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I. INTRODUCTION AND FULL-RANGE APPLICATIONS

I.1l Historical Introduction

The idea of using a set of (singular) normal modes in order
to solve the transport equation in a manner analogous to the
methods used in other problems of mathematical physics seems to
have originated with Davison (1l). Van Kampen (2) later applied
a similar technique to a problem in plasma oscillations. The
collisionless Vlasov equation encountered in that application is
quite similar to the equation of neutron transport. Later Case
(3), generalizing Van Kampen's technique somewhat, showed its
equivalence to the Laplace transform approach used by Landau
(4) to study plasmas. Wigner (5) also discussed briefly the
general ideas which had already been advanced by Davison. It
remained for Case (6), however, to exploit the method fully. 1In
particular, Case proved the extremely important partial-range
completeness theorem and showed how the normal mode expansion
coefficients of the solution of various problems could be
obtained from the solution of a certain class of singular integral
equations of a type discussed extensively by Muskhelishvili (7).
Case also derived an orthogonality relation for infinite medium
problems which permitted the coefficients to be obtained directly.

The great virtue of Case's approach is its analogy with the
method of solving "classical" partial differential equations.
Thus, the solutions of theoretical transport problems are obtained

more directly than by using the rather cumbersome methods previously



(‘Pkﬂﬁkd = Skk" (I.2.3)

The usual method of solution of (I.2.1) is to expand the functions

£f(x) and g(xr) as

flr) = 2 ()

(1.2.4)
glr) = Z gy (r)
and use (I.2.3) to obtain
- 9k
fk = N (I.2.5)

We will apply the same method of attack to a modification of the

above problem, namely

Qflr, pu) =0,
(I.2.6)
where f([ y) must now satisfy boundary conditions
Lim f(r,u)=0 (1.2.7)
e .
flo,ie) = folpe) . (1.2.8)

We have introduced explicitly the additional dependence, on
the angular coordinate f , which occurs in transport problems

with azimuthal symmetry. In this case we must expand in terms

of a set L[Jk(_[,,u) :



flo,m) = 2 e, p) (T.2.9)

where the prime denotes the omission of all \Pk(L;L) not

satisfying (I.2.7). Applying (I.2.8) to (I.2.9) gives

foli) = Z' (o) = 3 fier () (I.2.10)

and once again the expansion coefficients fk may be found.

Note that the completeness of Yy (r,it) is required for Yk (o) .
Thus, the problem is analogous to that of a partial differential

equation in (say) r and t with certain initial conditions.

I.3 The Transport Equation

We will consider the one-speed, one-dimensional, time-
independent neutron transport equation
Sy (x,u,)
S x

where we take units such that v = Zt = . Here \[/(X,,LL,gb)

+y = /\P(X,#:¢')f(Q'S_l')dQ'+q(x,p,¢) (1.3.1)

is the neutron angular density as a function of optical position
x, polar angle cos‘HL between the.neutron velocity and the
x-axis, and azimuthal angle ¢) . The mean number of secondary
neutrons emitted per collision is denoted by c. q(X,yq¢ﬂ

is the source, and f(£2=£2) is the probability that a neutron
with velocity vector in the solid angle element dgz_ about

unit vector él has a velocity vector in d&} about SZ

-5



after a scattering collision. It is customary to expand

f(Q-Q‘)=§-2—’ﬂL—‘ b, P, (-8, by=1
I =0 477' L o !

(I.3.2)
where the Pﬂ(gquZ) are Legendre polynomials. We will
assume azimuthal symmetry. Insertion of (I.3.2) into (I.3.1)

and use of the spherical harmonics addition theorem gives, after

integration over azimuthal angle,

Syr{x, ) N
Iu.—i/é;‘&-}-\ll= —Cé- 2 (20+1)b P,L(p)[w(x,#)q(p)dp +qlx,pm) (1.3.3)

Except for Part IV, we shall be concerned with isotropic scattering,
in which case bL=é&o . Definition of the Boltzmann operator

for isotropic scattering as

B=,u.-§—"+1-‘é'/d/_L (I.3.4)

gives the equation

By (x,) =qlx,p). (I.3.5)

Since the source méy be replaced by a boundary condition,* we

shall seek the solution of the homogeneous equation

Byix,t) =0 (I.3.6)

*0r, in some cases, a "particular solution" must be included,
cf. Section II.6. In any case, however, it is the solution of the
homogeneous equation which is of prime importance.

-6~



which is of the same form as (I.2.6). 1In order to follow the
procedure of Section I.2, we must determine a complete orthogonal
set of normal modes of B. The angular density may be expanded
as

Y (xp) = 2y, (x,p) 13,7
and the expansion coefficients determined from the orthogonality
relations. We will now proceed to determine the eigenfunctions,
prove completeness theorems, state orthogonality relations, and

apply the method to various problems.

I.4 The Normal Modes

The eigenfunctions of B may be written in the form¥*

Wy, () = e X0y, ()

(1.4.1)
Substitution of (I.4.1) into (I.3.6) gives
|
(v-p)yr, () = _g_y_/\!/ (wrdu' .
v 2 . v (1.4.2)

This is a homogeneous equation so we may normalize in any manner:;
in particular, we set

|

Y, (p)dp =1, (I.4.3)
-

*Using translational invariance. That is, since B commutes with
all translations, it is an invariant of the translation group
which means that its eigenfunctions are the invariant subspaces
of the translation group. These are the one—-dimensional sub-
spaces XV .



which is permissible except for the trivial solution IPP(;L)ﬁo

With (I.4.2) and (I.4.3), we have

(v=p) Y, (p) = 5,

(I.4.4)
and the most general solution of (I.4.4) is
_ Cv |
Y, (p) = 5P + Mp) d(p-v), (I.4.5)

v

where the symbol P signifies that, in any integrals involving

(y—fqu , the Cauchy Principal value is to be taken. The

function ¢b(;L) is not an ordinary function, but a Schwarzian

distribution and has a physical meaning only when it appears

inside an integral. Since M is the cosine of an angle
(-1<pu<l), there are two ranges of interest of the
variable Z/:?/%’[—I,I] and Ile[-l,l] .
For z/é[-l,l] , (I.4.5) becomes simply
%g
¥y (1) = VoH (I.4.6)

and (I.4.3) tells us that ¥ must obey the equation
|
d
A(v)=l—%/7_&=0.
R (I.4.7)

Explicitly,

Alv)

- -t
|=cv tanh TR

(1.4.8)
Note that A(e) = t-¢.



There are two roots, denoted by =V, , to the symmetric disper-

sion function .Aiu) . For c<l| , Vo is real and, of course,
greater than unity. As Cc—1| , Vg™ ® (this is actually a
double root since the two roots coalesce). For ¢ > | r Vg

is purely imaginary. For a given c, there are only two values
of 14 for which the homogeneous equation has a solution and
the eigenfunctions associated with these discrete eigenvalues

are denoted by

cy, i

You () = 0 (I.4.9)

e —
ox ‘M 2 ®pF M

and are the discrete eigenfunctions.

For Ué[‘l,q . (I.4.5) is the form of the eigenfunction

and X(V) is determined from (I.4.3) as
|

d
NOAE I—C—ZZP ;/——_-/':—Z=l—cz/ tanh™' v |

(I.4.10)
The values of Awv) may be related to the boundary values of the
function [\(v) which is analytic in the plane cut from -1

to 1 along the real axis. If we define A* (V)=|€_ir%+A(Z/ii€) ,then
-

Mw) = M) £ TEL

(I.4.11)
The X(V) can always be chosen from (I.4.10) for any value of
v between -1 and +1 so there is a continuum of eigenvalues
with the associated eigenfunctions (I.4.5). These, plus the
discrete modes in (I.4.9), are the normal modes of the transport

equation.



