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Abstract 

 

 This study examines the effects of the introduction of zebra mussels (Dreissena 

polymorpha) on fishes and benthic invertebrates in the middle stretch of the Huron River in 

southeastern Michigan. Fish community surveys were conducted during the summer of 2008 and 

compared with data taken in the same area in 1977 and 1993, before the introduction of 

Dreissena. No significant difference was detected in fish species richness and diversity between 

sites with mussels versus those without. However, several significant changes in fish community 

composition were detected, with fishes belonging to the families Centrarchidae, Percidae, and 

Ictaluridae increasing significantly and Cyprinidae and Catostomidae decreasing significantly as 

Dreissena density increased. Historical data showed a significant decline in the abundance of 

cyprinids and catostomids after the introduction of Dreissena. Benthos sampling conducted in 

2008 and 2009 showed a dramatic increase in the overall abundance of macroinvertebrates 

associated with increased mussel density, as well as a significant increase in the numbers of 

chironomid larvae and amphipods and a decrease in the number of oligochaetes. Results of this 

study indicate that the introduction of Dreissena to the Huron River has not resulted in a loss of 

fish biodiversity, but communities of fishes and macroinvertebrates have experienced changes in 

species composition. 
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Introduction 

First coined in 1994, the term “ecosystem engineer” was used to describe organisms that 

“directly or indirectly modulate the availability of resources (other than themselves) to other 

species, by causing physical changes in biotic or abiotic materials” (Jones et al. 1994). 

Numerous examples of this phenomenon exist in the natural world, the most commonly cited 

being the construction of dams by beavers (Naiman et al. 1988), the creation of bogs by 

Sphagnum moss (Tansley 1949), and the construction of reefs by hermatypic corals.  

Many species of aquatic mollusks are capable of altering their environment by virtue of 

their own body structures (Jones et al. 1994). Their shells add spatial heterogeneity and habitat 

complexity to an ecosystem, providing living space for other organisms and refuge from 

predation and stress (Gutiérrez et al. 2003). In a study conducted on the coast of Uruguay, 

colonization of shallow, subtidal areas by mussels belonging to the genera Mytilus, 

Brachidontes, and Perna resulted in an increase in benthic macroinvertebrate species richness 

when compared with non-colonized patches (Borthagaray and Carranza 2007). This phenomenon 

is not restricted to marine ecosystems. A similar relationship was observed between unionid 

mussels in the upper Mississippi River and midge and caddisfly larvae, in which the abundance 

of the aquatic insects was directly correlated with the surface area provided by the mussel shells 

(Beckett et al. 1996). 

Like the mollusk species cited in the previous examples, zebra mussels (Dreissena 

polymorpha) and quagga mussels (D. bugensis) also function as ecosystem engineers in 

freshwater systems. Native to the Ponto-Caspian region of Eastern Europe, they were 

unintentionally introduced to the Laurentian Great Lakes via untreated ballast water from trans-
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Atlantic ships in the late 1980s. They are considered a nuisance species in North America largely 

due to their tendency to grow and reproduce rapidly, forming dense, carpet-like colonies over 

any hard substrate with which they come into contact. Dreissenid mussels are notorious for 

fouling important infrastructure such as cooling pipes for nuclear power plants, resulting in as 

much as $4 billion in annual costs (Britton 1991). Dreissena are also responsible for the 

ecological disturbances in the Great Lakes and other North American freshwater systems, 

literally choking out native species such as unionid mussels by fouling their shells and 

preventing them from feeding. A study of native bivalves from Lake St. Clair found that 

individual unionids can carry thousands of dreissenids on their shells, and that these fouled 

mussels were starving to death, containing only a portion of the lipid reserves of their unafflicted 

counterparts (Hebert et al. 1991). Because of this, zebra and quagga mussels have become 

serious threat to the survival of native freshwater mussel species, over 70% of which are already 

considered threatened or endangered due to human activity and the introduction of other aquatic 

nuisance species (Williams et al. 1993).  

In addition, Dreissena can drastically alter an aquatic ecosystem by virtue of their 

voracious filter feeding activity. Over the course of just a few years, these mussels were able to 

transform the once plankton-rich, turbid waters of Lake Erie, filtering approximately 6.4 million 

tons of phytoplankton in 1990 alone (Madenjian 1995). In less than a decade after their initial 

introduction, zebra mussels changed a previously turbid, homogeneous Lake St. Clair into a 

system characterized by clear water, increased macrophyte growth, and dense zebra mussel beds 

(Griffiths 1993). Even in large, turbid lotic systems such as the Hudson River, Dreissena filtered 

enough phytoplankton to cause a noticeable decline in biomass (Caraco et al. 1997). Such drastic 

changes could lead to a rapid restructuring of the way nutrients are distributed in aquatic 
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systems, as was observed in the shunting of phosphorus to zebra mussel beds in coastal zones 

that led to blooms of nuisance algae in western Lake Erie (Hecky et al. 2004). Recent studies 

have demonstrated a link between encroachment of Dreissena and the corresponding decline of 

Diporeia, an amphipod that forms the base of the food chain for Great Lakes fish communities, 

although the exact mechanism behind this development remains uncertain (Nalepa et al. 2005). 

While much research has been done on the impacts of zebra mussels on large freshwater 

systems, relatively little attention has been paid to the role that they play in smaller rivers and 

streams. This may be due to the fact that streams smaller than 30 meters wide have widely been 

considered unsuitable habitat for Dreissena (Martel 1996) because of their fast currents and 

consequentially high mortality rate for planktonic veligers. However, despite the adverse 

conditions for colonization, zebra mussels were discovered in the Huron River watershed, a 

warmwater stream located in southeastern Michigan, in 1994. They were most likely introduced 

via contaminated watercraft and boating equipment to Portage and Baseline lakes, two lakes 

located in the upper middle part of the river system. The mussels quickly colonized these bodies 

of water and began to move into the Huron River. However, since conditions in the first 22 

kilometers downstream of these source populations include relatively swift currents and few 

obstructions, veligers are likely to be swept away before they have a chance to settle. Because of 

this, the expansion of zebra mussels in the middle Huron River is restricted to the first few 

kilometers directly downstream from Baseline Lake (Marangelo 1997) in a pattern described by 

Horvath et al (1996) as the “source-sink” model.  

The impact that the colonization of small streams by Dreissena has on resident fish and 

benthic invertebrate communities has not been as well documented. During a fish collecting trip 

in the spring of 2007, senior faculty from the University of Michigan Museum of Zoology 
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observed that the river’s ichthyofauna appeared to be more depauperate than it had been in 

previous decades, and that the decline in fish abundance and diversity seemed to coincide with 

the introduction of zebra mussels (Dr. Gerald Smith, UMMZ Curator Emeritus, personal 

communication, May 2007). 

The primary goal of my research was to determine if zebra mussels influenced the 

abundance and diversity of benthic macroinvertebrates and fishes in the Huron River ecosystem 

relative to areas that have not been colonized. I expected to find an increase in the richness of 

zoobenthos taxa present on riverbeds colonized by zebra mussels, as well as an increase in the 

total number of benthic macroinvertebrates at these locations. I also hypothesized that fish 

communities would decline in both species richness and diversity in zebra mussel-colonized 

areas. Since this species is highly efficient at filter feeding, it contributes to a process known as 

benthification, in which energy in an aquatic ecosystem is shunted from the water column to the 

benthic zone. With the system’s resources sequestered in the benthos, I expected to see an 

increase in the number of bottom-dwelling invertivorous fishes that are capable of utilizing this 

newly available food source. In addition, I expected to see a decrease in the abundance of fish 

species that are unable to take advantage of this situation, either because their diet does not 

include benthic invertebrates or because their swimming orientation or body morphology do not 

allow them to access these resources.  

Specific objectives of this study were to 1) analyze current fish community composition 

for differences in species diversity and representation of individual species, families, and 

functional guilds throughout the study area; 2) compare recent fish population data to data 

present in historical records from the 1970s and 1990s; and 3) analyze and compare communities 

of benthic invertebrates between sampling locations.  
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Materials & Methods 

Six 50-meter stretches located along the main stem of the Huron River were selected for 

this study, three exhibiting high densities of Dreissena coverage on the riverbed, and three 

displaying little to no coverage (Figure 1). Aside from the variation described above, all sites 

displayed similar physical features. The river was relatively shallow at all locations, between 

0.29 and 0.82 meters deep on average, and was 28.3 to 48.8 meters wide. The substrate was 

predominantly gravel or cobble littered with large, partially submerged boulders. The banks at all 

sampling locations were heavily eroded, lined with large boulders, exposed tree roots, and 

overhanging branches. Riparian vegetation consisted predominantly of mature deciduous trees 

(Table 1).  

