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Nonparametric Fixed-Interval Smoothing 
with Vector Splines 

Jeffrey A. Fessler 

Abstract-Spline smoothing has become a popular method for non- 
parametric exploration and estimation of scalar-valued functions, but 
its generalizations to vector-valued functions have been underutilized. 
This paper presents a computationally efficient algorithm for nonpara- 
metric smoothing of vector signals with general measurement covari- 
ances. This new algorithm provides an alternative to the prevalent 
“optimal” smoothing algorithms that hinge on (possibly inaccurate) 
parametric state-space models. We develop and compare automatic 
procedures that use the measurements to determine how much to 
smooth; this adaptation allows the data to “speak for itself” without 
imposing a Gauss-Markov model structure. We present a nonpara- 
metric approach to covariance estimation for the case of i.i.d. mea- 
surement errors. Monte Carlo simulations demonstrate the perfor- 
mance of the algorithm. 

I. INTRODUCTION 
of fixed-interval smoothing is to estimate a smooth THE function from a finite number of noisy measurements. We 

consider here the linear measurement model: 

y, = H,x,, + E,, n = 1, , N (1)  
where 

E,, y, E RL, x, E RM, and H, E R L x M .  

We assume that the additive measurement error E, is normally 
distributed with mean zero and (positive definite) covariance 
matrix En, and that the errors are independent between samples. 
The states {x,} are (possibly unequally spaced) samples of a 
process g( ?,): 

’ A  
x n  = [ , ~ l ( t n ) ,  . . * > gMU(tn)] = g(tn) ,  tn  .< t n + l  vn 

where “ ’ ” denotes matrix transposition. The goal of smooth- 
ing is to estimate g (and/or its derivatives) from the measure- 
ments { y, } := I. 

One justifies smoothing by U priori knowledge that the com- 
ponent functions of g ( t )  vary slowly in some sense. The 
smoothness of g is frequently quantified by assuming that the 
states { x, } adhere to a parametric Gauss-Markov discrete-time 
state-space model: 

U, - N ( O ,  e n ) ,  xo - N ( C L O ,  &). (2)  
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Using such models, one can derive optimal smoothing algo- 
rithms 111 that provide minimum mean-square error estimates 
of the states. However, in many applications the parameters 
(state evolution matrices and covariances) of the state evolution 
model (2) are unknown, and they must be estimated from the 
measurements or from a training set [23. This estimation may 
result in an inaccurate parametric model. 

Rather than impose a possibly inaccurate parametric model, 
we would sometimes prefer to “let the data speak for itself,” 
particularly for off-line data exploration. This motivates non- 
parametric approaches to smoothing [3]. 

Nonparametric spline smoothing has proven to be successful 
at estimating scalar-valued functions from noisy data. There- 
fore, it is not surprising that the nonparametric approach has 
also been applied in some situations similar to the vector mea- 
surement model (1). In this paper, we derive a computationally 
efficient algorithm for nonparametric smoothing of vector mea- 
surements, allowing for general measurement covariances &. 
This has also been considered by Miller and Wegman [4], but 
their algorithm requires that the covariance matrices be simul- 
taneously diagonalizable. For independent, identically distrib- 
uted (i.i.d.1 measurement errors, we recommend the transfor- 
mation approach of [4], as it requires fewer computations than 
the algorithm presented below. Wegman [5], Woltring [ 6 ] ,  [7], 
and Sidhu and Weinert [8] all discuss approaches that effec- 
tively assume that the covariance matrices are diagonal. Note 
that the approach of Sidhu and Weinert [8] does allow for a 
more general measurement model than (1). In the special case 
of diagonal covariance matrices, the vector-spline smoothing 
algorithm reduces to repeated applications of the scalar algo- 
rithm. However, one can take advantage of any known similar- 
ity between the component functions when choosing the 
smoothing parameters [6], [7]. Nondiagonal, non-i.i.d. mea- 
surement covariances arise, for example, in the medical imag- 
ing problems of interest to the authors 191-[ 111. 

Although, as observed by Silverman [ 121, “nonparametric 
regression is not as widely known or adopted as perhaps it 
should be, ” spline smoothing concepts have previously had 
several other generalizations that we list for didactical reasons: 
estimating a function’s derivatives [ 121, [ 131, estimating 
branching curves [ 141, smoothing multivariate functions (scalar 
valued functions of several variables) [3], [ 151, and estimating 
curves with discontinuities [ 161. Source code for spline smooth- 
ing is available from the GCV and TOMS directories of NET- 
LIB [17].’ 

