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I. INTRODUCTION AND FULL-RANGE APPLICATIONS

1.1 Historical Introduction

The idea of using a set of (singular) normal modes in order

to solve the transport equation in a manner analogous to the

methods used in other problems of mathematical physics seems to

have originated with Davison (1). Van Kampen (2) later applied

a similar technique to a problem in plasma oscillations. The

collisionless Vlasov equation encountered in that application is

quite similar to the equation of neutron transport. Later Case

(3) , generalizing Van Kampen’s technique somewhat, showed its

equivalence to the Laplace transform approach used by Landau

(4) to study plasmas. Wigner (5) also discussed briefly the

general ideas which had already been advanced by Davison. It

remained for Case (6), however, to exploit the method fully. In

particular, Case proved the extremely important partial—range

completeness theorem and showed how the normal mode expansion

coefficients of the solution of various problems could be

obtained from the solution of a certain class of singular integral

equations of a type discussed extensively by Muskhelishvili (7).

Case also derived an orthogonality relation for infinite medium

problems which permitted the coefficients to be obtained directly.

The great virtue of Case’s approach is its analogy with the

method of solving “classical” partial differential equations.

Thus, the solutions of theoretical transport problems are obtained

more directly than by using the rather cumbersome methods previously
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(I1k,kk1) =
(1.2,3)

The usual method of solution of (1.2.1) is to expand the functions

f(r) and g(r) as

f(!) = fk’/’k(r)
(1.2.4)

and use (1.2.3) to obtain

- gk
ik . (1.2.5)

We will apply the same method of attack to a modification of the

above problem, namely

Q1(r,p-) 0,
(1.2,6)

where f(r ‘u.) must now satisfy boundary conditions

Lim 0 (1,2,7)

f(oq.) f(.) . (1.2.8)

We have introduced explicitly the additional dependence, on

the angular coordinate /1. , which occurs in transport problems

with azimuthal symmetry, In this case we must expand in terms

of a set I1k(r,IL)
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f(r,L) = Jk’Pk(!,IL)
(I 2 9)

where the prime denotes the omission of all qI(,,LL) not

satisfying (1.2.7) . Applying (1.2.8) to (1.2.9) gives

f0(,LL) fk’I’k() (1.2.10)

and once again the expansion coefficients
k may be found.

Note that the completeness of Ik(r,/..L) is required for 4fk(O,/.L)

Thus, the problem is analogous to that of a partial differential

equation in (say) r and t with certain initial conditions.

1.3 The Transport Equation

We will consider the one—speed, one—dimensional, time—

independent neutron transport equation

+
(1.3.1)

where we take units such that V = I . Here i(x,p,c/.)

is the neutron angular density as a function of optical position

x, polar angle cos-p. between theneutron velocity and the

x—axis, and azimuthal angle . The mean number of secondary

neutrons emitted per collision is denoted by c. q(x,p,)

is the source, and f(L’) is the probability that a neutron

with velocity vector in the solid angle element d about

unit vector has a velocity vector in dV about
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after a scattering collision. It is customary to expand

j(.) f2+1
bR PL (Q•’), b0 1,

(1.3.2)

where the P(fL•),’) are Legendre polynomials. We will

assume azimuthal symmetry. Insertion of (1.3.2) into (1.3.1)

and use of the spherical harmonics addition theorem gives, after

integration over azimuthal angle,

± q=

Except for Part IV, we shall be concerned with isotropic scattering,

in which case bL8L0 . Definition of the Boltzmann operator

for isotropic scattering as

B=,L-+1-.fd/L’ (1.3.4)

gives the equation

BLr(x,,u.)q(x,p.). (1.3.5)

Since the source may be replaced by a boundary condition,* we

shall seek the solution of the homogeneous equation

Bqi(x,1.i.) Q (1.3.6)

*Or, in some cases, a “particular solution” must be included,
cf. Section 11.6. In any case, however, it is the solution of the
homogeneous equation which is of prime importance.
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which is of the same form as (1.2.6) . In order to follow the

procedure of Section 1.2, we must determine a complete orthogonal

set of normal modes of B. The angular density may be expanded

as

a4I(x,)
(1.3.7)

and the expansion coefficients determined from the orthogonality

relations. We will now proceed to determine the eigenfunctions,

prove completeness theorems, state orthogonality relations, and

apply the method to various problems.

1.4 The Normal Modes

The eigenfunctions of B may be written in the form*

(x,) = e() (1.4.1)

Substitution of (1,4.1) into (1.3.6) gives

(1.4.2)

This is a homogeneous equation so we may normalize in any manner;

in particular, we set

f = I, (1.4.3)

*Using translational invariance, That is, since B commutes with

all translations, it is an invariant of the translation group

which means that its eigenfunctions are the invariant subspaces

of the translation group. These are the one—dimensional sub—

spaces
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which is permissible except for the trivial solution

With (1.4.2) and (1.4,3), we have

- k(L)
= 2 ‘ (1.4,4)

and the most general solution of (1.4.4) is

() = P +X()8(-y) (1.4,5)

where the syrnboi P signifies that, in any integrals involving

the Cauchy Principal value is to be taken. The

function is not an ordinary function, but a Schwarzian

distribution and has a physical meaning only when it appears

inside an integral. Since is the cosine of an angle

there are two ranges of interest of the

variable 1”: 1’ W [—i, ij and Z/E f—i, I
For v f—i, I] , (1.4.5) becomes simply

Cl,

q7 ()
(1,4.6)

and (1.4.3) tells us that V must obey the equation

A(v) icvfd
=

(1,4.7)

Explicitly,

A(v) I—cvtanh’-
(1.4.8)

Note that A(co) i—c.
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There are two roots, denoted by ±l/ , to the symmetric disper

sion function A(1/) . For c<I is real and, of course,

greater than unity. As c—I (this is actually a

double root since the two roots coalesce) . For C>

is purely imaginary. For a given c, there are only two values

of V for which the homogeneous equation has a solution and

the eigenfunctions associated with these discrete eigenvalues

are denoted by

1, ( )
Cl/n I (1.4.9)

2 Vc,L

and are the discrete eigenfunctions.