Physical features of each 2008 sampling location were recorded, including width, mean 

depth, substrate composition, condition of the river banks, and riparian cover. Depth 

measurements were made every 10 meters along the transect and averaged for each location. 

Average monthly discharge data for the Huron River at Ann Arbor was obtained from the United 

States Geological Survey real time water data website for 1977, 1993, and 2008. Average current 

velocity for each sampling location and year was calculated by dividing discharge by cross-

sectional area. Density of Dreissena on the riverbed was also assessed. Divers set up square 

meter plots at each location, one in deeper water and one closer to the bank. All mussels found 

within the plots were collected, preserved in 10% formalin, and returned to the laboratory for 

positive species identification and counting. Mean estimates of the number of mussels per square 

meter were subsequently calculated for each location (Table 1). 

Fish were sampled with a pulsed DC electrofisher mounted on a towed-barge that was 

provided by the Michigan Department of Natural Resources. Stunned fish were temporarily 
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placed a large recovery tank. Upon completion of each electrofishing session, all animals were 

counted and identified to species using keys found in Hubbs and Lagler (2004). A small number 

of voucher specimens belonging to each species were euthanized with an overdose of MS-222 

fish tranquilizer, fixed in a 10% formalin solution, and later preserved in ethanol (65%). All 

voucher specimens were returned to the Division of Fishes at the University of Michigan 

Museum of Zoology for positive identification and inclusion in the collections. The remaining 

fish were kept alive and subsequently returned to the river upon completion of sampling. 

To determine if there were any significant changes in the Huron River’s fish communities 

over time that might be attributed to the presence of zebra mussels, fish data collected in 2008 

were compared with data sets collected at the same or nearby sampling sites in previous decades 

by researchers at the University of Michigan Museum of Zoology. Species counts were taken 

from field notes of surveys conducted both before the introduction of Dreissena (Humphries & 

Smith 1977) and during the period of time when Dreissena is thought to have been introduced 

into the watershed (Bailey & Latta 1993). Since the 1977 collections were conducted with a 

seine while the others used an electrofisher, corrections for gear bias were applied using the 

adjustment factors detailed by Grossman et al. (1990), which utilized statistical comparisons to 

investigate differences in efficiencies of sampling methods for several different taxonomic 

classifications of fishes. When the adjustment factor for a particular species could not be found, a 

number for a closely related species with similar behaviors was substituted, or none was applied 

(Table 2). All decimals were rounded up to the nearest whole number after adjustment. In this 

study, fish abundance is measured as the number of fish captured per 50 meters of shoreline. 

Species richness and Simpson’s index of concentration were used to quantify taxonomic 

diversity for fish communities for each location and sampling event. Richness measures presence 
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or absence and is quantified simply as the number of different taxa found during a sampling 

event. The equation for Simpson’s index is  

 

where ni is the number of individuals in a given species, and N = ni. SI decreases as the 

diversity of a community increases, so –ln SI was taken in order to convert it into a statistic that 

increases with diversity and is independent of sample size (Rosenzweig 1995). Comparisons 

between sites heavily colonized by Dreissena and non-colonized sites were made within and 

between sampling years using a two-sample t-test. Species richness and species diversity were 

compared between all 2008 sampling locations using a Kruskal-Wallis test. In cases where a 

two-sample test was required, but the equal variance assumption was not met, a Wilcoxon rank 

sum test was applied instead. Additionally, each fish species was assigned to categories within 

four functional guilds, namely trophic guild, substrate preference, current velocity preference, 

and tolerance to siltation (Poff & Allan 1995).  Mean numbers of individuals belonging to each 

category were calculated by site for all sampling events. Comparisons were made between 

sampling locations within each year and between years using a Wilcoxon rank sum test. All 

statistical tests were performed using WaveMetrics Igor software with  = 0.05. 

Benthos samples were also collected throughout the 2008 study period and again in 

August of 2009. Two 500 ml samples of sediment were collected per sampling period per site at 

different distances from the bank. All collections were preserved in plastic containers with 10% 

formalin solution mixed with rose Bengal stain. Each sample was strained using a metal sieve 

with a 600-micrometer screen and rinsed thoroughly with water. Benthic organisms were 

removed, counted, sorted into major taxonomic groups, and preserved in 10% formalin. They 
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were subsequently identified to the lowest reasonable taxonomic level using the keys found in 

Thorp and Covich (2001) and Wiggins (1977). Mean relative density was calculated for six 

major taxonomic groups: oligochaetes, chironomids, amphipods, clams, gastropods, and 

flatworms. Mayflies, caddisflies, and stoneflies were present in the benthos in relatively small 

abundances, and consequently were not included in the analysis. Taxa densities among sampling 

locations were compared using a Kruskal-Wallis test. If this test demonstrated a significant 

difference among sites, a Wilcoxon rank sum test was applied to test for differences in mean 

relative abundance at sites with high and low Dreissena density. Relationships between mussel 

density and macroinvertebrate functional feeding groups were also examined. Each taxon was 

assigned to one of five main categories: collector-gatherer/deposit feeder, shredder, filterer-

collector/suspension feeder, grazer, and predator using the classification methods found in Allan 

and Castillo (2007), Ricciardi et al. (1997) and Thorp and Covich (2001). These data were 

analyzed using the methods described above for taxonomic group analysis. 

 

Results 

Fish Communities in 2008 

 During the 2008 electrofishing surveys, 2380 fish were collected representing 38 

different species (Table 2). The families Centrarchidae, Percidae, Ictaluridae, Catostomidae, and 

Cyprinidae comprised approximately 98 percent of the total fish catch at all locations (Figure 1). 

A Kruskal-Wallis test indicated that there was no significant difference in overall density of fish 

among sampling locations ( = 0.05, p= 0.75). A Wilcoxon rank sum test showed no significant 

difference in fish species diversity between locations with high and low Dreissena density 

(p=0.340) ((Table 3). The Fishing Site, which displayed the lowest fish diversity both in terms of 

species richness (mean=13 species) and the corrected Simpson index (mean=1.22), also 
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exhibited the highest density of zebra mussels (mean= 774/m
2
), while the location with the 

highest species richness (mean= 18 species) and corrected Simpson’s D (mean= 1.93) had little if 

any zebra mussel cover  (Table 4). However, Wilcoxon tests did indicate significant differences 

in the representation of certain fish families between high and low-density locations (Table 7). 

Ictalurids ( =0.05, p=0.01) and centrarchids (p=0.02) were more abundant at high-density sites, 

while numbers of catostomids (p=0.001) and cyprinids (p=0.01) were less common at these 

locations. There was no significant difference in the number of Percids found at either location 

type. 

 Differences were detected in the abundance of several fish species between sampling 

locations with high and low zebra mussel densities (Table 4). During the summer of 2008, 

logperch (Percina caprodes) were particularly abundant in areas with high Dreissena density. 

The mean relative abundance of this species increased with distance upstream from 3.19 per 50 

meters of shoreline at the Loch Alpine location to 15.10 at the Fishing Site, where the zebra 

mussel beds were densest. Rock bass (Ambloplites rupestris) were found in large numbers at all 

sampling locations in 2008, but were particularly abundant at locations with high mussel density. 

Their mean relative abundance increased from 22.21 per 50 meters of shoreline at Loch Alpine 

to 49.36 at the Fishing Site. Other species of centrarchids, including smallmouth bass 

(Micropterus dolomieu) and bluegill (Lepomis macrochirus) were also more abundant at high-

density locations. 

 The relative abundance of fishes belonging to different trophic guilds also varied between 

high and low-density locations. A statistically significant increase was detected in the number of 

general invertivores present at high-density sites (Table 5, =0.05, 0.01), as well a decrease in 

omnivores (p=0.01) and herbivores/detritivores (p=0.032). There was no significant difference 
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found between numbers of benthic invertivores, piscivores, and surface/water column 

invertivores between the two location types. A Wilcoxan two-sample test detected no significant 

difference between sampling locations for substrate preference. Species that thrive on rubble 

substrate made up the majority of the fish catch at all sites, followed by substrate generalists. 

Species preferring sandy or silty bottoms were relatively rare at all sampling locations. 

Representation of fish species with specific current velocity preferences also did not vary 

significantly across sites. Fishes that thrive in swift and moderate currents were the most 

prevalent across all sites, while those that prefer slow current or display no particular preference 

were less common. The Wilcoxon test found no significant difference in the percentages of 

sensitive versus tolerant fish species from site to site. The majority of fishes present throughout 

the study area belonged to low-tolerance species.  

