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ABSTRACT 

We give estimation error bounds and specify optimal 
estimators for continuous, closed boundary curves in 
an NMR image. The boundary is parameterized us- 
ing periodic B-Splines. A Cramer-Rao lower bound on 
mean-square-estimate error in the presence of system 
smoothing and Gaussian noise is derived, and the per- 
formance of maximum likelihood and penalized maxi- 
muin likelihood estimators is compared to this bound. 
Finally, we comment on the usefulness of estimates of 
the boundary for providing anatomical side information 
in the reconstruction of functional tomographic images 
like those of a PET or SPECT system. 

1. INTRODUCTION 

In the past few decades, the theory of splines has been 
applied to an increasing number of tasks including data 
interpolation, approximation of functions and function- 
als, solutions of differential equations, and numerous 
boundary/surface estimation problems [l] , [2]. 

ical boundaries taken from NMR images might im- 
prove the quality of functional tomographic image re- 
constructions [3],[4], [ 5 ] .  Many organ and tumor bound- 
aries are continuous, smooth curves that are well-suited 
to spline approximation. In this paper, we examine the 
performance of both the maximumlikelihood (ML) and 
a penalized maximum likelihood (PML) estimator with 
respect to the Cramer-Rao lower bound on estimator 
mean squared error. 

Recently it has been suggested that the use of anatom- 
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2. THEORY 

2.1. The B-Spline Boundary Model 

Let r be a. continuous, closed curve which encloses a 
region B c R2. We define a continuous binary image, 
A,., over the plane as follows (see Figure 1): 

= I l I B ( 2 ,  Y) -k 1 0  (l(x, Y) - I B ( 2 ,  Y)) (1) 

for constants 11,Io 2 0. The functions I B ( z ,  y) and 
I ( z ,y )  are indicator functions that are unity over B 
and R2, respectively. 

Figure 1: Continuous Image Model 

Let the boundary r be described in parameterized 
form r ( 4 )  with respect to an origin (xo, yo) located in 
the interior of region B. We choose to model the curve 
r ( 4 )  as a piecewise polynomial splzne function. Specif- 
ically, let {ki}7=l be a strictly increasing sequence of 
angles in [0 ,2a ] .  A periodic  spl ine of degree d defined 
with respect to  { k l ,  . . . , I C n }  is any function f(4) which 
satisfies the following constraints: 

0 f (4) is continuous on [kl, k,] 
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0 f($) has at least d - 1 continuous derivatives on 
Pl, knl 

0 f($) consists of a polynomial of degree d or less 
on the segments [k i ,  ki+1], i = 1 . . .n  - 1 

0 f (k1)  = f(L) 
The set of all such splines is a linear space, which 
we will denote S d ( k 1 , .  . . , kn) .  In spline terminology 
the scalars {ki}y=l are known as knots; therefore, we 
will refer to Sd(kl, . . . , k,) as the space of all periodic 
splines of degree d defined on the set of knots {ka}F=l. 

The usefulness of splines, especially when modeling 
curves in the physical world, is well-known. In ad- 
dition, the polynomial representation of splines makes 
them computationally easy to handle, the integrals and 
derivatives of spline functions are themselves splines, 
and least-squares data fitting using splines preserves 
the first two moments of the data. 

In our case, we assume that the boundary r(q5) can 
be expressed as a periodic spline curve of degree d with 
knots { k l ,  . . . , k,} eqviangularly spaced over [0 ,  27r]; i.e. 

r ( $ )  E S d ( k 1 , .  . . , k,) , ki = 22 i (2) n 
The B-spline basis for S d ( k 1 ,  . . . , k n )  is a computation- 
ally tractable, nonorthogonal basis whose n elements 
are shifted versions of a single spline that is non-zero 
over only d + 1 knot intervals (these functions are de- 
picted for the case d = 2 and n = 6 in Figure 2).  Thus, 
if we let BZ?ld($) denote the ith B-spline basis element 
of degree d defined over equispaced knots { k l  , . . . , k n } ,  
we can express the boundary r in terms of this basis as 
follows: 

n 

re($) = Coi E [ 0 , 2 ~ 1  . (3) 

We will refer to the coefficients 8 = ( 0 1 , .  . . ,0,} above 
as the spline coeflcients corresponding to the bound- 
ary .($). Note that in Figure 2 ,  as well as in the sequel, 
we have scaled the B-spline basis functions so that they 
sum to one, which makes for easy interpretation of co- 
efficient magnitudes. For example, if we choose coeffi- 
cients 0i = 1, V i ,  the resultant curve is r ($ )  = 1, V$ 
- a circle of radius one. In addition, we assume that 
re($)  of equation (3) is defined with respect to ori- 
gin (zo, yo) equal to image center. This restricts us to 
the large class of star-shaped regions which includes all 
convex objects. 

i=l  

2.2. The Imaging System Model 

We will approximate the NMR imaging unit as a linear, 
spatially shift invariant system that convolves the in- 
put image A, of equation (1) with a 2D point response 

6-Spline Basis Set 
, ~ --- ~ 

~ ~ 0.81 

Figure 2: Quadratic B-spline Basis Set 

function k ( z , y ) ,  and adds Gaussian noise N(z,y) of 
variance U: to the result: 

Y(z7v) = X s ( z > Y >  + N(z:,y) 1 (., Y) E R2 ' (4) 
Function Xs(z, y) = X,(z, y) * * k ( z ,  y) is the smoothed 
image resulting from the convolution operation (which 
approximates the finite resolution of the physical sys- 
tem). 

