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I. The Normal Modes of the Transport Eguation

I will describe in these lectures the method of elementary
solutions. We will consider neutron transport phenomena under
quite severe restrictions. We assume that all neutrons are
travelling at the same speed (the "one-group" problem) and that
the medium through which they are travelling is homogeneous and
isotropic. All essential features of the method appear on con-

sideration of this idealized situation.

Choosing appropriate units we may write the transport equation

for the neutron distribution function as

o Yoy rATY + ¥ =5 [fGA)YA)dD + Qa )

where .f(jﬁfiv is the number of neutrons that enter the system
A

with direction 12 at any point following the absorption of one

neutron with direction jilat that point.

For the time being, we simplify even further. We assume
plane symmetry and steady-state conditions. Then the distribution
function 4/(?:f2,t) will depend only upon x, and [A.Z)?=/u , the
cosine of the angle between the neutron velocity and the x-axis.

Also, we assume isotropic scattering. The transport equation

becomes

!
(I-2) /uaféa(&ﬁ) + LP = ..%/LP(X,/”’) d/ll + Q(X,/u))
X
2l



where c 1s the average number of neutrons produced per collision.

We shall look for solutions of the homogeneous (source-free)
equation, and then form our general solution as a superposition
of these "elementary solutions." 1In order to accomplish this, it
will be necessary to include in the space of admissible solutions
not only ordinary functions but also distributions in the sense of

Schwarz. Thus, making the ansatz

X/

(1-3) 7% (X, H4) = € 50,) CH)
the "functions" 9&9#) satisfy the integral equation

NG PR AT S R

Since this equation is homogeneous in 9L , the normalization

is arbitrary. For convenience, we shall normalize such that

I
P

/
(1-5) / % (/u)d/J
-1
Then (I-4) becomes

cr

e (v=H) Fop) = 5,

with the normalization (I-5) forming a subsidiary condition re-

stricting the allowed values of P



There are two classes of solutions.
1. P does not lie in the interval [1,1] on the real line.

For this case

= C 2

where + tJ are the two roots of

...//
(I-8) A(V)zl—-c:z—y/—ﬁ/ﬁ—-=/—CP‘éan/z7=—_0.

For <¢<1 #is real and ¢, >1.
For ¢ >1 # is purely imaginary.

(The case c=1 will be treated separately.)

As is well known, the two roots + g} form the entire dis-

crete spectrum for this problem.

2. UV is real and -1<?P/s1. As before, we write for the

solution of (I-6)

- Vv /
(1-9) SDV(//) = 7 via

Now the expression is purely formal since it contains
a singularity. Actually, in any physical problem we
shall be working with superpositions of normal modes---

expressions of the form

(1-10) Yu) ;._/ Aw) P, curdve

-3-



(I-11)

(I-12)

(I1-13)

(I-14)

and for a well-behaved expansion function A (¥) such
integrals are well-defined so long as a prescription

is given to specify the path of integration. In general,
{
Aw) 1 __do = P /4(V) c/u + CAQ)
oM

(P signifies Cauchy principal value), where C may take
on any value depending upon how we choose the path of
integration to avoid the pole at ZJ=/U. This property
of the integral (I-10) can be expressed by writin

g ( ) p Y gf‘;(/u)

in the form

D, (p) = Sy R R— A Cu-v) .
v p
The P indicates than when the function 9L appears in an
integrand, the principal value is to be taken. The
number Afu)is chosen so that 92, satisfies the normali-
zation condition. A solution QL exists for all ) in

the continuous range [—l,l] provided we choose

?\(V)==/—-CVP_,£__
/J

Consider now (as a generalization) integrals of the

form

/
Fz) = f ) dp
‘/U - Z

—4-
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which are functions of the complex variable Z . These
"Cauchy integrals" are discussed thoroughly in Musk-
helishvili's book.* For our purposes the most useful

computational aids are the so-called Plemelj formulae.

; /
(I-15) bim [ fep)du =_/._P/;ﬂﬁ_’_€./é’. + Lfw),
Rire /u-—V 2

+
€>00 Ame M= (P*i€)

The proof follows automatically from the definition of
the principal value integral and the residue theorem.
Furthermore, F(Z) is analytic in the complex plane cut
from -1 to ]l along the real axis. We introduce the

notation

* . .
(1-16) F (w) = é_ﬁ"'g+ Fvtie) |

i.e. F+ (V) are the boundary values of the function F (&)
as X approaches v/ from f%gfg%} the cut. In terms of
these boundary values, the sum and difference of the
Plemelj formulae yield the useful (and concise) ex-

pressions:

Fiw) - F(uv) = Fw)
i (Ffo + F“(u)) = /7”/”) ad

(I-17)

*Muskhelishvili, Singular Integral Egquations, Noordhoff, Graningen,

Holland (1953).



(I-18)

(I-19)

(I-20)

(I-21)

(I1-22)

In particular, An»rmnrbe written

Aw) = L (A7 + /l'(u)).

The functhmmsgb are orthogonal in the following sense:

{
Theorem 1. j/u 90‘}(//) 30’),(/4)091 = when P # V’.

-1

This orthogonality relation is obtained directly from
the integral equation in the usual manner. We multiply

(I-4) by ?V,(/U) and integrate over //from -1 to 1.

