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Abstract 

In many transmission imaging geometries, the trans- 
mitted “beams” of photons overlap on the detector, such 
that a detector element may record photons that originated 
in different sources or source locations and thus traversed 
different paths through the object. Examples include sys- 
tems based on scanning line sources or on multiple par- 
allel rod sources. The overlap of these beams has been 
disregarded by both conventional analytical reconstruction 
methods as well as by previous statistical reconstruction 
methods. We propose a new algorithm for statistical im- 
age reconstruction. of attenuation maps that explicitly ac- 
counts for overlapping beams in transmission scans. The 
algorithm is guaranteed to monotonically increase the ob- 
jective function at each iteration. The availability of this 
algorithm enables the possibility of deliberately increas- 
ing the beam overlap so as to increase count rates. Simu- 
lated SPECT transmission scans based on a multiple line 
source array demonstrate that the proposed method yields 
improved resolutiodnoise tradeoffs relative to “conven- 
tional” reconstruction algorithms, both statistical and non- 
statistical. 

I. INTRODUCTION 

To reconstruct quantitatively accurate images of 
radioisotope emission distributions in SPECT, one must 
compensate for the effects of photon absorption or 
attenuation. Accurate attenuation correction requires 
good attenuation maps, and one can reconstruct such 
maps from transmission scan measurements obtained 
either prior to or simultaneously with the SPECT 
emission scan. 

Several source/detector configurations for SPECT 
transmission scans have been investigated, including a 
single fixed line source opposite a symmetric fan-beam 
collimator, used in triple-head SPECT cameras, a 
scanning line source for orthogonal dual-head cameras, 
and offset line sources opposite asymmetric fan-beam 
collimators. Cellar et a1 [ l ]  describe an alternative 
geometry based on several fixed-position collimated line 
sources opposing a parallel-beam collimator. In that 

system design, the source collimation was selected to 
minimize overlap on the detector of the transmitted “fan- 
beams.” They then applied the filtered back-projection 
(FBP) algorithm to reconstruct the attenuation map (an 
ART algorithm was also mentioned without details). 
This source collimation has the undesirable consequence 
of very nonuniform count profiles, as shown in Figure 
4 of [l]. It is natural to expect that higher and more 
uniform count profiles could lead to better reconstructed 
attenuation maps if the overlap can be properly modeled 
by the reconstruction method. 

In both the scanning line source geometry and the 
geometry of Celler et a1 [l], there can be overlap of 
the beam footprints. Previously published statistical 
algorithms for transmission tomography, e.g. [2-71, are 
inapplicable to the multiple source problem when the 
beams overlap. In this paper we formulate a statistical 
model for multiple-source transmission measurements 
with arbitrary overlapping beams, and then derive an 
iterative algorithm for maximizing the likelihood (or a 
regularized variant thereof). The log-likelihood is not 
necessarily globally concave, which usually precludes 
proofs of convergence to a global maximum. The 
algorithm that we present is guaranteed to increase the 
likelihood at every iteration, and the set of fixed points of 
the algorithm is the same as the set of stationary points 
of the objective function. The algorithm also satisfies 
the continuity conditions of Meyer [8]. Therefore, by 
the convergence results in [8], the proposed algorithm 
produces a sequence of estimates that converge from 
any nonnegative initial image to a stationary point of the 
objective, provided the set of stationary points is not a 
continuum. This is nearly as strong of a convergence 
result as one might expect for a possibly nonconcave 
objective function. 

11. STATISTICAL MODEL 

Let Y ,  denote the number of photons counted by the 
ith detector element1 during the transmission scan, for 

‘Each “detector element” corresponds to a unique radial 
position and view angle, i.e., for typical 2D reconstruction 
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i = 1 . . . N ,  where N is the number of measurement ele- 
ments. Each detector element conceivably may count pho- 
tons that originated in any of the M 2 1 sources. We as- 
sume that separate blank scans are available for each of  the 
sources (or source positions for a scanning line source). 
(This information is essential for unscrambling the multi- 
plexing of overlapping beams.) Let bi, denote the mean 
number of photons that would be observed during a trans- 
mission scan by the ith detector originating in the mth 
source in the absence of any patient in the scanner. v p i -  
cally the b;,’s would be determined by a periodic calibrat- 
ing “blank scan”, performed separately for each of the M 
sources, and then scaled by the relative durations of the 
blank scan and transmission scans. However, we ignore 
any statistical uncertainty in the b;,’s and treat them as 
known constants. This assumption is reasonable provided 
the blank scans are sufficiently lengthy. 