Comparisons to Pre-Dreissena Communities 

Several differences were found in presence/absence data for fish species between 

sampling years (Table 6).  Nine species of cyprinids present in this stretch of the river before the 

introduction of Dreissena were not found during the 2008 surveys: the Ohio stoneroller 

(Campostoma anomalum), striped shiner (Luxilus chrysocephalus), common shiner (L. 

cornutus), river chub (Nocomis micropogon), golden shiner (Notemigonus crysoleucas), 

blacknose shiner (Notropis heterolepis), sand shiner (N. stramineus), fathead minnow 

(Pimephales promelas), and eastern blacknose dace (Rhinichthys atratulus). However, two 

species of ictalurids were found in 2008 that had not been collected in previous years and are 

currently endangered in Michigan: the northern madtom (Noturus stigmosus) and brindled 

madtom (N. miurus). A complete list of species collected during each sampling year can be 

found in Table 6. The decline in the number of cyprinid species since 1993 was also 
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accompanied by a marked decrease in the mean number of individuals belonging to this family 

across all sampling locations between 1977 and 2008 (p=0.0016) (Table 7). These data also 

showed a statistically significant increase in centrarchids (p=0.0259) and percids (p=0.0005) 

throughout this time period. Mean numbers of catostomids and ictalurids showed no significant 

changes between decades. The mean abundance of several species also changed significantly 

over these decades. Statistically significant increases were observed in logperch (Percina 

caprodes), rock bass (Ambloplites rupestris), bluegill (Lepomis macrochirus), greenside darter 

(Etheostoma blennioides), and rainbow darter (E. caeruleum) (Table 7). Despite the 

aforementioned changes in fish community composition, Kruskal-Wallis tests showed no 

significant differences in mean species richness ( =0.05, p=0.477) or species diversity (p=0.801) 

between the 1977, 1993, and 2008 datasets (Table 7). 

 Few statistically significant changes were detected ecological functional groups of fish 

over time. Distributions of fishes belonging to the six feeding groups remained similar between 

sampling years. Although there were increases in mean numbers of benthic invertivores, 

piscivores, and general invertivores, and decreases in surface/water column feeders over time, 

these changes were not statistically significant. However, there was a significant decrease in the 

mean abundance of omnivores over time (p=0.009). Significant decreases were detected in the 

average number of fishes with slow (p=0.007) and general ( p=0.013) current preferences, but no 

such differences were found for fast and medium current preferences. Species preferring silty 

(p=0.038), sandy (p=0.009), and general substrata ( p=0.001) were more abundant in 1977 than 

in later years, while species with a preference for rubble were abundant throughout the three 

decades. Fish with medium (p=0.022) and high (p=0.0006) tolerances to siltation decreased in 
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average number since 1977, while numbers of fish with low tolerance remained constant (Table 

7). 

 In past sampling years, fish communities were relatively homogeneous throughout the 

study area. No significant differences in mean total fish catch, species diversity, or species 

richness were detected between what would become the high and low Dreissena density 

locations in the 1977 dataset. Additionally, there was no statistically significant difference in 

numbers of fish from any of the main families or functional feeding groups between high and 

low-density sites (Table 8). 

Benthic Invertebrates  

There were dramatic spatial changes in zebra mussel cover within the study area. 

Densities of Dreissena in the middle Huron River were highest at the sampling locations closest 

to the source populations in Baseline and Portage lakes, decreasing exponentially with distance 

from the source populations (Figure 2). At the Hudson Mills fishing site (FS), zebra mussel 

colonies formed a thick carpet over the riverbed, reaching an average density of 774 individuals 

per m
2
. At Loch Alpine (LA), the site furthest downstream, Dreissena were present, but in 

extremely low numbers, occurring in densities of only a few individuals per square meter (Table 

1).  

Benthos surveys conducted in 2008 and 2009 revealed dramatic spatial changes in 

macroinvertebrate communities. Over the course of this study, 26 major benthic 

macroinvertebrate taxa were collected. The most abundant groups included midge larvae 

(Chironomidae), scuds (Amphipoda: Gammaridae), worms (Oligochaeta), riffle beetles 

(Coleoptera: Elmidae), fingernail clams (Sphaeridae), and snails (Gastropoda) (Table 10 and 

Figure 4). Major differences in overall abundance of zoobenthos were also detected among sites 
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( =0.05, p=0.002), with a marked increase in total macroinvertebrate density over zebra mussel 

beds (Table 9). There were dramatic differences among sampling locations in the number of 

midge larvae collected (Kruskal-Wallis test, p= 0.0001), with their larval density higher at sites 

where zebra mussels were present in high densities. In addition, there were statistically 

significant differences in numbers of scuds (p=0.009) and snails (p=0.0051) among sites. There 

were no statistically significant differences among sites in the number of oligochaete worms (p= 

0.205), fingernail clams (p=0.4872), or flatworms (p=0.235). Differences in benthos taxa density 

among sites were related to the density of Dreissena. Wilcoxon two-sample tests demonstrated 

highly significant differences for all of these groups between sites with high and low zebra 

mussel densities (Table 9). 

 Variability in the distributions of macroinvertebrates belonging to different functional 

feeding groups was also observed throughout the study area. Although the mean relative 

abundance of the benthos classified as collector-gather/deposit feeders was high across all sites, 

it increased significantly when zebra mussels were present in high densities, from a low of 

72.41% at the Dexter-Huron site to high of 93.5% at the Fishing Site (Table 10). Grazers 

experienced a decline associated with increased zebra mussel density, dropping from 5-6% at 

low-density sites to less than 1% at the highest density location. Filter-collectors/suspension 

feeders and predators were more numerous at the low zebra mussel density locations. The 

relative abundance of scrapers was low across sites and declined slightly with increasing mussel 

density (Table 10).  

 

Discussion 

I found no significant differences in fish species richness and evenness between sites with 

low and high Dreissena densities. These results are surprising considering the widely-accepted 
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hypothesis that biodiversity tends to decline in places where invasive species become abundant. 

This hypothesis has been supported by numerous prior studies; for example, it is estimated that 

of the nearly 30 species of North American fishes that were forced into extinction throughout the 

twentieth century, introduced species played pivotal roles in their disappearance (Miller et al. 

1989). 

However, there were significant spatial and temporal differences in relative abundance of 

fishes at the family level. The mean density of individuals belonging to the five primary fish 

families varied among sites in the 2008 dataset and was characterized by a steep decline in mean 

density of cyprinids and catostomids and an increase in numbers of centrarchids and percids. 

This data is complemented by an identical temporal trend throughout the sampling area since the 

introduction of Dreissena to the watershed in the early 1990s. These trends may be attributed to 

changes in food availability initiated by the introduction of zebra mussels. Dreissena are 

voracious filter feeders and may drastically reduce the amount of food available for some 

planktivorous cyprinid species. In addition, some species of fishes (particularly suckers) are 

better suited for foraging in gravel than on mussel beds. However, this increased structural 

complexity may benefit darters – small, bottom-dwellers that would have little difficulty picking 

small benthic invertebrates out of the many nooks and crevices found on Dreissena beds.  

There is also evidence that the spatial and temporal changes observed in the abundances 

of individual fish species could be attributed to the presence of Dreissena. Logperch in particular 

seemed to thrive in areas where zebra mussels were present in high densities. This may be due in 

part to the pointed shape of their rostrum, which could allow them to access invertebrate prey 

hiding in the small spaces between zebra mussel shells via “picking”. Prior studies of logperch 

diets indicate a strong preference for both micro-crustaceans and aquatic insect larvae, 
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particularly chironomids (Dobie 1959, Mullan et al. 1968), both of which were significantly 

more abundant in zebra mussel beds. Several predatory centrarchid species, including rockbass 

(Ambloplites rupestris) and smallmouth bass (Micropterus dolomieu) were also present in higher 

numbers in areas heavily colonized by zebra mussels. Once again, this is most likely due to an 

increase in prey organisms that have been drawn in by the abundant resources found within the 

mussel beds, rather than the mussels themselves. In rivers and streams, juvenile rockbass and 

smallmouth bass feed on chironomid larvae, amphipods, and small fishes (George & Hadley 

1979, Probst et al. 1984), all of which are more abundant at locations with high zebra mussel 

densities. As adults, both species tend to prefer habitats with plenty of cover and spatial 

complexity, and both display similar feeding preferences, with smaller fish and crayfish (which 

thrive in the presence of Dreissena, according to Martin and Corkum 1994) comprising the bulk 

of their diet (Probst et al. 1984). Small ictalurid catfishes, including stonecats (Notorus flavus) 

and northern madtoms (N. stigmosus), were also present in higher densities over Dreissena beds. 