/ / /
_ C )d (u) d,
[o(i-4) g = &[40 [9,0%
~1 =/ -1
The right hand side is invariant under interchange of

¢ and p’. So then must be the left hand side. This

implies that

v v’

_L_J_.)j/u?i/(/u)?y(/u)of/u =0,

from which Theorem 1 follows immediately. ¢ or L/
may come from eilther the discrete or continuocus parts
of the spectrum. Since we know the functions 9& , we
may calculate the normalization integrals for the case

Y =p’ . For the discrete modes we have simply

/
2 - = + £ 7 - L
‘/[,/15%1 Oﬂ) 59“ B /Vgi - 2 l% [ L%2~ / Léz.
21
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More care is required in dealing with the continuum.
Then, the normalization integral is undefined when V=",

However, we may write

/\/? (/u) (/)a’/u N (w «f(V v,

which may be thought of as an abbieviation for the state-

ment that if we expand a function sﬂgﬂ)in terms of the 9&

/
(I-23) 170(/1) = ]/4 (») % (/u) dy
-1

The expansion coefficients ,400 will be given by

!
(I-24) //{5?,(/)9”9”)"/’ = Nw Aw),

Therefore, using the explicit form of the gbog)
v

/ ! '
Ao Nw) =//%(/)¢9u)a//z =//u ?p(/a)y//](p')ﬁ,(//)dp,

_—_//a[C_ZE Pz)/a + /\(V)c((w/a)]d/u//}(lz)[f’//’ //+ )\(V)cf(y/l]a':)

(I-25)

___j;‘[cu 2 )\(u)a(w—/)]#lé P/lﬁi—/{w/%{i,* )‘(/’)AVJJ

7 5 e
I)/J /

/
~cepl M Tep V’/f’fv’)a’u’Jd/ n
ox ik ey



A 4
+ czu P/V-// )\(/4)/4(//}//

+ Y P v N A dr
2 p - p
s o NmAw =1, +1+1 + e NwAw

Consider now El given by

2 2 ; -
b Z (V—/u)(u - M)
(i.e. Tl is I, with the orders of integration inter-
changed.)
— / !
ST =%£P/V’A(p')[§ P (e - 2 ayjdy'
u_")l V"’" V"
- -1 /J /L
! , , ! !
=.C__BP/"A“’”[CVP dp__ crpl du Jo/w’
3 -p' | 2 )7 2 V-
4 Fr 4 VA 47/
/ //4(,)/) J
= L2 P EALD (X - Aw) dv
4 pY-r'
-1
(1-28) Thus I; + I, + Iy =0.
However, we are dealing with one of those rare instances
in which the orders of integration may not be inter-
changed.
(1-29) 11 # I



In fact, by the Poincare-Bertrand formula,* we have

— 2
(I-30) I, =1, + v (ﬂ__CV) A w)
2

(1-31) Therefore, A/ (y) /](,)) = V[)\Z(V) + (71'(‘ V)ZJ Aw)
2

for any well-behaved A (V) and hence

(1-32) New) = p I)c’- (v) + (ZCY )2]
2

As an application, we may calculate the Green's function for
a uniform, infinite medium for the case c<1l. A unit plane source
radiating in the direction /% is located at the origin. Then
yb(xyu) satisfies the homogeneous equation except at x = 0 and

vanishes as |[X|-—+0d , so we may write:

__x/o / —-X/
”sby(x,/u’;o,/uo) = Ao Pop (e V+//4(u)c’ V?u(/u)a'ﬂ X >0

(I-33)

Xy o 0 o
={-Ao. Foopr€ ~//4(V)8 $omdv x<o
=1

where the A's are to be determined. The source introduces a dis-
continuity of _J__cy( -M,) 1n the distribution function at the

origin:

*Muskhelishvili, p. 56.



(1-34) A0+ 500+ + ,40_ 600__ +//4V?V dV = Eéz‘;tl— 0(\(/“ “"/uo)

Thus the A's are just the coefficients in the expansion of

27t/t

show that the functions yl form a complete set-~--thus this expan-

9”1/%) in terms of the §L ., (in the next lecture I shall

sion is permissible) and may be found by the orthogonality re-

lations and equation (I-24).

The result is

0o
(I-35) % (XYU} 0,/10) = ZLTE.[?%: {/up) ?oi’ (/N.)C + 2)(/10) 2,} (/l.l) e d;}
No+ P) N ()

The Green's function for an isotropic plane source may be found
by integrating @% over /% , and the Green's function for the
spatial density may be found by integrating over//t. The result

is

—'X'/Vo ! -IX’/V
(I-36) Sog(x,a) =—2’—[ ¢ +/ € d
/Va+ N (v)

0

Note that for large |x| the discrete term dominates.

-10~-



IT. Partial Range Completeness

Last time we made use of the fact that the ?'s (discrete +
continuum) formed a complete set of functions of)# in the interval
[—l,l]. Today we shall prove a more general "partial range" com-

pleteness theorem which includes this as a special case.

Theorem 2. Let d,p be two real numbers such that ~[£X<BS ]
Then the set of functions 1'?WF] is complete for all functions
defined in the interval 0($/U« S/B where:
a) if oA # -/ and p%/ [?dﬁj contains the ?;) dépsbﬁ
b) otherwise [spdﬁ] contains the Spp oS IJs’B as well as
P if dA=-/ ana %+ if B= 1.

