification.

1.4 AN EXAMPLE OF THE EFFECT OF SHAPE CHANGES

An example of some of the effects caused by shape changes

is demonstrated by the computer experiment performed, at my

request, by Al Henry and his group at Westinghouse. Two

reactors sketched on the next page were considered. The

reactors are specified in terms of their transverse bucklings

and the material properties of each of the three regions 1, 2,

3, on the basis of a two-group diffusion theory model. The
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zero). Given the material properties of the two reactors, one

can also calculate the lifetime ( A = iO eec), the conventional

reactivity and the “power” that is derived from the “conventional”

kinetics equations. The reactivity is computed assuming no

shape change with respect to the critical reference reactor.

This reactivity for both reactors is shown in the sketch below.

In other words it behaves similarly to the variation of the

fission cross sections. On the basis of this reactivity and the

A = lO sec., the “power” should behave as curve (1) below

for both reactors. The computed G(t) values,however,are as

shown by curves (2) and (3).

“Power” from conventional
kinetics equations

p

0.02

-0.02

lOms

106

500

100

G(t) for 240cm Core

G(t) for 60cm Core

lOms t

—13—



Presumably all these 3 curves should coincide. This, however,

is not the case.

The p/A that must be used in order to have the

computed G(t) as a solution of the kinetics equation is shown

in the sketch below.

This figure illustrates how different a “reactivity” than the

conventional reactivity must be used in order to reproduce the

growth factor.

The important point to be learned here is that even in

relatively small reactors, flux shape changes that occur over

short periods of time make the usefulness of kinetics equations

very doubtful.

In the next lecture I will discuss the concept of a space

dependent transfer function. By approaching the problem from

the general point of view that I have developed so far, I will

prove quite rigorously that even though there may be transfer

0.06

0.04

0.02

240 cm Core

60 cm Core

Conventional reactivity

(Oms
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functions which are space dependent there cannot be space

dependent transfer functions between neutron fluctuations and

reactivity or average reactor power and reactivity. Such

transfer functions, between flux and reactivity or power and

reactivity, are always space independent.
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11.1 CONSISTENT TRANSFER FUNCTIONS

The purpose of the first lecture was to show that point

reactor kinetic equations are derived by averaging over various

reactor properties. The averaging procedures lead to such

quantities as reactivity, lifetime, and effective delayed neutron

precursor fractions which can be meaningfully correlated with

experiment only when there are no appreciable or very rapid

flux shape changes. As illustrated by the computer experiment,

difficulties are encountered if one tries to understand space—

time reactor problems by looking only at one point (i.e. by

using the point kinetic equations).

Today we will consider an example of an experiment which

indicates not so much an error as a need for a consistent

interpretation of results. The experiment was performed by

P. T. Hansson and L. R. Foulke(2 on the Nora Reactor in Norway.

A rod was oscillated sinusiodally in the center of the reactor

in order to produce a sinusoidal oscillation in the absorption

cross section. The neutron fluctuations, as a function of

oscillator frequency, were measured at various distances from

the rod. Results of the type sketched on the next page were

obtained. Similar results were found to hold true for the

phase angle.

2. Hansson, P. T. and L. R. Foulke, NSE, December, 1963.
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Expected from point kinetIc equations

oo

Transfer or Experimental results
Green’s Function 50 cm from the rod

Experimental results
100 cm from the rod

As is shown, the difference between the experimental

dependence of the fluctuations on position and the “theoretical

curve” increases, for relatively high frequencies, as the

distance between detector and oscillator increases.

In order to understand this phenomena, the authors solved

a set of equations, such as those given by Weinberg and Wigner

for wave effects, on an analog computer and found that under

certain geometry conditions the sinusoidal oscillation of a

localized absorber will result in neutron fluctuations with

position dependent amplitude and phase. They correlated, to

a good degree of approximation, the experimental results with

this theoretical prediction.

They then took a third step and implied that here is a

case of a space dependent transfer function. Their argument

was that if the oscillated cross section is averaged with the

steady state importance, or flux squared, then the resultant

reactivity will also vary sinusiodally and in phase with the

change in the absorption cross section. Therefore the experi—
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mental results on neutron fluctuation are also proportional to

the reactor transfer function and they indicate a space dependent

transfer function.