By contrast, brindled madtoms (N. miurus) tended to be more abundant in areas without zebra 

mussels, and absent entirely at locations with high mussel density. It is also interesting to note 

that the latter two species were not collected in either the 1977 or the 1993 sampling events, but 

were frequently captured throughout the summer of 2008. Northern and brindled madtoms are of 

special interest because of their relative rarity in Michigan. Northern madtoms are only found in 

the southeastern corner of the state, confined to Lake St. Clair and the tributaries of Lake Erie, 

including the Huron River, while southern Michigan is the northern extent of the brindled 

madtom’s range (Hubbs and Lagler 2004). 

The data also indicate that there may be a relationship between the ecological roles of 

fish species and the presence of Dreissena. Although no significant temporal differences were 
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found in the abundance of piscivores, benthic invertivores, general invertivores, surface/water 

column feeders, and herbivores/detritivores, there were spatial differences detected in the mean 

abundance of individuals belonging to these trophic guilds across sampling locations in the 2008 

dataset. A dramatic increase was observed in the number of piscivorous fish species such as rock 

bass present at the sites with high Dreissena density. One explanation for this may be the 

tendency of zebra mussels to increase water clarity, which could aid predatory fishes in their 

ability to visualize prey. Previous research compliments the decline in abundance of benthic 

invertivores in association with zebra mussels observed in this study. One study investigating the 

feeding efficiency of several different benthic invertivorous fishes noted a decline in the number 

of successful foraging attempts amongst bullheads (Ameiurus spp.), logperch, and mottled 

sculpin (Cottus bairdii) in areas where zebra mussels were present, suggesting that prey 

organisms were better able to hide in the more complex habitat structure created by the mussel 

shells (Beeky et al. 2004). While dense clusters of zebra mussels may impede some fishes in 

foraging successfully, this effect may be offset by the increased abundance of prey organisms 

associated with mussel beds. Although some fish would not be able to access the newly abundant 

food resources due to body morphology or other constraints, those species that were able to 

circumvent these obstacles and obtain prey would become the dominant species in high mussel 

density areas. The hypothesis that foraging success in zebra mussel beds is dependent upon the 

species of predator was tested in a laboratory setting by González and Downing (1999), who 

found that bluegill (Lepomis macrochirus) were less adept than yellow perch at capturing 

amphipods on substrate with zebra mussels. Similarly, differential ability to utilize food 

resources between fish species may account for many of the changes in fish community structure 

observed throughout the study area. 
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 Another ecological variable that frequently changes in the presence of Dreissena is the 

physical structure due to ecosystem engineering. Macrophyte growth due to increased water 

clarity associated with zebra mussels and the increased spatial complexity provided by the 

mussel beds themselves may provide additional habitat for some fish species. Probst et al. (1984) 

found that rock bass in particular prefer habitats with more vegetative coverage. Mittelbach 

(1981) demonstrated that small to medium-sized bluegill remained near areas with denser 

vegetation due to decreased risk of predation, despite the higher abundance of potential prey 

items in pelagic areas. Consequently, the potential increase in cover provided both directly and 

indirectly by zebra mussels may affect habitat selection in a variety of different fish species. 

 Some species of native fishes in the middle Huron River study area may benefit more 

directly from the increased presence of zebra mussels by utilizing them as a food source. Several 

studies conducted in the Great Lakes have shown that some native fish species have been able to 

include zebra mussels as a significant part of their diet in the absence of their usual prey. Lake 

whitefish (Coregonus clupeaformis) have been shown to consume zebra and quagga mussels in 

the absence of their usual prey, the amphipod Diporeia. Madenjian et al. (2010) found that lake 

whitefish has become an important predator for quagga mussels in Lake Huron, consuming 

approximately 820 kt annually. However, Dreissena have poor nutritional value, and the body 

condition of these fish has decreased overall as a result of this diet switch (Pothoven et al. 2001). 

Morrison et al. (1997) showed that both freshwater drum (Aplodinotus grunniens) and yellow 

perch frequently preyed upon Dreissena once they attained sufficient size to crush them. The 

round goby (Neogobius melanostomus), another invasive species from the Ponto-Caspian region, 

is a voracious predator on smaller zebra mussels, which make up over half of their diet in Detroit 

River populations (Ray and Corkum 1997). Molloy and Karatayev (1997) predicted that several 
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species found in the middle Huron River, including bluegill, redhorses (Moxostoma spp.) and 

channel catfish (Ictalurus punctatus), are potential predators of zebra mussels. A subsequent 

study carried out by Magoulick and Lewis (2002) in Lake Dardanelle, Arkansas confirmed many 

of the predictions of Molloy and Karatayev, finding that zebra mussels comprised a large 

percentage of the diets of blue catfish (Ictalurus furcatus), freshwater drum, and redear sunfish 

(Lepomis microlophus). Consequently, related species indigenous to the Huron River may also 

be capable of shifting their diets to include zebra mussels as a primary food source. Species most 

likely to feed on zebra mussels include fishes whose main food sources are displaced by zebra 

mussels, or those that possess molariform pharyngeal teeth, which allows them to process the 

shells more effectively (Molloy and Karatayev 1997). These factors may explain the increased 

presence of bluegill and hornyhead chub (Nocomis biguttatus) in high mussel density areas. 

 Other ecological variables appear to be less important in determining whether or not a 

fish species is capable of adapting to the presence of Dreissena. No significant changes in 

current velocity preferences, substrate preferences, and tolerances to siltation could be detected 

in the study area as a whole between years, or between high and low Dreissena density sites 

during any of the sampling years. This hypothesis is also supported by the physical habitat data 

presented in Table 1, which details some of the differences between sampling locations. These 

observations further support the hypothesis that the introduction of zebra mussels has driven the 

changes observed in the Huron River’s fish communities, rather than any other changes in the 

physical environment. 

 In addition, several spatial changes were observed in benthic macroinvertebrate 

communities that are likely due to the presence of Dreissena. Drastic differences in mussel 

density among sampling sites provide an ideal situation in which to compare benthos with and 
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without mussels. Dreissena cover was densest at sampling locations closest to the source 

populations in Portage and Baseline lakes, and quickly began to decline between three to four 

kilometers downriver. Because of the swift current and lack of suitable places for mussel veligers 

to attach, there is most likely little if any endogenous recruitment from mussels in the river’s 

main channel, making population density a function of proximity to the source population. 

Consequently, zebra mussels have been unable to attain high population densities throughout 

most of the middle Huron River, and the spatial patterns that are present today have changed 

relatively little from when they were first sighted in the river in 1995.  

The differences in the overall abundance of benthic organisms between the low and high 

Dreissena density sites were striking. The total number of all non-dreissenid macroinvertebrates 

was higher in the presence of zebra mussels throughout the study area. This observation is 

supported by numerous prior studies performed in large lakes, which have indicated that the 

presence of zebra mussels can actually be beneficial to certain types of benthic invertebrates, 

primarily deposit feeders and grazers. In southwestern Lake Ontario, for example, the total 

abundance of non-dreissenid macroinvertebrates, particularly that of the amphipod Gammarus 

fasciatus, was found to be greater after the invasion of zebra and quagga mussels at cobble and 

artificial reef sites (Stewart and Haynes 1994). A similar phenomenon was observed in the 

benthos of eastern Lake Erie, where the total number of organisms increased dramatically after 

the introduction of dreissenids (Dermott and Kerec 1997). This was most likely due to the 

enhanced spatial complexity and heterogeneity provided by the mussel shells, and to a lesser 

extent, an increase in food availability in the form of mussel pseudofeces (Ricciardi et al. 1997). 

Bioenergetic models for western Lake Erie proposed by Madenjian (1995) estimate that 1.4 

million tons of phytoplankton were deposited in the form of mussel pseudofeces in 1990 alone. 
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Experiments conducted by Stewart et al. (1998) in western Lake Erie determined that organic 

matter increased three to five times on substrates where live zebra mussels were present 

compared to the control sites, and that there was a corresponding increase in benthic 

macroinvertebrate biomass in these areas. However, this study found that habitat complexity was 

a more important variable than food availability in accounting for the elevated abundance of 

zoobenthos on mussel beds. There is also evidence suggesting that increased macrophyte density 

associated with the filtering activity of dreissenids may contribute indirectly to higher benthic 

macroinvertebrate abundance. Zhu et al. (2006) found that zebra mussels caused a significant 

increase in water clarity in Oneida Lake, leading to increased light penetration and elevated plant 

growth. In another experiment by Gilinski (1984), enhanced spatial heterogeneity due to the 

growth of macrophytes was found to be beneficial to multiple groups of zoobenthos, leading to 

increases in species richness and overall density.  