For l/E[-I,I1 , (1.4.5) is the form of the eigenfunction

and X(v) is determined from (1.4.3) as

dLL
X(v)= I——P/ ‘ I—cv tanhy

2 j v-,u (1.4.10)

The values of X(v) may be related to the boundary values of the

function A(zi) which is analytic in the plane cut from -1

to 1 along the real axis. If we define A(v)LimA(z’±E) ,then

(1.4.11)

The X(v) can always be chosen from (1.4.10) for any value of

V between —1 and +1 so there is a continuum of eigenvalues

with the associated eigenfunctions (1.4.5), These, plus the

discrete modes in (1.4.9) , are the normal modes of the transport

equation.
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1.5 Ful1-Ranq Completeness Theorem

Theorem. An “arbitrary”* function \lI(p) defined

on the full range of can be expanded

in terms of the normal modes of the transport equation

in the form:

00+ ()+a ()+fA(v)()dv
-I (1.5.1)

where 00± and A(v) are the expansion coefficients.

This theorem is a special case of the partial—range completeness

theorem first proved by Case (6). We attempt first to expand

another “arbitrary” function in terms of the continuum

modes alone and then determine the necessary restrictions to make

the expansion permissible. Consider

() fA(v) ()dv
- (1.5.2)

and insert (1.4,5) to obtain the singular integral equation

T A(v)dv
I’(/.L)P]

2 +X()A()
(1.5.3)

Using (1.4.11), one obtains

,I(A+(+AI))A()+PfCVA(V)d (1.5.4)

*The proof is valid if qI(,LL) is a distribution () as well as,
of course, an “ordinary” function.



The method described by Muskhelishvili (7) will be used

to show that (1.5.4) has a solution i.e. that the expansion

(1.5.2) is possible.

Define a function N(z) by

N(z):
2i

A(v)dv
(1.5.5)

If a sufficiently well behaved A(v) exists, then N(z) has

the following properties:

1) N(z) analytic in complex plane cut front —l to +1;

2) N(z) Z as Z—

3) N( )+W( ) Ip[’cv A(v)dv
in j 2 l//L

N(,u) - N() - A(J

Equation (1.5.4) may now be reduced to the Hubert equation

C
N()-A) N). (1.5.6)

Since the function A(z)N(z) is analytic in the complex

plane cut from —1 to 1 and is required to vanish like z- as

z —0- , the Cauchy integral theorem may be applied to prove

that

-

i [ ‘()d

2wi (z)j 2 /..LZ (1.5.7)

The function N(z) of (1.5.7) has the behavior required except

for simple poles at ±l/ arising from the vanishing of A(z)

In order to remove this difficulty, we require that the numerator

also vanish at ±1/a , i.e. that

—11--



=
()()d =0 (1.5.8)

which will not be true in general. Remembering that we are

presently expanding iJí’(.t) which is related to ‘4/(,LL) by

i(pi q’() +a+ (,u)+a0_ I!o-(1LL)
(1.5.9)

equation (1.5.8) may be satisfied if
I I I

= ao+f_o+() ()0d
10)

which will be true if the discrete coefficients are defined by

LI
00± (1.5.11)

o2±(/1 d/L

It will be seen in the next section that the same conditions can

be obtained from orthogonality relations.

That we do indeed have a complete set of eigenfunctions may

be verified by the use of the boundary values of N(z) given by

(1.5.7) to obtain A( /.L ) and the substitution of this into the

r.h.s. of (1.5.2) to regain the l.h.s. of (1.5.2) (30). Recently,

the general range completeness theorem has also been proved (31)

using the orthogonality relations (28).
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1.6 Full-Range Orthogonality Relations

Full-range orthogonality of the eigenfunctions was first

observed by Case (6) and may be seen by writing (1.4.2) in terms

of 1/ and V1 , multiplying the first equation by vIi(,uid

and the second by zi i1, (jid1u and integrating both equations over

p. from -1 to +1. Subtraction of the two equations and use

of (1.4.3) gives

(1.6.1)

The normalization condition for the discrete eigenfunctions is

(6, 11)

± { ] (1.6.2)

and for the continuum elgenfunctions is (6, 11)

(p.) i(p.)dp. N(v)8(v-), (1.6.3)

where

N(v) vA(v)A(v) = vLX2(v)+()2]
= g(c,v)

(1.6.4)

The function g(c,v) is tabulated extensively in Case

et al. (32) Equation (1.6.3) is most easily derived using a

modified form of the Poincar—Bertrand formula (7) which is (28)

—13—



P P I I p 1 +28(v-)S(v’—).
V/.L V-/.L V-V I Y-/..L

L 1 (1.6.5)

Equation (1.6.5) is used in the integral term of (1.6.3) con

taining the double singularity.