(Of course, in the case treated yesterday, = -1, P=:l and all

1ﬂma?'s were required.)

Let us consider a function 'le(/l) 0(5/4 s/ﬁ and try to expand

it in terms of the g}u X< Vé{B

(-0 Piop) = A(u)?p( ydv = ) Aop + CP V"]“’)"”
/ H HIAY

This is a singular integral equation for the function Asﬂ). To
investigate completeness we would only need to show that this
integral equation possesses a solution. In the course of the proof,
we will actually construct the A(p) by solving the integral equa-
tion directly. This constructive aspect of the proof is important
since only in the special case o= -1, P= 1l is there an orthogon-

ality relation to determine the expansion coefficients A (p).

-11-



[Reporter's Note: The complete proof, as given in the lecture, has

been published elsewhere (K. M. Case, Annals of Physics, Jan. 1960).

The essential features of the proof may be seen by considering the
special case (= 0, P== 1 (half-range completeness) which is
treated here. Actually, the half-range and full-range cases pro-
vide the only results of physical interest. Moreover, the full-
range case is degenerate in the sense that the central feature of
the proof, the construction of the function ,X(Z) (see equation

(ITI-11)) is accomplished by inspection. 1In fact, /X;GQ==/1GE).]

When &« = 0, ﬂ::].we have

(II-2) L/)(/u)_-: )\(/u.)/l(/) + CP/ VA(V)dV Oé/usl |

Let us assume that a well-behaved solution A(Y) exists. Then the

function N(g), defined by

ATe 2 rF-Z
¢

/
(II*3) N(z) = _l___ _C__/ VA(P’)OIIJ )

possesses the following properties:
1) N(g) is analytic in the complex plane cut from 0 to 1;
2) N(g) vanishes at least as fast as -z—_’g- as Z-—» o9 ;
3) N+(ﬂ) and N"gﬂ) are defined for all/# except perhaps
M= 1l,and in the neighborhood of ¥= 1, N(Z) is

bounded by L _where r<1.
ES

~-12-



Property (2) follows from

/ / /
(IT-4) f vAwdv _ [ pAwidv _ g vA T+ 2225 4
/ P - Z Z ] - !145 z 2
0

Thus for large g

/ /
(I1-5) vAcw) dv = - _/_/(),4(,)) dv
P~ E Zo ‘
0

!
Note that M

WS- will vanish as fast as -éx as |g|—>o0 if
and only if
/
(I1-6) j VmA(V)dV =0 , m= 0,1,2, - n-I,

0

Property (3) is discussed in Muskhelishvili, Chapter IV.

+
The boundary values N~ satisfy

/\/’L(/LJ - /\/~(/u) = g/u/](/u)

(I1-7)

/
. + -
WI[N(/U + N (/)J =—C—P] pAydy
2
v -
0
The integral equation may now be written in terms of the boundary

values of N(2) and /](z)

(11-8) Cpm = Now N w) = Aem Nou)

-13-



We shall solve this equation for N(%). Then A(¥Y) will be given
by equation (II-7). Of course, it will be necessary later to
verify that the function[ﬂ(ﬁ)so obtained possesses the properties
which we already have ascribed to it. We have
/
¢ MY

mo GO NI - N = S

+ + 2. @)
(ITI-10) where G—(/u)= —A—-— = /I =@ 4 and @}M} = a.rf /Vy“)-

We solve now by constructing a function ‘X(z) which is analytic
in the complex plane cut from 0 to 1 (from & to/ﬁ in the general
case), non-vanishing along with its boundary values Xt in the

entire plane, and whose boundary values satisfy the "ratio con-

dition:*"

+
(I1-11) X (#) _ G ()
X (W)
Taking the logarithm of each side, the ratio condition becomes

(II-12) I X7 = I X~ = 25@(/),

Then, by the Plemelj formulae (I-17), the function)(o(i) given by

P(
(II-13) Xo(z') =C )

-14-



{
(I1-14) where F (z) = _1 / 2i @) du
a1 - Z
) M
will satisfy the ratio condition. Xo(Z) is also analytic in the

cut plane.

Now consider the behavior of Xo(z) in the neighborhood of
the cut. For 7 on the cut (not an end point) the boundary values
Fi(l)) are well defined and hence Xoi(l)) will not vanish. More-
over, since /\“L(o) = /\_(o) , @(/a) —» O as /u—-> o, so F(o) also
exists and hence X(o) # o. However, it may be shown that @(/J)"* T

as M—> 1, so in the neighborhood of Z= 1

/
(I1-15) [M(z) =~ @(1)/ 0{/‘ = ONEY) In (I1-Z) = bn (/-%)
T M= E T
[(2)
(I1-16) and Xo (2) = C =~ /- Z

Therefore, an appropriate (non-vanishing) X(Z) is given by
(I1-17) X(z) — X, (Z)
/- E

Now we may write

(I1-18) X?a) N+9u) - X W N u) = )"71)90'9«)