If one defines reactivity as a quantity which is propor

tional to then this interpretation is correct. However,

if the definition of reactivity given in the first lecture is

adhered to then this interpretation is not acceptable. In order

to have a consistent interpretation of the experiments, one

must derive an analytical model which is appropriate to the

prevailing experimental conditions and thus define the appro

priate reactivity which corresponds to the experiment.

Specifically, in the experiment under consideration the

flux is measured at one position as a result of a perturbation

introduced at a different position. To correlate the results

of this type of experiment one should start with some space—time

dependent equations, for example the wave propagation model as

given by Weinberg and Wigner, and then reduce these equations to

some others which are time dependent only and which relate the

measurement and the perturbation. Since a local measurement

is being made, the reduction must be performed by multiplying

the space—time dependent equations by the cross section of the

counter and then integrating over all space. Upon performing

this reduction, one finds that the resulting reactivity is neither

in phase with, nor directly proportional to the cross section

change, Instead, the relation between reactivity and

absorption cross section involves an additional factor which

has a position dependent amplitude and phase. In addition,
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it is very easy to show that if the neutron fluctuations were

divided by p/A calculated in this consistent manner, the

result does not depend on space and is equal to what is considered

as the space independent transfer function.

11.2 LIFETIME

In the last lecture we considered the concept of a neutron

lifetime and noted that except for cases when the reactor is on

an asymptotic period (flux separable) the concept of lifetime

or that of reactivity are not completely meaningful. Both p

and A have a time dependence which can be quite strong,

particularly during fast shape changes. In spite of this, we

do use the lifetime as an indication of the type of reactor

under consideration and in fact the value of this parameter is

one way of distinguishing the group attending these lectures,

A ‘‘ l0 to 10—8, from other groups interested in water

reactors, A ‘ l0.

As an exercise, let us now pose the following question.

Assume that we have a choice between two types of reactors,

thermal and fast. Both reactors have a negative Doppler

coefficient of reactivity and both are designed not to melt.

Considering only these criteria, which of the two reactors is

safer? The usual answer is that a thermal reactor is safer

since it is more sluggish. To see whether this is indeed true,

let us look at the following arguments.

First, let us consider the controllability of a power

reactor, that is, the ability of a reactor to change power level
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by 10 or 20% etc. in order to adjust to load requirements. This

is a slow type of change. consequently, it does not depend on

the neutron lifetime because in this regime of operation the

delayed neutrons play a predominant role and define the “time

constant” of the system. This time constant is of the order

of 0.1 sec, i.e. several orders of magnitude longer than the

thermal or fast lifetime.

If we consider the power level at which loss of linear

stability occurs (i.e. the power level at which the “linear

approximation” to the point kinetic equations with feedback

becomes unstable), then for lagging feedback transfer functions

the fast reactor is preferable since the shorter the lifetime

the higher the power level at which we have loss of linear

stability. Of course this statement presumes that all other

parameters are equal for the thermal and fast reactors in

question.

Finally, let us consider the question of safety with regard

to large step reactivity insertions which are compensated by

the Doppler effect. Under these conditions the power burst

is as shown in the sketch below. The quantity of interest

Power

t
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from the safety point of view is the integral under the burst

curve or the total energy released and stored in the fuel. If

it is assumed that the negative Doppler feedback reactivity

varies as the n—th power of the energy stored in the reactor,

then the total energy is independent of the lifetime. In other

words, under the same conditions of step excitation and feedback

strength, the same amount of energy will be released and stored

in the reactor during a burst, regardless of the value of the

lifetime. Thus again the lifetime is not a quantity which can

be used to characterize the course of this hazardous condition.

With regard to loss of coolant, fast reactor accidents with

core meltdown and reassembly, it turns out also that the energy

released during the accident is not a very strong function of

the lifetime.