This paper is organized as follows. In Section 11, we review 
the derivation of the cubic-spline-based algorithm for smooth- 

‘An e-mail message to netlib@research.att.com containing the request 
“send index” or “send index from gcv” will generate a reply containing 
instructions 
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ing scalar measurements, following the approach and notation 
of Reinsch [ 181, [ 191. In Section 111, we present the new algo- 
rithm for smoothing vector measurements. In Section IV, we 
consider methods that use the measurements to automatically 
choose the parameters that control the degree of smoothing. In 
Section V ,  we describe a nonparametric method for measure- 
ment error covariance estimation. In Section VI, we outline the 
algorithm implementation and discuss computational require- 
ments. In Section VII, we compare these methods using simu- 
lated measurements. 

11. SPLINE SMOOTHING OF SCALAR MEASUREMENTS 
A.  The Problem 

Assume the scalar measurements y ,  satisfy the model 

yn = g(tn) + W,E,, n = 1, . * * , N  

E ,  - N ( 0 ,  u 2 ) ,  E { E , E , }  = 0 if n # rn 

where t ,  < . . < t,. The weights w, are assumed known, but 
the variance u2 may be unknown. Estimation of g by smoothing 
the y,’s always involves a tradeoff between fit to the data and 
smoothness of the estimated function j .  For normally distrib- 
uted measurement errors, the natural measure of fit to the data 
is the weighted residual sum of squares 

Spline smoothing is based on the following nonparametric mea- 
sure of the roughness (lack of smoothness) of g: 

General differential operators have also been considered, e.g., 
[4], [8]. For simplicity, we consider here only the case k = 2 ,  
though the algorithm derived below is fully generalizable. R2( g )  
is related to the curvature of g,  so it more heavily weights func- 
tions that are very wiggly. This measure also has the desirable 
property that R2( g )  = 0 if and only if g is linear (for k = 2 ) .  

We would like to simultaneously minimize RSS( g )  and 
R2( g ) ,  but these are conflicting goals in general.* The standard 
nonparametric solution is to use the curve that minimizes a 
weighted combination of the two: 

The smoothing parameter CY controls the tradeoff between fit to 
the data and smoothness. As CY + 0, g, approaches the cubic- 
spline interpolant of the measurements, and as cx -+ 00, s, ap- 
proaches the linear regression of the measurements. Automatic 
selection of a! will be discussed in Section IV. R2( g )  acts as a 
“roughness penalty” [ 121 that prevents excessive local varia- 
tion in the curve g. This idea is related to the regularization 
methods of computer vision [ 2 0 ] .  

B.  The Solution 

A consequence of the Euler equation corresponding to the 
variational problem (3) is that the minimizing function g, is a 

*The solution to the problem of minimizing R2( g )  subject to the con- 
straint g( t , )  = y n v n  is cubic-spline interpolation. Interpolation is useful 
only if the measurements are noiseless 1181. 

cubic spline [ 181. A function g is a cubic spline with knots 
{ t ,  } := if and only if there exist polynomial coefficients { a,, 
b,, e,, d,, } such that 

c n  2 d n  

2 
g(t)  = a, + b,(t  - t , )  + - ( t  - t , )  + - 6 ( t  - tn )3 ,  

t t n ,  ~ + l l  (4) 

g ( t ) ,  g ( t ) ,  g ( t )  are all continuous. (5) 
and 

( to  is any number less than t , ,  and t N +  , is any number greater 
than tN.  ) 

The continuity conditions (5) impose a system of equations 
on the polynomial coefficients. These knot dependent equations 
are [ 181 

where h, = t ,  - t,- I .  There are a total of 4 ( N  + 1 ) unknowns, 
so by adding 4 boundary conditions to the above 3N equations, 
we can express all of the coefficients in terms of ( a  ,, . . . , aN). 
Table I presents two possible boundary conditions. We restrict 
our attention here to natural cubic-splines by imposing the 
boundary condition that & ( t )  is linear for t > t ,  and t < t , .  
Other boundary conditions, e.g., periodic and complete 
splines, are possible, which may be important if derivatives of 
g are to be estimated [6], [13]. 