I.5 Full-Range Completeness Theorem

Theorem. An "arbitrary"* function ‘P(/L) defined
on the full range of 'u.(-li,u_(_-l-l) can be expanded
in terms of the normal modes of the transport equation

in the form:
|

Yl) = a5, Yoo (p)+ag_ Yoo (1) +/A(V)llly (p)dv
-1

(r.5.1)

where Oo4 and A(wv) are the expansion coefficients.

This theorem is a special case of the partial-range completeness
theorem first proved by Case (6). We attempt first to expand
another "arbitrary" function IP'VL) in terms of the continuum
modes alone and then determine the necessary restrictions to make
the expansion permissible. Consider
]
1

lll(#)_[f\(y)%(mdy (1.5.2)

and insert (T.4.5) to obtain the singular integral equation

QZA(v)dv

Vip=P| S5 + () Alp)

-1 (I.5.3)
Using (I.4.11), one obtains
i
W) =4 CAY () + A () A()+P %V-;?A:—%)dy. (1.5.4)

*The proof is valid if ¢de) is a distribution (29) as well as,
of course, an "ordinary" function.

-10-



The method described by Muskhelishvili (7) will be used
to show that (I.5.4) has a solution i.e. that the expansion
(X.5.2) is possible.

Define a function N(z) by

o cv Alv)dv
N(z)= =5 2 v-z : (1.5.3)

If a sufficiently well behaved A(v) exists, then N(z) has
the following properties:
1) N(z) analytic in complex plane cut from -1 to +1;

2) N(z) ~ z1las 7=+

| ;
3) N+(/.L)+N"(/.L) = #TP/ c;/ l;\/(z:)zv
N - N = S AG)

Equation (I.5.4) may now be reduced to the Hilbert equation

_C__é“_ \l,‘(#) = A‘*’(/_L) N‘*'(,u.) —A'(,u.) N7(w) . (I.5.6)

Since the function AMz)N(2) is analytic in the complex

1

plane cut from -1 to 1 and is required to vanish like z7~ as

Z —p 0 , the Cauchy integral theorem may be applied to prove

that

|
I cp Yldu

27i \z) |2 r—z (I.5.7)

The function N(z) of (I.5.7) has the behavior required except

N(z) =

for simple poles at i:Vo arising from the vanishing of f\(Z)
In order to remove this difficulty, we require that the numerator

also vanish at XV, , 1.e. that

-11~



cu Ylwdp  _ .
-é/'-.L-;-‘L——.ﬁ-o——-z.g.;l; Iu‘\l/O;i: (/"L)\I/(#)dfl':O (I.5.8)

-1 =1
which will not be true in general. Remembering that we are
presently expanding ¢fVL) which is related to lPVL) by
i
i) = W) + 0o Wor (1) + 0o Wou () .

equation (I.5.8) may be satisfied if
| ] |

o) Ylpddp= ags | prios () You ()dpatag- #llfo-(#)\lfoéﬁ()ldﬁsul

0)
which will be true if the discrete coefficients are defined by

|
[I P¥orlp) P (pddp

Jos ~ l
[I VAL

It will be seen in the next section that the same conditions can

. (I.5.11)

be obtained from orthogonality relations.

That we do indeed have a complete set of eigenfunctions may
be verified by the use of the boundary values of N(z) given by
(I.5.7) to obtain A(;L ) and the substitution of this into the
r.h.s. of (I.5.2) to regain the l.h.s. of (I.5.2) (30) . Recently,
the general range completeness theorem has also been proved (31)

using the orthogonality relations (28).

-12~



I.6 Full-Range Orthogonality Relations

Full-range orthogonality of the eigenfunctions was first
observed by Case (6) and may be seen by writing (I.4.2) in terms
of ¥ and wv! , multiplying the first equation by Zﬂ¢@K;LMUL
and the second by y!#b(}ude and integrating both equations over

M from -1 to +1. Subtraction of the two equations and use

of (I.4.3) gives

I
(V—V')//.Lllly(/./.)\lfyr(p)dp =0 .
-1

The normalization condition for the discrete eigenfunctions is

(I.6.1)

(6, 11)

Cy,
P¥aslp)d = Nog = £ —32 E— -1, (1.6.2)

2
. Y —| Yo

and for the continuum eigenfunctions is (6, 11)

p, () Y lpddp = N(v) 3(v-v'), (I.6.3)
-1
where
I - - 2 A I 7 )
N(z) = v/ () Aw) = v | ) + () o) (1.6.4)
The function g(c,y) is tabulated extensively in Case

et al. (32). Equation (I.6.3) is most easily derived using a

modified form of the Poincare-Bertrand formula (7) which is (28)

-13-



P P - | | _ | 2 _ i
S E TR T PV'-,U. Py—,u. + 78 (v-p) S(v'-p).

(1.6.5)
Eguation (I.6.5) is used in the integral term of (I.6.3) con-

taining the double singularity.

I.7 Full-Range Application: Infinite Medium Green's Function

We wish to find the angular density G(O,/_Lo-" X,,LL)E G(X,,LL)
at any position and direction due to a unit plane source located
at the origin and emitting neutrons in the direction Ho .
The angular density satisfies the homogeneous transport eguation
(I.3.6) except at the origin where the source will be replaced

by the boundary condition

SlpL- Lo
G(ot,u) - Glo-, ) = ———ZEL_,-T-;L'L-L—O- (I.7.1)
If ¢<I| , then
Li G(x,u)=0 (1.7.2)
ALY

and the diverging modes must not appear; thus we look for a

solution of the fofm*
[ i
Ao+ Yo () e %% +[A(V)pr(/.l.)e”‘/” dv, x>0

Glx,p) =4 °

Y (I.7.3)
“Go-\lfo-(/.L)e'X/VO -—/A(v)\lly(#)e'xwdv, x<0 .
N -1
*Sign convention is arbitrary and is chosen for convenience.

-14-



Applying (I.7.1) gives

|
8(27;/1. ) = 0o+ Yot () +0g-Yo- () +/ Alw )y (p)dv (I.7.4)
-

which is an equation of the form (I.5.1) where the function to
8 (p1=po)
2T

Section I.5 verifies the completeness of the expansion and the

be expanded in terms of the normal modes is Y(pL)=

orthogonality conditions of Section I.6 give the expansion

coefficients as

Onn = Yot (&o)
ot 2T Ny+
(1.7.5)
(
A(y): M

2mN(v)

-15-



II. HALF-RANGE APPLICATIONS

Ir.1 The Half-Space Albedo Problem--Need For Another Completeness

Theorem

We have seen that a typical "full space" problem involved
the expansion of a function VMFO on the range-leLﬁl in terms
of the normal modes of the homogeneous Boltzmann equation. From
the general uniqueness theorem (10), we know that the steady-
state angular density for C€</| in volume V is determined by
the sources in V and the incoming distribution on the surface of
V. For half-space problems with V in the right half-space, this
incident distribution is ‘P(OJL) for ;LZLO . This leads to
a different type of expansion, as we shall see below.