-15-—



where we have defined

(I1-19) ]ﬂgﬂ) - X’( )
/u)

and if we consider the function F(g) defined by

/ /
_ _ o Lou) P p) dp’
(II-20) Fz = X@ N ,zrrz'/ v

we see that F(z) is analytic in the cut plane and has been con-

structed so as to have no discontinuity across the cut, so F(z)

is analytic in the entire plane. Moreover, F(2) vanishes as (zl~+oo

Hence,

(11-21) F() =0 (ILiouville's theorem)

(II1-22) and =2miN@E) = If/l’) Ycu) du’
(z) -z

Does N(Z) possess the properties which it must have? It is ana-

lytic in the cut plane (remember that )((z) has been constructed

so as not to vanish in the cut plane) and well behaved in the

neighborhood of the cut. However, since

(II1-23) /

X(z)

~ Z as Z —» o9,

-16-



ﬁd(z) will vanish ﬂ—é at w as required only if

as Z —> oo )

(11-24) / yop) gD (/") "}" _z/j

and this in turn will be true if (see equation (II-6))

/

(II-25) / ‘y'(/,/) <,V(/a’) //

0

/
In other words, if Sp Qu) satisfies equation (II-25), the integral

/
equation (II-2) possesses a solution. Thus, any function yb VO

satisfying (II-25) may be expanded:

/
(11-26) ’%l(/u) =/ Awr §, o dv

with A(y) given by (II-7).

Therefore, we may expand a completely arbitrary function 909u)

in the form

/
(I1-28) 170(/4) = ay P, () + /,4 ) 9, 2 dv
o

where a;f is chosen so that the function

(I1-29) !70’(/u) = Y (M) = Ao, %+ (M)

satisfies (II-25).

-17-



This condition becomes

(I1-30) /lg*(/,) [ﬁp(/; - Qo 9, c/qu/u =0

/ /
e ¢ f oo

(I1-31) or Q0+

[ 7, 0 4 e

where we have defined

/
(11-32) Mo, =/ ;)”(/4) ., (/J)a”/

0
To recapitulate, we have proved the completeness theorem
(for the case &K= o, p=: 1) by explicitly obtaining the coeffi-
cients A (¥), 42@_in the expansion of an arbitrary function Qb(p).

The results may be summarized for future reference:

(I1-7) Aw) = _2_[ N+(p) - N—(V)J
cv
/ /
(I1-22) Nz = 1 X/ ff(,uf)t,u(/u')aﬁu’
2T (%) T
;] e
(II-17) X(z) = X, ()
/- E
(2)
(11-13) Xo(z) = e”

-18-



/
(11-14) F(z) d 2¢ @(/‘)d/(

24 M- E
(II-10) @y{) = arg /]4_(/!)
(I1-19) 7‘9” = cH X:(/u)
2 /\ (/()
(T1-29) Pg = Yo -y, B (W
(I1-31) a / / Yeuyd
B 0 = §ou) P () du
+ Mo././ (M5 H
/
(II-32) Mo+ = /}/‘(/,,) %+(//)6//u
)

-19-



IIT. Half Space Problems

We now apply the results of the first two lectures to half
space problems, by writing the solution to a given problem as a
superposition of elementary solutions and applying the appro-
priate boundary conditions to obtain the expansion coefficients.

Recall the notation

~X/ F X/;),

(III-1) i/JV =0 SDV (4 1#% = ¢ ?oi (u) .

As a simple example, we solve the albedo problem. A beam of
neutrons moving at an angle 6L= cos—%/g with the x-axis is in-
cident on a half space x >o. We wish to know ’I%( x,/u ), the dis-
tribution of neutrons within the half space. 442 will satisfy the

homogeneous equation for x » o with boundary conditions:

a) “JP —> 0 as X~ oo (we take (<1);
(I1I-2) &

b) 4%'4 (o//u) =£9tl—ﬂo) for all /J;O.

Boundary condition a) suggests we exclude the <#'s that grow

as X —» po , SO

{
(I11-3) . x ) = o, Py, (x, M) +/ Aw), (x,u) dv
o

Boundary condition b) requires

/
(ITI-4) é\(/u-/uo) = Ay Fo, ) +f/4(u) Py () dp H 20,
4]

-20-



Thus we are led to a half-range expansion of the function

(III1-5) ¢</u) = g(//—/.lo) M 20

Using eqg. (II-31) we obtain

(I11-6) CZ0+ — ()
M,

We could also exhibit explicit expressions for the A (¢), but
the discrete term again dominates in the asymptotic region (cf.

eq. (I-36)).

We may solve the classical Milne problem: given a half
space with no incident neutrons, we want to find g%(x,fl),

the distribution of neutrons within the medium provided that Q@

is bounded by 6X as X-—»00 . The boundary conditions are
(III-7) a) Yo u) - 4 oxu) >0 as x— o,
) P (o M) =0 K20

Condition a) is satisfied by writing

/
(I11-8) 73_@0 X, M) = '700— (X, M) *+ Qo, %,; (X, M) +//1(V)¢,,(X,/UN/V
J
and condition b) yields
/
(111-9) 0 = B () + Aoy P, () +/ Apw @, qrdv u20,
o

-21 -



which tells us that the A(p ) and CZQf are the coefficients in

the half-range expansion of —-?) .