For natural cubic-splines, the most important constraints are 
summarized by the following matrix relation: 

Q’u = TC ( 7 )  

where a = ( a , ,  . , a,)’, and c = ( c2 ,  . * . , e,-,)’. Q and 
Tare N x ( N  - 2 )  and ( N  - 2 )  X ( N  - 2 )  band matrices 
respectively, 

otherwise c O7 

otherwise. 
(op 

(The B-spline version of Q and T is known to result in a more 
numerically stable computational algorithm [6 ] ;  we present this 
version for simplicity. ) 
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TABLE I 
BOUNDARY CONDITIONS FOR SPLINE SMOOTHING 

Left Boundary Right Boundary 

Natural Splines 
CO = 0 c,?$ = 0 
do = 0 dN = 0 

Not-a-Knot Splines 

a, = al + b,h, + &,h: aN = + bN..lhN-I + f ~ , h i - ~  
+ id,h: + idN-,h:-I 

do = dl d ,  = d N - !  

Lety = ( y l ,  * . * , yN) ‘  and W = diag ( w l ,  . . . , wN). I f g  
is a natural cubic spline with expansion (4), then it was shown 
in 1211 that 

R 2 ( g )  = { (g(t)f  dt = C‘TC = a’QT-IQ’a 

and 

Although we assume the error covariances C, are known for the 
derivation below, they can be estimated (Section V) if the errors 
are identically distributed. The goal is to estimate g from the 
measurements { y, } . 

Again we must compromise between fit to the data and 
smoothness of the estimated functions. Assuming the errors are 
normally distributed, the natural measure of fit to the data is 

N 

RSS(g) = (Y,  - g ( & ) ) ’ q Y n  - g(c1)). 
n =  I 

Although we assume that the component functions g,, ( t )  of g (  t )  
are smooth, they may have different degrees of smoothness, dif- 
ferent scales, and different marginal measurement-error vari- 
ances. Hence, M smoothing parameters, a = (a lr  * . . , a M ) ,  
are required to formulate the problem. However, if a group of 
the component functions are known to have similar properties, 
then we equate the corresponding smoothing parameters. The 
multidimensional generalization of (3) is then 

(Y,  - g(tn))‘xil(Yn - g(t,t)) 

M 

(8)  + c a, 1 ( & ( t ) f d t ] .  ( 1 1 )  
RSS ( g )  = ( y  - a)‘W-’(y - U ) .  

m = l  
Therefore the coefficients of the smoothing spline ga minimize 
the quadratic: 

U = arg min [ ( y  - a)’W-’(y - a )  + aa’QT-’Q’a]. 
Before presenting the solution to this general minimization 

problem, we note two special cases. If the covariances E,, are 
a diagonal, then (1 1) separates into M independent terms of the 

form (3 ) ,  so g, can be computed by M evaluations of (9). Sim- 

a transformation of ( 1  1) yields a separable expression [4]. 

One can find the to this minimization by the ilarly, if the covariances are simultaneously diagonalizable, then 
following ,system of equations for and C [ 181 : 

Q’y = (T/a + Q’W’Q)(Ca) 
U = y - W2Q(2a). (9)  B. The Solution 

Again, by the Euler equations for ( l l ) ,  the solution g, is a 

each natural cubic splines. Their piecewise polynomial expan- 
sions (4) have coefficients denoted U‘,), b‘,) ,  e“,’, and d( ’n ) ,  
where 

Since and Q are band matrices, we can solve (9) in vector spline with component functions { g , , ,  1 f =  I that are operations 1221. These band matrices will also be important to 
the efficiency of the algorithm for smoothing vectpr measure- 
ments. Having computed U and C, we can compute b and d from 
(6), thereby obtaining the piecewise-cubic expansion of g, .  In 
many cases, only a is needed since ga ( t,,) = h,,. d ( m )  = ( h y ,  . . . , hjym))’ 

A .  The Problem 

sidering the vector measurement model3: 

and the coefficients 8( ’n )  and 
As shown in Appendix A,  

operations by solving the following banded equations (cf. (9)): 

satisfy (6). 
We now generalize the results of the previous section by con- and are computed in o( M’N 

’The objection could be raised that model (10) is not as general as model 
( l ) ,  which contains the additional H ,  term. However, if the measurement 
matrices H, are all of rank M ,  then multiplying both sides of (1) by 
(H:X3,‘  Hn)-‘HLLi transforms (1) into (10). In general, the measurement 
matrices may not all be of rank M .  If they are not, then even optimal Kal- 
man filters, derived from the state-space model (2), will only be effective 
if the pairs (11,. A,) satisfy the technical condition of stochastic observa- 
bility [23]. This condition is usually satisfied because of the presence of 
delay or difference terms in x,. Any such (application dependent) a priori 
information should be incorporated into the nonparametric paradigm pre- 
sented here. 
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and 

Z = diag ( E l ,  . * , E,,,). 
E is the IVM X NM block diagonal covariance matrix of y .  

