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ABSTRACT and variance of the estimator e ,  except through numer- 

Many estimators in signal processing problems are de- 
fined implicitly as the maximum of an objective func- 
tion, such as maximum likelihood (ML) and maximum 
a posteriori (MAP) methods. Exact analytical expres- 
sions for the mean and variance of such estimators are 
usually unavailable, so investigators usually resort to 
numerical simulations. This paper describes approx- 
imate analytical expressions for the mean and vari- 
ance of implicitly defined estimators. The expressions 
are defined solely in terms of the partial derivatives 
of whatever objective function one uses for estimation. 
We demonstrate the utility and accuracy of the approx- 
imations in a PET transmission computed tomography 
application with Poisson statistics. The approxima- 
tions should be useful in a wide range of estimation 
problems. 

1. INTRODUCTION 

Let 6 = [el, . . . , e,]’ be a unknown parameter that is 
to be estimated from measurements Y = [Yl , . . . , UN]‘, 
where ‘ denotes vector or matrix transpose. In many 
areas of signal. and image processing, one estimates 6 
by maximizing some functional of 6 and Y: 

Examples include ML, MAP, penalized maximum like- 
lihood methods, and linear or nonlinear least-squares 
methods. Except in very simple cas_es there is usually 
no explicit analytical expression for 0 in terms of Y .  In 
other words, the objective function (1) only implicitly 
defines 8 as a function of Y. 

The absence of an explicit analytical expression of 
the form B = g ( Y )  makes it difficult to study the mean 
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ical simulations. Often the estimators of interest de- 
pend on one or more “tuning parameters,” such as the 
regularization parameter in penalized maximum likeli- 
hood methods, and one would like to be able to easily 
study the estimator characteristics over a range of val- 
ues for those parameters. In such cases, numerical sim- 
ulations can be prohibitively expensive for complicated 
estimators (particularly when p is large). Similar con- 
siderations apply if one wishes to compare estimator 
performance against the uniform Cramer-Rao bound 
for biased estimators [1,2] to examine the bias-variance 
tradeoff of the estimator. Therefore, it would be use- 
ful to have approximate expressions for the mean and 
variance of implicitly defined estimators. Expressions 
for the variance would be particularly useful since hav- 
ing a rough idea of the variance would allow one to 
determine how many realizations are needed to achieve 
a desired accuracy in subsequent simulations. 

In [3] we used the implicit function theorem, the 
chain rule, and Taylor’s expansion to derive approx- 
imate expressions for the mean and variance of im- 
plicitly defined estimators of continuous parameters. 
Here we summarize only the variance expression. We 
demonstrate the utility and accuracy of the variance 
approximation for the problem of tomographically re- 
constructing attenuation images from PET transmis- 
sion scans with Poisson statistics. 

2. THEORY 

We restrict our attention to suitably regular objective 
functions for which one can find the required maximum 
in (1) by zeroing the partial derivatives of a(., Y ) :  

o =  --Q(O,Y) , j = 1 )  . . . )  p .  (2) 86j Is=( 

Thus 0 must be a continuous parameter, so this ap- 
proach is inapplicable to discrete classification prob- 
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lems such as image segmentation. 

implicitly defines a function 6 = h(Y) that maps the 
measurement Y into an estimate of 8. From (2) the 
function h(Y) must satisfy 

By the implicit function theorem, the relationship (2) 

Perhaps slightly abusing notation, we rewrite (3) as: 

(4) 
a 

0 = -@(h(Y),Y), j = 1 , .  . . , p .  aej 
where we always use & to denote partial derivatives 
with respect to the first argument of the function @(e,  Y), 
and & to denote partial derivatives with respect to 
the second argument, regardless of what arguments are 
used to evaluate the resulting derivatives. 

The implicitly defined function h(Y) can rarely be 
found analytically, and one usually implements an iter- 
ative method for maximizing @(., Y )  to find 8. Even if 
one did have an analytical expression for h(Y), it would 
still be difficult to exactly compute its mean or variance 
since the estimator h(Y) is usually nonlinear. Although 
exact expressions for the mean and variance of h(Y)  are 
unavailable, if we knew h(Y) we could approximate its 
mean and variance using standard methods based on 
the second-order Taylor expansion of h(Y). If Yn de- 
notes the mean of Yn, then 

h(Y)(Y, - Yn)(Ym - Y,). a2 
n m  

Taking the expectation of both sides yields the follow- 
ing well-known approximation for the mean: 

(5) 
where Cov{Yn, Ym} = E{(Yn - Yn)(Ym - Y,)} is the 
(n ,  m)th element of the covariance matrix of Y ,  which 
we assume is known. Taking the covariance of both 
sides of the first-order Taylor expansion of h(Y) yields 
the following approximation for the covariance: 

Cov{e} M Vh(Y) Cov{Y} [Vh(Y)]', (6) 

where V = [& . . . &] denotes the (row) gradient 
operator. 