1.7 Full—Range pplication: Infinite Medium Green’s Function

We wish to find the angular density G(o,0x,,u)G(x,p.)

at any position and direction due to a unit plane source located

at the origin and emitting neutrons in the direction

The angular density satisfies the homogeneous transport equation

(1.3.6) except at the origin where the source will be replaced

by the boundary condition

SçLL-/L0)
G(o+,,i)—G(o,1ui

27rp
(1.7.1)

If c<I , then

tim G(x,)O (1.7.2)

and the diverging modes must not appear; thus we look for a

solution of the form*

dv, x>Q

G(x,1u.) = 0 (1.7.3)

-o0-0-()e A(v)()e Vd x<O

*Sign convention is arbitrary and is chosen for convenience.
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Applying (1.7.1) gives

(1.7.4)

which is an equation of the form (1.5.1) where the function to

be expanded in terms of the normal modes is

Section 1.5 verifies the completeness of the expansion and the

orthogonality conditions of Section 1.6 give the expansion

coefficients as

- I’±
a01- 27rN0÷

(1.7.5)

IJl, (I
2irN(v)

—15—
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a (x,) a00÷()e V0 +[A(v)y()e/Vdv. (11.1.3)

Jo

Using (11.1.1) we seek the solution of

(11.1.4)

The boundary condition is imposed only for and for this

reason is different from the expansion of Section 1.5. We will

therefore prove a half—range completeness theorem for the eigen—

functions and also examine orthogonality relations which may be

used to determine the expansion coefficients. The half—range

relations have the form

(i,-v’) (11.1.5)

=K (11.1.6)

Oi

/ (11.1.7)

Jo

where W(piis the half—range weight function ( p. was the full

range weight function), The orthogonality relations and (11.1.4)

permit the determination of the expansion coefficients for the

half—space albedo problem as

—17—



- W(p0)qi0+(p0)
-

A( )-
W(1.0)q(0) (11.1.8)

V
H(v)

and the problem is solved.

11.2 Half—Range Completeness Theorem

Theorem. An ‘arbitrary” function q.I(,LL) defined

on the half—range Op.I* can be expanded in terms

of the continuum modes with 0 v I plus one of the

discrete modes, say , as

I

Jo (11.2.1)

The proof of the theorem**follows along the lines of the full-range

theorem and is another specialization of the general—range theorem

(6). Here we again attempt to expand not )1I(/.L) but q/(1u.) in

terms of the continuum modes alone:

(11.2.2)

Following the proof of Section 1.5 we are again led to a Hilbert

equation of the form

c,LL Ai-K
2 27ri

(11.2.3)

*There is an analogous theorem for the other half-range I /..L 0
**proved in detail in (11)

—18—



where in this case the function N(z) is analytic in the complex

plane cut from 0 to 1 rather than from —l to 1 because the

limits of integration on the definition of N(z) are from 0 to 1.

Thus the branch cuts of and N(z) differ and the right hand

side of (11.2.3) is not simply the difference in the boundary

values of an analytic function as was previously the case.

For this reason, we introduce a new function X(z) which is

analytic in the plane cut from 0 to 1 and obeys the “ratio

condition”

_____

A)
= (11.2.4)

X()

We will also require that X(z) be bounded at infinity and

non—zero in the finite complex plane cut from 0 to 1. Using

(11.2.4) in (11.2.3) we obtain

N()X() — N()X() = y()qi’(), O 1 (11.2.5)

where we have defined

2i
[X+)X_()]

(11.2.6)

The Cauchy integral theorem may again be used to prove that

N() (11,2.7)

provided the function N(z) has the properties ascribed to it.

—19--



A function X0(z) which obeys the ratio condition and is analytic

in the cut plane is

X0() exp
2i f — lnA()] d

(11.2.8)

which can be reduced to

X0()= exp (11.2.9)

with the definition

6(g) = arg
(11,2 .10)

Near the endpoint z = 1 of the cut, X0(z) goes to zero as

(1 — z). Thus, (11.2.7) gives N(z) a pole at z 1 which is

not permissible (since from the definition of N(z) , z = 1 is a

branch point, not a pole) . However, the function

X()
X0()

(11.2,11)

also obeys the condition (11.2.4) and leads to an acceptable N(z).

Now that the proper X(z) function is determined for the

half—range case under consideration, we see from (11.2,7) that for

large z,

N() (11.2.12)

2I/Y[1+T+



The function N(z) will not vanish like z- for large z (cf.

Section 1.5) unless the condition

()d: 0
Jo (11.2.13)

is introduced. Again this condition can be met since we are

trying to expand i4i(,u) and not . For

‘() t/() +a0+qi0+(), (11.2.14)

(11.2.13) can be met if we choose

fy( tI(,LL)d

0+(i)y()d/.L (11.2.15)

The continuum expansion coefficient is found from

A(v) = -- [N+(v) —N(v)] (11.2.16)

as before and again the completeness of the expansion may be

verified by substituting the value of A(v) into (11.2.2).

11.3 Properties of X(z)

It has been shown (11) that X(z) obeys the following

identities:

Identity A

X():/Y

-21-
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Identity B

A)X()X(-)
(i2—2)(1—c) (11.3.2)

Identity C

0

(II .3 . 3)X()= /2(1—c) — (v02—,2)X(,uj(,+)

Equation (11.3.3) is a non—linear, non—singular integral equation

which permits numerical determination of X(z). Identity C

follows from Identities A and B with the observation that

(11.3.2) can be specialized to give

I

(11.3.4)

and

y(,LL) I . (11.3.5)
A’() c1i. (2—2)(1-c)X(-)

Equation (11.3.5) means that all answers can be expressed in

terms of X(-/.L) so that X±(p.) and A±(p.) need not be

tabulated. These values of X(-p.) have been tabulated (4k)

along with Chandrasekhar’s H—function (8) and Davison’s

h+_function (9), which are related to the X-function by (15)

X()
I

—
- (11.3,6)
- (v0+)(i—c)”2H()

0(t_C*’2 (I+v)X(-v). (11.3.7)
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Another form of Identity C which gives a better starting

point for the iterative evaluation of X(z) is (13)

X() -

/0
d

. (11.3.8)
v0(1—c) 2(1-c) J (z2—,u2)X(pi(+)

