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Abstract 
Most PET scans are compensated for accidental coincidence 

(AC) events by real-time subtraction of delayed-window 
coincidences. Real time subtraction of delayed coincidences 
compensates for the average of AC events, but also destroys 
the’Poisson statistics. Moreover, negative values result during 
the real-time subtraction which would cause conventional 
penalized maximum likelihood algorithms to diverge, and 
setting these negative values to zero introduces a systematic 
positive bias. We have previously developed and compared 
two new methods for reconstructing transmission scans from 
randoms precorrected measurements: one based on a “shifted 
Poisson” (SP) model, and the other based on saddle-point 
(SD) approximations,. Simulations and experimental phantom 
studies of transmission scans showed that both SP and 
SD methods lead to significantly lower variance than the 
conventional maximum likelihood methods (based on the 
ordinary Poisson (OP) model). We have now extended these 
methods to emission scans. In situations like 3D PET emission 
scans (with low counts per ray but many total counts and high 
randoms rates), we show that the proposed methods not only 
avoid the systematic positive bias of OP method but also lead to 
significantly lower variance. The new methods offer improved 
image reconstruction in PET through more realistic statistical 
modeling, yet with negligible increase in computation over the 
conventional OP method. 

I. INTRODUCTION 
In PET emission scans, a significant portion of the collected 

data generally is accidental coincidence (AC) events, and these 
are a primary source of background noise [l-31. Moreover, 
AC rates increase as the square of the amount of radio-isotope 
injected to the patient, while true coincidences increase only 
linearly with the radio-isotope concentration. This count rate 
limitation, along with detector deadtime, determines the upper 
limit on the injected radio-isotope dose for many PET studies. 

In conventional PET scans the system detects coincidence 
events during two time windows: the “prompt” window 
and the “delayed” window, and the data are pre-corrected 
for AC events by real-time subtraction of delayed window 
coincidences [2]. Each such pre-corrected measurement is 
the difference of two independent Poisson random variables, 
which compensates in mean for AC events, but which also 
increases the measurement variance. Moreover, negative values 
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result during the real-time subtraction of delayed coincidences 
lqs~e,cially in  high-resolution 3-D PET systems where counts 
per ray can be very low). Such negative values would cause 
conventional penalized maximum likelihood. algorithms to 
diverge. Setting the negative values to zero alleviates this 
problem but introduces a systematic positive bias in ,the 
resulting images [ 1,4]. 

We have previously developed and, compared two 
methods for reconstructing transmission scans from randoms 
precorrected measurements: one based on a “shifted Poisson” 
(SP) model [5-71, and the other based on saddle-point (SD) 
approximations [6,7]. In this paper we examine these methods 
in emission scans. In situations like 3D PET emission scans 
(with low counts per ray but many total counts), we show that 
the proposed methods not only avoid the systematic positive 
bias of the conventional approach, but also lead to significantly 
lower variance. Emission scan results also show an unexpected 
benefit of the SD method that had been unrealized in our 
previous investigation of the transmissiQn reconstruction 
problem. , (  

11. MEASUREMENT MODEL AND EXACT 
LOG-LIKELIHOOD 

Let Y = [YI, . . . , YN]’ denote the vector of precorrecred 
measurements, where ‘‘ ” denotes vector and matrix transpose. 
The precorrected measuremevt for the nth coincidence detector 

are the number of coincidences within the prompt and delayed 
windows, respectively. 

Let X = [XI,. . . , Xp]’ denote the vector of unknown radio- 
isotope concentration values. For emission scans, we assume 
that YYn’Pt and Y?laY are statistically independent Poisson 
random variables with means 0: and 3: given respectively as: 

pair is y, = Y y m P t  - YfiiaY, where Y$”Pt and Y f i b  

, 
P 

prompt E { %  } = @;(A) = C g n 3 X 3 + T n  ( 1 )  
J= l  

(2) 

where T, > 0 denote the mean of the AC events for the nth 
ray and G = { g n 3 }  represents the system matrix including ray- 
dependent factors such as attenuation and detector efficiency. 