Let ptrue = [ p y ,  . . . , p p ] ’  denote the vector of un- 
known attenuation coefficients for each of the p pixels or 
voxels in the attenuation map. The line integral between 
the Cmth source and the ith detector location through the 
attenuating object is approximated by the following sum: 

D 

j = 1  

where Am = {a:}  is a N x p matrix with nonnegative 
elements and the a$ ’s represent line-lengths or normal- 
ized strip-intersection areas’. Thus by Beer’s law the “sur- 
vival probability” for a photon transmitted from the mth 
source in the direction of the i detector is (approximately) 

We assume the Yi’s have independent Poisson distribu- 
exP(-[Arnp1i). 

tions: 

Y ,  N Poisson{iji(ptrUe)}, 

where the means are given by 

J 

The ~ ‘ i ’ s  are nonnegative constants that one can include to 
account for the mean contributions of scatter, room back- 
ground, and emission crosstalk [9]. We treat these ri’s as 
known constants, though in practice they must be deter- 
mined experimentally. However, since scatter is a spatially 
smooth function, one can safely smooth scatter estimates 

M = IV,.N# where N,. is the number of radial samples along 
the detector and I V ~  is the number of view angles or “steps.” 

2Normalized by strip width 

fairly heavily, so generally the uncertainty in the r;’s can 
be made much smaller than that of the Y , ’ s .  

The summation over m in ( 1 )  allows for arbitrary 
overlap of the beams transmitted from each source. 
Non-overlapping beams would correspond to the 
assumption that if bi, # 0, then bik = 0 for all k # m, 
i.e. bimbik = 0 for all k # m. 

Under the above statistical model, given a particular 
measurement realization Y = [yl , . . . , y ~ ] ’ ,  we can write 
the log-likelihood for p in the following convenient form: 

1 hi@) = Y i k t  - t ,  (2: 
i=l 

U i m  ( P )  = him exp(-[A”p]i) + ~i/hf, 
ignoring constants independent of p. Since the form 
of this log-likelihood is sufficiently different from the 
usual models for emission tomography and transmission 
tomography [3], previously derived algorithms for 
maximum likelihood estimation are not directly 
applicable to this problem. 

One could easily derive an expectation-maximization 
(EM) algorithm [ 101 that would monotonically increase 
the likelihood L(p, Y )  for this problem, generalizing [3]. 
However, the convergence would be as painfully slow and 
the M-step as difficult as the usual transmission EM al- 
gorithm. Instead, we propose an algorithm based on an 
extension of our recent work on paraboloidal surrogates 
methods [2]. 

Because of the ill-posedness of the reconstruction 
problem, a penalty term is usually added to the likelihood 
to encourage piecewise smoothness in the reconstructed 
image, resulting in the following objective function: 

w-4 Y )  = L ( P , Y )  - P R W  (3) 

Our goal is to produce a penalized-likelihood estimate: 

ii = a r g m a x @ ( p , Y ) .  
PLLO 

(4) 

Most roughness penalties R ( p )  can be expressed in the 
following general form: 

K 

R(P) = E +k([CPIk), ( 5 )  
k= 1 

where the $k’s are potential functions acting as a norm on 
the “soft constraints” C p  M 0 and K is the number of 
such constraints. The functions $k we consider here are 
convex, symmetric, nonnegative and differentiable [2]. 
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111. ALGORITHM 
We focus on the unregularized maximum-likelihood 

problem; the regularized approach easily follows 
from [2]. Since maximizing the log-likelihood directly 
is difficult to do, we apply the principle of optimization 
transfer [5,11] and define a "surrogate function" Q(p;  p n )  
that is easier to maximize. Since this surrogate function 
depends on the previous estimate pn at the nth iteration, 
the algorithm consists of repeatedly maximizing the 
surrogate function, i.e. 

argmax Q(P; p n ) .  (6) pn+l = 
P 2 ! 2  

Note that the maximization is constrained to enforce the 
nonnegativity constraint. The key algorithm design re- 
quirement is to choose Q functions that satisfy the fol- 
lowing conditions: 

These conditions ensure that the proposed iteration mono- 
tonically increases the likelihood. 

A difficulty in maximizing L is the sum over m within 
the logarithm in ( 2 ) .  To move the summation outside of 
the logarithm, we first adapt De Pierro's multiplicative 
convexity trick [12]. Because hi is concave: 

The surrogate function Q1 remains too difficult to max- 
imize directly because the argument of each hi still de- 
pends on uim, which has a complicated exponential form. 
However, it follows easily from the results in [2,13] that 
the following paraboloidal function is a valid surrogate for 
Qi :  

where 
a 1 

2 
yrm( l )  = gi",(li",) + grm(l;m)(l - In ) - -Crm(Z - l rmy zm 

and 

A d2 grm(l) = -g? ( I )  
d12 zm 
P 

To ensure (7), we must choose the curvatures {crm} ap- 
propriately [2,13]. As discussed in [2], for the fastest con- 
vergence rate, we would like to choose the curvatures as 
small as possible, subject to the constraint that the sur- 
rogate function a;", lies below the functions g;", (see [2, 
Eqn. 161 for the formula for the optimum curvature). 