The most satisfactory scheme (13) of evaluating X(z) is given by

cvo2f[I2X2(O)]d
(11.3.9)

where Qs() is defined by

= (xo-)X() . (11.3.10)

11.4 Half—Range Orthogonality Relations

The half—range relations are a special case of the general—

range relations and are (28)

o (11.4.1)

W(v)N(v)
(11.4.2)

where

W(p.) (—p)y() (11.4.3)
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and

N(v) vA(v)A(v) . (1.6.4)

Other important formulae are (28)

cv0vX(-)0.-(y) (11.4.4)

;()2x(±). (11.4.5)

Since we have now proved completeness of the half—range expansion

and have the orthogonality relations, the solution of the half-

space albedo problem of Section 11.1 is complete. For the angular

density, we have

( x,)
=

+()eo + (v-) y(of

0
(11.4.6)

where the first term on the right hand side is the asymptotic term

(since ty0I>Iv for o<c1 ) and the second term is the transient

term (also known as the branch cut integral) whichvanishes more

rapidly for large x than the asymptotic term.

11.5 Two Other Half—Space 2-pplications

a) Milne Problem. This is the solution for the neutron

distribution in a source—free half—space with zero incident flux

at the surface. A source at infinity provides neutrons for the
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system. The boundary conditions are *

I1m(X,Pi as x-vco (11.5.1)

0, p..O, (I1.52)

The solution of the Milne problem is the linear combination of

the half—range normal modes plus the qi0_(x,1u) . Therefore,

(11.5.1) is satisfied by

= -()eo + a÷ +()eo +fA(v)()ehfdv (11.5.3)

and application of (11.5.2) gives

—44t)=a0+q.r0+()+ A()qI()d , 1u?0 . (11.5.4)

Jo

The orthogonality relations of Section 11.4 can be used to obtain

00+
X(-v0)

(11.5.5)
X ( i-’0)

-cz v2X(—v )J’ —(v)
A(v) (11.5.6)
(v0-z)y(v)N(v)

The above solution can be used to give the Mime problem

*From Section 1.7 we know that the asymptotic distribution far
away from a plane source varies as . Therefore, the
angular density rises as eX/Vo when approaching the source at
infinity.
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extrapolation distance, Z0, which is the point where the asymp

totic neutron density vanishes. As always, the asymptotic

contribution to the angular density comes from the discrete modes.

Using the normalization condition (1.4.3),

(x) f(x,)

= eYo +a0feo (11.5.7)

so

Paso
0 = eo/ ±o0+eO/vO . (11.5.8)

This reduces to

—vs -zo -X(-z-’0)
—-- In(-a+)

= 2 !fl
X(v0)

(11.5.9)

b) Green’s Function. The half—space Green’s function

is the solution for the angular density in a half—space with a

plane source somewhere in the interior, x0, and zero incoming

flux at the surface. The boundary conditions are

Urn ‘I’d (x,p.) 0 (11.5.10)
x-

(x0,) Pg (x,) =
(11.5.11)
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NJ:’ (o,)O, >O.g (11.5.12)

The infinite—medium Green’s function of Section 1.7 satisfies

the transport equation and (11.5.10) and (11.5.11) so the half-.

space Green’s function is taken as a linear combination of the

normal modes which vanish at infinity and

(x,) =
x/vo

(11.5.13)

The expansion coefficients are then selected to satisfy

(11.5.12) and may be obtained by applying the orthogonality

relations to

O. (11.5.14)

11.6 Some Half—Space Simplifications

a) Angular Density. The most general expression for the

angular density which appears in various half—space applications

f(x,) + 00+ e+(v)()edv,

o (11.6.1)

where f(x,,u.) is the particular solution for a problem and is

given by, for example,
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10

I
o()eX

G(x0,0x,)
Ig

1-c

albedo

Mime

Green’s function

constant isotropic source.

The “expansion function” q)(LL) for a given problem is defined by

f3 $

/ f()d - d+f(0)In(°)/ - / 0—a
Ja

p(x)
1(x,)d = I!(x,)d+a0÷e+1A(v)e27r

J-I i_I Jo

(11.6.2)

= ‘(o,)- f(o,) = a÷ +() +fA(v)()dv

and the expansion coefficients are

- -1

_______

00.1- voX(vo)(1—c)j x(-)(v02—p2)

A(v)
(v0+v)X(-v)

- N(v)

(11.6.3)

(11.6.4)

(11.6.5)
+ v4i(v)X(v)

(y+) X(-)(v-ji) (v0+z.’)X(-v)

where (11.3.5) has been substituted for y(,u.) and y(v)

If numerical evaluation of the principal value integral is necessary,

it may always be performed by use of the identity

b) Density. The neutron density is defined by

(11.6.6)

(11.6.7)

-x,l/
di’

where the normalization condition (1.4.3) has been used.
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c) Current. The neutron current is defined by

‘(x,)d (x,)d + (I-c) [oo+e1+fA(v)e1Vdv]

where (1.4.3) and partial fractions have been used.

d) Emergent Angular Density. The outgoing angular density

from the surface of the half—space may be simplified. The

emergent distribution is

f(o,) +o++() +fA(v)() dv, 0 (11.6.9)

(o,)= f(o,)+

As an example, the emergent angular density for the albedo

problem with ‘I(O,LL) i.L0),/.O 8i

reduces to the form
C/L0

__

I
<0

i.—i (v0+0)X(-0)(I-c)(y0-ujX()
‘

(11.6.8)

and by use of 00+ and A(v) from a), one can obtain

(11.6.10)

1LLO,

where the following identity has been used:

Identity D.

