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ABSTRACT 

The classical expectation-maximization (EM) algorithm 
for image reconstruction suffers from particularly slow con- 
vergence when additive background effects such as acci- 
dental coincidences and scatter are included. In addition, 
when smoothness penalties are included in the objective 
function, the M-step of the EM algorithm becomes in- 
tractable due to parameter coupling. Thie paper describes 
the space-alternating generalized EM (SAGE) algorithm, 
in which the parameters are updated sequentially using a 
sequence of small "hidden" data spaces rather than one 
large complete-data space. The sequential update decou- 
ples the M-step, so the maximization can typically be per- 
formed analytically. By choosing hidden-data spaces with 
considerably less Fisher information than the conventional 
complete-data space for Poisson data, we obtain signifi- 
cant improvements in convergence rate. This acceleration 
is due to statistical considerations, not to numerical overre- 
laxation methods, so monotonic increases in the objective 
function and global convergence are guaranteed. 

Due to the space constraints, we focus on the unpenal- 
ized case in this summary, and we eliminate derivations 
that are similar to those in [l]. See [2,3] for a more com- 
prehensive literature review, the penalized likelihood algo- 
rithms, and experimental results. 

I. THE SAGE METHOD 

Let the observation Y have the probability density func- 
tion f(v; @,,,), where a,,, is a parameter vector residing 
in subset 8 of the pdimensional space R?'. Given a mea- 
surement ̂ realization Y = v ,  our goal is to compute an 
estimate 8 of etme: 

where 
a(@) e 1% f (v ;  @) - P(@) ,  (1) 

and P is an optional smoothness penalty. Direct maxi- 
mization of @ is often intractable due to the structure of 
f, the coupling in P, or both. 
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An EM algorithm updates all parameters simultane- 
ously, which is part of the reason for its slow convergence. 
In contrast, a SAG? algorithm updates only a subset 
S C { 1,. . . , p } .  Let S denote the complement of the subset 
S. By introducing a "hidden-data" space for 0s based on 
the statistical structure of the likelihood, we replace the 
maximization of @(Os, 02) over 8s with the maximization 
of another functional 4 s ( @ s ;  ai). If the hidden-data space 
is chosen wisely, then the function q5'(.;@') can be max- 
imized analyticallq, obviating the need for line searches. 
Even if gS cannot be maximized analytically, one can of- 
ten choose hidden-data spaces such that @(.;@') is less 
expensive to evaluate then @(.;@"), so line searches for 
maximizing t$s(-; e') would be cheaper than line searches 
for maximizing a(.; 0;). Just as for an EM algorithm, 
the functional qis is constructed to ensure that increases 
in q5s yield increases in a. The SAGE method uses the 
underlying statistical structure of the problem to replace 
cumbersome or expensive numerical maximizations with 
analytical or simpler maximizations. 

Definition 1 A random vector Xs with probabilify den- 
s i fy  function f(z;@) is an admissible hidden-data space 
with respect io  8s for f(v;@) if fhe joint density of X s  
and Y safisfies 

f ( v ,  z; @) = f(vlz; @s)f(z; 011 (2) 
i.e., the conditional distribution !(viz; 03) m u d  be inde- 
pendent of 8 s .  

An essential ingredient of any SAGE algorithm is the 
following conditional expectation of the log-likelihood of 
XS: 

QS(8s; 8) = QS(@s; es, 8s) 

= E{iogf(xS;es,eS)IY = v;e}  (3) 

= Jf(z1Y = ~ ; e ) l O g f ( z ; e s , e ~ )  dz. 

We combine this expectation with the penalty function: 

@(es; e) Qs(es; e) - p(es ,  es). (4) 

Let 8' E 8 be an initial parameter estimate. A generic 
SAGE algorithm produces a sequence of estimates {@}go 
via the following recursion: 
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Generic SAGE Algorithm 

For i = O , 1 ,  ... { 

sums Nnk, rather than each Nnk. Background emis 
sions, random coincidences, and scatter contaminate the 
measurements, so we observe 

yn  = Nnk + &I, 1. Choose an index set S. 
k 

2. Choose an admissible hidden-data space Xs for 6s. 
where { &} are independent Poisson variates: 

3. Estep: Compute &s(8s; e') using (4). 

4. M-step: R, - Poisson{rn}, 

5. Optional: Repeat steps 3 and 4. 

1. 
The maximization in ( 5 )  is over the set of Bs satisfying 
(es,@') E 8. The classical EM algorithm is the special 
case where s' = { 1,. . . , p } .  In emission tomography, if 
we choose index sets and hidden data spaces appropri- 
ately, then the E-step and M-step can be combined via 
an analytical maximization into a recursion of the form 
6;" = gS(e i ) .  Convergence properties of the generic 
SAGE algorithm are discussed in [2]. Convergence for 
emission tomography is shown in [3]. 