Let y = [yl, . . . , yN]’  be an observed realization of Y. Since 
the measurements are independent, one can express the exact 
log-likelihood as follows [6]: 

E{Y,deiay} = yn -d = T,, 

N 

L ( X )  = ~ h L ( 1 7 d X ) ) ,  (3) 
11 = 1 
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P with l r L ( X )  = E,=, gnjX3 and ignoring constants independent 
of X throughout: 

saddle point (SD) approxirnation [6,7] is of the form (3) with: 

I hZD(Z) = yn log 

- ( / + 2 r n ) ,  (4) (7 1 
m=[-y,,]+ (yn +m)! m! where 

(8) z ,  = { Yn + I ,  !In 2 0 
yn - 1, ~n < 0, 

hn(Z) % log 

where [z], = z if z > 0 and is 0 otherwise. 
Since image reconstruction is il l  conditioned, we combine 

a roughness penalty R(X) with the log-likelihood to’Form a 
penalized-likelihood objective function: @(A) = t ( X )  R(X). 
The goal is to estimate X by maximizing @(A) over the 
nonnegative cone. The exact log-likelihood function (4) has a 
complicated form because of the lower and upper summation 
limits. Although one can express the exact log-likelihood 
function using modified complex Bessel functions [8, 91, it 
does not yield in practical maximization methods [IO]. Next 
we describe practical and yet accurate approximations to the 
exact log-likelihood. 

111. APPROXIMATIONS TO THE EXACT 
LOG-LIKELIHOOD 

In this section, we briefly review the three practical 
All log-likelihood approximations approximations to L(X). 

have the form (3) for different choices for hn(l, 9,). 

D. Exact Log-likelihood for  Prompt Data 
If one has access to the prompt data yf: separately, then the 

exact log-likelihood L p ~ ( p )  can be written in the form (3) with 

(10) hKR(1) = 9: log(1 + T,) - (1  + r,l). 

We include the exact log-likelihood model for prompt data for 
comparing the bias and variance results with the methods for 
randoms-precorrected data. 

Iv. CONCAVITY AND LOG-LIKELIHOOD 
MAXIMIZATION 

The second partial derivatives of the OP ( 5 )  and the SP (6) 
objective functions and the PR log-likelihood (IO) are: 

N a2 X n  
A. Ordinary Poisson (OP) Approximation 

The conventional approach is to ignore the random 
coincidences by assuming that { [Y,]+};=, are distributed as 
independent Poisson random variables with means gn(X) given 
by ( I ) .  The log-likelihood Lop(X): corresponding to this OP 
approximation is of the form (3) with 

L ( X )  = h g n k  ( g n ( ~ )  + d,)2 3 

-- 
8x1 X k  n=l 

with 

[ ~ n l +  , OP 
2r,, SP andz, k [y, + 2 r n ] + ,  SP 

Y,P, 3 PR. 

0, OP 

rn, PR, h:p(l) = [Yn]+ log(1) - 1. ( 5 )  

The thresholding [y,]+ ensures concavity of the OP objective 
function. 

B. Shifted Poisson (SP) Approximation 
A better approach is to match both the first and 

second moments by approximating the random variables 
{Y, + 2rn}fzl as having Poisson distributions with means 
{y,(X) + 2 ~ n ) .  This idea leads to the SP approximation 
Lsp(X) [ I  I ]  of the form (3) with 

where again the zero thresholding of (yn + 2r,) ensures that the 
objective function is concave. 

C. Saddle-point (SD) Approximation 

Thus, L(X) is globally concave when 2, > 0, hence the zero 
thresholds in (5 ,6 ) .  Since the “thresholding function” [ylI1]+ is 
not differentiable at yn = 0, it is difficult to derive accurate 
analytic approximations for the mean and variance of these 
estimators. However, one can explain the overall effect of 
zero-thresholding as follows: setting negative precorrected data 
values to zero increases the mean of the precorrected data. For 
the emission problem the data is linearly related to emission 
rates, thus the increase in the mean value of the precorrected 
data causes the estimator to introduce a systematic positive bius 
for the estimated emission rates [ I ,  41. A detailed concavity 
analysis [IO] of the SD method shows that the l ~ ; ~ ( l ) ’ s  are 
concave for 1 E [0, CO) without any zero thresholding, which 
makes it  free of any systematic positive bias. 