The reason for the preceding exercise and the accompanying

arguments and remarks is the following. Historically there has

always been some fear associated with the safety features of

fast reactors because of their short neutron lifetime. It is

evident that this fear is not justified since the lifetime is

not necessarily the most important parameter which characterizes

serious accidents.

11.3 APPLICABILITY OF THE KINETICS EQUATIONS TO STABILITY STUDIES

Before considering the problem of stability itself, let us

have another look at the point kinetics equations.

In the first lecture we assumed that the neutron density

could be separated into a product of two functions one of which,
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Ngc is bounded for all values of its arguments. The shape

function Ng enters into the definitions of c /3 and A and

the assumed boundedness of Ng is consistent with the intuitive

interpretation that we give these quantities. In other words

since it takes a finite time for neutrons to move around the

reactor, A is bounded. Also since there is a finite number

of neutrons per fission, the excess of neutrons which cause the

neutron density to grow or decay is finite and therefore p is

bounded etc.

In view of these remarks we may argue that the kinetics

equations can be used for stability studies of the growth

function G(t) by assigning to the coefficients p/A and

/3/A a variety of bounded variations either as functions

of time or as functionals of G(t). Of course, by treating a

large variety of changes in the coefficients, one hopes to cover

a large number of, if not all, conceivable stable or unstable

behaviors of G(t) and establish conditions for overall reactor

stability or instability.

Of course, it must be emphasized that stability analyses

of this type are by themselves not adequate to understand a

reactor dynamically. The reason is that G(t) may be stable and

yet the neutron density may involve such localized peaks that

certain fuel elements melt. Therefore in a large reactor,

even when it is stable, one must make an explicit space—time

analysis.
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At this point, one may raise the justified question, “Since

it is necessary to analyze the space—time behavior of the reactor

why bother with the point kinetics?”

One answer to this question is that in many cases it is

helpful to know beforehand whether the overall power is bounded

or not. The reason is that usually the exact space—time solution

cannot be found and instead it is approximated by a series

expansion. A series expansion approximation may introduce

mathematical restrictions for the convergence of the series.

Such restrictions may not necessarily reflect the physics of

the problem or the properties of the exact solution of the

problem. One example of the kind of difficulty that I am

talking about is the function 1/(l+x), defined for all x > 0.

This function can be expanded as:

1/(l÷x) = 1 - x + x2
- (8)

Note that the series expansion is valid only for x < 1. The

series diverges tot x 1. The function l/(l+x) is very well

behaved for all x 0 and yet its series expansion is not.

Of course in this case we can combine the terms of the series

and have the function in closed form. This, however, is not

always possible. In summary, because series expansions can

introduce unnecessary stability conditions, it is often practi

cal to develop stability requirements by examining the behavior

of the overall function rather than the behavior of some series

expansion of the function.
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11.4 SOME STABILITY CRITERIA

In attempting to derive stability criteria on the basis of

the ordinary kinetics equations we approach the problem in the

following ways:

a) First we consider the form of these equations with the coeffic

ients of G(t) and C1(t) as bounded functions or functionals of

G(t). Many useful properties concerning G(t) can be thus

derived. For example, it can be shown that no physical reactor

admits a finite escape time. This is simply a consequence of

the bounded nature of the coefficients of the kinetics equations.

b) Next we may consider that the kinetics equations do not

contain any logarithmic terms and that the reactivity can be

expressed as

PPex+LtT)[T)_Go]dT (9)

Thus we may attempt to establish conditions which must be satisfied

by f(t) so that the reactor is stable.

c) Finally we may assume that the logarithmic term is present

and thus try to see what kind of conditions must be satisfied

in order for the reactor to be stable.

In what follows we will observe that in both cases (b)

and Cc) the conditions that we will derive will pertain to the

linear properties of the system. This is desirable because we

do not as yet have experimental means for identifying nonlinear

system characteristics.
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Suppose we write the kinetics equations in the form:

G+2X C
dtA

dC• /3.
; i=I,2,...m,

(10)

and then consider briefly what exists in the nuclear literature

about the stability of the solutions of equations of this type

if p is of the form given by Equation (9).