Since our second surrogate Q2 is a quadratic func- 
M tional, it is easily maximized by a variety of algorithms, 

hi (5 Uim(p) )  = hi (E -11 UYm uim (1-1) Yi -n ) (8) including the coordinate ascent algorithm [4,14]. Adding 

m = l  m=l Yi UYm a penalty function is straightforward. 
M To obtain a monotonic algorithm that converges rela- 

% h i  (-Yi ) 1 (9) tively quickly, we can apply coordinate ascent to the sur- 
rogate Q defined in (12), i.e., sequentially update one pixel 
at a time while holding all other pixels fixed. The maxi- 
mization step of the coordinate ascent for pixel j is3: 

Uim(p) -n 2 
UTm m = l  Yi 

a where uym = u im(pn) ,  and pr f y i (pn) .  This inequality 
leads to our first surrogate function: 

where 

A 
gi", ( I )  = yi log (brme-' + r;"m) - (byme-' + .pm) . 
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and R j  ( p j )  denotes the penalty surrogate parabola for p, j ,  

and p j  denotes its curvature. Because of our construction 
based on surrogate functions that satisfy (7), this update is 
guaranteed to monotonically increase the value of a. One 
iteration is finished when all pixels are updated via (14) in 
a sequential order. We update the paraboloidal surrogate 
function after one iteration of coordinate ascent (CA), al- 
though one could also perform more than one CA iteration 
per surrogate. 

IV. SIMULATION RESULTS 
We compared the proposed reconstruction algorithm to 

the “conventional” reconstruction algorithms (statistical 
and FBP) that treat the transmission measurements 
simply as ideal normalized parallel “strip-integrals”. 
The system geometry corresponded fairly closely to the 
Siemens ProfileTM system (Hoffman Estates, E) [15]. 
The sources for the simulated system consisted of a 
multiple line source array with 14 sources, unequally 
spaced, located on a line parallel to the detector and 110 
cm away from the detector plane. The detector plane 
was located 22 cm away from the center of rotation. The 
source collimation in our simulations is 2.6’. The image 
consisted 128 x 128 pixels of size 3.56 x 3.56mm2. 
The sinogram size was 128 x 60 with detector bins 
of width 4.8mm (i.e., the simulated detector response 
was rectangular with width 4.8mm). We performed 
the simulation with 523,000 transmitted counts, and 
263,000 background counts. For simplicity, we used 
a space-invariant quadratic penalty over first-order 
neighbors throughout our simulations. Figure 1 shows the 
phantom used in our simulations. 

Figures 2 shows reconstructions of noisy data using 
FBP, the parallel algorithm4, and the proposed algorithm. 
The spatial resolution of the images in these figures is 4.7 
pixels on the left column and 6.8 pixels on the right col- 
umn. 

We observe from Figure 2 that the proposed algorithm 
produces less noisy reconstructions than both the parallel 
algorithm and FBP. Since the parallel algorithm is based 
on an incorrect system and statistical model, one expects 

4We refer to the penalized-likelihood reconstruction assum- 
ing ideal normalized parallel “strip-integrals” (and ignoring 
beam overlap) as the parallel algorithm. 

Fig. 1 Digital Phantom used in our simulations 

artifacts due to model mismatch. The absence of apparent 
artifacts in Figure 2 is due to regularization and noise. Fig- 
ure 3 shows the reconstructed images from noiseless data 
(4.6’ collimation angle) using the parallel and proposed 
algorithms with almost no regularization (p  = 2-l’). The 
reconstructed image from noiseless data using the paral- 
lel algorithm shows severe artifacts resulting from model 
mismatch, which are absent in the reconstructed image 
from noiseless data using the proposed algorithm (Fig- 
ure 3b). 

We also performed studies of optimal collimation an- 
gles for a given system. (Due to space constraints, we 
only outline our conclusions.) We found that the proposed, 
algorithm outperforms the parallel algorithm at all colli- 
mation angles, but the optimal collimation angle for the. 
proposed algorithm is larger than the parallel algorithm. 
At large collimation angles, the proposed algorithm pro- 
duced reconstructions with significantly smaller variances 
than the parallel algorithm, given a fixed spatial resolu- 
tion. Thus it is desirable to open up the source collimators 
and allow beam overlap - provided the overlap is modeled 
appropriately in the reconstruction algorithm. 

V. CONCLUSION 

We have presented a new algorithm for statistical im- 
age reconstruction of attenuation maps that explicitly ac- 
counts for overlapping beams in transmission scans. The 
algorithm is guaranteed to monotonically increase the ob- 
jective function at each iteration, and achieves better vari- 
ancehesolution tradeoffs than ‘‘conventional’’ image re- 
construction algorithms, both statistical (the parallel algo- 
rithm) and non-statistical (FBP). However, the proposed 
algorithm is more time-consuming and uses more mem- 
ory than conventional statistical algorithms. For simula- 
tions we performed, the time that the proposed algorithm 
took was about 3.3 times that of the parallel algorithm. 
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Fig. 2 New sources; collimation angle: 2.6’; 785,000 counts; 
left column: resolution 4.7 pixels; right column: resolution 6.8 
pixels; top row: FBP; middle row: parallel algorithm; bottom 
row: proposed algorithm. 

(D 
(a) (b) 

Fig. 3 Reconstruction using the parallel and proposed algo- 
rithms with almost no regularization; collimation angle 4.6’ (a) 
Parallel algorithm (b) Proposed algorithm. 
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