For the half-space albedo problem, we wish to find the

angular density at any position and direction due to an incoming

distribution on the surface of the form

Yalo,p) = Slpu-pg), p20. (IT.1.1)
For ¢ </ ,
Yy (o0, 1) =0. (I1.1.2)

Boundary condition (II.1l.2) requires that we exclude all diverging
modes of the Boltzmann operator in our expansion. An expression

which obeys this condition is

-16—~



|
Yo (X, 1) = ag, Yo (e X % + Ay, (e Vdy . (IT.1.3)
0

Using (II.1.1) we seek the solution of

[

S(p-tro) = Gouloi(p) + [ Alv) Y, (p)dv, 20,
o}

The. boundary condition is imposed only for ;L;Z() and for this

(IT.1.4)

reason is different from the expansion of Section I.5. We will
therefore prove a half-range completeness theorem for the eigen-
functions and also examine orthogonality relations which may be
used to determine the expansion coefficients. The half-range
relations have the form

(v-v') | W)y, () dp = O (I1.1.5)

. 7o

W) Pe () dpe = Ky (II1.1.6)
%

W), () dp = H(v) 8 (v-v") (T1.1.7)
0

where Wﬂfdis the half-range weight function ( B was the full-
range weight function). The orthogonality relations and (II.1l.4)
permit the determination of the expansion coefficients for the

half-space albedo problem as

-17-



W o) Yo+ (26)
Kt

Ao+ =

W(LLo) Yy (o) (II.1.8)
H(v)

Alv)=

and the problem is solved.

IT.2 Half-Range Completeness Theorem

Theorem. An "arbitrary" function ¢/UL) defined

on the half-range O_<_/_L.<.|* can be expanded in terms

of the continuum modes with QO <Ly < | plus one of the
discrete modes, say ¢b+UL) , as
Yl =agefol ) +/ Alw )Yy (pu)dy, O | -

0 (IT.2.1)

The proof of the theorem**follows along the lines of the full-range
theorem and is another specialization of the general-range theorem
(6) . Here we again attempt to expand not ¢NfL) but \#%/L) in

terms of the continuum modes alone:

!
L}
= < £
Yip)= [ Alv)y, (pldvy , O=<p<l (11.2.2)
0
Following the proof of Section I.5 we are again led to a Hilbert

egquation of the form

\ N)-A(p) |
—c-g-L-lI!(/.L)= ,u.zm e Phlp) = AR (N ) =AM (ON" (), (11.2.3)

O=sp=l,

*There is an analogous theorem for the other half-range -|S./LL$,O
**proved in detail in (11).

-]18~



where in this case the function N(z) is analytic in the complex
plane cut from O to 1 rather than from -1 to 1 because the
limits of integration on the definition of N(z) are from 0 to 1.
Thus the branch cuts of ANA(Z) and N(z) differ and the right hand
side of (II.2.3) is not simply the difference in the boundary
values of an analytic function as was previously the case.

For this reason, we introduce a new function X(z) which is
analytic in the plane cut from O to 1 and obeys the "ratio

condition"

xHp) M)

,0sus 1. (IT.2.4)
X" () A= () H

We will also require that X(z) be bounded at infinity and

non-zero in the finite complex plane cut from 0 to 1. Using

(I1.2.4) in (IT.2.3) we obtain

N X () = NT()X () = ylp)y'(p), OSp <t (11.2.5)

where we have defined

A

= b xr,) - Jop XA oo o
rip)= s | X () =X (@) 2 TR o ust. 26

The Cauchy integral theorem may again be used to prove that

|
) 1 ylpdy'ipw)du
N(z) = s L2 ’
0

(IT.2.7)

provided the function N(z) has the properties ascribed to it.

-19-



A function Xo(z) which obeys the ratio condition and is analytic

in the cut plane is

l
o [n Aty = A()] dp

Xol2) = ex . (IT.2.8)
O() p 27T| 'LL__z ?
0
which can be reduced to
|
{ 9(/L)de
= L —_ I1.2.9
Xol2)= exp — =z ( )
0
with the definition
O(w) = arg At(u).
- H (17.2.10)
Near the endpoint z = 1 of the cut, X, (z) goes to zero as

(L - z). Thus, (II.2.7) gives N(z) a pole at z = 1 which is
not permissible (since from the definition of N(z), z =1 is a
branch point, not a pole). However, the function

X(z.) = —
-z (I1.2.11)

Xof2)
also obeys the condition (IT.2.4) and leads to an acceptable N(z) .
Now that the proper X(z) function is determined for the
half-range case under consideration, we see from (II.2.7) that for

large =z,

N(z) ~ ;‘;i 7(#/)':{;#)(1# = (I1.2.12)

5— y(p)xp'(#)[1+—§-+ L4 fap.
0
-20-



The function N(z) will not wvanish like z-1 for large z (cf.

Section I.5) unless the condition

|
/y(p,) W) dp = 0
0

is introduced. Again this condition ¢can be met since we are

(I1.2.13)
trying to expand LI/(/_L) and not l,l/'(lu,) . For

Yl) = Pi(p) + age Yor (), (IT.2.14)

(IT1.2.13) can be met if we choose

1
/ Y Yy(pydp
- 70
0°+" [ .

The continuum expansion coefficient is found from
Aw) = 2 [ NH(r) =N=(1) ] (11.2.16)

as before and again the completeness of the expansion may be

verified by substituting the value of A(y) into (II.2.2).

II.3 Properties of X(z)

It has been shown (1ll) that X(z) obeys the following
identities:

Identity A
!

X(2) = y{p) du

[T (II.3.1)

-2]1—



Identity B

Az
X(z)X(-2) = (yoz_iz)(“)_c) (I1.3.2)
Identity C

o
X(z) = —C Hap ) (I1.3.3)

2(1-c) | (2-p®) X(p)(p+2)
-1

Equation (II.3.3) is a non-linear, non-singular integral equation
which permits numerical determination of X(z). Identity C
follows from Identities A and B with the observation that

(IT.3.2) can be specialized to give

1

X(0) =
vc(i—c)'/2 (I1.3.4)
and
X L) 2 {
= () = ,0=su=s1. (11.3.5)
K cu Al (2 =2 ) (1-c) X () #

Equation (II.3.5) means that all answers can be expressed in
terms of X(-/.L) so that Xi(,u,) and Ai(/.L) need not be
tabulated. These values of XC#L) have been tabulated (15)
along with Chandrasekhar's H-function (8) and Davison's
h*-function (9), which are related to the X-function by (15)

X(~-2) = ! (I1.3.6)

(% +2)1-c)/2 H(z)

h*’(%—)= uo(i—c)l/2 (14+v) X(-») . (I1.3.7)

-22-



Another form of Identity C which gives a better starting
point for the iterative evaluation of X(z) is (13)

)
{ cz du

wi1-c2  201-0) | (2D X(n) (p+2)
-1

X(z) = (I1.3.8)

The most satisfactory scheme (13) of evaluating X(z) is given by
0
zcv2 | [1-p2%2(0)] du

= 1= , (I1.3.9)
{26z) 2 | i+ pte) o
where &1(2) is defined by
Q(z) = (-)-(—('-b—)—f)X(z) ) (II.3.10)

IT.4 Half-Range Orthogonality Relations

The half-range relations are a special case of the general-

range relations and are (28)

|
/W(,LL)ll/o+(;L)\l/V(/J.)d,LL =0 (IT.4.1)
0
' WIN()
/W(p)tl/,,(p)\lly.(p)dp= --—'{-V-—V— Slv-v) , (II.4.2)
0
where
W)= (gp—p) () (I1.4.3)

-23-



and

N(») = v AT () A () . (I.6.4)

Other important formulae are (28)

W) Y- (i () dp = ey X(-15) Yo v ) (IT.4.4)
0

|
/W(p)\[/oi(p)llfo:,(,u.)d/.w 1(%)2X(ivo) : (II1.4.5)
0

Since we have now proved completeness of the half-range expansion
and have the orthogonality relations, the solution of the half-
space albedo problem of Section II.l is complete. For the angular

density, we have

*x/v
= ‘2)’(/-"0 —x/z/ _ V\I/y(/‘l'o)lpl/(#)ex dv
Yolx,p)= Ty X(vg) Yo+t 0+ {sopr0) y (o) NQ@) y (v) (- v)
Y (IT.4.6)

where the first term on the right hand side is the asymptotic term
(since lyl >yl  for 0<¢cX1{ ) and the second term is the transient
term (also known as the branch cut integral) which vanishes more

rapidly for large x than the asymptotic term.