Again the asymptotic behavior is given by the discrete

term, with

/
) "[ Fow ) du _ M,

B / T M,
[ 1 9, du

This immediately suggests a generalization. We seek func-

(IIT-10) Q0+

tions QZJ(XMH) (-/1<p <0 ) satisfying the homogeneous

equation and the following boundary conditions (instead of (III-7)):

a) ’:pp(o/ﬂ)r—o ME0

(ITI-11)
b) (-?1) (X,/“) - ‘;DV(X,/J) —> 0 as X—> 00 .
As in the Milne problem we get

/
(III-12) 3.5,, X p) = %J X,M) + Ay, ¢0+ (X, M) +/,4(p') (/;u,(x,/l) dv’
o

with the dominant coefficient given by

/

(IIT-13) ao+ ‘l 'y @, o du
/

/0 Vo P, (M) du

Using these QL we may construct the Green's function for

the half space. It must satisfy:

/
(ITI-14) y ai@ X, p) 4 P o =—C—/SD K P+ §x-%s) 8 Cp - pio)
X Y 2y

2T g
-7 X >0

_22._
X, >0



with boundary conditions

1.?5 <0,/U) = ( /U>0
Lim Py ) =0

The solution is

(ITI-15)

it ‘X°/v
(III-16) (X, M Xooflo) = M) Xo, Ho) — L % (He) - ’
Dy o ps Xoble) = Yy X, 15 Ko, p 2] 2 oo ¢ xple

(X/ ) V
/ N( ) ’,(x’/‘) 1/),/ J

(qyu fls the infinite medium Green's function.)
as may be verified by noting that:

g; satisfied the source-free equation for x # X (since
it is a superposition of normal modes in the regions

X< KXo , X D>Xg:

b) QG possesses the correct source discontinuity at x = X5
nf
M = M (by virtue of the inclusion of qg
inf

c) ’gg vanishes as x — «0 (since @P vanishes along
with the terms in brackets) ;

d) ‘g% represents a solution with zero incoming flux, since
the functions 'ﬂl and ﬁpu are constructed to have zero
incoming flux, and hence

. 4 “Xa/
inf Ciy) ? ¢ Vo
. , / 90_ Ho ,Ll)
@5 (o, p, xo,/uo) = % (O,IU/ xo,/uo) - 27 £ oo 2 C
No_
(7] ~x°9
WA A Al I P A >0
N

= 0 Dby virtue of (I-35).

-23-



We may simplify our expressions for the classical Milne
problem by examining some of the properties of the function X(z).
Since X(z) is analytic in the complex plane cut from 0O to 1 and
vanishes ¥, at o , we have, by applying Cauchy's theorem to

the region bounded by a large circle and the countour C :

/
’ f - ’
(111-18) X (z) = L[ X&)z _ 4 / X cu = X () A’

{ - 2w /.
2T ) Z2'-Z 75‘0 M Z
« X
¢
—é@{___. the contour C,
1
ooy (X (A
but X—X:X(-:~’)=X(——:")
(III-19) X A

I

Tt - :
_;\<:_(/1 - A7) = emi e,
where we have used equations (II-11) (II-19) and the relation

+ - _ , CH
(I11-20) Ny ~ N = 27 =
which follows directly from the Plemlj formulae (I-17). This yields

the identity:

/
(III-21) X z) = [ Y )du
M- E

0
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Applications of the Identity (III-21) to the Milne problem result.
1. The asymptotic behavior of g& is determined by the

coefficient (Z% which may be written:
/ Vo
~f3”(,u)§00_(,u) du —/g yguyy Vopo dp X-1)
— Q =
-
Vo ()
() Py, (udp 4 Pprde X
(ITI-23) l Fr 7e, /2 b M

2. Since apkﬂ) = -ﬁtgu)~ a@_%u(ﬂ) we may write a

(I11-22) 04

reasonably simple expression for the function N(z)

which determines the coefficients A(vV ).

Using the explicit forms of the functions 9%+ and 9& we have

/ .
(111-24) 27 N(z) = / ACEN Y D R T S
AR p-2 | 2 usp’ 2 U-p ’

which becomes, after separating the integrand into partial fractions

and applying (III-22) and the identity (III-21),

(III-25) 2miN(z) = ‘C‘)”[ / + o, J _ e X») .
b+ E w-Z X(2) (2%-v7)

3. The expression for the emerging angular density is
7
simplified since the appropriate 925 are not singular

for F < 0

/
(111-26) Y (o, p) = B ) + Ay, By, ) +/ '5' Vﬁip;du y<o
o

= P )+ A, P, ) F 2wi N(M)

-25-



which, in view of Eq. (III-25) becomes simply

(ITI-27) ﬂ.‘po (o,u) = e Xe-u,)
X (o (13- pu2)

Another Identity

(IT1-28) X)) Xez) = A =)
(w2-22)(/-c)

Proof: consider F(z) defined by

(1T1-29)  F(z) = N (z)
X2) X 2) (n2-2%) (i1-¢)

X(z) has been constructed to be analytic and non-vanishing

in the complex plane cut from 0 to 1. So X(z)X(-z) is analytic

and non-vanishing in the complex plane cut from -1 to 1. Since
__A_(E)___ is also

/\(Pé) =:/4 Cr) = 0) u2 - 22

analytic in the cut plane. Therefore F(z) is analytic in the

cut plane. But the ratio condition

(TT-11) (11-10)  y*o At
X A

insures that F(z) will be continuous across the cut. Thus F(z)

is analytic in the entire complex plane and is determined entirely

by its behavior as Z —r .
According to (I-8)

(111-30)  f (z) ——> 1-(

| Z] — o0

-26—-



and since [’(z) vanishes as [Z] — oo

(T11-31) Xo(2) ——s |
]Zl—rcw

2 2
(III-32) thus X&) Xcz) (02-22) = X, z) X, c2) l&*Zz

/— Z |Z] - =0
(III-33) thus F(z) —
|Zl— 20
(ITI-34) and f:CZ):z i (Liouville's theorem) .
o Q.E.D.