In this study we used the paraboloid surrogates 
maximization algorithm [ 121 which requires certain convexity 
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achieved by forming a summation of I-D surrogate functions. 
Then we use the fast coordinate ascent method for maximizing 
the parabolic function. The optimum curvature for the PSCA 
method requires certain conditions from 
derivatives of h,(Z) [ 121, which are satisfi 
PR methods [lo]. For the SD met 
conditions are satisfied almost for a1 
For the remaining cases we use the 
which ensures monotonicity based 
value theorem for twice differentiable functions [ IO]. 

V. RESULTS 
To study the bias and variance properties of the estimators 

that are based on the above likelihood approximations, we 
performed 2D simulations. For A we used the synthetic 
emission phantom shown in Fig. 1. The spine, lungs, soft 
tissue, and heart had relative radioactivity concentrations of 0, 
1, 2 and 4 respectively. The sinograms had 200 radial bins and 
300 angles uniformly sampled over 180 degrees. The system 
geometry was 2.8 mm wide strip integrals and 2.8 mm ray 
spacing. The reconstructed images were 64 by 64 with 9 mm 
pixels. The T,  factors corresponded to a uniform field of 50% 
random coincidences. 

We generated 300 pseudo-rafidom emission measurements 
according to (1) and (2). For each realization, we reconstructed 
an estimate of the emission phantom using 30 iterations of 
the paraboloid surrogates algorithm [ 121 applied to objective 
functions (3, (6 )  and (7). 

For regularization, we used the modified quadratic 
penalty [ 14, 151, which improves resolution uniformity 
and enables matching of the spatial resolutions of different 
methods. We matched the resolution of the reconstructed 
images for all methods to 1.9 pixels FWHM. 

ulations we had access to YTomPt and 
ely, we also performed conventional 

onstruction with prompt 
purposes. In the PR case the data 

methods. We include this 
method in our simulations for comparison purposes only. 

method results in severe bias and the SP results in some bias 
in the reconstructed images. However, the SP and SD methods 
yield similar standard deviations. Fig. 5 shows the profiles 
through the sample mean images for a total of 500K counts. 
Again, the OP method results in systematic positive bias while 
SP and SD methods are free of such bias. Also, Fig. 6 shows 
the histogram of the ratio of the standard deviation of different 

'To emulate 3D PETemission scans with very low counts per ray. 

methods with respect to the PR method. Both, the SP and SD 
methods yield lower standard deviation than OP method. 

VI. CONCLUSIONS 
For randoms pre-corrected PET emission measurements, we 

have described practical approximations for the complicated 
exact log-likelihood. The results at different count levels 
show that the proposed models not only avoid the systematic 
positive bias of OP method but also lead to lower variance. 
The SP model is shown to be slightly biased for emission 
scans with very low count rates, whereas the SD model is 
free of any systematic bias and performs almost identically as 
the exact log-likelihood. The new methods offer improved 
image reconstruction in PET through more realistic statistical 
modeling, yet with negligible increase in computation over the 
conventional OP method. 

Sunulaled Dhanlom FBP OP 

SP SD PR 

Figure 1: Sample mean images of different methods from 300 
realization with 50K counts per scan. 

FBP OP 

SP SD PR 

Figure 2: Sample standard deviation images of different methods 
from 300 realization with 50K counts per scan. 
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Figure 3: 
methods from 300 realization with 50K counts per scan 
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Figure 5: 
methods from 300 realization with 500K counts per scan. 

Profile through the sample mean images of different 

SP SD 
300 

250 

200 

150 

I00 

50 

0 0 5  1 1 5  0 5  r 1 5  

Figure 4: Histogram of the ratio of standard deviation of different 
methods to the standard deviation of PR method with 50K counts per 
scan. 
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Figure 6: Histogram of the ratio of standard deviation of different 
methods to the standard deviation of PR method with 500K counts per 
scan. 
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