Community composition of zoobenthos was also different in areas with low versus high 

Dreissena density. Benthos samples collected from the middle Huron River study area showed a 

dramatic increase in chironomid larvae, which is possibly due to the increased availability of 

food and habitat complexity described above. Additional explanations for this phenomenon may 

include a commensalism between chironomid larvae and dreissenids similar to the relationship 

discovered by Ricciardi (1994) in the St. Lawrence River. Gammarid amphipods also increased 

in abundance in areas with high zebra mussel densities. Previous studies support this 

observation, suggesting that, like many other benthic invertebrates, some species of amphipods 

thrive in the complex habitat provided by dreissenid shells. Experiments conducted by González 

and Downing (1999) in Lake Erie’s western basin found that amphipods always preferred 

substrate with zebra mussels to bare substrate, and that like other zoobenthic taxa, this preference 
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derived more from increased spatial complexity than food availability. The elevated numbers of 

snails found in the benthic samples from sites with high Driessena density, as well as the 

numerous Campeloma observed grazing in the immediate vicinity of the zebra mussel beds 

(Table 1) can most likely be explained by the increased clarity of water exiting Portage and 

Baseline lakes. This would fuel the growth of epiphytic algae on the riverbed, which is a food 

source for snails. Lowe and Pillsbury (1995) described a similar phenomenon attributed to 

dreissenid filtering activity in Lake Huron’s Saginaw Bay, where increased light penetration 

gave rise to heightened benthic primary productivity and algal biomass. The slight decrease in 

mean relative abundance of clams and oligochaete worms in areas with high zebra mussel 

density corresponds with the findings of other studies conducted in larger lentic systems. In the 

deeper areas of Lake Ontario, declines in these two groups and the amphipod Diporeia coincided 

with the growth of zebra and quagga mussels in the mid-1990s (Lozano et al. 2001). One 

possible explanation for the disappearance of clams is that because they are filter feeders, and 

zebra mussels compete with them for food resources.  

Functional feeding classifications appear to be less important in determining which 

benthic macroinvertebrate taxa will be successful in the presence of Dreissena. The data show a 

relationship between zebra mussel density and increased numbers of macroinvertebrate 

predators. At the middle Huron River sites, there was a higher relative abundance of turbellarian 

flatworms in samples collected from the zebra mussel beds, although this difference was not 

statistically significant. Other studies conducted in lentic systems have demonstrated similar 

trends (Ward and Ricciardi 2007). 

Due to the complexity and large number of variables governing the functioning of river 

ecosystems, it is difficult in most cases to discern the role that Dreissena plays in the changes 
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that have been observed in lotic fish and benthic macroinvertebrate communities. Much annual 

and seasonal variability in fish assemblages has been observed in various river systems, and this 

is frequently attributed to stochastic events such as droughts, floods, and other natural 

disturbances (Grossman et al. 1990). However, no significant differences were detected in the 

abundance or community composition of fishes in the river between June, July, and August of 

2008. Organic and industrial pollution also plays a role in the degradation of river ecosystems. 

However, this particular stretch of the Huron River system is ideal for this study because it is 

relatively healthy, and the land use in the immediate vicinity of the study sites has changed little 

over the past several decades. Several large metropolitan parks are situated along the banks of 

this stretch of the Huron River, and the surrounding area is predominantly residential or 

agricultural. The expansion of the Clean Water Act in 1972, which was enacted long before the 

introduction of Dreissena to the watershed, has also helped to reduce the effects of any pollution 

on the Huron River ecosystem. Although two small lakes are located upstream of the study 

locations, the closest site is separated from them by a dam and several kilometers of river. 

Consequently, the aforementioned attributes make it possible to control for many problematic 

variables and to focus on the role that Dreissena may play in the structuring of river ecosystems.  

One variable that makes interpreting the results of this study difficult to interpret is gear 

bias. The 2008 and 1993 fish surveys were conducted using an electrofisher, while the 1997 data 

set was collected using a seine. Seines are most effective in systems with relatively smooth, 

sandy bottoms with few obstructions. All of the sampling sites in the Huron River were littered 

with large, partially submerged boulders and woody debris, which could cause snags and allow 

smaller bottom dwelling fishes such as darters and sculpins to escape. Correction factors 

proposed by Grossman et al. that take these issues into account were applied to the 1977 data set 
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in order to address the gear bias problem. In addition, the 1993 electrofishing data set was taken 

just before zebra mussels colonized the river and can thus provide a snapshot of fish community 

composition that is comparable to the 2008 data set. For both logperch and rainbow darters, 

mean abundances are very similar for the 1977 (seine) and 1993 (electrofisher) datasets, 

followed by dramatic population increases in 2008 (Table 7). This observation supports the 

hypothesis that any differences we are seeing between years can be attributed more heavily to 

variables other than gear bias. 

Implications 

The ability to predict the responses of native species to the introduction of nuisance 

species and other ecological problems has become increasingly important in recent years, 

particularly in light of a rapidly globalizing economy. As Dreissena continues its spread across 

North America, fishery managers need to be aware of what potential changes they can expect 

once these mussels are introduced to their areas so that they can act preemptively to preserve 

indigenous species.  

This study provides much-needed insight into what changes can be expected once 

Dreissena is introduced to a small to medium-sized system such as the Huron River. Although 

zebra and quagga mussels have drastically changed the fish and benthos communities of the 

Great Lakes, the results of this study indicate that they do not impact river ecosystems in the 

same way. Patterns of zebra mussel distribution in the Huron River are consistent with the 

“source-sink” model described by Horvath et al. (1996), which states that order for Dreissena to 

become established in the first place, there must be a lake or reservoir upstream of the river to 

house a source population from whence veligers are released downstream. In a river with a 

relatively swift current like the Huron River, Dreissena veligers are usually swept away before 
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they are able to attach themselves to a suitable substrate. Consequently, a pattern develops in 

which the mussels colonize the first few kilometers directly downstream of the source population 

but are sparse or absent further downstream (Table 1, Figure 2). This study demonstrated that 

there are significant differences in fish and benthic community composition in areas of the river 

with dense mussel coverage, and that current fish communities differ from those that were 

observed in surveys prior to the introduction of Dreissena. However, fish communities that were 

present at mussel-free locations in the 2008 surveys are similar to those found there in 1977 and 

1993, although the abundance of catostomids did decrease at all sampling locations. It appears 

that fish that prefer not to live in an area with high Dreissena density may simply move a few 

kilometers downstream to a mussel-free area. The results of this study also demonstrate that 

areas where mussels have colonized are not an ecological wasteland. Several different types of 

fishes and invertebrates thrive over mussel beds, and these communities are not significantly less 

diverse that those found in areas where mussels are absent.  

In conclusion, as long as river conditions remain constant, the threat to the Huron’s fish 

communities posed by Dreissena is low. However, watershed managers should consider how 

altering the hydrology of this system could alter the pattern of mussel distribution, and 

consequently, the functioning of the ecosystem as a whole.  
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Table 1. Physical attributes of Huron River sampling locations used in the collections in 1977, 1993, 

and 2008. 
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Table 2. Adjustment factors by species for sampling gear bias based on those found in Patton et al. 

(1998). Functional classifications of fish species collected at all Huron River study locations in 1977, 

1993, and/or 2008. H/D= Herbivore/Detritivore, P= Piscivore, BI= Benthic Invertivore, S/WC= Surface/ 

Water Column Invertivore, O= Ominvore, GI= General Invertivore, FC= Fast Current, MC= Medium 

Current, SC= Slow/ No Current, GC= General Current, R= Rubble, Sa= Sand, Si= Silt, G= General 

Substrate, L= Low Tolerance, M= Medium Tolerance, H= High Tolerance. Categorizations found in 

Poff and Allan (1995). 
 

Common Name 
Adjustment 

Factor 

Trophic 

Guild Current Subtratum Tolerance 

Northern Brook 

Lamprey 1 H/D M R L 

Longnose Gar 1 P S G M 

Bowfin 1 P S Si L 

Western Grass Pickerel 1 P S Si M 

Northern Pike 1 P S G L 

Central Mudminnow 1 BI S Si H 

Black Bullhead - O S Si H 

Yellow Bullhead 0.5 O S G M 

Stonecat 0.35 GI F R L 

Brindled Madtom 0.35 BI F R L 

Northern Madtom 0.35 BI F R L 

Flathead Catfish 1 P G Si M 

Rockbass 0.5 P M R L 

Green Sunfish 0.27 GI S G H 

Pumpkinseed 1 GI S G M 

Warmouth - P M R L 

Bluegill 1 GI S G H 

Longear Sunfish 1 GI S G H 

Smallmouth Bass 0.5 P M R L 

Largemouth Bass 1 P S G M 

Black Crappie 1 P S G M 

Greenside Darter 0.82 BI F R L 

Rainbow Darter 0.82 BI F R L 

Iowa Darter 1 BI S Si H 

Fantail Darter - BI M R M 

Johnny Darter 0.82 BI S Sa H 

Orangethroat Darter - BI S R M 

Yellow Perch 0.4 P S G M 

Logperch 0.82 BI M R L 

Blackside Darter 0.82 BI M R M 

Walleye - P S R M 

White Sucker 0.84 BI G G H 

Northern Hogsucker 0.84 BI F R L 

Black Redhorse 0.4 BI F R L 

Golden Redhorse 0.4 BI M R L 

Ohio Stoneroller - H/D M R M 
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Table 2.  Continued. 