Applications of the Identity (III-29)

1. If we apply the identity (III-29) to equation (III-18),

we obtain the (non-linear) integral equation satisfied

by X (%)

¢ j{o ‘F/ d/l/
2UC) ] (m2-p®) Xy (pi+z)

(III-35) X(z) =

2. This integral equation enables us to write a simple ex-

pression for the emerging neutron density

{ 0
(III-36) g: o) "’/%(@/‘7 A = et XER) du’
2 X(/”/) (,)02___/“/2)

—

= 2 (/-c) X)) Xew)

-27-
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(III-37) but [X(o)]z___ A (o) _ /
y*(/1-c) V2 (i1-¢c)

(111-38) thus @ (o) = 24 Ji-¢c X(-uv)

3. Similarly for the emerging neutron current:

0 0 ’ ’
(ITI-39) /o (o) =//'{/1-'Po (0,/4’) a'/u’ = CP},ZX(—Vo)/ )((/;/)d/;lyz /ufz)
-7 = T

o
(IIT-40) but fo plap = Lim pap
/ 2'__ 12 —_ ! 2_ 1R _/fl—-/
S Kaoiarp) = ’) X o (gr-p)(1+ &)
= 2020 piw zXz) = -20-0 4., X (2)
c Z 00 4 Z > 00

~ 2 (1-¢)
¢
(I11-41)  thus } (0> = =2(/-c)p* Xn).

4. Finally, the emerging neutron angular density at grazing

angle is simply

(I1I-42) P o) =cpifr-c Xew)

The Extrapolated End<Point

For large values of x, the distribution function is approximately

-28-



given by

(r11-43) Y, (p) = Y xp) 4 A, Y, X

X/Vo C— X/Vo

(II1-44) or gasymptotic = 6 -+ a0+

In terms of the "extrapolated end-point" Z, , defined by

~2%, /1)
(I11-45) d0+ = - €
/
§asymptotic becomes:
-Z/p
(III-46) ?asymptotic = 2 € Stnk —)%—'—-Z—‘—J
o

(ITI-47) Writing z, = Pe { - in C@h + T« } ,

we obtain (after much algebra)

2

/
(111-48) %, = £ / 1+ —2L Vg tanh™ M A

which goes over to the more familiar form when we recall that

(III-49) /\4-[/“) A"(/u) = (/ _ c/u—fanlé"/?‘/__ )2 +_('2:§2 ”2
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IV. Applications and Extensions

In this lecture, I will sketch some applications and exten-

sions of the method.

Consider first the Milne problem for two adjacent half spaces

characterized by c(l) and c(2).

The distribution function satisfies

/
/x?l__@‘:ﬁl./- Y oex, 1) _—_.C_(/)/"/J(X,/t’)d/l’ X>o
(IV-1) DX 2/

2) !
C_;)/t//(x,/x’)a’/-/’ X <o
2

) )]
We can construct modes y& (X/ﬂ) and U%*(xaﬂ) appropriate to

. (z) (2) . .
medium 1, and ‘k) (x,/u) and 47004- (X,IU) appropriate to medium 2.

The boundary conditions for the Milne problem are:

¢

a) Lim (@Z}o(x//u) - %_

X ~» o0

)
(x,/x)) =0
(zv-2) b Sem P o, m) =0

X—=>—00

o) B0t p) = P (o= u) |
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These imply:

<)

) Pp)=9

{
(1 )
(X, ) + d(,+“~/{,+ (X, H) +jA(v) i/)p (x,u) dp X>0 ;
o]

0
(IV-3) p) Y (op) = - a, %iz)(x,,u) ~//4 (v) L//,,(Z)(x,/u)é?’lz X<o ;
-

o /
2) 1)
) 4 500_( (1 ‘/4“’) P,y dv = ﬁjl)(/‘) ! avﬁoo; W+ ANP (rd

iy 0

which gives

0 X /
(IV-4) /L/)’(/n :/ A ?;)(ﬂ)a’u +//4(V) fymm)du

¢

(2)

)

i

[ )
Thus, it is required to expand 1#(y) in terms of the ?L(y) [0<}>Sl]
and the }La%fu L4£V<QJ. The construction of this expansion pro-

ceeds along the same lines as the completeness theorem of lecture

II. We introduce

P >\(')(,“> M >o /\i(/u) _ N H>e
(Tv-6) fos NP m<o Ny (W M <e
¢ o G‘U)C/”) H2>e
C () = ke G # = @
(@ M <o G7g@  p<o