To begin with, the form of Equation (9) has the following

implications:

1) Whatever the feedback effects are, they are decoupled (i.e.

moderator temperature changes result in a moderator reactivity

effect but do not affect the reactivity effects of the fuel

etc.).

2) The reactivity effects are linear. In other words, they are

related to their causes by a linear relationship. For example,

if the void changes by a certain amount, the void reactivity

effect changes directly proportionally to the void change etc.

3) The equations which relate the reactivity effect causes to

the energy stored in the reactor are linear. In other words,

the fuel temperature is a linear function of the energy stored

in the fuel etc.
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In 1955 Welton established a condition on the feedback

kernel, f(t), which is sufficient to insure that any solutions

of the nonlinear problem described by Equations (9) and (10)

are asymptotically stable. This condition may be stated as

Re
s=Jw)

(11)

where F(s) is the Laplace transform of f(t).

The appealing aspect of inequality (11) is that asymptotic

stability for solutions of a nonlinear system is guaranteed by

imposing restrictions on the linear properties of the system

(properties which can also be established experimentally, i.e.

through transfer function measurements)

There are, of course, drawbacks to Welton’s criterion.

1) Most of the operating reactors do not satisfy quation

(11). Yet all of these reactors are operating stably and safely.

2) The implication of the criterion is that the reactor is

asymptotically stable regardless of the value of the operating

power level. This is too severe a restriction to be placed on

the design of any reactor since material problems limit the

operating power level anyway.

3) The criterion does not include the effect of delayed neutrons.

It can be shown that stability requirements derived without

delayed neutrons may be either overconservative or sometimes

less restrictive than necessary. Therefore, delayed neutrons

must be considered.
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4) By satisfying Equation (11) one automatically guarantees

asymptotic stability. However, this may not be necessary.

It may be as good and as practical to design a reactor to

admit simply bounded solutions for a given range of operating

power levels (Lagrangian Stability). It can be shown that

when Lagrarigian Stability is acceptable, the conditions which

must be satisfied by the reactor parameters are not as restrictive

as those necessary for asymptotic stability.

On the basis of these motivating criticisms I will discuss

methods of evaluating other stability criteria either for

asymptotic or Lagrangian stability in the next lecture.
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111.1 CONTINUATION OF STABILITY ANALYSIS

So far in this series of lectures we have considered the

neutron balance problem from a general point of view and we have

reduced the pertinent equations into a form which at least

apparently is simpler than the original one. We also looked at

the necessity for meaningful experimental interpretation of

results and found that difficulties can occur in the case of

fast or large transients. We then looked at the applicability

of the kinetic equations to stability studies.

In view of some of the previous comments we would like to

know how, if the point kinetics equations are to be used for

stability studies, the results of the analysis can be implemented

experimentally. We suppose for a moment that we are not very

much concerned about the physical meaning of the growth function

etc. Instead, suppose that we will try to manipulate the dynamic

equations in the hope that we can arrive at conclusions which

guarantee stability or boundedness and which can be implemented

experimentally.

In finding stability criteria we will use the kinetic

equations in their ordinary form along with the following guide

lines. 1) We will not try to design a reactor which can with

stand an infinite power since we are limited by materials

considerations regardless of the results of the analysis.

2) We will try, insofar as possible, to introduce the properties

of the delayed neutrons into the stability criteria so that we

can either take advantage of their damping effects or to account

for their destabilizing effects.
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3) We will try to arrive at results which guarantee either

asymptotic stability or Lagrangian stability.

Let us now return to the general kinetics Equations (5—6)

which are:

=
G + ! X1C [nfd3rdEdN*Ng] G

dC /3. ro 1
x1Ca + [tnfd3idEdN*Ngj C

(12)

We may note in passing that the logarithmic term may be inter

preted as a measure of the rate of change of the lifetime A

The quantities 3, and A are, in general, functions of

time and/or the average reactor power. We can, however, write

them as a sum of some steady state or asymptotic values corres

ponding to an operating level and some increments, The

increments we are talking about in this case are not necessarily

small but rather deviations from a convenient reference, Thus

Equations (12) can be lumped into one equation of the form

=f0(g(r<t))
[g+G0]ftd(tr)g(r)dr

d(t)($0/A)(8(t)X.eit) (13)

G(t) qCt) + G0 , (14)



where are the asymptotic values of $. and A

at G0 and the functional f0(g( T < t)) contains all the

increments arising from $j and A as well as the expressions

for p and the logarithmic term. The argument r < t

implies that the functional f0 depends onlyon thepast history

of g. Note that the contribution of delayed neutrons under

asymptotic conditions (invariant A , ,B) is represented by

the convolution integral with the kernel d(t).

