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ABSTRACT

To improve image quality in susceptibility-weightedMR imag-
ing, it is important to correct for the effects of field inhomo-
geneity. In particular, susceptibility differences between air
and tissue induce magnetic field nonuniformity; often those
susceptibility effects have nonzero through-plane gradients
that lead to spin dephasing across the slice within each voxel.
If uncorrected, these through-plane gradients cause signal loss
in the reconstructed images. Several methods exist for re-
constructing MR images with compensation for field inho-
mogeneity, but most of these methods, even the model-based
iterative ones, treat the inhomogeneity within each voxel as
being a constant, thus ignoring the through-plane gradient ef-
fects. This paper describes a model-based iterative method for
reconstructing MR images with compensation for field inho-
mogeneity that accounts for the slice profile and the through-
plane gradients of the field inhomogeneity (assumed to be de-
termined by a pre-scan). In particular, this paper describes
an accelerated algorithm for implementing the forward model
and its adjoint as needed in a conjugate gradient algorithm for
iterative MR image reconstruction.
Keywords: MRI, field inhomogeneity, susceptibility,

through-plane gradients, iterative image reconstruction.

1. INTRODUCTION

For functional magnetic resonance imaging (fMRI) based on
the BOLD effect, one must use relatively late echo times to
ensure good BOLD contrast. And the desire for relatively
rapid dynamic imaging to track functional changes necessi-
tates using relatively long readouts, such as spiral scans and
echo-planar imaging (EPI). These characteristics of dynamic
susceptibility-weighted MR imaging lead to sensitivity of the
approach to magnetic field inhomogeneities. To provide good
image quality in fMRI, it is important to correct for the effects
of field inhomogeneity. In particular, susceptibility differ-
ences between air and tissue induce magnetic field nonunifor-
mity; often those susceptibility effects have nonzero through-
plane gradients that lead to spin dephasing across the slice
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within each voxel. (There also can be within-plane gradi-
ents that have similar effects. For simplicity, we focus on
the through-plane effects in this paper.) If uncorrected, these
through-plane gradients cause signal loss in the reconstructed
images. Several methods exist for reconstructing MR images
with compensation for field inhomogeneity, including model-
based iterative methods, e.g., [1,2] and non-iterative methods,
e.g., [3, 4]. Most of the existing methods treat the inhomo-
geneity within each voxel as being a constant, thus ignoring
the through-plane gradient effects. An exception is previous
work of Sutton et al. [5,6]; however, the algorithms described
therein were relatively slow.
This paper describes a model-based iterative method for

reconstructing MR images with compensation for field inho-
mogeneity that accounts for the slice profile and the through-
plane gradients of the field inhomogeneity (assumed to be de-
termined by a pre-scan). In particular, this paper describes
an accelerated algorithm for implementing the forward model
and its adjoint as needed in a conjugate gradient algorithm for
iterative MR image reconstruction.

2. MODELS

For slice-selective MR imaging a reasonable model for the
received signal is

s(t) =

∫∫∫
h(z − z0) f(x, y, z) e−ı ω(x,y,z) t

· e−ı2π(kX(t)x+kY(t)y) dx dy dz, (1)

where h(z) denotes the (known) slice-selection profile, z0 de-
notes the axial center of the slice, f(x, y, z) denotes the (un-
known) transverse magnetization, ω(x, y, z) denotes the off-
resonance frequency map (field map) and (kX(t), kY(t)) de-
notes the k-space trajectory of the scan. We assume hereafter
that the field map ω(x, y, z) is known over the slice(s) of in-
terest, based on a pre-scan of the subject, e.g., [7].
AnMR scan consists of noisy samples of the above signal:

yi = s(ti) + εi, i = 1, . . . , nd, (2)

where εi denotes complex white gaussian noise and nd de-
notes the number of k-space samples.
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Broadly speaking, the goal of MR image reconstruction
is to estimate f(x, y, z) from the measurement vector y =
(y1, . . . , ynd

). This is an ill-posed problem because the given
measurements y are discrete whereas the object magnetiza-
tion f(x, y, z) is an unknown continuous-space function. To
proceed, we parameterize the object f(x, y, z) to facilitate es-
timation. When reconstructing a slice centered at axial posi-
tion z0, a natural series expansion is

f(x, y, z) =

N∑
j=1

fj b(x− xj , y − yj), for z ≈ z0, (3)

where b(·) denotes the object basis function, (xj , yj) denotes
the center of the jth basis function translate, and N is the
number of parameters. For simplicity, hereafter we use rect
basis functions

b(x, y) = rect2

( x

Δ
,

y

Δ

)