 

Common Name 
Adjustment 

Factor 

Trophic 

Guild Current Subtratum Tolerance 

Spotfin Shiner - S/WC S G H 

Common Carp 0.57 O S G H 

Striped Shiner - O S G M 

Common Shiner 1 O G G M 

Hornyhead Chub 1 O M R L 

River Chub 1 O M R L 

Golden Shiner - O S Si H 

Spottail Shiner 0.97 O S Sa L 

Blacknose Shiner - O S G L 

Rosyface Shiner 0.97 S/WC F R L 

Sand Shiner 0.97 O M Sa M 

Miscellaneous shiners - O S R M 

Northern Redbelly 

Dace - O S Si M 

Bluntnose Minnow 0.79 O G G H 

Fathead Minnow 0.79 O S Si H 

Eastern Blacknose 
Dace 0.8 O F R M 

Creek Chub 0.84 O M R H 

Blackstripe 

Topminnow 0.71 S/WC S G H 

Mottled Sculpin 1 BI G R L 

Brook Silverside - S/WC S G L 

Cisco - PL S Si - 

  

Table 3.  Species richness and evenness measured for fish communities at all sites in the middle Huron 

River study area in 2008. Evenness was measured by taking the negative natural log of Simpson’s D.  

LA= Loch Alpine, Z= Zeeb Road, DH= Dexter-Huron Metropark, HM= Hudson Mills Metropark, B= 

Bell Road, FS= Fishing Site. 

 

  

Low 

Mussel 

Density   

High 

Mussel 

Density  

 Species Richness LA Z DH NT B FS 

Mean 17 18 13 16 16 13 

June 10 17 * 12 11 7 

July 20 21 11 15 18 18 

August 20 15 14 20 18 13 

Total # Species Captured 29 25 18 25 22 20 

Simpson's Index (corr.)       

June 1.17 1.55 * 1.4 1.2 0.72 

July 1.88 2.35 1.41 1.81 2.13 1.59 

August 2.02 1.90 1.84 1.75 1.44 1.36 

Mean 1.69 1.93 1.63 1.65 1.59 1.22 
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Table 4. Mean relative abundance by fish species collected by electrofishing at all middle Huron River 

study locations, June-August 2008. LA= Loch Alpine, Z= Zeeb Road, DH= Dexter-Huron Metropark, 

HM= Hudson Mills Metropark, B= Bell Road, FS= Fishing Site. 

 

  

Low 

Mussel 

Density   

High 

Mussel 

Density  

Common Name LA Z DH NT B FS 

American Brook Lamprey * 0.92 * * * * 

Longnose Gar 0.14 * * * * * 

Bowfin 0.44 * * 0.34 0.20 * 

Western Grass Pickerel 0.17 * * * * * 

Northern Pike 0.31 1.07 * * * * 

Central Mudminnow * * * * 0.33 * 

Yellow Bullhead 0.27 * * 0.71 1.47 0.33 

Stonecat * 1.28 * 0.23 8.45 0.93 

Brindled Madtom 0.14 0.56 0.23 0.52 * * 

Northern Madtom * 0.71 0.23 0.48 1.42 0.51 

Flathead Catfish 0.17 * * * * * 

Rockbass 22.21 20.64 11.78 29.6 41.3 49.36 

Green Sunfish 1.75 0.77 0.23 0.81 2.22 * 

Pumpkinseed 0.17 0.35 * 1.55 0.53 * 

Bluegill 2.80 1.28 0.52 6.18 6.44 8.68 

Northern Longear Sunfish * 0.21 * 3.00 2.53 0.34 

Smallmouth Bass 10.22 9.28 4.53 1.91 3.36 2.72 

Largemouth Bass 0.55 2.84 * 0.64 0.87 0.33 

Black Crappie 0.17 * * * * 0.17 

Northern Greenside Darter 12.94 25.74 20.58 11.64 13.64 8.56 

Rainbow Darter 11.66 14.95 12.93 30.02 5.83 8.10 

Iowa Darter * * 0.23 * * 0.50 

Central Johnny Darter 2.33 0.62 * 1.17 * * 

Yellow Perch 1.33 * * 1.24 0.80 0.88 

Northern Logperch 3.19 * 2.61 2.35 4.32 15.10 

Blackside Darter 0.27 0.57 * 0.17 0.87 0.50 

White Sucker 10.11 0.71 * 0.31 1.11 * 

Northern Hogsucker 12.2 5.79 0.94 2.69 1.09 0.67 

Greater Redhorse 0.17 2.41 1.02 * * * 

Spotfin Shiner * 1.55 0.70 0.47 1.27 * 

Carp * * * 0.17 * * 

Hornyhead Chub 2.91 2.26 1.77 * 0.60 0.17 

Spottail Shiner * 1.04 * * * 0.51 

Shiner spp.  0.34 2.07 0.52 * * * 

Bluntnose Minnow 0.82 * 7.04 * 1.33 0.51 

Northern Creek Chub 0.75 1.63 0.52 0.65 * * 

Blackstripe Topminnow 1.19 * 0.26 2.81 * 1.15 

Northern Mottled Sculpin 0.27 1.13 * 0.34 * * 

* value < 0.01 
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Table 5. Relative abundance of fish functional guilds across all middle Huron River sampling locations, 

June – August 2008.  LA= Loch Alpine, Z= Zeeb Road, DH= Dexter-Huron Metropark, HM= Hudson 

Mills Metropark, B= Bell Road, FS= Fishing Site. 

 

   Low Dreissena density  High Dreissena density 

  LA Z DH NT B FS 

Trophic Guild       
Herbivore/Detritivore * 0.86 * * * * 

Omnivore 5.84 8.02 15.19 1.57 3.99 1.89 

General Invertivore 4.28 3.72 1.11 11.91 21.17 12.16 

S/WC Invertivore 0.78 1.72 1.48 3.37 1.53 1.47 

Benthic Invertivore 61.28 51.86 57.78 49.21 27.61 36.27 

Piscivore 27.82 33.81 24.44 33.93 45.71 48.22 

Substrate 

Preference       

Rubble 75.7 88.5 85.93 80.22 80.06 84.49 

Sand 3.30 2.30 * 1.12 * 0.63 

Silt 0.60 * 0.37 0.45 0.61 0.63 

General 20.40 9.48 13.70 18.20 19.33 14.26 

Current Preference       

Low 12.65 14.08 3.7 19.33 20.55 16.14 

Medium 33.07 36.78 33.33 35.06 49.39 66.04 

High 42.61 47.41 51.85 44.94 29.45 17.82 

General 11.67 1.72 1.11 0.67 0.61 * 

Tolerance       

Low 74.90 83.33 84.44 80.00 78.22 83.86 

Medium 0.45 7.47 0.74 4.72 6.75 2.73 

High 20.43 6.90 14.81 15.28 15.03 13.42 
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Table 6.  List of fish species collected within the Huron River study area in 1977 (Humphries & Smith), 

1993 (Bailey & Latta), and 2008 (this study).  

 

Common Name Scientific Name Family 1977 1993 2008 

Northern Brook 

Lamprey Ichthyomyzon fossor Petromyzontidae P P P 
Longnose Gar Lepisosteus osseus Lepisosteidae P P P 
Bowfin Amia calva Amiidae - - P 