The functional f0 can also be written as:

f0 = f1 +f (g(r<t)) (15)

f =J f(t.--r)g(r)dr . (16)
0

In other words f1 represents the linear feedback under invariant

I3 and A , while f2 accounts for all nonlinearities. The

exact functional relation between f0 and g( T < t) for different

types of transients is difficult to identify. However, since

there is a limited number of neutrons per fission there are

some properties of the functional f0 which can be stated without

actually ever stating the exact functional relation. For

example, for very small changes of g(t) compared to G0, f0 can

be approximated by the linear convolution integral f1 (Equation

16). This is the analytical model which leads to oscillation

tests. When the changes in g(t) are large and/or fast, then

the functional f2 also becomes important, but regardless of its
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H(s) = reactor transfer function at power G

= [S+D(S—G0F(S) ]
If we can guarantee something about the stability of the

reactor by looking only at the properties of the function k(t)

then we will have achieved the goals we set out to reach at the

beginning of this discussion. Indeed k(t) depends on the delayed

neutrons and the operating power level and in addition is

related to linear properties of the system which are experi

mentally identifiable without hazardous experiments.

To this end suppose that we require that

a) k(t) be a positive definite function

b) f(t) < 0.

The definition of a positive definite function according

to KyFan(3) is that the double integral in Equation (17) is

positive regardless of the values of g(t). In fact if k(t) is

positive definite then its Laplace transform is a. positive real

function. In other words, the phase shift of {Xk(t)} is less

r i—i

than ±90° or the real part, Re H(s) .,
is positive.

L Js=jw
Note that the requirement that k(t) be a positive definite

function is less restrictive than Welton’s criterion, provided

that we consider only a limited range of G0. The reason for

this is that Re s+D(s) 1 > 0 and so ReF(jw ) does not

L Js=jw

3. KyFan, M., ‘les Fonctions Definies Positives et les Fonctions

Completement Monotones, Leurs Applications au Calcul des Proba—

bilites et a la Theorie des Espaces Distancies.” Memorial des

Sciences Mathematigues, Fascicule CXIV, Paris (1950).
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have to be negative for all values of c’ in order for H(jc)

to be positive.

Note also that if k(t) is positive definite then it can

be thought of as the input impedance of a passive electrical

network. If g(t) is the input current, then the double integral

in the left hand side of Equation (17) can be thought of as

the energy supplied to the network and therefore is a positive

quantity.

Now if the time rate of change of the double (positive)

integral is negative for large values of g(t), then g(t) will

be Lagrange stable. It turns out that this is indeed the case

for f(t) < 0. The proof is as follows:

We know that g(t) has a lower negative bound (i.e. g(t)

cannot be less than —G0 because this would imply negative power).

On the other hand for f(t) < 0 there is some level g1 and a

time T such that when g > g1 and t > T

f1 j f(t-r)g(r)dr<O
0

For such a f1, f2 varies more slowly than f1. Therefore the

right hand side of Equation (17) has the sign of the first term,

namely it is negative. Therefore g(t) is bounded both from

above and below, provided that the two stipulated conditions

are satisfied.

Incidentally, note that we have also proved asymptotic

stability in the small since the reactor transfer function at

power G0 is a positive real function.
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Also, depending on the exact form of f(t) the Lagrangian

stability considered above may be equivalent to asymptotic

stability.

Actually, the assumption f(t) c 0 implies Lagrangian

stability regardless of whether k(t) is positive definite or

not. In order to prove this the kinetics equations must be

written in a slightly different form but we will not pursue

this point any further.