(square pixels of dimensionΔ), soN is the number of pixels,
e.g., 128× 128.
The model (3) treats the object magnetization as a con-

stant across the slice, which will lead to some partial volume
effects but seems largely unavoidable. Substituting (3) into
the signal equation model (1) and simplifying leads to the
model

s(t) =

N∑
j=1

fj

∫∫ [∫
h(z − z0) e−ı ω(x,y,z) t dz

]

· b(x− xj , y − yj) e−ı2π(kX(t)x+kY(t)y) dx dy .

To simplify this expression, we focus on the following series
expansion for the field map:

ω(x, y, z) =

N∑
j=1

rect2

(
x− xj

Δ
,
y − yj

Δ

)
(ωj+2πgj(z−z0))

(4)
where (xj , yj) denotes the in-plane center of the jth voxel,
ωj denotes the off-resonance frequency at the central slice of
the jth voxel, in units of rad/s, and gj denotes the field map
through-plane gradient within the jth voxel, in units of Hz
per cm. We can determine {ωj} and {gj} using field map
estimation methods and central differences for example [7].
Substituting (4) into the preceding signal model and sim-

plifying leads to the signal model

s(t) =

∫∫ N∑
j=1

H(tgj) fj rect2

(
x− xj

Δ
,
y − yj

Δ

)

· e−ıωjt e−ı2π(kx(t)x+ky(t)y) dx dy

= sinc2(kx(t)Δ, ky(t)Δ) ·

N∑
j=1

H(tgj) e−ıωjt e−ı2π(kx(t)xj+ky(t)yj) fj ,(5)

where H denotes the 1D Fourier transform of h.
In the absence of through-plane field gradients, i.e., if

gj = 0, then the above model is equivalent to the approach
described in [1, 2] and is thus amenable to the fast iterative
algorithms described therein. However, the presence of the
term H(tgj) prohibits direct use of those previous fast meth-
ods. The next section describes new fast methods for image
reconstruction based on (5).

3. ALGORITHMS

3.1. Taylor expansion

One way to make (5) look more like a discrete Fourier trans-
form of fj , and thus more amenable to fast computation, is to
consider a 2nd-order Taylor expansion of H around the point
gj = 0:

H(ν) ≈ H(0) +
1

2
Ḧ(0) ν2 = 1 +

1

2
Ḧ(0) ν2, (6)

where we assume that Ḣ(0) = 0 because the slice profile
h(z) is symmetric, and furthermore that the slice profile is
normalized such that H(0) = 1. For example, for a gaus-
sian slice profile with h(z) = (1/ΔZ) e−π(z/ΔZ)2 , we have
H(ν) = e−π(ΔZν)2 so Ḧ(0) = −2πΔ2

Z
. As another exam-

ple, if h(z) = (1/ΔZ) rect(z/ΔZ) then H(ν) = sinc(ΔZν)
so Ḧ(0) = −Δ2

Z
π2/3. Physically, these negative signs in

the expansion reflect the signal loss associated with nonzero
through-plane gradients.
Substituting (6) into (5) leads to the approximate signal

model

s(t) ≈ sinc2(kx(t)Δ, ky(t)Δ) ·

N∑
j=1

e−ıωjt e−ı2π(kx(t)xj+ky(t)yj) fj

+
1

2
Ḧ(0) t2 sinc2(kx(t)Δ, ky(t)Δ) ·

N∑
j=1

e−ıωjt e−ı2π(kx(t)xj+ky(t)yj) (g2
j fj).(7)

This model is now amenable to the types of fast algorithms
described in [1, 2], because each of the summations has the
same form as in the usual model-based image reconstruction
with field inhomogeneity correction. Essentially, to compute
the signal samples s(ti) using the above model requires two
time-segmented NUFFT calls [1], one applied to {fj} itself,
and the other applied to

{
g2

j fj

}
, along with some other sim-

ple multiplication operations.
To increase accuracy, one could use a 4th-order Taylor se-

ries, which would then require three time-segmented NUFFT
calls for each signal evaluation (or adjoint thereof). Indeed,
higher-order approximations may be required because for large
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through-plane field gradients, one can observe complete sig-
nal cancellation, corresponding to the zeros of the Fourier
transform H(·) of the slice profile. For such levels of field
gradients the 2nd-order approximation may be insufficient.
On the other hand, tailored RF pulse design methods aim to
precompensate for the dephasing (at the echo time) caused by
through-plane gradients [8], so a combination of tailored RF
pulses and a 2nd-order Taylor expansion might suffice.