II.5 Two Other Half-Space Applications

a) Milne Problem. This is the solution for the neutron
distribution in a source-free half-space with zero incident flux

at the surface. A source at infinity provides neutrons for the
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system. The boundary conditions are *

Yn(X,u) = Y{x, 1) as x+ o0 (II.5.1)

Ymlo,n) = O, u20. (II.5.2)

The solution of the Milne problem is the linear combination of
the half-range normal modes plus the ¢6JX¢L) . Therefore,
(IT.5.1) is satisfied by

|

Vinlo )= Yol ) €770 + age Youlple ™% + [ Ay (e My (11.5.3)
0]

and application of (II.5.2) gives

= Yp-{t) = age Ypu () + [ AN Y (pddv , 20 . (IT.5.4)
0

The orthogonality relations of Section II.4 can be used to obtain

X(-2p) (IT.5.5)

a
o* X(1,)

~CU ¥ X (1) Yol )

(=) Y (¥IN(V) (I1.5.6)

Aly) =

The above solution can be used to give the Milne problem

*From Section I.7 we know that the asymptotic distribution far
away from a plane source varies as e‘X/%) . Therefore, the
angular density rises as eX/Up when approaching the source at

infinity.
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extrapolation distance, 2Z,, which is the point where the asymp-
totic neutron density vanishes. As always, the asymptotic
contribution to the angular density comes from the discrete modes.

Using the normalization condition (I.4.3),

|
Pad x) [I%s(x’#)

o= 5 eX/% +q,67% | (I1.5.7)
SO
(-24)
fasFo] 0= e %/% + qgeZo/lo | (II.5.8)
2T
This reduces to
. Y _ % -X{-7)
2o = 5 In(-ag+) = ——In X(7) (I1.5.9)

b) Green's Function. The half-space Green's function
is the solution for the angular density in a half-space with a
plane source somewhere in the interior, Xy, and zero incoming

flux at the surface. The boundary conditions are

Lim Y (x,p) =0 (11.5.10)

X-> o0

S pt - o)

\I/g(xo+,p)—\1/g(xg,#) * Zwa (II.5.11)
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Yy (o,p)=0, p>0. (II1.5.12)

The infinite-medium Green's function of Section I.7 satisfies
the transport equation and (II.5.10) and (II.5.11l) so the half-
space Green's function is taken as a linear combination of the
normal modes which vanish at infinity and G(xg,po=x,u)=Glx,u) :

|
-X/Y -x/v
W () = Gl p) +agefpr(pde 0 + (AW (ple  dv.  (11.5.13)
o]
The expansion coefficients are then selected to satisfy
(IT.5.12) and may be obtained by applying the orthogonality

relations to

l
~G(o,p)= Gge o () + [ ANy (u)dv, p20. (II.5.14)
0

IT.6 Some Half-Space Simplifications

a) Angular Density. The most general expression for the
angular density which appears in various half-space applications

is
|

-x/ ~x/
W(x, 1) = flx, )+ agr Yol e 2+ (A (e dv,
o (II.6.1)

where f(XJL) is the particular solution for a problem and is

given by, for example,
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0 albedo

x/y,
Yo-(ptle 0 Milne (I1.6.2)
Flx,pu) = ,
G(XO’FLO - X,/LL) Green's function
Tﬂ_- constant isotropic source.
-C

The "expansion function" 44;0 for a given problem is defined by

!
Ylp) =Wio,u) - flo, ) = agt Yo () +/A(z/)4/y (p)dv (II.6.3)
0

and the expansion coefficients are

-1 P () dp
Bt = PXWU-0) | X (w2~ 12 (I1.6.4)
0\ A (=) (2"~ 1)
i
(Y +)X(-2) | cv ppn)du AN
A) = -2 cy 6.
() N PZ(V0+/—L)X(‘/J—)(V‘#)+ eI (I1.6.5)

where (II.3.5) has been substituted for y(;L) and 'y(V)
If numerical evaluation of the principal value integral is necessary,

it may always be performed by use of the identity

B 8
fz2)dz _ | flz)-(zo) B-z,
z-2, 2 -2, dz + f(zo) In ( zo—a)' (II.6.6)

Density. The neutron density is defined by

b)
‘ I
P -x/y, -x/v
-2-—/ (x,p)dp /f(x,,u)d#""’o**e °+/A(V)e dv (I1.6.7)
| 0

where the normalization condition (I.4.3) has been used.
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c) Current. The neutron current is defined by

' |
Jé%'l =/}J~\I/(X,/L)d#/ flx,p)dp +(1-c) l:coﬂ/o X/ °+/1/A( )e—x/z/ V}
-1 - b

(11.6.8)
where (I.4.3) and partial fractions have been used.
d) Emergent Angular Density. The outgoing angular density
from the surface of the half-space may be simplified. The

emergent distribution is

a
W(o,u) = flo,p) +oo+\lfo+(/.c)+/A(v)tI/V(,u)dz/, pn<0 (I1.6.9)
| o

and by use of Qg+ and A(V) from a), one can obtain

|
| |
\I/(O,,LL) = f(O,p.)+ m /‘)/(,L.L')L[/(ILL’)(P_._‘LL - VoJ'P- )d/.L’ (I1.6.10)
0 ©n=0,

where the following identity has been used:

I?entity D.
vy (g (p)dy | I I ' N
(- yWINGY ~ o-p | v - X)) p-p X{p) » <0, u'>0.
0
(11.6.11)

As an example, the emergent angular density for the albedo
/.LZO problem with \IG(O,,LL)= 8(#"#0),/420 & ]‘a(o,,u.) =0
reduces to the form
C#o
|
/.LO o (vgtpe) X(=po)l 1-c) - ) X (1)

\I/(O,LL)’ pn=0
(IT.6.12)
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and the emergent angular density for the Milne problem with

\l/(/l-) == ll/o—(/.L) simplifies to

2 -
V(o) = — X2)

= AT (I1.6.13)

Using (II.6.13) and Identity C, one can also show that (11)

,Dm(O) _ X('Vo)
= 2 o (II.6.14)
im(0) _ -2X(-v,) (I1.6.15)

2m X2(0)

IT.7 Two Slab Problems

Slab problems lead, in general, to Fredholm integral
equations for the expansion coefficients rather than closed form
expressions which were obtained in the half-space problems. In
general, the Fredholm equations do not have simple solutions in
closed form.

a) Albedo Problem. Assuming the slab boundaries to be

at x = 0 and x = d, we wish to solve the transport equation

for ¢ <| subject to the boundary conditions
Ylo,p) = Sl , pnz0 (IT.7.1)
Yld,pu)=0, pu<0. (II.7.2)
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The angular density is expanded as
|

"y / -
Wix,) = GosYoelme  Ptagyp-lpwle o+ / A ey
0 (11.7.3)

|
+ / Ay, (/.L)eX/udV )
0

and the application of the boundary conditions to (II.7.3)

gives (17)

|
\l/:l_- (/U») = 8(#‘#0) - b:l:lPO'*' (}L) x/Bi(V)e—d/Vl}/-y(,u-)dV
o

(IT.7.4)