It must be emphasized that the derived conditions on k(t)

and f(t) are only sufficient. Others could be derived by

rearranging the equations in a different manner. However, the

derived conditions account for the delayed neutrons, for the

finite range of power level and can tolerate feedback functions

which do not satisfy Welton’s criterion. (4)

III • 2 EQUILIBRIUM STATES AT INFINITY

Another method for studying stability is based on the

properties of equilibrium states at infinity. The technique is

probably applicable to any system which can be described by

ordinary differential equations.

We will assume that we have succeeded in approximately

describing the behavior of a physical system by means of a

set of ordinary autonomous differential equations of the form:

v vi. =12 “ ‘18dt ‘1 ‘“I “2 I
I ) I ) • III

rThork was done under Project SIFTOR. The first volume
of this work should be released by December 1964 by MIT Press.
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where x. are the variables of interest and X. is some nonlinear
1 1

function of these variables As was pointed out before, these

equations may be applicable only over a limited range of the

variables.

The usual method of approach to the problem of stability is

to find the equilibrium states by looking for solutions of the

set of equations

X1(X11X2,...X) O ; = l,2,...n)
(19)

and then to study the stability of these equilibrium states,

some of which may be stable, others unstable, others may

correspond to limit cycles, etc.

For the moment let us restrict ourselves to a two dimensional

system that has only one equilibrium state which, with no loss

of generality, we will choose at the origin of phase space.

Let all the trajectories described by the solutions of the

system converge to the origin as shown in the sketch below

Unstable
eq ui I lb r i urn
state at infinity.

x2

Stable
equilibrium
state at the
origin.

xl
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These trajectories must start from somewhere. If there are no

other equilibrium states in the finite phase space, there must

be some at infinity. (Equilibrium states at infinity can be

disclosed by a transformation of variables into homogeneous

coordinates). If we assume for the sake of discussion that

there is only one equilibrium state at infinity, then the complete

portrait of the trajectories of the system must be as shown in

the sketch. Since trajectories originate from the equilibrium

state at infinity, this state must be, at the least, locally

unstable.

The importance of the preceding oversimplified remarks

must now be evident. Given a system of differential equations,

if it can be shown that all its equilibrium states at infinity

are locally unstable, then all the solutions of the system

are bounded. In other words, the conditions for all equilibrium

states at infinity to be locally unstable or stable constitute

the necessary and sufficient conditions for the solutions to be

bounded or unbounded respectively, regardless of initial condi

tions.

This simple thought has been up to now explicitly excluded

from investigation because it was ar.gued that one should not

consider solutions for large values of the variables since the

equations are (physically) valid only over a limited range of

the variables. This statement is true. However, if one can

determine the behavior of the solutions in the finite space by

looking at conditions on the solutions at infinity, the results

are just as acceptable as if they had been derived by any other
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method, The reason is that the equations are mathematically

valid over the entire range of the variables, regardless of

whether they are physically correct over the same range or not.

As we already mentioned, examination of equilibrium states

at infinity requires transformation into homogeneous coordinates,

i.e. x is replaced by x/z etc. and then z is allowed to approach

zero etc.

An example of this method will be discussed next time.
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IV.1 REVIEW

Last time we attempted to answer some questions of stability

by formulating the problem in terms of the function k(t) (see

Equation 17), The double integral in the left hand side of

Equation (17) was interpreted as an “energy” function of an

equivalent passive electrical network. The double integral could

also be thought of as a positive definite function with a

negative time derivative, namely as a Liapunov function. What

ever the interpretation, the important result of that discussion

is that we have related the nonlinear stability of the system

to linear properties which can be computed for analysis and

experiment. They also can be measured experimentally for

verification and comparison of theory.

We also discussed a technique for the derivation of condi

tions of boundedness of solutions of nonlinear ordinary differen

tial equations based on the local stability properties of

equilibrium states at infinity. This technique has been used

extensively by us for problems in which the nonlinearities are

of the rational polynomial type. The essential point here is

that if the equilibrium states at infinity are locally unstable,

then the solutions are bounded.