Western Grass Pickerel 
Esox americanus 

vermiculatus Esocidae - - P 
Northern Pike Esox lucius Esocidae P P P 
Central Mudminnow Umbra limi Umbridae P P P 
Black Bullhead Ameiurus melas Ictaluridae P - - 
Yellow Bullhead Ameiurus natalis Ictaluridae P P P 
Stonecat Noturus flavus Ictaluridae P P P 
Brindled Madtom Noturus miurus Ictaluridae - - P 
Northern Madtom Noturus stigmosus Ictaluridae - - P 
Flathead Catfish Pylodictis olivaris Ictaluridae - - P 
Rockbass Ambloplites rupestris Centrarchidae P P P 
Green Sunfish Lepomis cyanellus Centrarchidae P P P 
Pumpkinseed Lepomis gibbosus Centrarchidae P - P 
Warmouth Lepomis gulosus Centrarchidae P - - 
Bluegill Lepomis macrochirus Centrarchidae P P P 
Longear Sunfish Lepomis peltastes Centrarchidae P P P 
Smallmouth Bass Micropterus dolomieu Centrarchidae P P P 
Largemouth Bass Micropterus salmoides Centrarchidae P P P 
Black Crappie Pomoxis nigromaculatus Centrarchidae P P P 
Greenside Darter Etheostoma blennioides Percidae P P P 
Rainbow Darter Etheostoma caeruleum Percidae P P P 
Iowa Darter Etheostoma exile Percidae - - P 
Fantail Darter Etheostoma fabellare Percidae P - - 
Johnny Darter Etheostoma nigrum nigrum Percidae P P P 
Orangethroat Darter Etheostoma spectabile Percidae P - - 
Yellow Perch Perca flavescens Percidae P - P 
Logperch Percina caprodes Percidae P P P 
Blackside Darter Percina maculata Percidae P - P 
Walleye Sander vitreus Percidae P - - 
White Sucker Catostomus commersoni Catostomidae P - P 
Northern Hogsucker Hypentelium nigricans Catostomidae P P P 
Black Redhorse Moxostoma duquesnei Catostomidae - P - 
Golden Redhorse Moxostoma erythrurum Catostomidae P P P 
Ohio Stoneroller Campostoma anomalum Cyprinidae P P - 
Spotfin Shiner Cyprinella spiloptera Cyprinidae P P P 
Common Carp Cyprinus carpio Cyprinidae P P P 
Striped Shiner Luxilus chrysocephalus Cyprinidae P P - 
Common Shiner Luxilus cornutus Cyprinidae P P - 
Hornyhead Chub Nocomis biguttatus Cyprinidae P P P 
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Table 6.  Continued 

 

Common Name Scientific Name Family 1977 1993 2008 

River Chub Nocomis micropogon Cyprinidae P - - 
Golden Shiner Notemigonus crysoleucas Cyprinidae P - - 
Blacknose shiner Notropis heterolepis Cyprinidae P - - 
Spottail Shiner Notropis hudsonius Cyprinidae P P P 
Rosyface Shiner Notropis rubellus Cyprinidae P P P 
Sand Shiner Notropis stramineus Cyprinidae P P - 
Unidentified shiner Notropis sp. Cyprinidae P - P 
Northern Redbelly Dace Phoxinus eos Cyprinidae P - - 
Bluntnose Minnow Pimephales notatus Cyprinidae P P P 
Fathead Minnow Pimephales promelas Cyprinidae P P - 
Eastern Blacknose Dace Rhinichthys atratulus Cyprinidae P P - 
Creek Chub Semotilus atromaculatus Cyprinidae P P P 
Blackstripe Topminnow Fundulus notatus Fundulidae P P P 
Northern Mottled 
Sculpin Cottus bairdii bairdii Cottidae P P P 

Brook Silverside Labidesthes sicculus Atherinopsidae P P - 

Cisco Coregonus artedi Salmonidae P - - 
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Table 7. Results of Kruskal-Wallis tests comparing differences in mean numbers of individual fish 

belonging to different families and functional groups from each year of collection. Significant results are 

highlighted in gray. 

 

      Mean     

    1977 1993 2008 p-value 

General Information Total Catch 235.9 75.9 127.6 0.004 

  Species Richness 15.6 15.5 16.5 0.47741 

  Inverse Simpson's D 5.3 8.4 5.7 0.80116 

Fish Family Cyprinidae 147.7 40.6 9.3 0.00157 

  Centrarchidae 59.3 3.7 43.9 0.02589 

  Percidae 23.6 5.5 61.1 0.00051 

  Catostomidae 14.7 5.1 7.7 0.45215 

  Ictaluridae 3.6 1.3 3.4 0.45727 

Fish Species Percina caprodes 0 0.4 11.3 0.01551 

  Etheostoma blennioides 14.6 2.7 22.1 0.00996 

  Etheostoma caeruleum 2.6 2.1 23.5 0.00677 

  Ambloplites rupestris 3.9 0.5 44.5 0.00998 

  Lepomis macrochirus 1.1 0.5 10.3 0.05684 

Functional Feeding  Omnivore 107.9 35.9 8.8 0.00933 

  General Invertivore 4 2.2 15.7 0.17503 

  Benthic Invertivore 43 27.1 69.9 0.10464 

  Piscivore 21 3.5 30.25 0.07322 

  Surface/Water Column 55.3 7 4.26 0.07753 

  Herbivore/Detritivore 0 0.25 1.6 0.13407 

Current Preference Fast 49.5 15.9 54.7 0.06364 

  Medium 70.1 24.4 48.1 0.21166 

  Slow 78.7 12.23 23.1 0.00665 

  General 43 23.4 0.1 0.01258 

Substrate Preference Rubble 93.4 54.8 103 0.27056 

  Sand 33.6 2.1 2.3 0.00935 

  Silt 8.3 3.4 1 0.0382 

  General 98 15.5 21.3 0.00098 

Siltation Tolerance High 82 18 19.5 0.00056 

  Medium  66.7 7.2 5.1 0.02246 

  Low 80 26 103.3 0.193261 
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Table 8. Wilcoxon rank-sum comparisons of total catch, species diversity, fish families, and functional 

feeding groups for 1977 collection data between sites with high and low zebra mussel abundances in 

2008. 

 

  
High 

Density 
Low 

Density p-value 

Total Catch 174.5 367.5 0.2667 

Simpson's D 5.2 5.6 0.8000 

Species Richness 15.3 16 0.4667 

Family     

Centrarchidae 14 36.3 0.6286 

Percidae 21 27 0.8571 

Catostomidae 19.25 12.5 0.9333 

Cyprinidae 91.25 223 0.0571 

Ictaluridae 3.25 4 1.0000 

Trophic Guild     

Piscivore 44.3 9.75 0.1429 

Benthic Invertivore 166.3 64 0.22857 
General 

Invertivore 4 4 0.7419 

Omnivore 31.7 51.5 0.8571 

Sfc/Water Column 36.3 37.25 0.7000 
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Table 9. Mean number of benthic organisms collected from each major taxonomic category at the 

middle Huron River study locations, June-August 2008, August 2009. Significant p-values of Kruskal-

Wallis tests for differences between sites are given in bold. Chiron= chironomid, amph= amphipod, 

olig=oligochaete, flat=flatworm. 

 

      Chiron Amph Olig Flat Clam Snail TOTAL 

Low-

Density 

Loch 

Alpine Mean 24.38 3.38 22.75 * 2.5 * 61 

  SE 3.96 2.26 11.8 * 0.82 * 15.6 

 Zeeb Mean 28.38 1.75 8.25 0.75 1.38 * 51.6 

  SE 7.9 0.7 3.33 0.62 0.82 * 10.6 

 

Dexter-

Huron Mean 16.5 3.63 23.13 0.13 4.63 0.25 44.6 

    SE 7.33 2.17 8.16 0.13 3.42 0.16 16.4 

High-

Density 

North 

Territorial Mean 145.5 1.5 10.38 1.2 1.56 2.55 171.8 

  SE 41.6 0.5 3.77 1.1 0.38 1.02 45.1 

 Bell Mean 71 8.63 5.5 2.5 0.75 0.5 93.6 

  SE 20.69 2.69 2.32 1 0.41 0.27 20.3 

 

Fishing 

Site Mean 147 5.88 9.5 2.38 0.63 4.93 1.09 

    SE 29.02 1.54 4.37 1.08 0.38 1.09 26.69 

    

p-

value 0.0001 0.0094 0.2050 0.2352 0.4872 0.0051 0.0020 

 

Table 10. Relative abundance of benthic invertebrates by functional feeding guild at study locations in 

the middle Huron River. LA= Loch Alpine, Z= Zeeb Road, DH= Dexter-Huron Metropark, HM= 

Hudson Mills Metropark, B= Bell Road, FS= Fishing Site. 

 

Functional Group LA Z DH NT B FS 

S 5.89 5.92 7.85 2.55 9.89 3.84 

FC/SF 5.89 4.98 9.87 1.31 2.03 0.52 

CG/DF 82.32 80.57 72.41 93.44 84.96 93.5 

G 5.05 6.87 9.37 1.24 0.27 0.22 

P 0.84 1.66 0.51 1.46 2.85 1.92 
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Table 11. Species richness and evenness values for study locations in the 1977 and 1993 surveys. 

Evenness was measured by taking the negative natural log of Simpson’s D. Values for 1993 were based 

on data adjusted for sampling bias. NT= North Territorial Road., |HM= Hudson Mills, M=Mast Rd., 

DH=Dexter-Huron Metropark, Z= Zeeb Road., LA=Loch Alpine, D=Delhi Metropark, and HC=Honey 

Creek. 