1

=/Bi(v)\lfy(,u.)dv, pnz0,
0
where
d/
by = Gg+ £ 0y-€ % (I1.7.5)
d/

B.(v) =AW+ Al-v)e y. (IT.7.6)

Equations (II.7.4) are two half-range expansions of the type we
have been dealing with and can be reduced, by means of the
orthogonality relations of Section II.4 and partial fractions,
to (17)

%‘ yipo) ¥ L vBy(v) e—d/VX(-V)dV

(11.7.7)

b:hz'
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(y,2-v3)(1-c)X(-») | 2
g, (- L% A-eIX(Y [ 7oy ()

N(v) cv

by (X () F by e Yy (1) X(-15)

|
~-d/
?/Bi(#)e /'LL[/_/.L(I/)X(—/,L)d,u, , (11.7.8)
o

where zZ is the Milne problem extrapolation distance of Section
II.5. Approximations to the above equations give approximate

values for the expansion coefficients 0ot and A(:l:Z/),VZO

/v
For example, for large d, the integral terms with € vanish

Y,
more rapidly than terms proportional to e ° and the expansion

coefficients become (17)

d/y,
O (2z,+2d)/% _(0)_ Y{pole

Go+ = —€ Yo~ cy, X(-15) sinh [( 220+d)/z/0] (- 7-9)
pOy) = 27 NI=C) X (1) 2y (ol {po) (1I.7.10)
N(2) cv o

~al® Yot ()X () — a2 Y- (01X (—vc)]

A(O)(-zx) = -g

2 2
- - -c) X(-
d/v  viy V;\),((:/)C) (-v) {:0;9)ed/7/°\lfo+(V)X(Vo) (I1.7.11)

+ag e Py Xy, )} .

b) Critical Problem. If the slab is critical, then
by symmetry\#(XJL)=¢Ad-X,—yJ and there are no incident

neutrons at the surface. Setting /Lo==0 and imposing the
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symmetry condition gives

Qg+ = oo-ed% (I1.7.12)

Alv) =A(-z/)ed/y (I1.7.13)
and therefore

bo=B.(v) =0 (IT.7.14)

and (II.7.7) and (II.7.8) become the equations for the critical

slab problem (16, 18):

|
Qo+ Vo X(~15) [e 22°/V°+ e—d/%] = —/vA(y)e“d/VX(-V)dz/ (I1.7.15)
0
v (v 2-12)(1-¢c) X(-v)
Aly) = — 0 N Qg+ {q/o+(y)x(yo) (II.7.16)

|
+e oy X} + /A(me“d’“w_#w) X(-12)ds
0

For the diffusion approximation (where there is no continuum

contribution and A{r)=0) , (II.7.15) is the critical

condition

-

22‘0/V0+ —d/Vo
€ € (IT.7.17)

and a solution to (II.7.17) exists for
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cos [(Zzo”)/zyojl =0 . (IT.7.18)

Thus,

d = wly,l -2z, . (II.7.19)
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IIT. TWO HALF-SPACE APPLICATIONS

IIT.1 Introduction And Normal Modes

For the two half-space problems, we consider two adjacent
semi-infinite media of different properties with an interface
at x = 0. Denote all functions in the right and left half-spaces
by subscripts 1 and 2, respectively.

The solution to the transport equation in each half-space

is expanded as

(

fx,2) + agoreipde ™ ot / Ay, ey, x>0
0
Yl = <

X z/dz,,><<o(111.1.1)

o
X/
~fp o) -0 Ypp-lple 02— /‘A(u)xpyzw)e

\

where fdxdi) is the particular solution. We have excluded all

diverging normal modes since they appear only in the Milne

problem, in which case they may be included as particular solutions.
All two half-space problems must satisfy the interface

condition

Ylot, w) - o, )= Y(p) (IIT.1.2)

which means that
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|
W) = (o, 1) = f2(0,18) = g4 Yoye () + ag-Ypop- (1) +/A(V)¢I,/l (pdy
0

0
+/A(1/)1,l§/2(,u.)dv. (III.1.3)
-1

This can be rewritten as

Yilpd = Ylp)=flo,u) - folo,u) = gy, () - ag -y, (w)

| o
= /A A dv . (IT11.1.4)
/ Wy, (Wdv + [ A (W)
0 -1
The continuum normal modes of the homogeneous transport equation,
¢$i(FL) , for i = 1,2, have the same form as (I.4.5) except
the mean number of secondaries is ¢;. Likewise, the roots
ilbi are the roots of the dispersion functions I\HZ/) which
are functions of c;. The normal modes 46ii(fL) have the form
of (I.4.11) with the proper values of c; and Voi . This

suggests the following notation (11, 14, 15):

¢, v>o
cly) = {c - (ITI.1.5)
2 v<o
A @) vso
L(y) = {Az(v) <o (III.1.6)
I
QAv)= 1 - vely) P/ d (IIT.1.7)
2 L VTH
LE(y) = Q(v) £ —7’-%1’11- (111.1.8)
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D (u)= vcéz/) F NS (v-p) .

YR (IIT.1.9)
We can now write (III.l.4) as
|
Yip)= [ A D, (n)dy (III.1.10)

and we have a modified form of the full-range expansion which

was discussed in Part I.

IIT.2 Completeness Theorem

The two half-space completeness theorem closely follows the

proof of Section II.2. Defining

|
velr) Alvldy

n(z) = 2|vi 5 g (II1.2.1)
~1
reduces (III.1l.10) to
)
L¥ )yt () — L ()~ () = 'U'—CZ(E—— Yrip). (I1I.2.2)

The function L(z) is not continuous so another function must be
introduced. A function X(z) is needed which is analytic in the
complex plane cut from -1 to 1, which is non-vanishing along
with its boundary values in the entire finite plane, and whose

boundary values satisfy the ratio condition

A+

=L ,u>o
Xt Lrw | A rr.a.n
— = — = + o do
X“(w)  L7(p) A3 <o .

A,
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By inspection (1ll), such a function is
X(z) = X, (2)Xo(-2), (III.2.4)

where Xﬂz) is the half-space function of Section II.2 corres-

ponding to c; (which is continuous for — 2 ). With the use of

1

(ITT.2.3), equation (III.2.2) becomes

X)) =X () () = Tl i), | (III.2.5)

where

T - pe(pe)  X7(w)

-1 <
5 oy ISp<t, (II1.2.6)

The solution of (III.2.5) is

o Ty (p)dp
n(z) = > TIX(E) -z (I1I.2.7)
-l
where the conditions
|
p" Dy (p)dp =0, n=0,t, (IT1.2.8)

-1
must be imposed for 7ﬂi)to have the proper behavior at infinity.
The two discrete modes LI/O|+(ILL) and \IJOZ-(/_L) are available in
(III.1.4) to satisfy the above two conditions. This completes
the proof of completeness.
The function X(z) satisfies the following identities

(28)
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|
, n=0,1,2 (III.2.9)

z"X(2)+ 8, /

which may be written as

0
n+l
C X, (p)d
2"X(2)+8,, = 2(I-202) £ ,ué_,u.z — (III.2.10)
_Ixz(:“')(”oz M p-2)