3.2. Basis expansion

An alternative to the Taylor expansion approach above is to
generalize any of the basis expansion approximations described
in [2]. Specifically, we want to find bil and clj values for
which

H(tigj) e−ıωjti ≈

L∑
l=1

bilclj . (8)

Substituting this type of approximation into (5) leads to the
approximate signal model:

s(ti) ≈

L∑
l=1

bil sinc2(kx(ti)Δ, ky(ti)Δ) ·

⎡
⎣ N∑

j=1

e−ı2π(kx(ti)xj+ky(ti)yj) (cljfj)

⎤
⎦ . (9)

We can evaluate this forward model or its adjoint using L
NUFFT calls. This will be useful if the approximation (8) can
be sufficiently accurate for a modest value ofL. An intriguing
option is the histogram PCA approach of [2].

3.3. Iteration

Combining either of the approximate signal models (7) or (9)
with (2) yields the matrix-vector form

y = Ax + ε,

just with somewhat different forms for the elements of the
system matrix A. Based on (5), the exact elements of A are
given by

aij = sinc2(kx(ti)Δ, ky(ti)Δ) ·

H(tigj) e−ıωjti e−ı2π(kx(ti)xj+ky(ti)yj) .

We estimate x by minimizing a regularized least-squares cost
function as follows:

x̂ = arg min
x

Ψ(x)

Ψ(x) =
1

2
‖y −Ax‖

2
+ R(x),

where R(x) is a regularizing roughness penalty function that
controls noise. The conjugate-gradient (CG) algorithm is an

attractive approach for minimizing Ψ. Each iteration requires
evaluating matrix-vector multiplications with A and A′. We
perform this operations using the approximations (7) or (9) in
conjunction with NUFFT operations [9].

4. RESULTS

To evaluate the proposed methods, we acquired human brain
MR field maps as described in [8]. The scans were 64 by 64
by 40 slices, with 24 cm transaxial FOV and 4 cm axial FOV.
(Thus the slice spacing was only 1 mm.)
Fig. 1 and Fig. 2 show 12 of the the magnitude images

and the corresponding field map images. Those field map
images were formed using the regularized method described
in [7]. Using central differences, we estimated the field map
gradients, as shown in Fig. 3.
Fig. 4 shows the 2D histogram of (ωj ,gj) values within

the brain regions (those exceeding 1% of the maximum mag-
nitude value). We design the approximation (8) using this
histogram.
We will compare images reconstructed without through-

plane gradient correction with images reconstructed using the
exact model (5), which will be very slow. We will then ex-
plore the CT algorithm based on each of the two approxima-
tions (7) and (9) for various values of L.

Magnitude images
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1
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0

1

Fig. 1. Magnitude images used in simulation.

5. DISCUSSION

We have described a method for MR image reconstruction
with compensation for field inhomogeneity and through-plane
gradients of the field map.
The Fourier transform H(·) of the slice profile is simply

the RF pulse shape (for small tip excitations), and we can
choose from a variety of shapes. This will be an interesting
avenue for future investigations.
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Fieldmaps
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Fig. 2. Field maps used in simulation.

Fieldmap z−gradients
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Fig. 3. Field map z-gradients.
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Fig. 4. Joint histogram of field map and its gradient.

A reviewer raised the question of whether field inhomo-
geneity gradients could affect the slice profile, akin to the
“potato chip” effect [10]. This is an interesting question re-
quiring further investigation. If there is a unique axial location
z0(x, y) that is on-resonance for each transaxial coordinate
(x, y), then it should be possible to replace z0 in (1) with this
z0(x, y), and the remainder of the algorithm derivation should
generalize relatively easily, leading to a reconstruction of the
2D function f(x, y, z0(x, y)) corresponding to a curved slice.
The linear expansion (4) would need modified if quadratic

phase profiles are used to reduce susceptibility effects [11].
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