The point response k ( z ,  y) is approximated by a 2D 
symmetric Gaussian hill of variance .: as in [6]; i.e. 

(5) 

2.3. Fisher Information and C-R Bound 

The Cramer-Rao bound gives an expression for the 
minimum mean squared error or, equivalently, covari- 
ance of any estimator 8 of parameter vector 8. In the 
unbiased case, where E[@ = 8, this bound reduces to 

cov(8) 2 [F8]-' , (6) 
where Fe is the Fisher information associated witjh es- 
timating 8 and is defined by 

FO = E [ v ~ I ~ ~ ( Y ; ~ ; x ) v ~ I ~ ~ ( Y ; ~ ; x ) ]  . (7) 

The vector X above denotes the image pixel intensities. 
Our primary goal is to derive an analytical expression 
for Fe, where 8 is the n-tuple of equation (3) which 
describes the object boundary in terms of a prescribed 
B-spline basis set. 

Since N ( z ,  y) is white noise, we have 

lnf (Y;  8; A) = 

where Xi(z, y) above is the smoothed NMR image de- 
scribed earlier. Taking gradients yields the Fisher in- 
formation matrix 

~6 = 4 SS,, VeXi (x ,  y ) v ~ ~ i ( z : ,  y> dz dy . (9) 
un 

2424 



Note that in the above expression we have fixed the 
number of knots, knot positions, and spline degree. 

Let T be a p x n matrix ( p  >> n)  whose columns are 
samples over 4 E [0,27r] of the B-spline basis functions: 

T, j  = , 

Given an estimate 8 of 8, we can obtain an estimate of 
T = {~(4j))p=,, the p samples of the curve correspond- 
ing to 8, through the linear matrix operation 

T = ( q , . . . , r P )  = T 8  . (11) 
The bound on the covariance of the estimate T = T 8 
is then 

cov(T8) 2 T [Fe]-’ TT . 

We will refer to the bound in (6) as t.he coeficient bound 
and that of equation (12) as the radial bound. It should 
be noted that our “radial bound” is nof the CR bound 
on any unbiased estimator of r ;  ra.ther, it applies only 
to est,imators of the form T 8. 

2.4. Estimation of B-Spline Coefficients 

The maximum likelihood estimator of the spline coef- 
ficients is identical to the nonlinear least squares esti- 
mator 

8 = argmax 1 n f ( ~ ; 8 )  (13) 
6 

= argminIlY(z, Y) - G ( X ,  Y N 2  e 

where 1 1  0 1 1  is the L2 norm on the plane. 
We generalize equation (1) to allow for slow varia- 

tions of intensity within image regions by introducing 
spatially variant pixel intensities, A, as unknown pa- 
rameters. This presents us with an ill-conditioned de- 
convolution problem - one for which unregularized ML 
estimation would yield unacceptably high variance. For 
this reason, we introduce penalty function terms which 
promote smoothness and decrease variance of both the 
pixel intensity and boundary estimates. To this end, we 
consider the penalized maximum likelihood estimator 

Note that the sum over j in the upper equation tra- 
verses the entire image A, while the lower sum over IC 
covers the set of knots. The function &(A) is chosen 
to encourage neighboring pixels to be similar within 
and outside of, but not across, the boundary described 
by 8. This is implicit in the way in which we define 
{ ~ i j ( @ ) } i ~ ~ ~ ,  the set of weights that relate pixel j to 
the pixels in its neighborhood N j .  For a given pixel j, 
we choose w i j ( 8 )  to be the fraction of neighbor pixel i 
that is of the same type (‘interior’ or ‘exterior’, as de- 
fined by 8) as pixel j. Similarly, pik  = 1 when knots i 
and IC are adjacent and 0 otherwise, thereby penalizing 
variation among neighboring coefficients. 

2.5. Simulations 

For a given equiangular B-Spline model, 1000 radial 
samples of the continuous curve ~ ( 4 )  were used to pro- 
duce an 32 x 32 image Ae(x, y). This simulated NMR 
image was then smoothed by convolution with a dis- 
crete Gaussian surface of variance crs, and Gaussian 
noise was added. The minimization of the given objec- 
tive function was performed using a coordinate descent 
algorithm on 8, and each variance measurement was 
computed as the sample variance of thirty independent 
parameter estimates. 