!
n+
c RSN
+2(|-lc) _ ‘ 2_ 2y _ »n=0,1,2.
! Xy (=)o = 1" Hps-2)
0

ITT.3 Orthogonality Relations

The orthogonality relations for problems in two adjacent

half-spaces with weight function

W) = (o -y, +p) () (IT11.3.1)

are (29)
/cb (W @, (LIW( i = WAL L) S (v-27) (111.3.2)
[ILPO.+(/.L) D () W()du =0 (III.3.3)
['\ll/oz_(y) D () W) dp =0 (III.3.4)
/_l:pm(,u) Yo, () Wig)du = O (111.3.5)

|
[\l’ou-(#)@y(#)W(P)dfﬁ -é— cvelys —1/33;7% X(-¥y,) (III.3.6)
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i
2
/I'"I’O|i(/"')'vlj01+(f"')v’/(/-’-)d/~‘-=_(C—'Zﬁ‘) (I/Olﬂ:voa)x(:hvo') (III.3.7)

!
2 —

/'\lfozi(,u.)v.,l/oz_(,u)W(/.L)d,u= (C_z_ggl) (y, ¥y )X(£y,,)  (1T1.3.8)

|

/\,l{)l_(,u)\[/oz_(,u.)W(,z.L)d,u.= % Cucz”oa;”oax("/on) . (III1.3.9)

The orthogonality relations of Sections I.6 and II.4 may be

obtained from these results. Upon letting Cy =¢y = ¢,

X(z) = X(2) X(-2) = —E) . 3.
(2) X(-2 () 1-0) (III.3.10)

SO

W(p) = 2(l(3-c) U, (II1.3.11)

which agrees with Section I.6. For ¢, =0, Vgp= 1 and

XZ(E)=,—_'_£- : so  X(g) = Ix_'l‘_(z) (II1.3.12)
and
| (o) y () O=u=
W)= (rp -+ Ty = 4 0 7 e S TE TR

0 -l£p<0

which agrees with Section ITI.4.
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Likewise, letting c, = 0 in the solutions of the two half-space
problems of the following section gives the half-space results

of the corresposnding problems.

ITT.4 Three Applications

a) Milne Problem. For two adjacent, source-free
half-spaces with ¢y < 1 and ¢, << 1 and with a source at +oo

we have (14,15)

C,
8 (x ) Ylxpddp' x>0
lp £ + Y(x / (IIT.4.1)
2 /_|\l/(x,,u’)d,u’ X <0
where
Lim ¢4&;ﬂ dgl(x;i)(the slowest diverging mode) (III1.4.2)
X > +00
L ,1) =0 (ITI.4.3)
Xynasp(fo
Ylofu) =y(o,u). (continuity at the interface) ~ (III.4.4)

The angular density, from (III.Ll. l), is |
X/v
lllo,_(/.l.)ex '+ agtYp(le °'+ﬁ\(v)l[/w (e dv, X>0
Yix,u) =
—oo_t;/oa_(p.)eX/Voz /A(V)lllyz(/.L)e Ydy, X<O. (III.4.5)

These equations reduce to (III.1l.10) where

Yl ==y (w=-a, Yo (u)-a Y (u) =/|A(V) @, (wldv  (11I.4.6)

and the orthogonality relations yield
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X350 1))

Qo = II1.4.7
ot X My, +145,) (1 )
° X(=205) €165 %2t 1))

[ -ve ll-c) Vo?(Voz‘Vou)X("’on)xu (-») >0
(1, +¥) N, (1) X, (-v)
A) = 4 ) (III.4.9)
§ (vd-v2) Nalv ) X (v) ,
and the solution for ‘P(Xdi) 1s now complete since the
expansion coefficients are known.
b) Constant Source. For a uniform isotropic source in the
right-hand half-space,
¢ |
I i ]
Syrix,p) ?/‘l’(xv“)d/“‘ +a, X>0
S v + Yx, )= . -1 (II1.4.10)
—%—/\[/(x,/.l.')d/.z.' X<O0 .
|
The boundary conditions for c; < 1 and Cy =< 1 are
Lim  y(x,p) = —30 (III.4.11)
X +co ’ ""Cl
liim Yx,n) =0 (IIT.4.12)
~» = 00

-42-



Ylo*, i) = Ylo-, u) (ITI.4.13)
and the angular density is

~x/ ! -x/
%’5 + ag+ g+ (ptle X o +/A(u)l[fw(/.4.)e X Vdu, X>0
0

Yix, pm)= o | (II1.4.14)
X/t -X/v
—05-Yp,-(pLle —/‘A(V) Y,.(ple " “dv, X<O.
The expansion coefficients (14,15) are obtained by application

of the orthogonality relations to

-1?% = Og+ Yo+ (1) =05 - () =/A(V) D, (pdv. (1TL.4.15)

c) Green's Function. To find the Green's function for
two adjacent half-spaces with a source plane arbitrarily at x
o

in the right half-space, one considers the equation

( ¢ [ S (x-Xg) S {pL-pLy)
L el e o/ O\K~Hyo
Syix,u) 5 /_I\I/(X,,U-)d,u. + > . X>0

Ko — +Ylix,pu) =1 | (III.4.16)
oX %/Ill/(x,/.z,’)dp.' , X<0

with the boundary conditions

[ M) =0 I1.4.17)
l)-(--‘-bm:i:oo \II(X 'LL) (11
Ylot,u) = Ylo-, ). (IIT.4.18)
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The angular density which satisfies (III.4.16) and (III.4.17) is

-
-x/;

% “dv. X>0

|
Gy (X o *X, 1) + 00 Yo 4 (L) */ + [ AW, (e
5 Vi

Ylx, ) = <

0
X/ -x/
~0o Yoo (ple Yoz —/A(V)n[/yz(,u.)e X de/, X<O0  (III.4.19)
-1

where G; is the infinite medium Green's function of Section I.7

with ¢ = C1. Equations (III.4.18) and (II1.4.19) combine to

give

|
=G (Xg o> 0, 1) =05 Ypo  (t) —ag Yo, (1) =/A(v)@u(p.)dz/ (III.4.20)

and solutions are again available (14,15)
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IV. ANISOTROPIC SCATTERING APPLICATIONS

IV.l General Anisotropic Scattering

We now consider the transport equation

Sy (x,u) !
/""__'418:# +\l/<x,m=—g—%O(zunbmm/\;’(x,y)aw)dp’ (1.3.3)

-l
+CI(X,,LL) ’

with by = 1. Considering the homogeneous form of (I.3.3) and

using (I.4.1) to separate the variables gives
|

N
(=) gy () = & > (RHNBR () [ g, (B (p)dp

-1 (Iv.1.1)

Multiplying this equation by Py(p)dp, integrating over u
from - 1 to 1, and using the orthogonality and recursion relations

for Legendre polynomials gives

k+ 1 K =
I/(l—cbk)\llyk" ka1 \lfy’k“ T Dk+1 ‘I’y, k-1 = O (IV.1.2)

where ¢%k is defined as

|
Yk =/%(#)Pk(#)d/~£ ' (IV.1.3)
-1

We normalize the solution to

|
q”z/o =/\[/V(p,)dp. = | (IV.1.4)
-1

to conform with (I.4.3) and obtain
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\ljyzz—é—' (I_Cb|)(|"C)—J§' (Iv.1l.5)

and so on,

The most general solution of (IV.1.1l) is

M(L,v)
()= P —— 4+ N (W) S(u-v) ,
W ()= 5P —— (pro(p-v 1. 1.6)
where M(FQV) is a known function, defined as
N
M, ) = > (20+ )by R (), . (IV.1.7)

=0

The normalization condition (IV.1.4) gives the dispersion function
j\(V) whose zeros define the eigenvalues vV not on the real

line between -1 and 1:
|

Plp)d
> (20N by, | EE o

A(zx)=1—9-2’—’
=0 VoM . (Iv.1.8)

!
This may be written as

N
Atv) = 1-cv go(2Q+l)bL\[/mQ£(z/) , (IV.1.9)

where QQ(V) are the Legendre polynomials of the second kind
(33). The roots of A{y)=0 are the discrete eigenvalues and

are investigated by Mika (12). For ¥ on the real line from

-1 to 1, equation (IV.1.4) determines X(V) , which is related

~46-



to the boundary wvalues of A(Z) by

A* () = \v) £ TicvMlny)

2 (IV.1.10)
Another method of determination of the discrete eigenvalues

is also available for anisotropic scattering

Multiplying
(Iv.1.6) by Peluldu

and integrating over

M gives
N Pi(eL)Pp(re)d
\p,,k(,uhé”-g 2“”%"@;/ e ”‘ £

?