11. MAXIMUM LIKELIHOOD 

We first review the linear Poisson model for emission to- 
mography and summarize the classical EM algorithm (ML- 
EM-1) for maximizing the likelihood [l]. We then intro- 
duce a new complete-data space that leads to a new, faster 
converging EM algorithm: ML-EM-2. For more dramatic 
improvements we introduce two SAGE algorithms. The 
second algorithm, ML-SAGES, is based on much less in- 
formative hidden data-spaces, which leads to convergence 
rates that are faster than even a line-search accelerated 
EM algorithm (ML-LINU). 

Given realizations {yn} of {Yn}, the log-likelihood for this 
problem is given by 111: 

where 

k 

We would like to compute the ML estimate of A = 
[XI,. . . , X,Y from I. 
To apply coordinate ascent directly to this likelihood, 

one might try to update Ak by equating the derivative of 
the likelihood to zero: 

where ak = cn ank and $i-k)(A) = xjfk U n j X j  + r n .  Un- 
fortunately, there is no analytical solution to this equation, 
hence the popularity of EM-type algorithms [l]. 

B. ML-EM Algorithms 

The complete-data space for the classical EM algorithm [l] 
for this problem is the set of unobservable random variates 

Assume that the emission distribution can be discretized 
into p voxels with emission rates {Ak}$.1. Assume that 
the emission source is viewed by N detectors, and let Nnk 
denote the number of emissions from the kth voxel that 
are detected by the nth detector. Assume the variates 
Nnk have independent Poisson distributions: 

Nnk - Poisson{ank,!k}, 

where the an) are nonnegative constants that characterize 
the system [l]. The detectors record emissions from sev- 
eral source locations, so at best one would observe only the 

For this complete-data space, the Q function (3) becomes 
[I, eqn. (411: 

where [l] 

Bnk = E{Nnk(Y = V;X} = xkUn,Un/$n(x). 

Maximizing @ ( a ;  Ai) analytically leads to the following al- 
gorit hm: 
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ML-EM-1 Algorithm 

for i = 0 , 1 , .  . . { 

f o r k = l ,  . . . , p {  

n 

In words, the current parameter estimate is used to com- 
pute predicted measurements, those predictions are di- 
vided into the measurements and backprojected to form 
multiplicative correction factors, and the estimates are si- 
multaneously updated using those correction factors2. This 
EM algorithm converges globally [1,4] but slowly. The 
root-convergence factor is very close to 1 (even if p = 1 [4]). 

The slow convergence is largely explained by considering 
the Fisher information of the completedata space X1 [4]. 
One can think of X' as data from a hypothetical t ome  
graph that knows whether each detected event is a true 
emission or a background event, and knows in which pixel 
each event originated. Such a tomograph would clearly be 
much more informative than the conventional tomographs, 
and this intuition is reflected in the Fisher information ma- 
trices. The Fisher-information for the observed data Y at 
the ML estimate X is 

Fy(A) = A'diag{AA + r}-'A, 

whereas the Fisher information for X' is diagonal: 

Fxi(A) = diag{akc/ik} 

(provided is positive.) One can show that FX1 > F y .  
Indeed, F I is completely independent of the background 
rates {rnf reflecting the fact that the parameters are 
completely isolated from the uncertainty due to the back- 
ground events {&,} in X'. 

The first remedy one might try is to define a new 
complete-data space 

X2 = {{xnk}i=l}f=1, 

where the {xnk} are unobservable independent variates: 

x n k  H Poiwn{ankAa + rn/pn}r (11) 

where pn = #{ank # 0). Then Clearly Yn = XkXnk 
has the appropriate distribution (7). However, when the 

%L-EM-l is essentially the MGIB algorithm of [SI. A h  pro- 
posed in [SI was the MGIA algorithm, which has a more informative 
completedata space and dower convergence [4]. 

Q function is formed, one finds that it has no analytical 
maximum, so one is no better off than with (8). 