Since h(Y) is unknown, (5) and (6) are not immedi- 
ately applicable. However, (5) and (6) depend on h(Y) 

only through its partial derivatives'. From the calculus 
of vector functions [4, p. 3021, one can determine the 
partial derivatives of an implicit function by applying 
the chain rule with respect to Yn to (4): 

a2 

(7) 
U +- @(h(Y) ,  Y), j = 1 , .  . . , p .  a ~ ,  ay, 

This expression has N sets of p equations in p un- 
knowns which can be written in matrix form: 

0 = V20@(h(Y),Y) Vh(Y) + V11@(h(Y),Y), (8) 

where the ( j ,k) th  element of the p x p operator V20 
is 6, and the (j ,n)th element of the p x N oper- 

ator Vl1 is -. Assuming the symmetric matrix 
-V20@(h(Y), Y) is also positive definite, we can solve 
for Vg by rearranging: 

Vh(Y) = [-V20@(h(Y), Y)]-1 Vll@(h(Y), Y ) .  (9) 

Let B" = h ( Y )  and combine (9) with (6) to obtain 
the following approximation to the covariance of e: 

Cov{B} M [-V"@(e", q 1 - 1  V"@(e", Y )  Cov{Y} 

. [V11@(8, Y)]' [-V"@(e", Y)]-*. (10) 

This final expression is an approximation to the estima- 
tor covariance that depends only on the partaal deriva- 
tives of  the objective functaon @(O,Y), and not on the 
implicit function h(Y). 

When p is large, the full covariance matrix becomes 
inconvenient to store, and often one is interested pri- 
marily in the variance of certain parameters in a re- 
gion of interest. Let e be the j t h  unit vector of length 
p ,  and define U = [-V20@(e",Y)]-le. Note that one 
does not need to perform a p x p matrix inversion 
to compuJe U; one simply needs to solve the equation 
[-V20@(8, Y)]u  = e. From (10) it follows that 

Var{ej} M U' v"@(B", Y )  COV{Y) [v"Q(~", Y)l'u. 

In many imaging problems, the covariance of Y is di- 
agonal and the partial derivatives of Q, are sparse (see 
below), so the actual computation is comparable to two 
image reconstructions/restorations. 

By differentiating (8) again, we similarly obtain ap- 
proximate expressions for the estimator mean (or bias), 
as shown in [3]. 

(11) 

lExcept that (5) also depends on h(y). If we de-he t? = 
argmaxe @(e> y ) ,  then from (4), we see that h(y)  = 8, so one 
can easily find h ( F )  by applying the estimation algorithm to the 
noise free data 9. 
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3. APPLICATION T O  T O M O G R A P H Y  

To illustrate the accuracy of the approximation for esti- 
mator covariance given by (lo), in this section we con- 
sider the problem of tomographic reconstruction from 
Poisson distributed PET transmission data. Our de- 
scription of the problem is brief, for more details see 
[5-71. Since PET transmission scans are essentially 
measurements of nuisance parameters, one would like 
to use very short transmission scans. Since short scans 
have fewer counts (lower SNR), the conventional linear 
filtered backprojection (FBP) reconstruction method 
performs poorly. Statistical methods have the potential 
to significantly reduce the error variance, but since they 
are nonlinear, only empirical studies of estimator per- 
formance have been previously performed to our knowl- 
edge. Analytical expressions for the variance will help 
us determine (without exhaustive simulations) condi- 
tions under which statistical methods will outperform 
FBP. 

In transmission tomography the parameter 0, de- 
notes the attenuation coefficient in the j t h  pixel. The 
transmission measurements have independent Poisson 
distributions, and we assume the mean of Yn is: 

Yn(0) = Tpn(0) 

(12) p n ( q  = bfae - Cj anJeJ  + ,.,, 

where the a,j factors denote the intersection length of 
the nth ray passing though the j t h  pixel, and T denotes 
the scan duration. The nonnegative factors b,, r,, and 
a,j are assumed known. The log-likelihood is: 

q e , y )  = CY” iogY,(e) - Y,(e), (13) 
n 

neglecting constants independent of 8. Since tomogra- 
phy is ill-conditioned, rather than performing ordinary 
ML estimation, many investigators have used penalized 
likelihood objective functions of the form 

(14) 
1 
T q e ,  Y) = - q e ,  Y) - pvp), 

where V is a roughness penalty of the form 

where wjk = 1 for horizontal and vertical neighbors, 
wjk = 114 for diagonal neighbors, and is 0 otherwise. 

likelihood function (13) for Poisson statistics, the esti- 
mate 6 formed by maximizing (14) is presumably a very 
nonlinear function of Y. Furthermore, since attenua- 
tion coefficients are nonnegative, one usually enforces 

Due to the nonlinearity of (12) and the noh-quadratic 

the inequality constraint 6 2 0. Therefore this problem 
provides a stringent test of the accuracy of the vari- 
ance approximation (10). We focus on the case where 
rn = 0. 