[v -‘ X(v0) - -‘ X()]
‘<0’>o./(v0-v)y(v)N(v) V0

Jo
(11.6.11)

(11.6.12)
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and the emergent angular density for the Mime problem with

simplifies to

c ii 2,< ( -v0)
2 (11.6.13)

X()(v0 - )

Using (11.6.13) and Identity C, one can also show that (11)

2
X(-v0)

(11.6.14)

jm(O) = —2X(—v0)
(11.6.15)

27r X2(O)

11.7 Two Slab Problems

Slab problems lead, in general, to Fredhoim integral

equations for the expansion coefficients rather than closed form

expressions which were obtained in the half—space problems. In

general, the Fredhoim equations do not have simple solutions in

closed form.

a) Albedo Problem. Assuming the slab boundaries to be

at x = 0 and x = d, we wish to solve the transport equation

for C <I subject to the boundary conditions

(11.7.1)

1i(d,p) 0 , ,u0 . (11.7.2)
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The angular density is expanded as

0 (11.7.3)

+fA(v) () e X/Vd v,

and the application of the boundary conditions to (11.7.3)

gives (17)

= -

(11.7 .4)

where

b±ao+±ao_ed (11.7.5)

(11.7.6)

Equations (11.7.4) are two half-range expansions of the type we

have been dealing with and can be reduced, by means of the

orthogonality relations of Section 11.4 and partial fractions,

to (17)

* y(/LO) [vBj(v)ed/X(v)dv
b-

voX(vr,)[e20’hb0±e_d/’Zbo]
(II,
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d/
(20+2d)/z’0 (0) y(,u.0)e

0o
- cv0X(—v0)sin h [(20+d)/v0]

= I-c) X(-v) [2y(/.L0)4/(/Lo)

N(v) L cv
(11.7 .10)

(0) (0)
0O+0+(v)X(v0) o(v)X(vo)]

B(v)
v(v02-v2)(I-c)X(-v) r2Yov(,Uo)

N(v) L

-b/0(v)X(v0)Rbed’/(v)X(v)

F B(,u)e (11.7.8)

Jo

where z is the Mime problem extrapolation distance of Section

11.5. Approximations to the above equations give approximate

values for the expansion coefficients 00± and A(*v),ziO
-d/v

For example, for large d, the integral terms with e vanish

-d/
more rapidly than terms proportional to e and the expansion

coefficients become (17)

—e (11.7.9)

-e
-d/v v(vv2)Uc)x(v)E (0) div0

X(v0)
N(v) [an- e

(0) -div0
+ 00+ e o(viX(vo)].

(11.7.11)

b) Critical Problem. If the slab is critical, then

by symmetry i(x,41i.i)i4i(d-x,--,u.) and there are no incident

neutrons at the surface, Setting /.LoQ and imposing the
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symmetry condition gives

a-e

A(v) A(-v)e

and therefore

d/v

(11.7. 12)

(11.7.13)

b_ = B. (v) 0 (11.7.14)

and (11.7.7) and (11.7.8) become the equations for the critical

slab problem (16, 18):

00+ V0 X(-v0) [e
20/v0

+ e—d/voI
-d/vJ1ovA(v)e X(-v)dv

v(v02-v2)(I-c)X(-v) [{)()
N (v)

—d/v0
A()

-d/
qi0(v)X(-v0) e

(11.7.15)

(11.7.16)

For the diffusion approximation (where there is no continuum

contribution and A(v)Q) , (11.7.15) is the critical

condition

20/v0 -div0
e +e =0

and a solution to (11.7.17) exists for

(11.7.17)

div0
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cos[2o+d/2]Q (II7.18)

Thus,

d7rIv0I-20. (11.7.19)
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III. TWO HALF-SPACE APPLICATIONS

111.1 Introduction And Normal Modes

For the two half—space problems, we consider two adjacent

semi-infinite media of different properties with an interface

at x = 0. Denote all functions in the right and left half-spaces

by subscripts 1 and 2, respectively.

The solution to the transport equation in each half—space

is expanded as

+o001+()e
x/V1

+/A(v)1()e dv, X >0

0

- 2()edv, X<0 (111.1.1)

where f1(x,j) is the particular solution. We have excluded all

diverging normal modes since they appear only in the Milne

problem, in which case they may be included as particular solutions.

All two half—space problems must satisfy the interface

condition

) — fr() (111.1.2)

which means that
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f1 (o,) f2 (o,) + ooo2-() +fA(v) ()dv

+fA(v)()dv. (111.1.3)

This can be rewritten as

jiçu)—f1(o,,z.)—f2(o,i)—ao÷I/o1+(/L)—00_1’02_(iL)
1’ 10

/Av’çuidv + /A(v)2(,LL)dv (111.1.4)

Jo i-I

The continuum normal modes of the homogeneous transport equation,

for i = 1,2, have the same form as (1.4.5) except

the mean number of secondaries is c1. Likewise, the roots

are the roots of the dispersion functions which

are functions of c. The normal modes have the form

of (1.4.11) with the proper values of c and . This

suggests the following notation (11, 14, 15):

IC1 v>0
(111.1.5)

Lc2 i/<0

IA1(v) v>o
L(v)= -ç (111.1.6)

A2(v) v<o

2(v) - vc(v)
(111.1.7)2 1v—,u.

L(v) (v) ± 7r1Vc(v)
(111.1.8)
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vc(v)
+

(111.1.9)

We can now write (111.1.4) as

(111.1.10)

and we have a modified form of the full—range expansion which

was discussed in Part I.