IV.2 AN EXAMPLE

As an example of the application of the method of using

the stability properties of the equilibrium states at infinity

to derive conditions for boundedness, let us consider a simple
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xenon problem. The normalized equations which represent this

problem are

(20)

X(yøX) (21)

-f= X(ø—I) , (22)

where 3’ is the flux, X is the xenon concentration, I is the

iodine concentration, X and are decay constants for

the appropriate radioactive species.

Woo/Te y=yx+yI

a YxYo f3y1(y—c80);7c80/(y—c80).

is the reactivity added, Te is the equivalent lifetime

for neutrons (i.e. it is dominated by the delayed neutrons)

is the xenon yield, y1 is the iodine yield and c is a constant

which converts the xenon concentration into reactivity effects.

This problem was first studied by Jack Chernick. (5) Since

the exact yields of xenon and iodine in a reactor are not known,

5. J. Chernick, NSE 8, 233 (1960)
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Chernick considered the entire range of possible yields in order

to study the stability of the reactor.

We now want to analyze this problem by the method of equili

brium states at infinity. By this method we will derive both

necessary and sufficient conditions for boundedness.

In order to put the equilibrium states at infinity in

evidence, we replace ‘ by ‘/z, X by X/z and I by I/z and then

let z approach zero. The details of this procedure will be

omitted. However, for our purposes it suffices to say that after

the change of variables and elimination of the time between the

resulting equations we find that:

d3’ dx dl dz

X I z =0

w0(z—X)Q’ Xx( a’z+ f31z-Xz- y’X) X(—i)z 0

where means that any 3x3 determinant in this matrix is

zero or, said differently, the rank of the matrix is two. It

is evident that any 3x3 determinant in the above example yields

a combination of some two of the original three equations from

which time has been eliminated.

The equilibrium states at infinity are found by letting

z —0-0, Thus we obtain

dX dl

x I =0 (23)

-
0
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Equation (23) has the following solutions

(a) z=0 ;

(b) z=0 ; X=0

(c) z=0 ; ±wo ; x=±X,y ; 1=0.

The first two are lines at infinity while the last consists of

two points. A sketch of the possible singularities at infinity

is shown below:

O;
(Xoo,I=c)

(çSw0 ; XXxy; 10; ZO)

In order to examine the types of stability at the two

distinct points and along the lines X = 0 and = 0, we must

make a projective transformation to bring the points from

infinity to a finite region of space and we must make the trans

formation in such a manner that the eigenvalues at the equili

brium states are not altered. After making this transformation

(#cvo;X:Xxy; IO ; o) Z0; XO

(cW, I=oo)

I

\
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we then linearize the system around the projected equilibrium

points and determine whether they are stable or unstable

If we do all this we find that the three eigenvalues at

each of the two distinct points (±w0;X±Xy;IO;Z.Q )

are equal to Both of these equilibrium states are thus

unstable and trajectories can only originate from these two

points.

To consider the results along the line Q’ = 0 ; z = 0, we

first note that the hyper—surface z = 0 is an integral hyper—

surface of the system, and in addition that ‘ 0 is also an

integral surface of the system On z = 0 we established that

the two distinct points are unstable and thus that trajectories

must emanate from them. In other words the trajectories will

tend to end on the line ‘ = 0; z = 0 as shown in the sketch

below.

I
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and should be further exploited.

IV.3 APPLICABILITY TO FAST REACTORS

So far no explicit mention of the dynamics of fast reactors

has been made even though this presumably is a conference on

Fast Reactors. The reason for the omission is intentional

because we feel that there is no difference either in the form

of the equations or the analytical procedures which are used in

fast or thermal reactors. The only difference lies in the way

we calculate, if we can, the coefficients which enter the

kinetics equations. These calculations may at times become

very involved, particularly when we try to account for reactivity

phenomena arising either from structural charges such as bowing

effects or from phase changes such as boiling etc.

In this regard, a special problem which requires specific

techniques for the calculation of reactivity etc. and which is

peculiar to fast reactors is the problem of core meltdown and

reassembly into a supercritical mass. Some techniques have

been developed but will not be discussed here.

-45 -