The integral equation satisfied by the expansion coefficient
A(p) is

I
) Do L c AW dp
(IV-7) W) = AN AG + % ,Ti/ >~ h

As before, the crucial step is the construction of a function

)((z) which is analytic in the complex plane cut from ~1 to 1,

non-vanishing along with its boundary values Xiﬂy) in the entire

plane, and whose boundary values satisfy the ratio condition

+
wm AL g g
X (W

In this case, however, the result may be written down

immediately:

_ ) (z)
(IVv-9) X(z) = X (#) X (-2) )
al 2)
where )((Z) and X (2) are the X—functions for a single half

1)
space with the appropriate value of c¢. This is clear since ()

satisfies the ratio condition along the right hand half of the cut

(2) ! 2 . . .
(where X' (-Z) 1is continuous) and )(&g) satisfies the ratio

condition along the left hand half of the cut.

i
The function “P(y) can be expanded if and only if it satis-

fies: (see equation (II-25))

/
(Iv-10) / /u’![(/u’) Pun du’ = 0 £ =01
~1
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C(,U) X
/)' (M)

(IV-11)  where J (M)

These conditions determine éb+ and aa_

The results are

(IV-12) }lﬂ%& = N+(,H) - N (W)

(IV-13) where

/ J - /
Nizg) = —— L COp) M Yeun X cur du
Rr( /Y(Z) - ’
Ny (p'-2)

~!

jf 1k<3(fd)07’
(IV-14) and X (z) = X(/)(z) X(Z)(—Z) 6 ZTZL

Other problems with this geometry may be treated similarly.
In fact, the most complicated problems which yield answers in

closed form are those involving two half spaces, each with arbi-

trary (anisotropic) scattering law.

One of the simplest "not exactly soluble" problems is that

of slab geometry. Here we can obtain an explicit criticality con-

dition and arrive at useful approximations.

We seek to know the critical size
of the slab: that value of @ for
C>! which the source free equation

(IV-15)

!
~ % a/z M ___(_Xﬁ_.;. P X ) = fsﬂ(x,,u’)a’,u’
-1

—-33-



together with the boundary conditions for no incident neutrons

VY (4,p)

1l
<

<0

(Iv-16)

V(-5.0) =0 p oo

possess a non-trivial solution.

Thus we write

!
(Iv-17) 1|/ (x, M) = ¢°+ (X, M) + tl)o_(x}y) +f,4(p)5¢u(x/y)+\kv<x,p)} dv
0

where we have utilized the reflection symmetry to set

(Iv-18) \P(x,p) = KPFX,“H)

and chosen a 1.

0+:

The boundary conditions imply:

Yo
(Iv-19) QO = %(,u)C +30<,u}6 /A(p)c ?(/4)[/1)+//4(V)6 ?(ﬂ)c/u
po,
giving
a -4/
(IV-20) -5Do+</4)c/zp°- qu)e” /B(u)@ 1) (,u)du
/
=/Bw)9”p<,u)a’u Moo
0
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a/.
(Iv-21) where Bw) = /4 (v) € i

Suppose we regard the left hand side of equation (IV-20) as

a known function of /l for.ft>0. Then equation (IV-20) says that

the unknown B(Y) is the expansion function for the left hand side

in terms of the QLVA [ongé!]. The expansion will be possible
only if the left hand side satisfies equation (II-25). Using equa-

tion (III-21) and the explicit forms of the 7”8, this condition

becomes:

af2y, ~afy ~4/p
(v-22) Y Xw)e -uXe-u)€  ~[vBwe Xwndy =0

0

As a first approximation, valid for 4 » /[, we may neglect the

integral term altogether (recall that t, is imaginary in this case)

to give
-4/4,
(IV-23) _K_.(E‘Zl_ = e
X(‘I)o)
T where we have used
(Iv-24) or a = —:2—‘/1)0[ ~ Z, (III-22) and (III-45)

Further approximations require some knowledge of the function B (p).

To obtain this, we must carry out the expansion implied by (IV-20).

Using (II-24) and (III-19) we obtain

_35_



,.4/2%
€

/ {/ f —z)oX(:%)ca/'?’g+ LX-3)
)

(v-25) KB =27 (P Xl 4 -u 7
/ ~a/y
L [PBwIE " XEr)dv J
T
This is a Fredholm integral equation for B(V). As before, the

first approximation is obtained by neglecting the integral term.

Successive approximations follow by iteration.

Let me conclude by giving some idea of how the method may be
generalized to the case of anisotropic scattering. First we deal
with a non-absorbing medium with linear anisotropic scattering,
i.e. a medium for which ¢ = 1 and for which the scattering function

f(lilil) (see equation (I-1)) is of the form
Pl Ay ~ -~
(IV-26) fcb6.0') = 1+ ¢ 20
This serves as an introduction to the more general anisotropic

scattering law, and also illustrates the special complication

that arises when ¢ = 1.