Therefore, we propose to use a complete-data space with 
the following form: 

x3 = {{Mnk}i,1, {Bn}}f=1, 

where {Mnk) and {Bn} are unobservable independent 
Poisson variates: 

Mnk - Poisson(a,a(Ak + ms)} 
B, - Poiwn{rn - C ankmk}, (12) 

k 

where {mk} are design parameters that must satisfy 

f n  2 x a n k m k t  Vn, (13) 
k 

so that the Poisson rates of {Bn} are nonnegative. 
With these definitions, clearly 

yn = X M n k  -k B n  

has the appropriate distribution (7). One choice for {mk} 
that satisfies (13) is: 

k 

which absorbs many, although not all, of the background 
events into the terms Mnk. Therefore, the parameters are 
leas isolated from the background events. The Fisher in- 
formation for X3 is diagonal: 

F ~ S ( A )  = diag{ak/(ik + mk)) 

which now depends on rn though (14). This Fisher in- 
formation is smaller than FXl(i) ,  which leads to faster 
convergence. 

Whereas the claasical complete-data space X' has some 
intuitive relationship with the underlying image formation 
physics, we developed the new complete-data space X3 us- 
ing a statistical perspective on the problem and its Fisher 
information. 

Using a similar derivation as in [l] one can show: 

Q3(X; A) = 

X(-ank(Ak -k mk) -k f i n k  log(ank(Ak -k mk))i (15) 
n k  

where 

f i n k  = E{MnklY = 9; A} = (5, + mk)ank!h/h(A). 

Maximizing Q3(- ;  Xi) analytically (subject to the nonneg- 
ativity constraint), yields the ML-EM-2 algorithm, which 
has the same form as ML-EM-1, except that (10) is re- 
placed by: 

Ai+' k = [ ( A i  + mk)ek/ak - mk]+r 
1899 
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where 
2, x > o  

[XI+ = { 0, x 5 o  - 
This is a trivial change to the implementation of ML-EM- 
1, but it does lead to improved convergence rates, both 
theoretically and empirically, provided of course that some 
m k  # 0 .  In PET, since since random coincidences are 
pervasive, we will have rn > 0 Vn, 80 that m k  > 0 V k .  

Like ML-EM-1, since ML-EM-2 is an EM algorithm it 
monotonically increases the likelihood every iteration [2]. 
An interesting difference between the iterates generated 
by ML-EM-1 and ML-EM-2 is that the latter can move 
on and off the boundary of the nonnegative orthant from 
iteration to iteration. From a numerical perspective, this 
may partly explain the faster convergence of ML-EM-2, 
since when ML-EM-1 converges to the boundary, it can do 
so at sublinear rates [4]. 

C. ML-LINU Algorithms 
ML-EM-1 is the special case where a = 1 of the form [6]: 

All of the SAGE algorithms we derive in this paper use 
individual pixels for the index sets: s’ = {k}, where k = 
1 + ( i  modulo p) . 

The most obvious hidden-data for Ak is just 

xi = { N n k ,  &}:=I, 

which is a subset of the classical complete-data space (9). 
The Q function for the kth parameter is: 

Q i ( A k ;  A) = ( - a n k A k  + R n k  log (%kAk) ) .  
n 

Maximizing Q‘,(.; Xi) analytically yields the following al- 
gorithm: 

M L-S AG E 1 Algorithm 

Initialize: fin = 
for i = 0, 1,. . . { 

+ rn, n = I,.  . . , N. 

for k = 1,. . . , p  { 

A!+1 = A;, j # k 
I The ML-LINU algorithm [6] uses a line-search to choose 

an ai > 1, which accelerates the convergence of ML-EM-1. 
Similarly, ML-EM-2 is the special case where a = 1 of: 

:= fin + (A:+’ - A:)a,,k, Vn : ank # o 
1 

A k + m k  8 1. 
p + 1 =  k [ A; . + a  ( - ak ) ~ l o s f ( v ; X i ) ]  + 

This SAGE algorithm updates the parameters sequentially, 
In the few experiments tried, we found that “accelerating” and immediately updates the predicted measurements fin 