111.2 Completeness Theorem

The two half—space completeness theorem closely follows the

proof of Section 11.2. Defining

2if 2
(111.2.1)

reduces (111.1.10) to

L()()—L(,u),(pi=
2

(111.2.2)

The function L(z) is not continuous so another function must be

introduced. A function X(z) is needed which is analytic in the

complex plane cut from —l to 1, which is non—vanishing along

with its boundary values in the entire finite plane, and whose

boundary values satisfy the ratio condition

rAt
Xi) L) I

— — + (111.2.3)
X() L() L—- L<•
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By inspection (11), such a function is

X() = X,()X2(—) , (111.2.4)

where X() is the half-space function of Section 11.2 corres

ponding to c (which is continuous for — ). With the use of

(111.2.3), equation (111.2.2) becomes

X() ‘(c.) — X(p) u.) T1.t. qI’(/.L), (111.2.5)

where

—II. (111.2.6)

The solution of (111.2.5) is

(111.2.7)

where the conditions

0, n 0, i, (111.2.8)

must be imposed for to have the proper behavior at infinity.

The two discrete modes and are available in

(111.1.4) to satisfy the above two conditions. This completes

the proof of completeness.

The function X(z) satisfies the following identities

(28)

—38—



X()+82=fr() , n 0,1,2 (111.2.9)

which may be written as

_____

[fl+Ix()d

2(Hc2)Jx2v-2)(-)
(111.2.10)

+ n = 0,1,2.2(1-c1) /
Jo

111.3 Orthogonality Relations

The orthogonality relations for problems in two adjacent

half—spaces with weight function

W(,u.) = (z.’01—,u.)(v02+p.) r(,..L) (111.3.1)

are (28)

W(v)(v)L(v) S(v-v’) (111.3 .2)

0 (111.3.3)

() W() d =0 (111.3.4)

q’01÷2_cW()d1u. 0 (111.3.5)

c1vc(v)v J’ X(v) (111.3.6)
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)2±z’)X( (111.3.7)
—I

(C2V02 )2(
(±z ) (111.3.8)

02

c1c2v2X(-1). (111.3.9)

The orthogonality relations of Sections 1.6 and 11.4 may be

obtained from these results. Upon letting c1 = c2 =

X(f) = X1())(-) (111.3.10)
(i—2)(I—c1)

so

W()
= 2(1-c)

(111.3.11)

which agrees with Section 1.6. For c2 = 0, Z/02= 1 and

I X1()
so X() (111.3.12)

and

I(v1-L)y(bL) OI
,(III. 3.13)W()= (v01-)( I+)r()

-

which agrees with Section 11.4.
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Likewise, letting c2 0 in the solutions of the two half—space

problems of the following section gives the half—space results

of the corresponding problems.

111.4 Three Applications

a) Mime Problem. For two adjacent, source—free

half—spaces with c1 < 1 and c2 < 1 and with a source at +oo

we have (14,15)

CI
I

_______

‘- x,,uid,u’ X >0
+ qi(x,p)

=
(111.4.1)

x<0

where

Lim 9I(x,pi.b1(x,p.) (the slowest diverging mode) (111.4.2)
X+ +00

Lim x,,u.)O (111.4.3)
X+-oo

J, (o+,) =qi(o,pi. (continuity at the interface) (111.4.4)

The angular density, from (111.1.1), is

I e÷0ooe+f11eth17x>o
1
[_ao02)e02_fA(v)2()edv, X<0. (111.4.5)

These equations reduce to (111.1.10) where

‘(—1 (111.4.6)

and the orthogonality relations yield
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(111.4.7)
A(V011(V02+v01)

X(—y01)2c1v0
00-

— X(—2)c2i2(y02+v01)
(111.4.8)

I—vc1(I—c1)v0(v02—z.1)X(-v01)X1(-v)
ii> 0

(v02+v)N1(v)X2(—v)
(111.4.9)

[-vci(I-c2)vo(z.2-voi)X(-vot)X2(v)

(vc-v2)N2(v)X1(v)
and the solution for is now complete since the

expansion coefficients are known.

b) Constant Source. For a uniform isotropic source in the

right-hand half-space,

+q0 X>O
(111.4.10)

X<O.

The boundary conditions for c1 < 1 and c2 < 1 are

q0
Lim qi(x - (111.4.11)I—C1

Lim qi(x1u.)=O (111.4.12)
x.*—oo
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= q.’(o-,1u.) (111.4.13)

and the angular density is

I +ao+I+(,L)e

‘4i(x,/.L)= 0 (111.4.14)

{ -a2()e2_fA(v)ft2()e X/Ydv

The expansion coefficients (14,15) are obtained by application

of the orthogonality relations to

(111.4.15)

c) Green’s Function. To find the Green’s function for

two adjacent half—spaces with a source plane arbitrarily at x
0

in the right half—space, one considers the equation

i(x,) --fi1cx,,.L’)4L’
+ S(x-x(-0)

,

p. +qi(x,pi (111.4.16)
X E.fi(x,p.’)dp.’ , X<O

with the boundary conditions

Lim i(x,p.) 0 (111.4.17)
x-* ± Co

(111.4.18)
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The angular density which satisfies (111.4.16) and (111.4.17) is

G1(x0, +a0÷01÷()e
x/i +fA(v 1()edv, x>o

X<O (111.4.19)

where G1 is the infinite medium Green’s function of Section 1.7

with c C1. Equations (111.4.18) and (111.4.19) combine to

give

(111.4.20)

and solutions are again available (14,15).
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IV. ANISOTROPIC SCATTERING APPLICATIONS

IV.1 General Anisotropic Scattering

We now consider the transport equation

(1,3.3)

+q(x,pi,
with b0 = 1. considering the homogeneous form of (1.3.3) and

using (1.4.1) to separate the variables gives

(v-)(
(IV.l.l)

Multiplying this equation by Pk(p.)dL, integrating over 1LL

from — 1 to 1, and using the orthogonality and recursion relations

for Legendre polynomials gives

v(I-cbk)k— 2k÷I v,k+l 2k÷ (IV.l.2)

where is defined as

vk
(Iv.1.3)

We normalize the solution to

= I (IV.1.4)

to conform with (1.4.3) and obtain
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vU—c)

V2 (I —cb1)(I-c)- (Iv.l.5)

and so on.

