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ABSTRACT where N is assumed Gaussian. This model is exact for MR angiogra- 

This paper describes a new approach to the problem of reconstruct- 
ing a 3-D arterial tree model from a few angiographic projections. We 
first develop a natural optimality criterion that defines the globally 
best reconstruction, and then outline an algorithm that maximizes this 
criterion. The criterion is a compromise between the conflicting goals 
of measurement likelihood and object smoothness. Our approach uses 
a parametric model for the arterial tree, with a new, more accurate 
model for bifurcations. The algorithm is demonstrated on simulated 
projections and on magnetic resonance (MR) images. 

INTRODUCTION 

Accurate 3-D reconstructions of arterial trees would be useful tools 
for surgical planning and quantitative diagnosis. However, current 
angiographic methods (both X-ray and MR) only provide a few si- 
multaneous projections. Given only a few projections, the inverse 
problem of reconstructing the 3-D objects that generated those pro- 
jections is severely underdetermined. Fortunately, one can overcome 
this problem by utilizing a priori knowledge about the structure of 
blood vessels. 

A few vessel reconstruction algorithms have recently been pre- 
sented that are based on a generalized cylinder (GC) object model 
with elliptical cross sections [l, 21. These approaches have not accu- 
rately reconstructed branching vessels. We describe below an extended 
object model that includes cross sections consisting of two overlapping 
ellipses. This model is more accurate than a single ellipse for bifur- 
cations, where important pathologies frequently occur. Under this 
model, the reconstruction problem is equivalent to the problem of es- 
timating the ellipse parameters using the measured projections. 

It is difficult to statistically analyze the performance vessel recon- 
struction algorithms that are not based on an optimality criterion. 
We describe one such criterion below, along with its mathematical and 
physical motivations. Then we outline an algorithm for computing the 
optimal estimate under that criterion. The result is a parametrically 
reconstructed arterial tree that can be displayed for surgical planning 
or analyzed for quantitative diagnosis. 

MEASUREMENT MODEL 

If we knew the 3-D object (arterial tree) distribution, we could com- 
pute its ideal projections using the Radon transform. Let Po(.) denote 
the vector of 2-D samples of the projection function at  angle 8. Po is 
determined by measurement geometry, detector pixel size, and point 
spread function. Let Ye, denote an actual measured projection. We 
are only given Ye for a few values of 0; one reasonable set is dual 
bi-plane projections [2], where 8, E {O,C$, 90,90 + C $ }  for some small 
4. Let Y = [re,, . . . , Ye,] be the aggregate measurement vector and 
similarly define P. Since the measurements are corrupted by noise, we 
use the measurement model: 

Y = P(0bject)  + N, 

~~ 

phy, and is approximate for X-ray angiography. 
Naturally we would like the projections of the reconstructed object 

to be close to the measured projections. This leads to the measurement 
likelihood 

LM(0bject) = IIY - P(Object)l12. (1) 
A locally optimal approach to reconstruction is to find the object 

that minimizes LM. This approach ignores the fact that blood vessels 
are fairly smooth, i.e., the parameters of the elliptical cross section 
vary slowly along the vessel axis. Before quantifying this smoothness, 
we first describe the GC model for a single bifurcating object. 

Figure 1: Projections of a bifurcation. The problem is to reconstruct 
X,(z) and X ~ ( Z )  from the Y’s. 

OBJECT MODEL 

For simplicity, we consider the single-bifurcation object shown in 
Fig. 1. Let the projections be acquired around a rotation axis roughly 
parallel to the axis of the vessels, and let z denote the axial coordinate. 
The vessel cross sections are modeled as ellipses with six parameters: 
position (z,y), radius, eccentricity, orientation, and density (contrast). 
For better accuracy in the vicinity of the bifurcation, we model the 
cross section as two overlapping ellipses with the same density. The 
branch object of Fig. 1 is thus completely specified by the following 
parameters: 

B = {Zbr ze, {xl(Z)}::z,! { X ! 2 ( Z ) } : : z b } 7  

where XI(+) and X Z ( Z )  are the ellipse parameters of the cross sec- 
tions of the principal and secondary vessels respectively. Since a sin- 
gle ellipse and two disjoint ellipses are special cases of two overlapping 
ellipses, Zb and z, do not need to be known exactly. 