The minimization (1 1) has resulted in a linear relationship, 
d = A ( a ) y ,  between the measurements and the estimates, 
where from (12) 

A ( a )  = ZNM - E(Q @ ZM)((T €9 D ( a ) - l )  

+ (Q’  €9 Z M ) E ( Q  @ rM,) - ’ (Qr @ 4,). 
In statistics, A ( a )  is called the hat or influence matrix and will 
be used in the next section for automatic selection of a. 

(14) 

IV , CHOOSING THE SMOOTHING PARAMETERS 

If the smoothing parameter a is too large or too small, then 
the measurements will be oversmoothed or undersmoothed, re- 
spectively. In the scalar case, Reinsch I181 suggested choosing 
a so that R S S (  2,) = N u 2 .  However, Craven and Wahba [24] 
showed that this led to consistent oversmoothing. Ideally, we 
would like to choose the smoothing parameters to minimize the 
mean-square error: 

l N  
MSE(a) 4 - c l l ga ( tn )  - 

N n = l  

aMSE A arg min MSE( a ) .  ( 1 5 )  
a 

In practice, this minimization is impossible since g is unknown. 
For the scalar measurement problem, several methods have been 
suggested for estimating aMsE from the data 131, including two 
due to Akaike [25]. We present below three of these methods, 
each generalized to apply to our vector measurement problem. 
They are compared empirically in Section VII. Note that for 
small samples one may prefer to use robust variants of these 
estimators [25]. 

The estimators discussed below all depend on the central 
bands of the influence matrix A ( a ) .  Hutchinson and deHoog 
[26], [27] have presented algorithms for computing these bands 
in O( M 3 N )  operations. Their algorithm is directly applicable 
to the vector measurement problem, so we do not present it 
here. 

A.  Unbiased Risk 
In the scalar case with known error standard deviation, Cra- 

ven and Wahba [24] have suggested using the value of the 
smoothing parameter that minimizes an unbiased estimator of 
the expected mean-square error (risk). This idea can be directly 
extended to the vector measurement case, and one can easily 
show that 

1 
N 

+ - tr (E) 

is an unbiased estimator of E { MSE ( a )  }. The unbiased risk 
estimate of aMSE is thus 

aUR a arg min UR(a). 
n 

The estimators and aGcv discussed below have been more 
popular than aUR in the scalar case, perhaps because the latter 

depends on the (often unknown) error variance U’. For the vec- 
tor measurement problem, all three estimates depend on the 
covariance matrices { Zn 1. 

B. Cross Validation 

Wahba and Wold [28], [29] have suggested using the 
smoothing parameter that minimizes the cross-validation (CV) 
score: 

l N  
- c ( Y O  - g n , - n ( t n ) ) ’ E i ’ ( ~ n  - g n , - n ( t a ) )  N n = l  c v ( a )  

a,, A arg min cv ( a ) .  
a 

ga, - n  is the solution to the smoothing problem ( 1  1) with N - 1 
data points, posed without the data pair ( t , ,  y , ) ,  i.e.: 

Each data pair is dropped in turn, the smoothed curve g,, - n  is 
estimated, and the predicted value g,, - n  ( t , )  is compared with 
the unused measurement. If the CV score is small, then we have 
chosen the smoothing parameter that makes the estimated curve 
a good self-predictor. 

Although (16) illustrates the idea behind cross validation, it 
is computationally inefficient. We show in Appendix B that (16) 
can be rewritten 

(17)  

where A(,,, )( a )  is the nth M x M block diagonal submatrix of 
the influence matrix (14). By using the Hutchinson and de Hoog 
algorithm [26] ,  (17) is computed in only O ( M 3 N )  operations. 