The most general solution of (IV.l.l) is

M(,v)
+

(IV.l.6)

where M(,u.,v) is a known function, defined as

M(,v) . 1v.l.7

The normalization condition (IV.l.4) gives the dispersion function

A (ii) whose zeros define the eigenvalues V not on the real

line between —1 and 1:

A(v) 0
(IV.l.8)

This may be written as

Mv) = !-cv(2+I)bLvtQL(v) (Iv.l.9)

where Q,(ii) are the Legendre polynomials of the second kind

(33) The roots of A(v)0 are the discrete eigenvalues and

are investigated by Mika (12). For ii on the real line from

l to 1, equation (IV.1.4) determines X(v) , which is related
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to the boundary values of A() by

A±(v) X(v) ±
. (IV.l.lO)

Another method of determination of the discrete elgenvalues

is also available for anisotropic scattering. Multiplying

(IV.l.6) by Pk()d and integrating over gives

(2+I)btJ

which may be rewritten in the form

cv2bLALk()

Here, is defined as (34)

- I PL(L)Pk(/.L)dL
Ak(V)

with

Ak(-)=vQL(v)Pk(v) ,
(Iv.1.14

The system of equations (IV.l.12) can have a non-trivial solution

only if

det [(2L+)cv2bIAk()_k] =0,
(IV. 1.15)

and this yields the discrete eigenvalues. From this we see that

for c = 1, V°° is always a (double) root since

v2Ak()
fPd

(IV. 1.11)

=0. (IV. 1.12)

(IV. 1.13)

2
- 2L+1 k (Iv.1.16)
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f S0 ,

where

(Iv.2.5)

and where S0 is known (12).

b) Half-Range Case. The weight function depends upon

b1 and c and has the form

X)
2 A.L) , (Iv.2.6)

but the normal modes are no longer orthogonal (28) . Indeed, it

is necessary to define a constant B which is also a function

of b1 and c such that

B-
3b,(I—c)(v0—)

- M(,z.) (Iv.2.7)

where

fy(d
V = — (IV.2.8)

J y()d
0

The eigenfunctions obey the following bi—orthogonality relations

(28, 35)

[1 +B]w()d= W(v)S(v) S(v-v’)

Lo+ {i+B] W()dO (Iv.2,lo)



(Iv. 2.11)

cvvX(-)
M(v07y0)M(,-v)

(z’)
M(v0,-v)M(,v0)

0 (IV.2.12)

0

i’±i[0++Bc-°-] W()d

M(v07v0)M(,±v0) (Iv.2.13)

M( v)

These relations reduce to the pure orthogonal forms obtained for

isotropic scattering if b1 = 0 and may be used in exactly the

same manner.

IV.3 Three Problems With Linearly Anisotropic Scattering

a) Infinite—Medium Greens Function. The angular

density due to a source plane at the origin is expanded as (12)

I 0o++()e )e dv, X0
Jo

0 (Iv.3.1)G(o,0x,)

dv, x o-x/1,

Following the analysis of Section 1.7, we obtain

2irS,.
(IV.3.2)

A(y) (IV. 3 . 3)
- 27rS(v)
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b) Half-Space Milne Problem. Following the analysis

of Section 11.5 and the completeness theorem (12) , the angular

density is expanded as

(iv.3.4)

and the bi—orthogonality relations are applied to

(IV.3.5)

The expansion coefficients are

-

________

00+- — (IV.3.6)
X(v0)M(z.’,v0)

A
-

(ii)-
— (v0-zi)y(v)S(v)M(v0rv)M(1,v0)

(IV. 3.7)

and were obtained by Shure and Natelson (13). Following the

analysis of Section 11.5, the Milne problem extrapolation distance,

z , is now given by

- -
I X(-vo)MW,--vo)1

z.0:_—In(—a0+) 2 [ X(v0)M(,—v0)j (Iv.3.8)

c) Half-Space Albedo Problem. We have

0(x,) dv
(IV.3.9)

and

, (IV.3.lO)

—51—



and find

- -2y()
a0+-

cv0X(v0)

M(,0)

MW
(IV. 3.11)

A(v) O/O’
[+B](v0-v) y(v) S(v)

(Iv. 3.12)
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V. TIME-DEPENDENT APPLICATIONS

V.1 genvalues And Eigenfunctions

The homogeneous time—dependent transport equation for plane

geometry and isotropic scattering is

_______

Sqi(x,,t)
+/•L 8 t)4i.. (v.1.1)

For an absorbing medium (c < 1), the angular distribution

denoted by x,p,t) can be related to the angular

distribution for a non-absorbing medium by the substitution (20)

cet1)(cxI,, Ct’)
, (V.1.2)

so it is sufficient to study time—dependent problems with c 1.

For convenience, define

J/( cx’,, ct’) = i( x,,t)
(V.1.3)

Following the approach of Bowden (19), multiply (V.1.1) by

e1 - s)tdt and integrate from 0 to to obtain

8qix, I
+ sq(x,L)=--J/(x,/.L’)dLL’ , (v.1.4)

where the Laplace transform of 141(X,/.L,t) is defined as

00

I (i—s)t
i5(xq.i.) qi(x,,LLt)e dt

(V 1 5)

and the integral converges for Re(s) >1 . The time—dependent

—I
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solution is obtained from qI(xpi

mation

by the inverse transfor—

is to the right of all singularities of the

)t
ds

(V.1.6)

where

integrand.