Before we quantify the object smoothness, consider the following: 
if a thin rod is stretched along a set of pins at  coordinates {(zi, y;)}g1, 
then the curve formed by the rod will minimize its tension: J yz(r )  dr .  
The resulting curve is an interpolating cubic spline: the smoothest 
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curve through the given points. Similarly, it is reasonable to assume 
that arteries take the smoothest path to their destination, subject to 
certain anatomical constraints. Likewise, to maximize fluid pressure, 
the veasel cross section will change slowly. This motivates our defini- 
tion of object likelihood 

This non-parametric approach is closely related to spline amooth- 
ing [3]. The constants ai control the penalty for object roughness. 
A unique feature of the algorithm given below is that these constants 
are estimated from the data itself. Thus the algorithm will adapt to 
vessel abnormalities such as stenoses (narrowings). (2) easily extends 
to measure the likelihood of an arterial tree. 

RECONSTRUCTION ALGORITHM 

We would like to find an object minimizing both LM and LO, but 
these goals conflict in general. Thus, we use the "penalized likeli- 
hood" [3] compromise as our optimality criterion: 

h = argminLM(B) + L o ( B ) .  (3) 

Having explicitly defined this criterion, we could now use statistical 
tools to analyze the estimation accuracy, and to generate confidence 
intervals for the estimates [3]. Here, we develop an efficient algorithm 
for performing the minimization (3). 

First find the maximum measurement likelihood estimate: 

BO = argminLM(B). 

Using the first order Taylor's expansion: 

P(B)  k P(Bo) + Jo(B -Bo), (4) 

where JO is the Jacobian of P at Bo, we can rewrite (3): 

E = argminII(Y - P(B0) + JoBo) -  JOB^^^ + Lo(B) .  (5) 

After some manipulations, this can be written: 

b = argmkJI(J&)-)(Bo - B)1I2 + L o ( B ) .  (6) 

This final form is a special case of the multi-dimensional generalira- 
tion of cubic-spline smoothing. (6) is efficiently evaluated using the 
procedure described in [4]. The smoothing parameters ai (2) are au- 
tomatically estimated from the data using cross-validation [4]. 

RESULTS 

We applied the algorithm to synthetic projections (0 = 0, 30, 90, 
120) of a branching object with an eccentric stenosis. Despite severe 
noise, the estimation error is well below a pixel, as can be seen in Fig. 2. 

We also applied the algorithm to MR angiogram [5] (0 = 0,45,90,135) 
of a flow phantom. Structured noise in the background of the MR 
projections has introduced some errors into the reconstruction. These 
errors will decrease as the MR angiography techniques improve. Re- 
linearizing (4) about the estimated object and repeating the estima- 
tion (5) could also improve the accuracy. 

CONCLUSIONS 

We have defined a natural optimality criterion for global recon- 
struction of an arterial tree from its projections, including accurate 
modeling and reconstruction of bifurcations. We have derived an al- 
gorithm that efficiently computes the best estimate, and have demon- 
strated the viability of the approach on simulated projections and MR 
images. We will next evaluate the algorithm on angiograms of human 
carotid arteries. 

Figure 2: Left: One of four simulated projections; 0 = 0". Right 
Outline of reprojection of reconstructed object (black) superimposed 
on true object (shaded) at  0 = Oo. 

Figure 3: Outline of reprojection of reconstructed object (black) su- 
perimposed on original MR projections of tube phantom (shaded); 
left: 0 = SOD, right: 0 = OD. 
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