C. Generalized Cross Validation 

Craven and Wahba [24] have also suggested using the 
smoothing parameter that minimizes the generalized cross-val- 
idation (GCV) score, whose vector spline generation is: 

1 1 z R S S ( g a )  & ( Y  - g a ) z - ’ ( ~  - gal 
- - 

1 
GCV(a) !2 

(;tr (1 - A ( a q  (,tr (1 - 

%,-- A arg min GCV(a). 
a 

In the scalar case, the GCV score is a weighted version of the 
CV score that is invariant to rotations of the data when periodic 
end conditions are imposed [25]. See [3] for discussion of the 
asymptotic properties of GCV. Again, [26] is used to evaluate 
GCV(a)  in U ( M ’ N )  operations. 

V. ERROR COVARIANCE ESTIMATION 

For the scalar measurement case with unknown error vari- 
ance, Wahba 1301 (see also discussion in [31]) proposed the 
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following estimator: 

where the denominator is the natural extension of "degrees of 
freedom" to nonparametric regression. For the vector measure- 
ment case with unknown error covariance, if the measurement 
errors are identically distributed, that is En = E V n ,  then we 
can generalize this idea to estimate by the following algo- 
rithm: 

1) For each m = 1 ,  . * * , M, smooth the mth measurement 
component { yn,m } := I to compute g,,,," using the scalar 
algorithm of Section 11, and using, for example, the CV 
score to choose a,,,. 

2)  Estimate the elements of & using the standard correlation 
estimate: 

N 

n =  C I ( ~ n , )  - g t . m z ( f n ) ) ( ~ , z , j  - i j , a , ( t n ) )  

&!J = 
dtr ( I  - A ( a , ) )  dtr ( I  - A ( a , ) )  

(which simplifies to (1 8) for the diagonal elements of g). For 
the non-i.i.d. case, Silverman's iterative reweighting approach 
may be useful [12]. 

VI. ALGORITHM 
Table I1 outlines the organization of the algorithm's imple- 

mentation (C source code is available as VSPLINE from NET- 
LIB [17]). The first set of computations is independent of a. 
The second set computes the smoothed estimates r i ,  and the third 
set evaluates the cross-validation score. The computational re- 
quirements for this algorithm are of the same order as those for 
Kalman filter smoothers [32], when a is known. The second and 
third set are typically repeated for several values of a to find 
the minimum CV score. This search is the computational pen- 
alty for our uncertainty about the smoothness of the functions 
we are estimating. For the i.i.d. case, the transformation method 
of Miller and Wegman [4] is preferable as it only requires 
0 ( M 2 N  ) computations for the transformations, and 0 ( M N  ) 
computations for smoothing. 

VII. SIMULATION RESULTS 
To demonstrate the new smoothing algorithm and to compare 

the three methods of automatically choosing the smoothing pa- 
rameter a, we applied the methods to simulated data. Fig. l is 
a plot of two functions, g, ,  a decaying sinusoid, and g,, a hy- 
perbolic tangent, and one realization of their noisy sampled 
measurements. We generated the measurements by adding 
pseudorandom Gaussian noise vectors with covariance matrix 

2.25 2.4 ' = (2.4 4 1 
to N = 100 samples of the function drawn uniformly on [ 0, 1 1 .  

First we applied the scalar smoothing algorithm to the noisy 
samples of g,  shown in Fig. 1. Fig. 2 shows U R ( a ) ,  C V ( a ) ,  
GCV (a), and MSE (a) over a range of the smoothing param- 
eter. The minima of the UR, CV, and GCV scores (denoted by 
the small circles) occur very close to the minimum of the MSE; 
thus, at least for this scalar example, each of the three methods 
would select a good smoothing parameter. It is interesting that 

TABLE I1 
COMPUTATIONAL REQUIREMENTS OF LINEAR SMOOTHING ALGORITHM 

Computation Flops 

1. Initialization 
Q, T N ( 7 )  - 7 
(Q'  @ I M ) Y  
Bo = (Q'  @ IM)E(Q @ Z M )  

N ( 5 M )  - 5M 
N ( 9 M  + 6 )  - 2 3 M 2  - 16 

Subtotal: N ( 9 M 2  + 5 M  + 1 3 )  - 2 3 M 2  - 5M - 2 3  

11. Regressiq? 
( T @ D ( a )  ) N ( 2 M )  - 5M 
E = ( T @ D ( a ) - ' ) + B O  N ( 2 M 2 )  - 4 M 2  
[ L ,  D ]  = Cholesky(B) 