(IV.1.11)

which may be rewritten in the form
N

| -
go (20+1) cv by Ay (37) =By 1 Wy, = (Iv.1.12)
Here, Agk(%ﬂ is defined as (34)

|
Py. | PL(,LL) Pk(/-L)d/.L

A (77) = ZV[I VT : (IV.1.13)
with
Agk (7|7)=VQ£(V)P|<(V) . A=k (IV.1.14)

The system of equations (IV.1.12) can have a non-trivial solution

only if

det [(20,+I)cz/2blAnk(—}/-)—82k] .

(IV.1.15)

and this yields the discrete eigenvalues From this we see that
for ¢ =1, V=

is always a (double) root since

|
. Plp)Plpldp 2
Iz_/l_:na° v2Ag () = lZ_/a_an/ - T~V Yy Syk (Iv.1.16)
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and (IV.1.15) becomes, in the limit as V-»oo ,

det [bl-I]8£k = 0. (Iv.1.17)
Equation (IV.1.17) is the identity 0 = 0 since bo = 1.
The root is a double root since A(v)=zA(-») .

The completeness theorem for the expansion of the angular
density for general anisotropic scattering was proved by Mika
(12) . From now on, however, we will restrict our attention to
the case of linearly anisotropic scattering where N = 1. For
¢ <1 and N =1, there are only two discrete eigenvalues:tvb (12)

which have corresponding eigenfunctions

_Cyy Mlp,Ey)
\IJO:I:(/‘L)_ 2 V°+,LL 7 (Iv.1.18)
where
M, £y5) = 1£3b,(1-cluy, . (Iv.1.19)

IV.2 Orthogonality Relations For Linearly Anisotropic Scattering

a) Full-Range Case. The orthogonality relations are (12)

!

/;J.\IJV(/J.)t[/y,(p.)d/_L = S(¥) 8(v-v) (Iv.2.1)
_’|

/#%i(#)\l/,,(/-/«)d# =0 (IV.2.2)
_|'

/#4’o+(/—L)SUo-(/-L)d/.L =0 (I1V.2.3)
-1
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|
//—“Po:x(/-")\»l’o:(#)d/l— =Sos (Iv.2.4)
-1

where

2
Sw) = v AN A () = v xz(u)-a-[“”“g‘”’”’] (1v.2.5)

and where Sy, is known (12).
b) Half-Range Case. The weight function depends upon

by and ¢ and has the form

-
W) = (yo-p) () = (vo-p) <:2 A—._((li% . (IV.2.6)

but the normal modes are no longer orthogonal (28). Indeed, it

is necessary to define a constant B which is also a function

of bl and ¢ such that

5= 3b,(1-c)1,-7)

M(7, i) ’ (IV.2.7)
where
1
lw(#)d,u
V= =5 (IV.2.8)
[)’(/.L)d,u.
o
The eigenfunctions obey the following bi-orthogonality relations
(28, 35):
| A
/\I/V(/.L) [\I/v,(,u.H —C-g—']W(;L)dp= ————-——W(V)VS(V) S(v-v') (IV.2.9)
0
|
/Ll/o+(,u.) [\llyl(,u)-é-B _c__g;] W(w)dp =0 (Iv.2.10)
-0
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(Iv.2.11)

|
- v’ - M (2, 7) M(7,-)
/O%-(/-L) —\IJV,(}.LH'B 5 ]W(/,L)d,u—cz/on( V) Yp-(¥) Moo T (5,70

/%(#) o) +B 22 | Wip)dps = O (1v.2.12)
0

!
/O‘l/o:t(/") {:\I/oi*(/-‘-)‘{'aﬂlz‘o‘ W(pddp =
U 2y M(z;,5) M(7, 2 1,) ' (IV.2.13)
M(7,1,)

These relations reduce to the pure orthogonal forms obtained for
isotropic scattering if by = 0 and may be used in exactly the

same manner.

IV.3 Three Problems With Linearly Anisotropic Scattering

a) Infinite-Medium Green's Function. The angular

density due to a source plane at the origin is expanded as (12)

%

|
, ; ~x/
Ao+ Yptlptle */ +/A(V)\[/V(/,L)e X de/, X220
0

Glo,thg=> X, L) = 1 0 (IV.3.1)

/ -
L —ag-Yo- (e - / A, (e "4y, x<0 .
-1

Following the analysis of Section I.7, we obtain

~ You ()

Qo ~ —2—7;_-§';: (IV.3.2)
_ Yy (o)

Aly) = S575(2) (IV.3.3)
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b) Half-Space Milne Problem. Following the analysis
of Section II.5 and the completeness theorem (1l2), the angular

density is expanded as

!
/ -x/ -

i (X0 = Yo lrde Pk ool (e 0+ fA(v)l,lfy(,u)e *ay  (1v.3.0)

0

and the bi-orthogonality relations are applied to
!
= Y- (1) = 0+ Yo (1) +/A(V)\I/V(/.L)d2/ , m=0. (Iv.3.5)
0

The expansion coefficients are

X(-1) M(7, - 1)

Qg+ = X(VO)M(W,VO) (IV.3.6)
A~ - VX (<) Y- (M (1, 1) M( T, -)
v (% -V)y (W)SWIM (1, v M7, 1)
(IV.3.7)

and were obtained by Shure and Natelson (13). Following the

analysis of Section II.5, the Milne problem extrapolation distance,

Z is now given by
% L U | X (-15) M(7,-1,) ‘
2, 3 Inl=0gt) = =~ In [: X(1,) M(7, -1,) (17.3.8)
¢) Half-Space Albedo Problem. We have
/ | /
_ -X/Y -x/v
Va (X, 1) = ag+pe(ptle +[A(v)\lfy(p)e dv (1v.3.9)
and
|
S (p-po) = ao+%+(y)+ﬂ(v)\[/y(p)dzx , =0 (IV.3.10)
0
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and find (35)

_ =2yl MY, o)

%% X(vg) M(7,v,)

(%~ 1)
Al) = o bl Y o)V {\/Jy( )

T (yy-v) Y (1) SW)
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V. TIME-DEPENDENT APPLICATIONS

V.1l Eigenvalues And Eigenfunctions

The homogeneous time-dependent transport equation for plane
geometry and isotropic scattering is

Syix,u,t) S (x,,t) , ,
BT e Y, =5 [Pl Ddp.  (v.1.1)

-1
For an absorbing medium (c < 1), the angular distribution

denoted by ¢Achx,yqf) can be related to the angular

distribution for a non-absorbing medium by the substitution (20)

U ot

w(C)(XI,#,fl) - \l/“)(CX ) ,

(v.1.2)
so it is sufficient to study time-dependent problems with c = 1.
For convenience, define
Y ex, e, et) = rix, w,t)
(v.1.3)
Following the approach of Bowden (19), multiply (V.1.1) by

e(l = 8)tyg¢ ang integrate from O to e to obtain

Sy (x,
%8())(( 2 sy, p)= 5 [P x,p)dpu’ (v.1.4)

-]
where the Laplace transform of ¢MX4LJ) is defined as

(1-s)t

Y (x, ) =/\p(x,y,f)e dt
o

and the integral converges for Re(s)>] . The time-dependent

(V.1.5)
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solution is obtained from #@(X#L) by the inverse transfor-

mation
Y tie
Yix, u,t) = *Z-I;'- S(x,,u.)e-“_S“ds ,
Y —ie (v.1.6)
where ¥y > | is to the right of all singularities of the
integrand.