Figure 3 shows the performance of the maximum 
likelihood estimator of 8 vs. the coefficient CR bound 
as we vary un, the noise standard deviation. In this 
case the true object boundary was a circle of radius 
8 pixels, with A’ = 10, AE = 2, and crs = .01 pixel. 
The spline model used was quadratic and employed six 
equiangularly spaced knots. 

Performance of ML Estlmates VD Coeff Bound 

A A  

8 , X  = argmax ln f (Y;X) -  
@,A 

U ( 8 )  Figure 3: ML Estimator Performance vs. Noise Stdev. 

At first glance, these results seem rather disappoint- 
ing. Although the ML standard deviations nearly achieve 
the bound for very small values of gn, they more than 
double it as we move away from the high SNR region. 

%(A) = w v ( 8 )  (4 - v2 (14) The PML estimator standard deviations (shown in Fig- 
ure 4 for /3 = .005 and 6 = .0002) strayed even fur- 
ther from the bound, which we would expect due to 
the uncertainty added by the unknown pixel intensi- 
ties. In the future, we expect to implement both a 

= a r g m i n C ( x  - + P &(A) + < ~ ( 8 )  
e,x 

where b(X) and U ( 8 )  are the quadratic penalty terms 
below: 

3 ZEN3 

U(8)  = P z k ( Q k  - QZ? 
k zENr 
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-. Performance  o f  JMAP Eslimafea va. Coeft Bound 

Figure 4: PML Estimator Performance vs. Noise 
Stdev. 

hybrid bound that will be tighter in the large error re- 
gion, as well as modify the bound above for the case of 
unknown pixel intensities. 

At least two facts, however, need to be kept in mind 
when considering these numbers. First, the bounds 
above have been calculated to high precision as the so- 
lutions to integrals - in deriving these integrals, the 
image and boundary were assumed continuous, rather 
than discrete. Also, note that the standard deviation 
values given by the bound are all much less than a pixel. 
This is relevant because under the current implementa- 
tion of both algorithms, grey scale values for boundary 
pixels are produced by calculating the fraction of pixel 
area subtended by the boundary; as a result, bound- 
aries that dzfler from each another over a given pixel - 
but subtend equal areas - will be indecipherable from 
one another. Thus for a given curve, variability of esti- 
mates will increase as the algorithms converge to  many 
separate boundaries (i.e. coefficient estimates) that ac- 
tually differ sub-pixelly. 

3. A P P L I C A T I O N  TO T O M O G R A P H Y  

Many tomographic imaging systems such as PET and 
SPECT produce functional images (of a substance den- 
sity rather than an anatomical structure) which, due to 
scatter, attenuation, and limited radiation dosage suf- 
fer from low SNR and large amounts of bias. The lat- 
ter effect could be substantially reduced through the 
use concisely parameterized anatomical side informa- 
tion. Of the several works that have focused on using 
anatomical boundaries from NMR images for this pur- 
pose, many employ line-site or region labels to model 
the NMR boundary [4],[7]. Although the results of the 
previous section show clearly that more work needs to 
be done to determine the accuracy with which NMR 
boundaries modeled using splines can be estimated, the 
spline approach detailed above may eventually prove 
superior to line-site and label methods for a variety of 
reasons. First, the latt,er strategies typically have a 
pixel/parameter ratio of 1-1, whereas the spline strat- 

egy can parsimoniously describe most common tumor 
and organ boundaries using less than 20 knots. Sec- 
ond, line-site and labeling methods assure only local 
continuity, which can result not only in missing edges 
and the resultant oversmoothing of interior regions, but 
also in problems estimating total region quantities such 
as radiation dose. Splines, on the other hand, offer an 
inherently continuous, closed representation of the re- 
gion boundary; therefore, in situations where one is 
relatively convinced of the continuity of a boundary, 
splines would be a natural parameterization. Finally, 
spline parameters are continuous rather than discrete 
- this allows the use of stationary points to  determine 
optimality if we choose to  perform joint estimation of 
NMR and functional boundaries. 

4. REFERENCES 

T.N.E Greville, editor. Theory and Applications of 
Spline Functions.  Academic Press, 1969. 

J. H. Ahlberg. The  Theory of Splines and Their  Appli-  
cations. Academic Press, 1967. 
W. Ouyang. Incorporation of correlated structural im- 
ages in pet image reconstruct,ion, 1992. Submitted to 
Transactions on Medical Imaging. 
Gene Gindi, Mindy Lee, Anand Rangarajan, and 
George Zubal. Bayesian reconstruction of functional 
images using anatomical information as priors. IEEE 
Transactions o n  Medical Imaging, 12(4), Dec 1993. 
V E Johnson. A model for segmentation and analysis 
of noisy images. Journal of the American Statistical 
Association, 89(425):230-241, March 1994. 
W.A. Edelstein. Intrinsic signal to noise ratio in nmr 
imaging. Magnetic Resonance in Medicine,  1986. 
V E Johnson. 4 model for segmentation and analysis 
of noisy images. Technical Report 91-Al5, Duke, 1992. 

2426 