Solve (LDL')f, = (Q' 8 

(Q' @ IM)& 

N ( y M 3  - $ M 2  - M )  - 5 4 M 3  + 
N (  1 2 M 2  - 3 M )  - 4 2 M 2  + 12M 

N ( 6 M )  - 12M 

1 2 M 2  + 2 M  

Z M ) Y  

E ( Q '  @ I M ) ~ ,  
& = y - E ( Q ' @ I M ) i . ,  N ( M  1 

N ( 2 M 2  - M )  

Subtotal: N ( + M 3  + : M 2  + 4 M )  - 5 4 M 3  - 3 4 M 2  - 3M 

111. Compute CV Score 
B - '  = Invert(LDL') [ 2 6 ]  

F =  ( Q  @ Z M ) B - ' ( Q '  @ ZM) 

N (  1 8 M 3  - 6 M 2 )  - 2 M ( 3 M  - 

N ( ? M ( M  + 1 ) )  - T M ( M  + 1) 
1 ) (  12M - 1 )  

e, = Y .  - & ( k )  
Solve (F,,,",)f" = K ' e ,  N ( 9 4 3  + - M )  

N ( M )  

C V ( a )  = l / N E f = , f : , C ; ' f ,  N ( 2 M 2  + M - 1 )  
Subtotal: N ( T M 3  + l l M 2  + Y M  - 1 )  - 72M3 + y M 2  - :M 

I 10 

t 

Fig. 1 .  True curves (-) and noisy measurements ( 0 ,  *). 

the UR, CV, and GCV scores are all flatter than the MSE near 
QMSE. 

To evaluate the three scores in the vector measurement case, 
we did a Monte Carlo simulation with 400 runs, each with a 
different measurement noise realization. For each run we com- 
puted a M S E ,  aUR, aCV, and aGcv using Powell's method for non- 
linear minimization as given in [33, p. 3151. Our intent was to 
compare the estimators' best possible performances, so we in- 
itialized the minimization procedure at a value of a that resulted 
in low MSE for a few preruns. To compare the estimators, we 
use their relative efficiencies, defined by 

MSE (aMSE,i) 
% ( a )  = M S q a )  

where i indicates the ith run. By definition (15), q,  E (0, 1 1 .  
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W a l N J  

Fig. 2. Comparison of MSE, UR, CV, and GCV for scalar measurements. 

TABLE I11 
RELATIVE EFFICIENCIES OF THE DIFFERENT SMOOTHING APPROACHES 

Summary 
Statistic bf 

IqiIE'I 

mean 
5th %-ile 
25th %-ile 
50th 36-ile 
75th %-ile 
95th %-ile 

ai = a,,/&i 

~ ~~ 

Smoothing Approach 

None UR 

0.076 0.812 
0.034 0.532 
0.054 0.731 
0.071 0.836 
0.092 0.924 
0.130 0.991 

0.002 0.007 

CV GCV 

0.841 0.846 
0.578 0.605 
0.762 0.767 
0.877 0.877 
0.947 0.945 
0.992 0.990 

0.007 0.006 

Diag (g) 

0.754 0.839 
0.463 0.555 
0.664 0.757 
0.777 0.883 
0.868 0.946 
0.945 0.993 

0.007 0.007 

Table 111 shows summary statistics of the computed relative 
efficiencies for the 400 runs. Three other cases are included for 
comparison; "None": no smoothing, "Diag (Z)'': smoothing 
with just the diagonal components of the covariances (with min- 
imum CV score), and "2": smoothing with the estimated co- 
variance procedure described in Section V (also with minimum 
CV score). 

From the summary statistics for this example, we conclude 
that the CV and GCV scores perform equally well, and both 
slightly outperform the UR score. Those three were signifi- 
cantly more efficient than smoothing the components individ- 
ually, which was expected since the measurement correlation 
was 0.8. All smoothing approaches decreased the MSE by a 
factor of approximately 10. It was a pleasant surprise that the 
performance using the estimated covariance matrix was about 
as good as the performance using the true covariance. This sug- 
gests that the approach described in this paper may be prefera- 
ble to Smoothing the components individually, even when the 
error covariance is unknown. The off-diagonal elements of the 
covariance matrices clearly play an important role, even when 
estimated. 

There is still no consensus on the relative theoretical merits 
of the UR, CV, and GCV scores, even in the scalar case. We 
have derived and presented the vector generalizations of all three 
since their performances may be application dependent. 