Equation (V.1l.4) is the same in appearance as the time-
independent equation (I.3.6) already studied if sl is replaced
by ¢ and xs is replaced by x. The time-independent results of

Section I.4 can be used to give (20)

-Sx/v

Yol p)=e Y, () (V.1.7)
[I‘I//ys(,u-)d/—t= | (V.1.8)
Yo p) = gy's“ P 71—/_—,_-+)\S(V)8(z/-y.) (V.1.9)
(V) = I—-z-ls-fonh"v (V.1.10)

Aglz) = 1- &tanh™ < (V.1.11)
As[ivo(s)] =0 (V.1.12)
A:(v)=)\s(zx)i 1r_2_1§z/_ , —l<w<l (V.1.13)
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Vo |
{ s — (V.1.14)
\!/Si H 2S yoq:/u_

For the time-independent case, s = 1 and A,(z/) has two
zeros. The time-dependent problem under consideration differs
since s may be complex. Again the roots are paired and denoted
as t1, and may be observed from the conformal mapping of

S:zﬁtonffléz of (say) the right half-plane (20):

FIGURE 1
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Here, C is the conformal map of the branch cut 0 to 1 in the

v plane (which arises because of the factor tanh™' %— ) .
There is a branch cut from 0 to 1 in the s-plane because of the
branch point of Z@(S) at s = 1. In region So there are no
discrete eigenvalues and in region S; there are two values. By

choosing ¥, to be the particular root which is positive for

s >1, then Re(15)20 in the entire cut region Sy .

V.2 Completeness Theorems

a) Full-Range. An "arbitrary" function (i) defined

for —IS;LSI may be expanded in terms of the continuum

modes lljl/s(/“L) for any s where, if s € S., the

set of expansion coefficients must also include the

discrete modes #@t(ﬁL) .
For s € S5, the proof follows that of Section I.5. For s € Sq
the function .AS(Z) has no zZeros and the discrete modes are
not needed. The full-range theorem again is adequate for the
treatment of infinite-medium problems.

b) Half-Range. An "arbitrary" function ¢M;L)defined

for OS,LL.<.| (or —I._<_,L.LS.O ) may be expanded in terms

of the continuum modes \vas () , 0ftv <1

(or -1<v<0 ), for s € S, and in terms of \[/vs(,u) and

one discrete mode l#g+(fL) (or 4@7(;L) ) for s € s;.

For s € S5, the proof is analogous to that of Section II.2.

For s € S, the function X,g(2) behaves like a constant
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near the endpoint z = 1 so the discrete eigenfunction is not
needed.

Notice that we have an infinite number of eigenfunctions
since we expand Vg (x,u) for each value of s. We must
therefore study the behavior of ¢@(XJ;) as a function of s
in any particular problem in order to find the time-dependent

angular density from (V.1.6).

V.3 Two Applications

a) Half-Space Albedo Problem. The transformation of the

boundary conditions

Yalo, )= S(p-p)8(1), w20 (V.3.1)

lx_i’m°o Vg (X,,1) = O (v.3.2)
gives

Yas(0,p) = Slp-piol, p20 (v.3.3)

(i, st 70 e

Use of the completeness theorem shows that we expand the transform
of the angular density as

[
(

-x/ -x/
ag+Yeslptle oy Aslv)y (e " Vdv, se€S;
0
Vas (X, L) = - | (V.3.5)
-x/v
/As(v)\lfys(,u)e dv s€Sg
(o
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and solve the equations

r l
AgePeslpt) +/ AslYy (p)dy, n20, seS;
0
Sppo) = 4 |
(V.3.6)
/As(z/)kllys(y.)dv 20, seS,
0 )
for the expansion coefficients. The value of #%S(X,FL) for

S € Sg 1s given by (20)

]
, () X0 (ol et Ve

)= (Vv.3.7)
Yas X, pt) (1 £2o) Xg(=1L0) vATWAS ()
0
where
|
A+
‘e - | slv)  dv (V.3.8)

-z 5P 27 nAs“(y) V-2
0

The function ¢6S(XJL) is analytic in the cut region S;
and in the region Sg- It is also continuous and analytic across
contour C (20) so that ¢%s(x4$) is regular in the entire
right-hand half-plane of s except for the cut from O0< s<|
The shifted contour for the inverse transformation of ¢65(X4L)

thus appears as in Figure 2.
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Im(s)

g 0}——Jﬁ Re(s)

FIGURE 2

The inverse transformation is therefore

27 Y (%, 1) = [ Yslx,wde dS
-(1-s)t

-{oco !
-/[\l/q:(x,p)—\l/o;(x,p)]e ds
0

which can be reduced to the final form (20)
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Yo (62,1 = 2 [ (1-8) 1a(S)] Y elo,—oPimg (X pde oS

| oo
| -(1-sit
t 5771 | Vas(xple ds,

(V.3.10)
where 4ﬁs(x4;) is given in (V.3.7) and where qﬁns(&fL) is
the transform of the angular density for the steady-state Milne

problem normalized to unit outgoing current.* The explicit

expressions for #@w(X4L) and ‘#ms o, pﬂ)are _g)

S ~SX/1, | SX /U
: X, = e <+ -
Vs (%, ) 2(s—x)v02 s(V) Yo+ () XS(_VO)\I/S( e
sx/y
| s ( ,u.)e dv
~ 55 (V.3.11)
As () Ag{
0]
2_ 2 !
s (0,-110) = | 2 5067 ~pae) Xelopo)|
(v.3.12)
For x = 0, the path of integration may be deformed into the
left half-plane because e—SX/Vﬁ>I . The emergent angular

density from a half-space pulsed by an incident beam at t = 0

is thus given by

!
-(1-s)t
\l/o(o,-p.,t)=—7g,- (1-8) v (8) Y (0, L) Y (0,2 )e s dS, (v.3.13)

0 nw=20.
*The solution of Section II.5 is normalized to unit outgoing

density.
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The initial value of the emergent angular density can be obtained

from (V.3.13) .as (20)

-1
Y (0,-pL,0) = [2(,u+,u.o)] , =0, (V.3.14)

and is due to neutrons which are scattered only once.

b) Slab Albedo Problem. The slab problem‘(lg) closely
resembles the half-space problem, but there is no branch point
at s = 1 in the complex s-plane since both discrete eigen-

-sx/
functions \I/s_t(,u)e Xl

are involved in the expansion of ¢g(x4L) .
Therefore, there is no branch cut along the real axis 0<£sZ<| .
Instead, there are a finite number of poles (36) at certain

values of s = sj, j =1 to N, in the interval 0< s < 1 (19) .

These poles correspond to the solutions of the slab critical

problem and fill up the interval as the slab thickness is

increased. Equation (V.3.10) is now replaced by (19)

\I/G(X,,LL,?) i j§| ‘I/msj (O’—IU'O) \I’msj(’(,/l-)e—( !—st

|co
| -(1-s)t ,
+ ST Vs (X, p)e ds , (v.3.15)
-joco

where the 44n%(x+d are normalized to (36)

d 1

dx \Pmsj(x’#)\lfmsj(x»‘#)d#” . (V.3.16)
0 =1
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