Since the number of measurements (or rays) N and 
the number of parameters (pixels) p are both large, we 
would like to approximate the variance of certain pix- 
els of interest using ( l l ) ,  which requires the following 
partial derivatives: 

-V2OCp(0, Y) = A’diag {p , (6 ) }  A + pR(e) 
1 
T 

where R(0) = V2V(8) is the matrix of second partials 

Since the measurements have independent Poisson 
distributions, it follows that Cov{Y} = diag { Yn(etrue)}. 
Substituting into (10) and simplifying yields the follow- 
ing approximation to the estimator covariance: 

V”Cp(0,Y) = --A’. 

of vp). 

1 cov{e} w T ( ~ ( e ” ) + ~ ~ ( e ” ) ) - l  F ( B ~ ’ ~ ~ ) ( F ( ~ ” ) + ~ R ( ~ ” ) ) -  l, 

(16) 
where F(0) = A’diag {p,(O)} A is 1/T times the Fisher 
information for estimating 0 from Y. 

We compute the approximate variance of 8j by us- 
ing the following recipe. 

Compute 6 = a rgmaq  *(e,  Y) by applying to 
noise free data Y a maximization algorithm such 
as coordinate ascent [7,8]. 

Forward project e” to compute p , (@ = cj a,jej. 
Likewise for pn(Otrue). 

Pick a pixel j of interest and solve the equation 
(A’diag {pn(B)} A + PR(6))u = e for U using 
a fast iterative method such as preconditioned 
conjugate gradients or Gauss-Siedel [9]. 

Compute +u‘A’diag {pn(etrue)} Au by first for- 
ward projecting U to compute q = Au, and then 
summing: 

The overall computational requirements for this recipe 
are roughly equivalent to two maximizationsof ip. Thus, 
if one only needs the approximate variance for a few 
pixels of interest, it is more efficient to use the above 
technique than to perform numerical simulations that 
require dozens of maximizations of ip. 

To assess the accuracy of the above approxima- 
tion, we performed numerical simulations using a syn- 
thetic human thorax cross-section attenuation map as 

2293 



etrue , with linear attenuation coefficients 0.0165/mm, 
0.0096/mm, and 0.0025/mm, for bone, soft tissue, and 
lungs respectively. The image was a 128 by 64 ar- 
ray of 4.5" pixels. We simulated a PET transmis- 
sion scan with 192 radial bins and 96 angles uniformly 
spaced over 180'. The a,j factors correspond to 6mm 
wide strip integrals on 3mm center-to-center spacing. 
(This is an approximation to the ideal line integral 
that accounts for finite detector width.) The 6, fac- 
tors were generated using pseudo-random log-normal 
variates with a standard deviation of 0.3 to account for 
detector efficiency variations. Four studies were per- 
formed, with the scale factor T set so that 1, ,,(etrue) 
was 0.25, 1, 4, and 16 million counts. The P, factors 
were set to 0 for simplicity. For each study, 100 real- 
izations of pseudo-random Poisson transmission mea- 
surements were generated according to (12) and then 
reconstructed using the penalized likelihood estima- 
tor described by (14) using a coordinate-ascent algo- 
rithm [7,8]. The coordinate-ascent algorithm enforced 
the nonnegativity constraint 8 2 0. For simplicity, we 
used the function d(z) = x2/2 for the penalty in (15). 
We also reconstructed attenuation maps using the con- 
ventional FBP algorithm at a matched resolution. The 
FBP images served as the initial estimate for the iter- 
ative algorithm. 

We computed the sample standard deviations of the 
estimates for the center pixel from these simulations, 
as well as the approximate predicted variance given 
by (16). Fig. 1 shows the results, as well as the (much 
inferior) performance of the conventional FBP method. 
The predicted variance agrees very well with the actual 
estimator performance, even for measured counts lower 
than are clinically relevant (20% error standard devia- 
tions would be clinically unacceptable). Therefore, for 
clinically relevant SNRs, the variance approximation 
given by (16) can be used to predict estimator perfor- 
mance reliably. For the simulation with 250K counts, 
the approximation agreed within 7% of the empirical 
results. For the simulations with more than 1M counts, 
the difference was smaller than 1%. Note the asymp- 
totic property: better agreement between simulations 
and predictions for higher SNR. 

4. FOR MORE INFORMATION 

Preprints including [l, 3,7]  are available using WWW 
from the following URL. 

http://www.engin.umich.edu/'fessler/ 

~stimstor variance in Transmission Tomography 
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Figure 1: Variance for center pixel as predicted by (16) 
compared with simulation results from a penalized like- 
lihood estimation algorithm (14). Also shown is the 
variance of conventional FBP. 
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