As a representative example, Fig. 3 shows the smoothed es- 
timates (dashed) superimposed on the true curves (solid) for the 
data shown in Fig. 1, using aCV. The estimated functions agree 
well with the true functions, and the overall smoothness is qual- 
itatively similar as well. 

857 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

Fig. 3. True curves (solid) and estimated curves (dashed) using CV score. 

-15' 

t 

VIII. CONCLUSIONS 
We have presented a computationally efficient algorithm for 

nonparametric fixed-interval smoothing of noisy measurements 
with arbitrary measurement covariances. The effectiveness of 
the approach was demonstrated on a numerical example. The 
approach promises to be an attractive alternative to parametric 
Kalman smoothing for off-line applications. 

Possible extensions of this work would include developing a 
more robust approach to covariance estimation, and applying 
Silverman's iterative reweighting approach [ 121 for non-i.i.d. 
covariance estimation. The relationship of nonparametric esti- 
mation to state-space methods could also be explored more 
completely, which could result in a recursive formulation of the 
solution. 

APPENDIX A 

In this Appendix, we derive the solution (12) to the minimi- 

M 
zation problem (1 1): 

& = arg min RSS(g) + amR(gm) .  
g m =  1 

BY (131, 
RSS(g) = (y - u)'E-'(Y - U )  

and by (8), 
M c a,R( 8,) = (C(~))'TC(~) = c'(T €3 D ( u ) ) c .  

Since the minimizing component functions are each natural 
cubic splines, they must each satisfy the constraint Q'a'"') = 
TcCrn)  of (7). These constraints can be aggregated to form the 
constraint (Q' €3 Z,) a = ( T €3 Z M )  c .  The optimal coefficients 
thus minimize 

( y  - a)'E-'(y - a )  + c'( T €3 D ( a ) ) c  (19) 

m =  I 

subject to 
(Q' 8 ZM)U = ( T  €3 ZM)C.  ( 2 0 )  

Since ( T  8 Z,) is symmetric and invertible, c = ( T  €3 
Z M ) - ' (  Q' €3 ZM)u, which, substituted into (19) yields 

(y - a)'E-'(y - U )  + (( T €3 Z M ) - ' ( Q r  €3 Z M ) ~ ) '  

. ( T  €3 D ( a ) ) ( T  €3 z ~ ) - ' ( Q  8 zM)a 

= y'E-'y - 2a'E-'y + ar(C-' + ( Q  €3 D ( a ) )  

* ( T  €3 ZM)-'(Q' 8 Z M ) ) ~ .  
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Minimizing over a by setting the partial derivative w.r.t. a equal 
to zero yields 

E - ’ y  = (E-’ + ( Q  8 D( U ) ) (  T 8 I , ) - ’ (  Qf @ I , ) )& 

(21) 

(22) 

Solving for d 

a = (z-’ + s a ) - l E - 1 y  

where 

Sa 4 ( Q  @ I,)(  T 0 D ( u ) - ’ ) - ’ ( Q ‘  @ I,) 

= ( Q T - I Q ‘ )  0 D ( u ) .  (23) 
We could compute ci directly from (22), but a few manipula- 
tions [18] yield a more easily evaluated band form. Multiplying 
both sides of (21) by ?2 and using (20), we get 

J = d + E(Q 8 Z,)(Z,(N-~) @ D ( U ) ) e .  

Multiplying both sides by (Q’ 0 I , )  and using (20) yields 

(Q’ @I ZM)Y = ( ( T  @ IM) + (Q’ @ Z M ) E ( Q  8 I,) 

‘ ( I M ( N - 2 )  D ( a ) ) ) e .  (24)  

Z,)Y = ( ( T  @ ~ ( a ) - l )  + (Q’ @ Z, )E(Q 8 I M ) ) e a .  

( ( T  0 ~ ( 4 )  + (Q‘ 8 I,MQ 0 I M ) ) e a  = (Q’ 8 I,>Y 

e = 0 D ( a ) - ’ ) e a  

Symmetric band matrices are the easiest to use, so define ca = 
( Z , ( N - 2 )  @ D ( a ) ) c .  Combining this definition with (24) yields 

(ef 
Thus the minimizing coefficients d and C are the solutions to the 
following system of equations: 

ci = y - E(Q @ Z,)ea. 
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