 

   

Low 

Mussel 

Density    

High 

Mussel 

Density   

Metric Year NT HM M DH Z LA D HC 

Richness 1977 17 15 16 - 13 13 21 14 

 1993 - 13 - 10 26 13 - - 

Evenness 1977 4.9 6.2 5.3 - 3.9 3.2 7.5 6.2 

  1993 - 7.1 - 4.4 20 2.1 - - 

 

 

Table 12. Mean number of individuals and standard error from fish families collected from the middle 

Huron River study area, June – August 2008. Results of a Wilcoxan rank sum (WRS) test for mean 

number of individuals from high and low zebra mussel density sites are listed in the right-hand column. 

Ict= Ictaluridae, Cent= Centrarchidae, Perc= Percidae, Cat= Catostomidae, Cyp= Cyprindiae. LA= Loch 

Alpine, Z= Zeeb Road, DH= Dexter-Huron Metropark, HM= Hudson Mills Metropark, B= Bell Road, 

FS= Fishing Site. 

 

     Low ZM Density       High ZM Density     

 LA   Z   DH   NT   B   FS   
WRS 

p 

Family M SE M SE M SE M SE M SE M SE   

Ict 1.33 0.90 2.67 0.3 1.00 1.22 3.00 1.22 12.0 3.00 3.00 1.00 0.01 

Cent 50.3 3.30 41.3 9.3 35.0 15.7 65.0 15.7 62.0 20.0 94.0 20.0 0.02 

Perc 63.0 37.0 47.7 6.8 73.0 10.6 68.0 10.6 28.0 8.15 56.0 17.6 0.31 

Cat 43.7 24.0 10.0 1.2 4.00 3.49 4.00 3.49 2.00 0.67 1.30 0.67 0.00 

Cyp 9.33 5.60 11.3 6.4 22.0 0.71 2.00 0.71 4.00 2.00 2.30 2.33 0.01 
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Table 13.  Mean number of individuals belonging to different functional groups of fishes found in the 

middle Huron River study area, June – August 2008. Results of a Wilcoxan test for mean number of 

individuals from high and low zebra mussel density sites are listed in the right-hand column.  Sites as in 

Table 3. 

 

     

Low Dreissena 

Density       

High Dreissena 

Density     

 LA   Z   DH   NT   B   FS   WRS p 

F(x) Group Mean SE Mean SE Mean SE Mean SE Mean SE Mean SE   

Trophic 

Guild                

H/D * * 1.00 * * * * * * * * * 0.032 

O 10.0 5.5 9.3 5.3 20.5 11.5 2.3 0.9 4.3 2.2 3.0 2.5 0.0 

GI 7.3 1.9 4.3 0.3 1.5 0.5 17.7 3.5 23.0 8.1 19.3 9.5 0.0 

S/SC 1.3 0.3 2.0 1.2 2.0 1.0 5.0 2.3 1.7 0.9 2.3 1.9 0.4 

BI 105.0 45.4 60.3 8.3 78.0 6.0 73.0 10.4 30.0 6.7 57.7 19.4 0.1 

P 47.7 0.3 39.3 8.5 33.0 1.0 50.3 9.6 49.7 17.3 76.7 10.9 0.1 
Substrate 

Pref                

R 130.0 40.0 103.0 15.2 116.0 9.0 119.0 26.0 87.0 22.2 134.3 30.6 0.3 

Sa 5.7 5.7 2.7 2.7 * * 1.7 2.0 * * 1.0 1.0 0.4 

Si 1.0 0.6 * * 0.5 0.5 0.7 0.8 0.7 0.3 1.0 0.6 0.2 

G 35.0 20.0 10.7 4.8 18.5 15.5 27.0 6.8 21.0 9.1 22.7 10.6 0.2 
Current 

Velocity                

High 73.0 35.0 55.0 6.7 57.5 10.2 66.7 10.8 32.0 7.2 28.3 5.7 0.1 

Medium 56.7 4.9 42.7 5.4 25.0 2.0 52.0 14.1 54.0 17.2 105.0 24.6 0.4 

Low 21.7 8.8 16.3 10.8 10.0 * 28.7 9.2 22.0 10.4 25.7 12.4 0.2 

General 20.0 18.0 2.0 * 15.0 15.0 1.0 0.7 0.7 0.7 * * 0.0 

Tolerance                

High 35.3 16.0 8.0 2.3 20.0 15.0 22.7 6.4 16.0 6.3 21.3 10.8 0.4 

Medium 7.7 3.9 8.7 7.2 1.0 1.0 7.0 3.5 7.3 3.7 4.3 1.5 0.3 

Low 128.0 40.0 96.7 15.1 114.0 7.0 119.0 25.6 85.0 22.8 133.3 30.0 0.4 
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Table 14.  Mean relative abundance of benthic macroinvertebrate taxa collected at all middle Huron 

River sampling locations, June – August 2008 and August 2009 (* value <0.01). 

   Low Dreissena Density High Dreissena density  

 

Taxonomic Group LA Z DH NT B FS 

 

Scuds (Amphipoda) 4.64 3.90 5.33 2.92 9.21 6.34 

Flatworms 

(Platyhelminthes) * 0.90 0.09 3.02 5.22 1.96 

Leeches (Euhirudinea) * * 0.09 0.06 * 0.05 

Beetles (Coleoptera) 0.95 7.11 0.09 2.36 1.76 0.68 

Elmidae 0.95 5.90 0.09 2.26 1.76 0.68 

Psephenidae * 1.20 * 0.10 * * 

Flies (Diptera) 52.87 56.20 19.51 69.70 64.76 78.90 

Chironomidae 52.61 56.20 19.51 76.64 64.60 78.70 

Tabanidae * * * 0.06 0.16 0.20 

Empididae 0.26 * * * * * 

Mayflies (Ephemeroptera) 1.41 4.73 0.33 0.75 2.49 0.14 

Baetidae 0.26 * * * 0.94 * 

Caenidae 0.41 * * 0.14 * 0.09 

Ephemeridae 0.26 1.09 0.19 * 1.25 * 

Heptageniidae 0.40 3.64 * 0.60 0.94 0.05 

Leptohyphidae 0.26 * * * * * 

Potamanthidae * * 0.09 * * * 

Moths (Lepidoptera) * 0.54 * * * * 

Pyralidae * 0.54 * * * * 

Dragonflies (Odonata) * * * * * 0.13 

Aeshnidae * * * * * 0.13 

Stoneflies (Plecoptera) 0.40 0.15 * 0.45 * * 

Perlidae 0.40 * * 0.29 * * 

Perlodidae * * * 0.16 * * 

Taeniopterygidae * 0.15 * * * * 

Caddisflies (Trichoptera) 8.71 4.68 * 2.39 2.34 0.25 

Brachycentridae * * * 0.06 * 0.05 

Glossosomatidae 6.18 2.65 * 0.91 * 0.10 

Hydropsychidae 1.93 1.60 * 1.14 0.83 0.10 

Leptoceridae * 1.5 * * 0.63 * 

Limnephilidae 0.26 * * * * * 

Philopotamidae * 0.15 * * * * 

Polycentropodidae 0.26 * * 0.15 * * 

Pyschomyidae * * * 0.06 * * 

Woodlice (Isopoda) 0.26 0.15 * 0.06 0.49 * 

Mollusks (Mollusca) 5.22 3.17 5.60 3.94 2.8 5.75 

Fingernail Clams 

(Sphaeriidae) 5.22 3.17 5.26 1.42 1.17 1.07 

Snails (Gastropoda) * * 0.19 2.44 0.39 2.20 

Zebra Mussels (Dreissenidae) * * * 0.06 1.24 2.47 

Earthworms/ Tubifex 

Worms (Oligochaeta) 25.55 18.46 66.01 7.09 10.92 5.74 
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Figure 1. Composition of fish communities in the Huron River from surveys taken in 1977, 1993, and 

August 2008. Datasets from 1993 and 2008 were adjusted for gear bias. 
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Figure 2. Mean zebra mussel density on the riverbed at sampling locations in the middle Huron River 

study area, plotted as a function of distance from the source population in Baseline and Portage lakes. 
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Figure 3. Map of the middle Huron River study area. HC= Honey Creek (1977), D= Delhi Metropark 

(1977), LA= Loch Alpine (1977, 1993, 2008), Z= Zeeb Road (1977, 1993, 2008), DH= Dexter-Huron 

Metropark(1993, 2008), M= Mast Road (1977), HM= Hudson Mills Metropark (1977, 1993), NT= 

North Territorial Road (1977, 2008), B= Bell Road (2008), FS= Fishing Site (2008). 
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Figure 4.  Relative abundances of major benthic macroinvertebrates groups at all middle Huron River 

study sites, June – August 2008, August 2009. BC= Loch Alpine, Z= Zeeb Rd., DH= Dexter-Huron, 

HM=North Territorial, B= Bell Rd., FS= Fishing Site. 
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