The homogeneous transport equation for such a medium is

/ !
(IV-27) ,u_?}_;_:_(i‘/_fﬂqL dox, p) = é/l,b(x,,u’)d/«/-f Qzﬁ/ﬂ/,’b x, 1) du’

If we integrate this over M and x we obtain

(Iv-28) //u’tﬁ(x,,u’) du’ = const. = J
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Hence the equation is

!
(IV-29) Iu?WXJ/ﬁ) + Y p) = é-/«,ﬁ(x,,u’) du’ + QJEH, J .
0X J

This is formally identical to the problem of a medium with

isotropic scattering (and ¢ = 1), but with a spatially uniform
source of strength ggg-J' . Thus we may solve the isotropic

scattering problem assuming the parameter J is known and then

determine J by the consistency condition (IV-28).

Therefore, consider the elementary solutions for the iso-
tropic scattering case with ¢ = 1. The continuum modes are the

same as before (they are given in equations (I-7)-(I-9)).

The discrete case is somewhat different since as ¢ —s 1 the
two roots of ,4(U) = 0 coelesce at Y=o . We may write our dis-

crete solutions formally as before,

~X/y
(1v-30) Y ox,u) =L B "7
0 R g.—f( )
where ) is a root of ,4(@) = 0. Two linearly independent

solutions of the transport equation are:

~X
(Iv-31) 1/1,(x,/u) = Lim [_/ b @/’)’] =

(tv-32) P, (x p)

0
——
o,
N
lm
TN
I~
AV
2y
| S
I
N|—
—
B3
{
X
N\~
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as may be verified.

We may now solve the Milne problem for the linear anisotropic

medium. A particular solution of equation (IV-29) is

(Iv-33) Vox, = -C-'—'z’i J

Then

)
wss B b s o + (B md + S
M

where the 1#'5 are normal modes for the isotropic scattering medium.

The boundary conditions are:

a) Lim *Ifo(x,/u) ~ ’t,bz(x,/u) < o0 ;
X—> od
(IV-35)

B P (o,M) =0 Moo
Condition (a) implies
/ oy
(1v-36) P, (x, ) = P, 0%, 10+ b P o0 +/B(u)% oLpyde + <L T
0

and condition (b) gives

{
(1v-37) [:—ZCI_JJ/U ~—ﬁi =/B(V)§Dp<,u)du p>o
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or, with the abbreviation

(IV-38) (v) = 2Bw) Q. = _ b
/4 )= J ! - T ’
we get
/
(Iv-39) M= q =//4(z)) 7‘,(/0() dv M >0
0

This is of the familiar form. The left hand side is to be ex-
panded in terms of the 9LVH V20, with the number A, chosen so
that equation (II-25) is satisfied. A(¢Y) will be given by

equation (II-33) et seq.

Thus

/
(IV-40) ’Qa (x,p) = C”Z‘] + X;’u # /—ZC’J [a, 4//4(‘))‘//,, (X,,u)a’u]
/]

I
/ /
the condition /,U ‘:P(X//“l)d/" = J may be applied (note that
~1 !
equation (I-4) implies that //u'% (/u’)d/u/:: 0 when ¢ = 1) to
~/

give

/
/ C/J"’/
(TV-41) J = QJ‘_/_//UZOI// -
z ) 3

or

(Iv-42) /- = -3 = —2
3-¢

-39-



The final result is

(1v-43) P (x,p) = }/'[ - i—,uj + 2( = [d, /,4(;»)'7” (x/u)a’:)] .

3-¢

The term in the first brackets represents a discrete solution of
the transport equation (IV-27). The other discrete solution is
represented by the constant term. This is true for an arbitrary
scattering law. As Mika has pointed out, whenever ¢ = 1 there
will be two roots of ‘A(u) = 0 at L{= o0 , with corresponding

normal modes

’II/, (x, M)

Il
RN

(Iv-44)

"/jz (x,M) = B (X" 3¢ /U) A, B constants,

where ¢, is the coefficient of E’Oﬁjiv in the expansion of

the scattering function f(_('\)_fz') in Legendre polynomials.

Mika has treated in detail the extension to the case of

arbitrary scattering law.

N
(IV-45) fhr Z 02-0')
I:

One may still find elementary solutions of the form

(Iv-46) ’l//V (x,/u) = ? (/u)
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with the resulting integral equation

(zv-47) (/- ig—) @, 4 =/f(-f§'f2') P (unda’

Thus the ?'s will be orthogonal in the sense that

(IV-48) f/UI% (4 §Dp, (/u') d,u’: 0 for p#p’

The function A(v) is more complicated than in the isotropic
scattering case. There will still be a continuum [~ISL)$ I] with
eigenfunctions similar in form to those given by equation (I-7).
However, the number of discrete modes is not two, in general.

Mika has shown that when f}ﬂiiﬁ? is a polynomial of the nth degree,
there may be from 2 to 2N + 2 discrete roots of A(v) = 0, the
number of roots depending on the coefficients ¢ . Also, some of
the roots may be degenerate. Thus if /1(LL) = 0 has an m-fold
root, there will be m eigenfunctions given by

)

(
(IV-49) ’\,(/u = (é%) ¥ (x,»)

[ SN
N
QS
-
3
a

V=1

Finally, some of the roots may be imbedded in the continuum, i.e.
it may happen that /4(L%) = 0 for some real (] between -1 and 1.
The associated non-singular normal modes must also be taken into

account.

Mika has shown that the totality of eigenfunctions form a

complete set, whenﬁfﬂaii)is a polynomial of arbitrary order.
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