Equation (v.1.4) is the same in appearance as the time-

independent equation (1.3.6) already studied if s- is replaced

by c and xs is replaced by x. The time-independent results of

Section 1.4 can be used to give (20)

e (V.1.7)

(V.1.8)

(V.1.9)

ii -I
As(Z/)HTtOflh “ (V.1.10)

IjA() I—tanh (V.1.11)

A[±v0(s)] = 0 (V.1.12)

2S —I(v<I (V.1.13)

)iOO

- S X Iii

+Xs(z/)8(v,.L)
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‘ I
(v.1014)

For the time-independent case, s = 1 and A,(v) has two

zeros0 The time—dependent problem under consideration differs

since s may be complex0 Again the roots are paired and denoted

as and may be observed from the conformal mapping of

s:v0tanh of (say) the right half—plane (20):

‘2

FIGURE 1

s)

Cs

Se .99

.9
C

.9
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Here, C is the conformal map of the branch cut 0 to 1 in the

ii plane (which arises because of the factor tanh’ ).

There is a branch cut from 0 to 1 in the s—plane because of the

branch point of z(s) at s = 1. In region Se there are no

discrete eigenvalues and in region Si there are two values. By

choosing 1’o to be the particular root which is positive for

s > 1, then in the entire cut region Sj.

V.2 Completeness Theorems

a) Full-Range. An “arbitrary” function qJ(pidefined

for —I/..LI may be expanded in terms of the continuum

modes for any s where, if S E S1, the

set of expansion coefficients must also include the

discrete modes

For 5 E Sj, the proof follows that of Section 1.5. For s E Seg

the function has no zeros and the discrete modes are

not needed. The full—range theorem again is adequate for the

treatment of infinite—medium problems.

b) Half-Range. An ‘arbitrary” function 141(/..L) defined

for Q/LI (or -I/j.Q ) may be expanded in terms

of the continuum modes qi (/.L) , o v i

(or —ivO ), for s E S and in terms of q4(/..L) and

one discrete mode qJ÷(/.L) (or 4’-(p) ) for s E S.

For s 6 Si, the proof is analogous to that of Section 11.2.

For s 6 Se, the function X0() behaves like a constant

—56—



near the endpoint z = 1 so the discrete eigenfunction is not

needed.

Notice that we have an infinite number of eigenfunctions

since we expand q.I(X,p.) for each value of s. We must

therefore study the behavior of as a function of s

in any particular problem in order to find the time—dependent

angular density from (V.1.6).

V.3 Two Applications

a) Half—Space Albedo Problem. The transformation of the

boundary conditions

ka(0,/1.,t) = S(p..—/.L0)8(t), p. O (V.3.1)

Lim 4i(x,p.,t) 0 (V.3.2)
x- 00

gives

,l/as(O,/.L) (p.-p.) , /.L0 (V.3.3)

Urn
x-,00 (• .)

Use of the completeness theorem shows that we expand the transform

of the angular density as

[aS÷s+()e’
+s(v) (p.)eX/Vd v, SE S,1

(v.3.5)

I _x,1,
/A5(v)qJ(p.)e dv SESe
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and solve the equations

As(L1)14{,s(I1)dv, /LO, SES

(v.3.6)
As(v)Jvs(,LL)dv SESe

‘0

for the expansion coefficients. The value of 4I05(X,1LL) for

5 E Se is given by ()

(I+o)Xs(o)fvA(v)A()
(v.3.7)

where

____ ___

1’ A(v)

____

X() exp 2.JIn
A;v

(V.3.8)

The function q105(x,,.L) is analytic in the cut region Si

and in the region Se It is also continuous and analytic across

contour C (20) so that is regular in the entire

right—hand half-plane of s except for the cut from 0 S

The shifted contour for the inverse transformation of

thus appears as in Figure 2.
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Im(s)

—

r Re(s)

FIGURE 2

The inverse transformation is therefore

2i a(x,,t) fas(x,)e)tdS

-(x,)]etdS (v.3.9)

which can be reduced to the final form (20)
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2S
0

-sx,’,
XS(v)14/s(LL)e di’

A+ A
.tx. (i’) (z.’)

ms(°’o

(V. 3 . 12)

For x 0, the path of integration may be deformed into the

-sx/z’
left half—plane because e I . The emergent angular

density from a half-space pulsed by an incident beam at t = 0

is thus given by

o(S)ms(0,o)9s(0,
-(,-s)t

)e dS, (V.3.13)

/.LO.

*The solution of Section 11.5 is normalized to unit outgoing
density.

a (x,,f) 1(1 S) Iv0(S)I
Jo

i

(V. 3. 10)

where is given in (V.3.7) and where iilms(x,,U) is

the transform of the angular density for the steady-state Mime

problem normalized to unit outgoing current.* The explicit

expressions for i’ms(X,/L) and I1ms(0,P.o) are (20)

2(s-t)v2
+

X(-v0)

SX/Z.6]

(V.3.11)
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The initial value of the emergent angular density can be obtained

from (V.3.13) as (20)

= [2(+) ] (V.3.14)

and is due to neutrons which are scattered only once.

b) Slab Albedo Problem. The slab problem (19) closely

resembles the half—space problem, but there is no branch point

at s 1 in the complex s—plane since both discrete eigen—- SX/l4
functions qI5(/.L)e are involved in the expansion of i4I(xq.L)

Therefore, there is no branch cut along the real axis OsI

Instead, there are a finite number of poles (36) at certain

values of s = s, j = I to N, in the interval 0< s < 1 (19).

These poles correspond to the solutions of the slab critical

problem and fill up the interval as the slab thickness is

increased. Equation (V.3.10) is now replaced by (19)

N
410(x,,LL,t) 2I/ms1(0bLo)I1msj(xi/J.)e

+
2I

(V.3.15)

where the //ms(X,/L) are normalized to

(V.3,16)
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