ML-EM-2 by choosing a > 1 did not improve convergence within the inner loop, whereas the ML-EM algorithms wait 
much, primarily because of the nonnegativity constraint. until all parameters have been updated. 
(When a > 1 cauaes a “bent line” search, then evaluat- We found that ML-SAGE1 converges somewhat faster 
ing the likelihood difference requires an expensive forward than ML-EM-1 for well conditioned problems, but the dif- 
projection [SI.) ference is smaller for poorly conditioned problems. The 

reason is that Xi is still overly informative since the back- 
ground events are isolated from the parameter being u p  
dated. We can improve on ML-SAGE1 by using hidden- 
data spaces with similar forms as (12), only even less in- 
formative. Since we are updating one pixel at a time, we 
can associate nearly all of the ba&ground events with each 
pixel as it is but is 
completely admissible from a statistical perspective. Firet, 
define 

z k  = min { r n / a n k } ,  

D. ML-SAGE Algorithm 
Motivations for the SAGE algorithms include: 

As shown by Sauer and Bou” [TI sequential update 
methods often converge much faster than simultane- 
ous update methods. 

This is nomm to a 

0 Sequential update methods solve the coupling problem 
introduced by smoothness penalties. n:a,kfO . By an alternating sequence of Ldden-data 
spaces, we can associate a large fraction of the back- 
ground events with each parameter as it is updated, 
yielding much less informative hidden-data spaces and &k Poimn{rn - a n k % )  + CanjA j } ,  (17) 
thus faster convergence. In contrast, in ML-EM-2 the 
background events are distributed among all Of the 
pixels; since pn is typically about 100, the values for 
m k  are small. 

and define unobservable independent Poisson variates: 

Z n k  h, P o h n { a n k ( A k  + z k ) }  

f k  

and let the hidden-data space for only be 

x: = {znk, &k}:=1. 
1900 



Then clearly 

has the appropriate distribution (7) for any particular h. 
Since the definition of Zk does not include the pn term 
contained in the definition (14) of m k ,  the values of z k  
are orders of magnitude larger than m k .  Thus a very large 
fraction of the background events is absorbed into the term 
Z n k  which is associated with Ak while it is updateds. The 
Fisher information for Xs is 

yn = z n k  + B n k  

which is much smaller than the kth diagonal entry of FXS 
since zk >> m k .  

Using a similar derivation as in [l] one can show: 

Q;(Ak;  A) = C ( - a n k ( A k  + z k )  + Z n k  l o g ( a n k ( A k  + I ) ) ) ,  
n 

where 

Z n k  = E { Z n k l Y  = y; A} = ( i k  + z k ) a n k & a / & t ( X ) .  

Maximizing Qi(-; A') analytically (subject to the nonnega- 
tivity constraint), yields the ML-SAGE2 algorithm, which 
has the same form as ML-SAGE1, except that (16) is re- 
placed by: 

Thii is a very small change to ML-SAGE1, but one that 
significantly accelerates convergence. Indeed, the imple- 
mentation differences between ML-EM-1, ML-EM-2, ML- 
SAGE1, and ML-SAGE2 are all remarkably minor, but 
the differences in convergence rates are not, as illustrated 
by the results in [3], one of which is shown in Fig. 1. 
An alternative to SAGE is the coordinate-wise E 

quential Newton-Raphson updates recently proposed by 
Bouman and Sauer [SI. That method is not guaranteed 
to be monotonic, and it is somewhat more expensive per 
iteration since second derivatives must be computed. But 
when it converges, its asymptotic convergence rate may be 
somewhat faster than SAGE since it is even greedier [2]. 
Similar (but monotonic) greediness can be obtained by U& 
ing multiple sub-iterations of the E and M-steps in the 
SAGE algorithm. However, for the few cases we have 
tested, we have not observed any improvement in conver- 
gence rates using multiple sub-iterations. Although further 
investigation of the tradeof% available is needed, including 
comparisons with possibly super-linear methods such as 
preconditioned conjugate gradient [6], it appears that the 
statistical perspective required by the SAGE method is a 
useful addition to conventional numerical tools. 

Sequential methods like SAGE are less amenable to fine- 
grain parallelbation than simultaneous methods like EM or 
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Figure 1: Comparison of log-likelihood increases 
logf(y; 8') - logf(y;8') vs iteration i of ML-EM-1, ML- 
EM-2, ML-LINU, and ML-SAGE2 algorithms, for im- 
age reconstruction from PET measurements. ML-SAGE2 
clearly reaches the asymptote fastest. 

conjugate gradient. By fine-grain we mean each processing 
unit corresponds to one pixel. However, emission tomog- 
raphy is ideally suited to coarse-grain parallelization since 
each tomographic slice can be assigned to a processing unit. 
For slice-by-slice reconstruction, coarse-grain parallelbe 
tion can achieve 100% processor utilization. 
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